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Abstract

Within this bachelor thesis, the possibility and efficiency of using a log-based message
broker as an object state store is examined. The main goal is to show the high performance
a distributed in-memory local state store can achieve and why a log based message broker
is a useful complement to create a reliable and scalable object store. The project of this
work is designed as state store for current device data of an IoT system based on the
microservice architecture.

As log-based message broker Kafka is used in this thesis with its additional Streams
DSL, which simultaneously perform the functions of a data consumer, producer and
a processor. Kafkas’ Streams DSL is the perfect fit for this project, because it already
provides an automatic state store handling.

Firstly this work describes the implementation how to replace an object database with a
distributed local state store. Secondly it shows the providing of the state to other services
over a changelog topic. And thirdly the project illustrates how the changelog can be
materialized into a view, which makes the data accessible to the outside via a REST API.

In the performance analysis of this paper, the comparison between the local state store
implementation and a predecessor implementation, with MongoDB as object store, is
made. Also, the differences in performance and resource utilization between the two types
of key-value stores, that Kafka Streams provides, are investigated. The two types are the
only in-memory and the persistent key-value store using RocksDB.

The thesis successfully shows that the implementation of such a distributed local state
store can be efficiently and easily integrated into a microservice architecture. Furthermore
the service is capable to process much more messages per second than the MongoDB
implementation. And in addition the resource utilization is much lower in such a system
that does not use an external database. Moreover, it is shown that the latency, which is
measured by the time the service needs to process one message, does not depend on the
number of messages per second. This cannot be achieved with the implementation in
MongoDB.
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1 Introduction

1.1 Motivation

In modern software architecture, it is becoming more and more relevant to process and
store a large amount of data correctly and efficiently. Especially in Internet of Things (IoT)
systems with many devices, where messages from a single device tend not to contain a
large amount of data but are received in a small time interval, it is important to ensure
the correctness and efficiency of processing, storing and querying the device state (A. B.
Alaasam et al. 2020). The general approach is to store this state inside external datastores,
but distributed data systems with local stores are receiving more and more attention,
because of the fast process times (Kleppmann 2017). Therefore it is becoming increasingly
important to provide an efficient algorithm that guarantees correct processing.

1.2 Planned Concept

In this work, the implementation of a distributed and scalable in-memory state storage
is planned. This storage is used to store the current state of a physical device as Digital
Twin (DT) at any time. Due to the fact, that the state store is in-memory and distributed,
the application should efficiently persist the data on an external resource. Furthermore it
should also provide the state to the outside with an Application Programming Interface
(API), having access to all objects, even if the state store is distributed over many service
instances.

1.3 Expected Results

The result implementation should be easy to integrate into an IoT system based on a
microservice architecture. And it should fulfill the relevant requirements for an object
state storage, e.g. good scalability and persistency of data. Comparing the performance of
the proposed implementation of this work to the previour implementation relying on an
external, NoSQL database, significant improvements should be apparent.

1.4 Report Outline

The first chapter covers the state of the art of the technologies used within the project.
Followingly, the conceptual and architectural design of the target implementation is
described along with the included microservices that compose the scalable in-memory
state storage. In the third chapter the detailed implementation of the services is shown.
After that the performance test results between different technologies of state storages
and also between the old and the new implementation are illustrated and explained and
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summarized in the next chapter. Lastly, the potential for improvements is assessed and
outlined.




2 State of the Art

In the beginning of this chapter technologies which are useful for the implementation of a
distributed object state storage are explained. After that the different types of message
brokers are explained, pointing out their importance in distributed data systems. The
second part of the message brokers shows that log-based message brokers with additional
features are already designed to store data in a distributed way. Finally the special
framework named Kafka is explained with its special features, which simplifies the
distributed storage of an object state.

2.1 Distributed Data Systems

When it comes to modern software systems, the most important concerns are: Scalability
and reliability. This means that the systems should work correctly even in the face of
adversity and they should allow the amount of data to grow (Kleppmann 2017, P. 6).

In order to fulfill these requirements, distributed data systems are used, which by design
are equipped with good scalability and reliability by adding instances and replicate them
across multiple machines. The implementation of distributed systems without a state
is trivial, but performing stateful operations on a distributed setup can lead to a lot of
complexity. Therefore, until recently, the general approach was to store the state on an
extern central datastore, but distributed data systems with internal states will become the
default in the future (Kleppmann 2017, P. 18).

2.2 Microservice Architecture

A common architecture for distributed data systems is the microservice architecture. The
microservice architecture can be described as a design pattern that divides an application
into a number of small independent services, where each service is responsible for a certain
functionality (A. B. A. Alaasam et al. 2019). By design the microservice architecture is a
stateless service and preferable to a stateful one. A stateful microservice has the ability
to retain state information that was generated previously. So this service can produce
output, that also depends on the state generated in previous interactions. In contrast the
stateless service can only work with the current data being sent within the interaction.
But stateless microservices are ideal, because they are easily scalable and reliable through
redundancy and in terms of a failure, the service does not have to deal with state recovery
strategies (Furda et al. 2018).
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2.3 Digital Twin - Object State

A DT can be seen as a virtual representation of an existing object product in the real space.
The digital twin supports monitoring, controlling and state prediction of the real machine
based on its object state data (A. B. A. Alaasam et al. 2019).

The concept of DT also includes the middleware as connection between the real space
and the virtual space.

