TY - JOUR A1 - Jingjing, Liang A1 - Gamarra, Javier G. P. A1 - Nicolas, Picard A1 - Zhou, Mo A1 - Bryan, Pijanowski A1 - Jacobs, Douglass F. A1 - Reich, Peter B. A1 - Crowther, Thomas W. A1 - Gert-Jan, Nabuurs A1 - Sergio, de-Miguel A1 - Jingyun, Fang A1 - Woodall, Christopher W. A1 - Jens-Christian, Svenning A1 - Tommaso, Jucker A1 - Jean-Francois, Bastin A1 - Wiser, Susan K. A1 - Ferry, Slik A1 - Bruno, Hérault A1 - Giorgio, Alberti A1 - Gunnar, Keppel A1 - Hengeveld, Geerten M. A1 - Ibisch, Pierre L. A1 - Silva, Carlos A. A1 - Hans ter Steege, A1 - Peri, Pablo L. A1 - Coomes, David A. A1 - Searle, Eric B. A1 - Klaus von Gadow, A1 - Bogdan, Jaroszewicz A1 - Abbasi, Akane O. A1 - Meinrad, Abegg A1 - Adou Yao, Yves C. A1 - Jesús, Aguirre-Gutiérrez A1 - Almeyda Zambrano, Angelica M. A1 - Jan, Altman A1 - Esteban, Alvarez-Dávila A1 - Juan Gabriel Álvarez-González, A1 - Alves, Luciana F. A1 - Amani, Bienvenu H. K. A1 - Amani, Christian A. A1 - Christian, Ammer A1 - Bhely Angoboy Ilondea, A1 - Clara, Antón-Fernández A1 - Valerio, Avitabile A1 - Aymard, Gerardo A. A1 - Azihou, Akomian F. A1 - Baard, Johan A. A1 - Baker, Timothy R. A1 - Radomir, Balazy A1 - Bastian, Meredith L. A1 - Rodrigue, Batumike A1 - Marijn, Bauters A1 - Hans, Beeckman A1 - Nithanel Mikael Hendrik Benu, A1 - Robert, Bitariho A1 - Pascal, Boeckx A1 - Jan, Bogaert A1 - Frans, Bongers A1 - Olivier, Bouriaud A1 - Brancalion, Pedro H. S. A1 - Susanne, Brandl A1 - Brearley, Francis Q. A1 - Jaime, Briseno-Reyes A1 - Broadbent, Eben N. A1 - Helge, Bruelheide A1 - Erwin, Bulte A1 - Ann Christine Catlin, A1 - Roberto Cazzolla Gatti, A1 - César, Ricardo G. A1 - Chen, Han Y. H. A1 - Chelsea, Chisholm A1 - Emil, Cienciala A1 - Colletta, Gabriel D. A1 - José Javier Corral-Rivas, A1 - Anibal, Cuchietti A1 - Aida, Cuni-Sanchez A1 - Dar, Javid A. A1 - Selvadurai, Dayanandan A1 - Thales de Haulleville, A1 - Mathieu, Decuyper A1 - Sylvain, Delabye A1 - Géraldine, Derroire A1 - Ben, DeVries A1 - John, Diisi A1 - Tran Van Do, A1 - Jiri, Dolezal A1 - Aurélie, Dourdain A1 - Durrheim, Graham P. A1 - Nestor Laurier Engone Obiang, A1 - Ewango, Corneille E. N. A1 - Eyre, Teresa J. A1 - Fayle, Tom M. A1 - Feunang, Lethicia Flavine N. A1 - Leena, Finér A1 - Markus, Fischer A1 - Jonas, Fridman A1 - Lorenzo, Frizzera A1 - de Gasper, André L. A1 - Damiano, Gianelle A1 - Glick, Henry B. A1 - Maria Socorro Gonzalez-Elizondo, A1 - Lev, Gorenstein A1 - Richard, Habonayo A1 - Hardy, Olivier J. A1 - Harris, David J. A1 - Andrew, Hector A1 - Andreas, Hemp A1 - Martin, Herold A1 - Annika, Hillers A1 - Wannes, Hubau A1 - Thomas, Ibanez A1 - Nobuo, Imai A1 - Gerard, Imani A1 - Jagodzinski, Andrzej M. A1 - Stepan, Janecek A1 - Vivian Kvist Johannsen, A1 - Joly, Carlos A. A1 - Blaise, Jumbam A1 - Kabelong, Banoho L. P. R. A1 - Goytom Abraha Kahsay, A1 - Viktor, Karminov A1 - Kuswata, Kartawinat A1 - Kass, Justin N. A1 - Elizabeth, Kearsley A1 - Kennard, Deborah K. A1 - Sebastian, Kepfer-Rojas A1 - Mohammed Latif Khan, A1 - Kigomo, John N. A1 - Hyun Seok Kim, A1 - Carine, Klauberg A1 - Yannick, Klomberg A1 - Henn, Korjus A1 - Subashree, Kothandaraman A1 - Florian, Kraxner A1 - Amit, Kumar A1 - Relawan, Kuswandi A1 - Mait, Lang A1 - Lawes, Michael J. A1 - Leite, Rodrigo V. A1 - Geoffrey, Lentner A1 - Lewis, Simon L. A1 - Libalah, Moses B. A1 - Janvier, Lising A1 - Pablito Marcelo López-Serrano, A1 - Lukina, Huicui Lu Natalia V. A1 - Anne Mette Lykke, A1 - Vincent, Maicher A1 - Maitner, Brian S. A1 - Eric, Marcon A1 - Marshall, Andrew R. A1 - Martin, Emanuel H. A1 - Olga, Martynenko A1 - Mbayu, Faustin M. A1 - Mbuvi, Musingo T. E. A1 - Meave, Jorge A. A1 - Cory, Merow A1 - Stanislaw, Miscicki A1 - Moreno, Vanessa S. A1 - Albert, Morera A1 - Mukul, Sharif A. A1 - Müller, Jörg C. A1 - Agustinus, Murdjoko A1 - Maria Guadalupe Nava-Miranda, A1 - Litonga Elias Ndive, A1 - Neldner, Victor J. A1 - Nevenic, Radovan V. A1 - Nforbelie, Louis N. A1 - Ngoh, Michael L. A1 - N’Guessan, Anny E. A1 - Ngugi, Michael R. A1 - Ngute, Alain S. K. A1 - Njila, Emile Narcisse N. A1 - Nyako, Melanie C. A1 - Ochuodho, Thomas O. A1 - Jacek, Oleksyn A1 - Alain, Paquette A1 - Parfenova, Elena I. A1 - Minjee, Park A1 - Marc, Parren A1 - Narayanaswamy, Parthasarathy A1 - Sebastian, Pfautsch A1 - Phillips, Oliver L. A1 - Piedade, Maria T. F. A1 - Daniel, Piotto A1 - Martina, Pollastrini A1 - Lourens, Poorter A1 - Poulsen, John R. A1 - Axel Dalberg Poulsen, A1 - Hans, Pretzsch A1 - Mirco, Rodeghiero A1 - Rolim, Samir G. A1 - Francesco, Rovero A1 - Ervan, Rutishauser A1 - Khosro, Sagheb-Talebi A1 - Purabi, Saikia A1 - Moses Nsanyi Sainge, A1 - Christian, Salas-Eljatib A1 - Antonello, Salis A1 - Peter, Schall A1 - Dmitry, Schepaschenko A1 - Michael, Scherer-Lorenzen A1 - Bernhard, Schmid A1 - Jochen, Schöngart A1 - Vladimír, Šebeň A1 - Giacomo, Sellan A1 - Federico, Selvi A1 - Serra-Diaz, Josep M. A1 - Douglas, Sheil A1 - Shvidenko, Anatoly Z. A1 - Plinio, Sist A1 - Souza, Alexandre F. A1 - Stereńczak, Krzysztof J. A1 - Sullivan, Martin J. P. A1 - Somaiah, Sundarapandian A1 - Miroslav, Svoboda A1 - Swaine, Mike D. A1 - Natalia, Targhetta A1 - Nadja, Tchebakova A1 - Trethowan, Liam A. A1 - Robert, Tropek A1 - John Tshibamba Mukendi, A1 - Peter Mbanda Umunay, A1 - Usoltsev, Vladimir A. A1 - Gaia Vaglio Laurin, A1 - Riccardo, Valentini A1 - Fernando, Valladares A1 - Fons van der Plas, A1 - Daniel José Vega-Nieva, A1 - Hans, Verbeeck A1 - Helder, Viana A1 - Vibrans, Alexander C. A1 - Vieira, Simone A. A1 - Jason, Vleminckx A1 - Waite, Catherine E. A1 - Hua-Feng, Wang A1 - Eric Katembo Wasingya, A1 - Chemuku, Wekesa A1 - Bertil, Westerlund A1 - Florian, Wittmann A1 - Verginia, Wortel A1 - Tomasz, Zawiła-Niedźwiecki A1 - Chunyu, Zhang A1 - Xiuhai Zhao Jun Zhu, A1 - Xiao, Zhu A1 - Zhi-Xin, Zhu A1 - Zo-Bi, Irie C. A1 - Cang, Hui T1 - Co-limitation towards lower latitudes shapes global forest diversity gradients JF - Nature Ecology & Evolution N2 - The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers. KW - forest biodiversity KW - tree inventory KW - forests KW - ecological gradients KW - species richness Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-4821 VL - 6 IS - 10 SP - 1423 EP - 1437 PB - Springer Nature ER - TY - JOUR A1 - Steckel, M. A1 - del Río, M. A1 - Heym, M. A1 - Aldea, J. A1 - Bielak, K. A1 - Brazaitis, G. A1 - Černý, J. A1 - Coll, L. A1 - Collet, C. A1 - Ehbrecht, M. A1 - Jansons, A. A1 - Nothdurft, A. A1 - Pach, M. A1 - Pardos, M. A1 - Ponette, Q. A1 - Reventlow, D.O.J. A1 - Sitko, R. A1 - Svoboda, M. A1 - Vallet, P. A1 - Wolff, B. A1 - Pretzsch, H. T1 - Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) – Site water supply and fertility modify the mixing effect JF - Forest Ecology and Management N2 - Tree species mixing has been widely promoted as a promising silvicultural tool for reducing drought stress. However, so far only a limited number of species combinations have been studied in detail, revealing inconsistent results. In this study, we analysed the effect of mixing Scots pine and oak (pedunculate oak and sessile oak) trees on their drought response along a comprehensive ecological gradient across Europe. The objective was to improve our knowledge of general drought response patterns of two fundamental European tree species in mixed versus monospecific stands. We focused on three null hypotheses: () tree drought response does not differ between Scots pine and oak, () tree drought response of Scots pine and oak is not affected by stand composition (mixture versus monoculture) and () tree drought response of Scots pine and oak in mixtures and monocultures is not modified by tree size or site conditions. To test the hypotheses, we analysed increment cores of Scots pine and oak, sampled in mixed and monospecific stands, covering a wide range of site conditions. We investigated resistance (the ability to maintain growth levels during drought), recovery (the ability to restore a level of growth after drought) and resilience (the capacity to recover to pre-drought growth levels), involving site-specific drought events that occurred between 1976 and 2015. In monocultures, oak showed a higher resistance and resilience than Scots pine, while recovery was lower. Scots pine in mixed stands exhibited a higher resistance, but also a lower recovery compared with Scots pine in monocultures. Mixing increased the resistance and resilience of oak. Ecological factors such as tree size, site water supply and site fertility were found to have significant effects on the drought response. In the case of Scots pine, resistance was increased by tree size, while recovery was lowered. Resistance of oak increased with site water supply. The observed mixing effect on the tree drought response of Scots pine and oak was in some cases modified by the site conditions studied. Positive mixing effects in terms of resistance and resilience of oak increased with site water supply, while the opposite was found regarding recovery. In contrast, site fertility lessened the positive mixing effect on the resistance of Scots pine. We hypothesise that the observed positive mixing effects under drought mainly result from water- and/or light-related species interactions that improve resource availability and uptake according to temporal and spatial variations in environmental conditions. KW - Complementarity KW - Drought stress KW - Ecological gradient KW - Facilitation KW - Recovery KW - Resilience KW - Resistance KW - SPEI Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:eb1-opus-5761 SN - 0378-1127 VL - 461 PB - Elsevier ER -