2.4 Message Brokers

Streaming middleware is needed for data exchange between loosely-coupled microservices
(A.B. A. Alaasam et al. 2019). Message brokers can be the main part of that middleware,
whereby a message broker runs as a server and services can connect to it as clients. Clients
are divided into producers, writing messages to the broker, and consumers, receiving
messages by reading them from the broker (Kleppmann 2017, P. 443).

One improvement that comes with message brokers is the asynchronous processing.
This means that producers do not have to wait on a response from consumers to continue
processing. Additional message brokers support peak shaving, that means that a broker
buffers data, so that consumers and producers can consume or send data according to
their own processing capacities (Fu et al. 2021).

2.4.1 Queue-Based Message Brokers

Traditionally message brokers, defined in standards like JMS (Hapner et al. 2002) or
AMQP (OASIS 2012), are responsible for routing the messages to different queues, based
on the message routing keys (Milosavljevi¢ et al. 2021). Thus producers do not have to
send messages to specific queues directly. Instead they send it to exchanges inside the
broker and the exchanges route them to the queues (cf. figure 2.1). Consumers then get
the messages from the queues they assigned to (Vineet and Xia 2017).

Message Broker

7 Consumer
U Producers <

Consumer

Exchanges Queues

Figure 2.1: Queue-Based Message Broker

Messages that are completely delivered to their consumers will be deleted by the
broker immediately after, even when they are durably stored on disk (Kleppmann 2017, P.
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446). Because of that, each consumer which is added to the system can receive only new
messages and cannot recover prior ones, since they have already been consumed and thus
deleted from the queue. So in case of a consumer crash you cannot expect the same result
after restarting the consumer. The broker guarantees ordering within a queue (T and K
2019), thus allowing applications to create an order of related events by routing these
event types from multiple topics all together into one queue (Vanlightly 2018). Topics can
be seen as categories of messages types, comparable to a folder in a filesystem.

Examples for this kind of messaging middleware systems are: RabbitMQ, ActiveMQ,
AWS SQS, Google Cloud Pub/Sub (Kleppmann 2017, P. 444).

2.4.2 Log-Based Message Brokers

Because of the fact that traditional message brokers delete the message after being con-
sumed, log-based message brokers are intended to be a hybrid, combining the durable
storage approach of databases and the low latency notification system of message brokers.
A producer applies data messages to a log, which can be seen as an append-only sequence
of records on disk, while a consumer receives the data by reading the log sequentially
from beginning to end and waiting for a notification, that new messages are appended to
the log, when it has reached the end of the log (Kleppmann 2017, P. 447).

Log
Consumer
////457 6|5(4]3]|2]1| Partiono
Producer <
\98765432 1 Partition 1
T Consumer
New < Old

Figure 2.2: Log of a Log-Based Message Broker

Logs are naturally persistent and a shared resource, which means that they can be
divided into many partitions (seen in fig. 2.2), or also known as shards, for balancing load
and reaching a higher throughput (Vanlightly 2018). Throughput means the amount of
events processed within a defined time period. Different partitions can also be hosted
on different brokers and thus also on different machines to reach higher throughput
than a single disk can offer (Kleppmann 2017, P. 447). Within a partition messages get
an increasing sequence number assigned by the broker, so that the messages are totally
ordered within the partition (Kleppmann 2017, P. 447).

For better reliability replications of a partition can be stored on different brokers, where
one replica is the leader and all others are follower replicas. The leader is accessed by the
consumers and followers stay synchronized in case of a leader crash (Fu et al. 2021).
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Examples for log-based messaging middleware systems are: Apache Kafka, Apache
Pulsar, AWS Kinesis, Azure Event Hubs, Twitter’s DistributedLog (Vanlightly 2018; Klepp-
mann 2017).

Comparison to Queue-Based Brokers

The main difference to the queue-based broker is, that a log-based broker trivially supports
fan-out messaging. Fan-out means that the messages can be consumed by many consumers
in parallel and that the messages are not directly deleted after a consumer read them
(Kleppmann 2017, P. 448). The queue-based approach has to duplicate and publish the
message to many queues to achieve this kind of messaging.

The downside of the log-based approach is that messages in one partition can only be
processed on the same consumer instance, thus delaying all messages of one partition, if
the consumer is working slowly. In contrast a queue can be consumed by many consumers
and messages can be processed on a message-by-message basis (Kleppmann 2017, P.
449). On the other hand, with the partition to one consumer allocation, the log-based
broker guarantees that all messages of one partition are ordered whereas using a queue-
based broker with many consumers, we cannot assume that the message processing is
ordered. We realize that scaling comes at the cost of ordering within a queue-based system
(Vanlightly 2018).

2.4.3 Performance Comparison

When we speak of the performance of a message broker, two key metrics are important.
The throughput as mentioned before and the latency, which measures the time a message
takes to be transmitted between endpoints (Fu et al. 2021).

In these authors’ tests (Fu et al. 2021; T and K 2019; Dobbelaere and Esmaili 2017) we
can see that Kafka outperforms most of the message brokers like ActiveMQ, RabbitMQ,
RocketMQ and Pulsar in terms of throughput. The test (T and K 2019) shows that NATS
can have a comparable throughput but scalability is not well supported by NATS. The
only test that shows that Pulsar performs better than Kafka was executed by (Intorruk
and Numnonda 2019) but only with two different message sizes.

Regarding latency RabbitMQ, ActiveMQ and Pulsar have a better performance than
Kafka, which is shown in (Fu et al. 2021; Intorruk and Numnonda 2019), especially when
the consumer is too slow and the messages have to be read from disk instead of the OS
Cache (Dobbelaere and Esmaili 2017). RabbitMQ is very performant when it comes to
lightweight communication, as we can see in (Gracioli et al. 2018), which was performed
on embedded systems. But on a server environment with good configurations and bigger
message sizes Kafka is also capable of providing low-latency, shown by (T and K 2019;
Dobbelaere and Esmaili 2017).

When we speak of data buffering Kafka is highly stable and has lower average Central
Processing Unit (CPU) usage than RabbitMQ (Milosavljevi¢ et al. 2021).

As a result it can be stated that log-based brokers are more performant in high through-
put while queue-based brokers are capable of a lower latency.
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2.4.4 Message Broker vs Datastore

Traditional queue-based message brokers are not suitable for long-term data storage,
because they assume that their queues are short and in the case they have to buffer
messages, each individual message takes longer to process (Kleppmann 2017, P. 444).

In contrast a log-based broker definitely has similarities with a datastore. In fact a
database uses commit, transaction or change logs, to which all database events are applied
to allow auditing, replication and recovery. The snapshot representation of the database
can always be derived from the immutable change log, but the contrary however is not
true (Rooney et al. 2019).

Databases support indexes and various ways of querying for data where the result is
typically a point-in-time snapshot of the data, while message brokers do not support
arbitrary queries but they notify all clients when data change (Kleppmann 2017, P. 444).

2.5 Log-Based Message Broker as Database

As seen before a database and a log-based message broker have many features in common.
Logs are already a part of the internal structure of databases for replication and recovery
(Fang et al. 2011). In this section it is shown under wich circumstances a log-based broker
has the ability to replace the internal part of a database and can also be accessed from
outside with the help of materialized views.

2.5.1 Cleanup Policy

The cleanup policy of a broker is one important factor for storing persistent data in the
log. Since the broker can only keep a limited amount of history data for each log, log
compaction is a method to keep at least the last entry of every key inside. The principle
of the compaction is, periodically looking for log records with the same key and keeping
only the record with the newest timestamp. Having the possibility to delete records, every
key with a null value, which is also known as a tombstone, is removed during compaction
(Kleppmann 2017, P. 456).

This compaction reduces disk space for each log, because the space depends only on
the number of keys and not on the number of messages, different to the logs with time-
based expiry of messages (Kleppmann 2017, P. 456). Change logs of relational databases
resemble these logs with this compaction policy (Rooney et al. 2019).

2.5.2 Persistency

As mentioned above, replications of log partitions can be stored on different message
brokers (Fu et al. 2021). With this feature and the possibility that the different brokers
can run on different machines, data can be persistently stored in a log-based broker, as
long as the log is using the log compaction policy.
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2.6 Stream Processing

Log-based message brokers are often associated with stream processing, because the most
log-based message brokers have the ability and APIs which can perform stream processing.
Earlier we assumed that consumers always pull data from the log in a certain time interval
and then receive a batch of records, which leads to the problem that changes are only
reflected in the stored data or output records after a certain time has elapsed. The idea
behind stream processing is that the fixed time slices are abandoned and every event is
processed at the time it happens (Kleppmann 2017, P. 439).

Event streams have a few attributes, such as being infinite and ever growing. They are
also ordered, immutable, and replayable (Narkhede et al. 2017, P. 248-249).

On the one hand stream processing has the advantages compared to batch processing,
that events are processed immediately. On the other hand state processing becomes more
critical in the stream-processing world rather than in the batch-processing world (A. B.
Alaasam et al. 2020).

2.6.1 State

When we talk about state in stream processing applications, there are two main approaches
in storing.

The first and trivial approach is to store the data on external datastores, often a NoSQL
system like Cassandra or MongoDB. The advantage is that there is usually no capacity
problem, because they store the data on the disk. And the fact that the external store can
be accessed by all instances of the application is very useful to change many objects in one
instance at the same time. The main disadvantage is that the datastore causes additional
latency when processing an event (Narkhede et al. 2017, P. 253).

The second approach is to store the data on an local or also named internal store, which
is mostly managed with an internal embedded, in-memory database running within the
application. The most obvious advantage is the extremely fast processing of internal
storage. But on the other side, this approach brings with it many complications a stream
processing application must address. First of all the local state is now limited to the
memory size available to the application instance (Narkhede et al. 2017, P. 253-258).
The other problem is the persistency, which seems to be the main problem of internal
application states, because in terms of a crash, the instance state is gone. So it is important
to keep the state in a separate resource, for example, in an external database, external
file system, caching service or sending the state to a dedicated log with log compaction,
similar to a database changelog (Kleppmann 2017; A. B. A. Alaasam et al. 2019). In
terms of partition rebalancing it is also important that the internal state store can also be
rebalanced, so that every instance has the correct state for the partitions the instance is
processing (Narkhede et al. 2017, P. 258).

2.6.2 Stream-Table Duality

Streams contain a history of changes, while tables represent a current state of the world.
That means they are two sides of the same coin, because they both hold the current state
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of the data, but tables are not capable of holding the history of the data. With that fact, a
stream can always be converted into a table, but for converting a table into a stream, we
additionally need to capture all changes that modify that table. Converting a stream into
a table is often referred to as materializing the stream into a view (Narkhede et al. 2017, P.
253-254).

Table Stream Table*
(as changelog)
(]
(‘alice", 1) ——— | alice
alice 1
charlie 1 ¥
. alice 1
("charlie", 1) -
charlie 1
alice 2
charlie 1
alice 2
("alice", 2) -
charlie 1
alice 2 l
charlie 1
bob 1 alice 2
charlie 1
("bob". 1)
bob 1

! ¢
Figure 2.3: Stream-Table Duality - From (Kafka 2023)

2.6.3 Materialized Views

When reading all events of a stream from the beginning to the end, and changing a state
storage as we go, we have a table representing the state at a specific time (Narkhede et al.
2017, P. 254). With log compaction we do not have to read all messages to get the current
state. Using this materializing of a stream, we gain a lot of flexibility by allowing several
different read-views, for example one key-value view and one view that is applied to a
search index, so that the simple key queries can be performed by the first view and the
complex search queries by the other view. Debates about normalization of database data
become irrelevant with this approach of translating data from write-optimized event logs
into read-optimized materialized views (Kleppmann 2017, P. 454-462).

2.7 Apache Kafka

The main idea of Kafka was to implement a messaging system for log processing that
combines the benefits of traditional log aggregators and messaging systems. It was
created at LinkedIn as a distributed and scalable messaging system enabling applications
to consume log events in real time (Kreps et al. 2011). Kafka is often described as
“distributed commit log” or more recently as “distributed streaming platform” (Narkhede
etal. 2017, P. 4).
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In Kafka messages are categorized into topics and these topics are broken down into
partitions, where a partition can be viewed as a single log to which messages are written
to in an append-only fashion (Narkhede et al. 2017, P. 5). Consumers are divided into
consumer groups, with each group consuming all partitions of one topic. Consumers
can be different applications or also many instances of the same application. With these
consumer groups Kafka supports load balancing so that only one consumer in a group
receives events from a partition (Kleppmann 2017, P. 448). With default settings Kafka
supports the at-least-once delivery semantic, but most of the time a message is delivered
exactly once to each consumer group (Rooney et al. 2019; Kreps et al. 2011).

To achieve a low-level latency, Kafka supports a so-called zero-copy strategy. This
technology does not cache messages in process, instead the messages are only cached in
the underlaying file system page cache (Kreps et al. 2011). In the best scenario, where
consumers are not far behind in reading messages, we have a very high cache hit ratio and
then reads are nearly free in terms of disk I/O (Dobbelaere and Esmaili 2017).

Brokers are completely stateless at Kafka, because the consumer itself maintains the
information of the current offset - i.e. how many messages are already consumed. But in
addition to Kafka brokers must always run Zookeeper, which also keeps track of the offsets
consumed in each partition. Further Zookeeper detects the addition and the removal of
brokers or consumers and, in this case, Zookeeper triggers the rebalancing process of each
consumer as described later (Kreps et al. 2011).

2.7.1 Why use Kafka?

As seen before, Kafka as an message broker performs very good with high throughput and
can also provide low-latency. With its flexible scalability it can easily handle any amount
of data (Narkhede et al. 2017, P. 10). So when it comes to an application that needs high
throughput, where each message is to be processed fast and where message ordering is
important, Kafka is a good choice, because it is well maintained and with the additional
features on top it can be used as well for the state storage use case (Kleppmann 2017;
Milosavljevi¢ et al. 2021, P. 449).

2.7.2 Partitioning

Partitions are the way how Kafka provides redundancy and scalability. The keys of a
message determine to which partition the record is appended to, but the mapping is
consistent only as long as the number of partitions does not change. When consumers are
differently utilized or when a consumer fails or a new one launches, partitions are moved
from one consumer to another, which is called rebalancing. Rebalances are important to
provide high availability and scalability. In the normal course of events, however, they
are fairly undesirable, also because in a stateful stream processing the consumer loses
its current state during rebalancing and has to restore the state for the new partitions
(Narkhede et al. 2017).

10
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2.7.3 Cleanup Policy

Kafka has a log compaction cleanup policy that is important for storing persistent data
inside the topics. As mentioned before log compaction deletes all outdated data of one
key and only keeps the most recent record. A log with the compaction policy is divided
into two segments, the dirty and the clean segment. The dirty segment is the group of all
messages that are appended to the log after the last compaction and the clean segment is
already compacted. The log compaction of Kafka does not take place permanently. By
default it verifies all 15 seconds if the amount of dirty segments is too high and when
the dirty to clean ratio is over 50 percent the compaction will start (Zelenin and Kropp
2022, P.109-111). With a tombstone (cf. section 2.5.1) for one key the entry will be deleted
during compaction, while with a null key inside the dirty segment the compaction will
fail (Narkhede et al. 2017, P. 110).

With the compaction policy Kafka supports the use cases to store the current state
inside the topic, because when recovering from a crash, only the latest state of a key is
important (Narkhede et al. 2017, P. 110).

2.7.4 Persistency

Kafka relies on persistent data structures and the file system page cache (Dobbelaere
and Esmaili 2017). With the replication of the partitions on different brokers, Kafka
guarantees availability and durability when single nodes fail. Kafka divides the replicas
into one leader replica, which handles all produce and consume requests to guarantee con-
sistency and ordering, and many follower replica, whose only task is to stay synchronized
(Narkhede et al. 2017, P. 97).

2.7.5 Kafka Streams DSL

Apache Kafka already provides two streams APIs that are easy to use - a low level Processor
API and a high-level Streams Domain Specific Language (DSL) (Narkhede et al. 2017, P.
265).

The Streams DSL is a feature for transforming stream data from a Kafka source topic
to a destination topic by using map, transform or processor functions (A. B. Alaasam
et al. 2020). It also introduces a synchronization between local state stores within the
application and a Kafka changelog topic, which allows to restore the local store from
the topic in cases of application failure or partition rebalancing (A. B. A. Alaasam et al.
2019). The Streams DSL uses consumers and producers as base and provides higher-level
functionalities on top (Narkhede et al. 2017, P. 6).

Kafka Streams adds the threading model to the parallelization model with the partitions.
In the threading model the number of threads within one partition can be defined to
parallelize the stream processing. Amongst these threads there is no shared state, so
each thread has its own state store like an additional instance. A thread also acts like a
consumer in a consumer group, so that every partition can only be accessed by one thread,
which means that the number of partitions has to be bigger than or equal the number of
all threads over all instances of the streaming application (Confluent 2023).

11
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2.7.6 Materialized Views

With the Streams DSL Kafka also offers a lot of ways to create materialized views of topics.
For example there is the KTable, which always stores the latest value of a key into a local
key value store (Zelenin and Kropp 2022, P.138). The GlobalKTable does the same but
the table will be populated with data from all partitions of the topic. The disadvantage,
however, is that the storage of each local store is increased and the table is mostly designed
for small and relatively static data (Seymour 2021).

The difference is that all applications which use the KTable store only one partition
(shown in fig. 2.4), while all applications which implement the GlobalKTable store all
partitions each (shown in fig. 2.5).

products topic

-Small keyspace

__App1} ) |+ App2 | | App1: ) | App2 |
\\r’ \\r’l
Partitioried state fully replicated state
Figure 2.4: Materialized Figure 2.5: Materialized
Views - KTable - From Views - GlobalKTable - From
(Seymour 2021) (Seymour 2021)

2.7.7 Kafka as State Cache

Kafka Streams has the possibility to create a database system from the scratch. As
central element the changelog topic is used and then the platform can be extended with
materialized views like tables and search indexes in a distributed way (Zelenin and Kropp
2022, P.156).

The local in-memory state store provided by Kafka Streams can be used inside the
stream processing application, which also writes all changes into a compacted changelog
topic, that then can be used with materialized views in other services. Kafka also brings
a really good data persistency, because Kafka can always recover the state store from
the changelog topic. Moreover the Streams API offers the possibility to use RocksDB! as
addition to the in-memory state store, because it also persists the data to disk for quick
recovery (Narkhede et al. 2017, P. 258).

IRocksDB: https://rocksdb.org/
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3 Concept

This chapter is about the concept of the main project. The main target of this project is to
build an application which stores the current object state of a device as a DT and provide
the current state data for other applications, like frontend services. It should also identify
the actual state changes and make them available, so that other applications can work
with them to create historical timeseries for example.

This application should handle a high throughput with a low-level latency very effi-
ciently in terms of utilized compute capacity.

In the first section the architecture of the project is explained. After that the concepts
used in the test are shown, following by the environment in which the project should be
deployed.

3.1 Architecture

The application is based on a microservice architecture, because it handles only a single
task of a whole IoT system. The task is to store the current state and provide the state and
the changes that are made to other services.

Central part of the application is firstly consuming new object changes, secondly storing
the state inside local in-memory state stores and thirdly providing this store to other
services through a changelog topic. Local state stores are used, because as shown in 2.6.1,
external datastores cause additional latency which results in the service being able to
handle a lower throughput than with a local state store. This application has similarities
to a Change Data Capture (CDC) architecture, which is used by the most databases to
capture and distribute a stream of database updates, so that the updates are available on
other applications or datastores (Kleppmann 2017, P. 454).

With Kafka Streams DSL there is the possibility to create such a CDC architecture,
because we can use the in-memory stores the Streams API provides, thus automatically
writes all updates to a compacted changelog topic. Kafka is also often used by other
databases as a changelog, because as already shown before in section 2.7, the log is
persistent to disk and replicated for fault tolerance (Kreps 2017). So in the main part
there is a local state store, that can handle the state changes as fast as possible. Further
there is the external changelog topic stored in Kafka, which persists and replicates the
data and also provides the state to potentially many materialized views. One of these
views provides a Representational State Transfer (REST) API with methods to get all or
one specific object from the state store. The changelog topic together with the state should
only be changed by one service, handling the state store, while all other services can only
consume the topic to own read-only state stores.

Kafka is used in this project because, together with the Streams DSL, it combines
the messaging between the services and the handling of the local state storage with the
automatic persistence and distribution over the changelog topic. Kafka also handles a
lot of throughput with a low-level latency as shown in 2.4.3 and the accumulation of
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data does not make it slower (Kreps 2017). Changing the local store inside the Kafka
Streams processing application is only an overhead and not recommended. The persistent
state store, which is implemented with RocksDB is also very performant, because it is
an embedded, very fast key-value store, which flushes the data asynchronously to disk
(Golder 2022). And using the in-memory state store is even faster, since it is maintained
by a hash map structure held inside the Java Virtual Machine (JVM)’s heap (Kafka 2023).
In the main part the objects are only queried by the key, so it is not relevant to use a more
queryable database. The only part where a more queryable datastore could make sense, is
in an additional frontend service, to allow more complex queries, but this is not part of
this project and only discussed in chapter 6.
The application is divided into three services also shown in figure 3.1:

1. Split Message Service: The main entry point of the device data.

2. Object Changes Handler: The central part of the application, which stores the state
inside the local storage and provides it to other services.

3. Frontend Service: The REST API entry point for querying the state store from

outside.
Legend: Frontend Service
8 State Store

REST R .

API epository

Kafka Topic [——
A

|:| Service/Class Web-Ul

Object Store Changelog Topic y . .
Timeseries Topic

Device Updates Topic

Object Changes Handler
Object Updates Topic

Split Message Service J Processor (Other Output Topics)

Notification Changes Topic

Figure 3.1: Project Overview Architecture

3.1.1 Split Message Service

This service consumes all data that comes from the devices and splits the data into one
message per object. In the whole [oT system one device can send many changes of different
object identifier (ID)s. With that fact, the split into one message per object is necessary for
correct handling and processing of the object state inside the next service, because the data
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3.1 Architecture

has to be partitioned with the object ID as partition key. This guarantees an ordering of
the same object IDs and an assignment to the processing object changes handler instance
that holds the correct object in the local state store.

3.1.2 Object Changes Handler

The Object Changes Handler service is the main and intern part of the project architec-
ture. It uses Kafka Streams to simultaneously perform the functions of a data consumer,
producer and processor (A. B. A. Alaasam et al. 2019). As ingoing stream the service con-
sumes the topic of the split service, which is partitioned by the object ID. For processing
the stream it is necessary to write a stateful Kafka Streams Processor, which handles the
data and authorization validations just as the change synchronization of the object data
inside the local state store (shown in fig. 3.2). The authorization is a service inside the IoT
project, which stores and handles the permissions of each user for the different resources,
such as an object for example. For this reason the object changes handler has to check, if
the user, which in this case is the device, has the permission to change the object.

Check Authorization
for Device

Push Updated Object
to Store

Yes—>< Hard Delete? Yes—D‘Delete Object in Store
No

\/

Set Deleted Flag of
Object
Prepare Notification
Changes Record

Notification
Changed?

Forward Records to Prepare Timeseries
Streams Record

Figure 3.2: Object Changes Handler - Processor - Activity Diagram
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The service should also include the same core functionalities as the predecessor im-
plementation. This comprises the possibility of deleting objects either completely from
disk or of attributing a tag to them, which means that the object has a delete tag with the
message timestamp.

As alocal state store, the decision is between an in-memory or a persistent (RocksDB, cf.
3.1) state store implementation. The primary benefits of the persistent store are that the
state can exceed the size of available memory. Additionally, in terms of a failure, the state
store can be recovered from disk faster than the in-memory store, which only restores
from the changelog topic. On the other side the in-memory store is operationally less
complex and faster than the persistent store, especially when the data has to be queried
from the disk (Seymour 2021). The project shows the implementation of both stores and
also the comparison in the test results.

Lastly the service applies all state changes to outgoing topics which can be consumed
by other services, like the timeseries or the notification service of the IoT project. The
timeseries service requires all updates made to the actual data, so that they can be stored
as historical data series. The notification service gets the notifications that are set by the
device or the object changes handler itself during validations.

3.1.3 Frontend Service

For the REST requests from other services like a web based user interface (Web-UI) there
is the frontend service. This service only has to consume the changelog topic and store
it into a local state store as materialized view, so that it can be easily queried from the
internal REST API. It should handle the query of all objects and a specific object called by
the ID.

For materialization the KTable of Kafka Streams can be used. The GlobalKTable would
not be performant enough in this case, because it is made for few and static data, as
it is discussed in section 2.7.6. The disadvantage is that, if there are many instances
of this service, one instance does not contain all partitions of the changelog topic and
thus does not contain the entire state. That means for the REST API, that sometimes
requests end up at the wrong instance, which does not hold the object of the ID. For
this reason Kafka supports metadata calls to find out the right instance for a specific key.
With this information the service should perform a so called remote query to access the
correct instance (Schmid 2018). For a query which should return all objects there is also
a metadata call, which returns all active instances holding partitions of the state store
(Confluent 2023).

In the following diagram a request for an specific object by ID is shown.
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% 1:Frontend 2:Frontend :Authorization

t Object By Id-

Is User Aulhor‘wzed for Obejc(4>ﬂ

alt

[Not Authorized] L L]

[Authorized] quer‘y Metadata for Key

get Host from Metadata

return Host

alt

[Host == null]

[Host == 2]

Figure 3.3: Frontend Handler - Get ID Request - Diagram

Additionally to the diagram the second instance also executes all the steps in the same
way as the first one does, because it can be used exactly the same REST API method that is
used from outside. But for the “get all” query an extra method for internal communication
is needed, because otherwise the frontend service instances would run into a loop. This is
due to the fact that all active frontend instances are queried in the “get all” method.

3.2 Testing

For testing the services it is necessary to track the metrics of the services and compare
them with the predecessor implementation, which uses a NoSQL Database for storing the
state. With the collected data of the metrics, the old system can be compared with the
new services and it can be evaluated if the new implementation has a better performance.
The different state store types are also to be tested and compared to investigate the real
difference in latency in this environment.

3.2.1 Simulation Service

For creating reproducible data that can be used in the test environment, it is necessary
to create a simulation service, which simulates test data of many devices in a certain
interval. Each device should contain a list of object IDs for which the data should always
be changed. The outgoing topic of this service is the topic, which the split service or the
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old Model service will consume in the following. This service is only necessary for the test
environment and should not impact the productive environment.

3.2.2 Predecessor

The old existing application of the IoT project, which processed and stored the DT data,
is so called the Model service. As object datastore the implementation uses MongoDB!.
MongoDB is a very powerful and automatic scalable database for object storage, where the
records stored inside are similar format to JavaScript Object Notation (JSON) objects. The
database also has a rich query language to support all types of read and write operations
(Chauhan 2019). This service consumes the Kafka topic directly from the devices and
handles all objects inside. Therefore it is not necessary to split the data into one message
per object. The REST API also requests the database directly.

For comparability of the new and the old system, the old service will be also tested with
the same metrics.

3.2.3 Metrics

The essential comparison between the new and the predecessor implementation is the
performance, that can be measured by the throughput and the latency of the service (Fu
et al. 2021). For this performance metrics we can use a counter and a timer and build the
arithmetic mean over a timespan. Also important for the service performance is the CPU
usage and the memory consumption.

For testing the frontend performance the time should be tracked in which different
REST API calls are processed. The main calls for the test are the “get all objects” and the
“get one specific object by the ID”. The arithmetic mean is not the best metric to use here
because it does not indicate the delay experienced by the user. So for user responses it is
better to use percentiles. The 50% percentile is also known as the median, but for response
times it can be useful to compare also the high percentiles, known as tail latencies, because
they directly affect the user experience of the service (Kleppmann 2017, P. 14-15).

3.3 Environment

The microservice architecture used for this project fits a container-virtualized infrastruc-
ture with technologies used such as Docker? and Kubernetes® (Pahl and Jamshidi 2016).
Such container-based virtualization is much more lightweight and resource efficient than
one based on a Virtual Machine (VM). Because the containers are sharing the same op-
eration system as isolated processes on the core-level of the system. By deploying every
service as a container, the infrastructure can easily perform vertical and horizontal scal-
ing, according to the resource needs and the throughput the services have to process
(Al-Dhuraibi et al. 2018).

1MongoDB: https://www.mongodb.com/
2Docker: https://www.docker . com/
3Kubernetes: https://kubernetes.io/de/
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4 Results

In this chapter the implementation of the application services is shown. Further the
the previous model and the testing service implementations are described. After that
the setup of the test environment is explained and at the end there is a comparison and
analysis of the test results.

4.1 Implementation

As described in the concept, the application is divided into three microservices. All ser-
vices are implemented in Java' as Dropwizard? ServiceApplications. For the data connection
between the services Kafka topics are used as explained before. The consumer service
checks if the topic exists and creates it if not.

4.1.1 Split Message Service

The Split Service consumes the device data with Kafka Streams, transforms and then
applies it to the topic of the Object Changes Handler. To manage the Kafka Streams
in Dropwizard we have to create the streams inside a class implementing the Managed
interface of Dropwizard. After that it can be added into the Dropwizard lifecycle inside
the run function of the ServiceApplication.

1 @O0verride
» public void run(ServiceConfiguration configuration,
3 Environment environment, ObjectMapper mapper)
1 throws Exception {
5
6 var transformer = new MessageTransformer (...);
7 environment.lifecycle () .manage (transformer);
8
b

Listing 4.1: Dropwizard Lifecycle

In the overridden start function of the MessageTransformer class, which implements the
Managed interface, the Kafka topology can be defined with the StreamsBuilder. First the
input stream is defined, then the transformation and at last the output topic, where the
stream should be applied to. For the use of own class definitions in the topics, an own
serializer, called Serdes in Kafka, is added. For the transformation of the one device event
into many object events, the Streams API has the function flatMap which can map one
stream event to many with the help of a lambda function (Kafka 2023). Inside the lambda
we only divide the input device key-value pair into a list of object key-value pairs, where
the key is always the object ID.

Yava: https://www. java.com/
2Dropwizard: https://www.dropwizard.io/en/stable/
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4 Results

1 @0verride

> public void start() throws Exception {

3 var inputSerde = Serdes.serdeFrom(

4 inputTypeSerializer, inputTypeDeserializer);

5

6

7

8 StreamBuilder streamBuilder = mnew StreamsBuilder ();

9 KStream stream = streamBuilder.stream(inputTopicName,
10 Consumed.with(Serdes.String(), inputSerde));

1 KStream transformed = stream.flatMap(this::transform);
12 transformed.to(this.outputTopicName,

13 Produced.with(Serdes.String (), outputSerde));

14

15}

Listing 4.2: Split Service - Kafka Topology

Before starting the streams we have to adjust the properties. For this purpose we create
a Properties object and then add it to the Kafka Streams constructor. For the Split Service
we only need the standard configuration. So we have to set the server config to the Kafka
host and port of the environment. Additionally the application ID which should be unique
within the Kafka cluster. Also, all Split Service instances should have the same ID so that
the cluster can identify all service instances as a consumer group. With the fact that the
application ID is used as consumer group, the partitions are divided between all instances
of the Split Service, as explained in section 2.7. The last property is the client ID, which
should be unique for every instance (Confluent 2023).

final Properties props = new Properties();
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, host);

1

2

3 props.put(StreamsConfig.APPLICATION_ID_CONFIG, appld);
4+ props.put(StreamsConfig.CLIENT_ID_CONFIG, clientId);
5

¢ this.streams = new KafkaStreams (streamBuilder.build(),
7 props);

8

9

// Exception handling

- o

this.streams.start ();

Listing 4.3: Split Service - Kafka Streams Configuration

With this implementation we now have created an output stream written into a topic
that can be consumed by the Object Changes Handler. The events of the topic are
partitioned with the object ID as partition key, so that there is the guarantee of an in-order
processing of one object ID (Log Ordering, cf. 2.4.2). This also means that events of an
object ID are always consumed by the same Object Changes Handler instance, which is
important for the state handling inside the service.
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4.1.2 Object Changes Handler

The Object Changes Handler consumes the object data, processes and validates it, stores it
in an in-memory local store and then sends the updated data to outgoing topics. As seen
above in the service to manage the streams in Dropwizard we use a class which implements
the Managed interface.

In this service we mainly use the same Kafka Streams topology as seen before in
listing 4.2. The only difference is that the service uses the process function of Kafka
Streams, which gets a processor supplier as a parameter.

For the configuration of streams this time we add two properties to the default ones
shown in listing 4.3. One is the replication factor configuration setting the replication
tfactor for the changelog topic created by the state store. We should put it at least on
3, because as explained in section 2.7.7 this is the part the state store data is persistent
especially when using the in-memory store only. The STATE_DIR_CONFIG configuration
sets the directory where the state data is stored on the disk, but it only comes into play
when we use the persistent state store. In a production system this has to be set to a
directory that is persistent even if the instance fails (Confluent 2023).

1 props.put(StreamsConfig.STATE_DIR_CONFIG, stateStoreDir);
> props.put(StreamsConfig.REPLICATION_FACTOR_CONFIG, 3);

Listing 4.4: Object Changes Handler - Kafka Streams Configuration

This time a class that implements the Processor interface of Kafka Streams handles all
the input data. In the Processor interface Kafka already provides the possibility to access
state stores through the ProcessorContext. The stores have to be created in the topology
itself or in the processor supplier. For creating the stores inside the supplier there is a
function called stores, which must be overridden. The function has to return then a set of
state store builder (Kafka 2023).

1 public class ObjectChangesProcessorSupplier

2 implements ProcessorSupplier<IK, IV, 0K, 0V> {

3

4 private final String storeName;

5

6 @0verride

7 public Processor<IK, IV, 0K, QV> get() {

8 return new ObjectChangesProcessor (this.storeName);
9 b

10

11 @O0verride

12 public Set<StoreBuilder<?>> stores() {

13 var modelObjectSerde = Serdes.serdeFrom/(

14 storeTypeSerializer, storeTypeDeserializer);
15

16 var storeSupplier = Stores

17 // For in memory only state store

18 .inMemoryKeyValueStore (this.storeName) ;

19 // For persistent state store

20 .persistentKeyValueStore (this.storeName);
21 StoreBuilder <KeyValueStore<UUID, ModelObject>>
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22 storeBuilder = Stores.keyValueStoreBuilder (
23 storeSupplier, Serdes.UUID(),

24 modelObjectSerde);

2 return Collections.singleton(storeBuilder);

26 }

27 }

Listing 4.5: Object Changes Handler - Processor Supplier

The stores can then be accessed in the init function of the Processor via the store name.

@0verride
public void init (ProcessorContext<0K, 0V> context) {
this.keyValueStore =
context.getStateStore (this.storeName);
this.context = context;

N U ke W =

Listing 4.6: Object Changes Handler - Processor - Init Function

With this initialization, the key-value store can be easily accessed in the actual process
function of the processor. We can now get the data of the object by a simple get call,
append then the new object changes and push the updated object back with the put
function. At the end of the process function the updated object can be appended as a
record to the outgoing stream for the other services by forwarding it into the context. To
permanently delete objects, there is the possibility to set a delete type in the incoming
object data (cf. fig. 3.2). The Object Changes Handler can then delete it permanently with
the delete function of the key-value store.

1 O@Q0verride

> public void process(Record<IK, IV> inputRecord) {

3 var objectId = inputRecord.key();

4 ModelObject oldObject =

5 this.keyValueStore.get (objectId)

6 ..

7 this.keyValueStore.put(objectId, updatedObject);
9 ModelObject deletedObject =

10 this.keyValueStore.delete (objectId)

11 PN

12 this.context.forward(new Record<0K, 0V>(objectld,
13 objectChanges, timestamp));

14 }

Listing 4.7: Object Changes Handler - Processor - Process Function

Kafka is already creating a compact changelog topic of the intern state store and with
every put call the new object is also applied to the topic. By deleting the object inside
the key-value store, there is a record applied to the topic with a tombstone for the ID
so that Kafka deletes this object in the next compaction period, as explained before in
section 2.7.3.
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As shown above the changelog topic is the only opportunity to persist the data when
we us the in-memory store as local store. However, the changelog topic is also used for the
persistent store. Thus we can access the current object state in every other service through
this topic. The implementation of this is shown right away in the Frontend Service.

4.1.3 Frontend Service

The Frontend Service consumes the changelog topic as KTable, which at each time stores
the latest value of a key inside a materialized local store. It also provides a REST API for
other services, like a Web-UI, to get, create, update or delete model objects.

The KTable stores only data of the partitions assigned to the service instance, which
makes API requests more complicated, because we have to implement remote queries. A
GlobalKTable does not have this problem, but we cannot use it here, because it is designed
for small and static data and then the service is also not scalable. The difference between
these two tables is described before in section 2.7.6.

For the initialization of Kafka Streams we need a different topology than for the other
services (shown in listing 4.2). To the StreamsBuilder we only add a table, for which we
define the type of the materialization of the local store. For the materialization we need
to add a store supplier which is created similar to the state store in the object changes
handler, shown in listing 4.5.

1 .« e
: Materialized<UUID, ModelObject,

3 KeyValueStore<Bytes, byte[]>> materialized =

1 Materialized.as(storeSupplier);

5 materialized = materialized.withKeySerde (Serdes.UUID())
6 .withValueSerde (modelObjectSerde);

7

8

streamBuilder.table (this.cacheTopicName, materialized);

Listing 4.8: Frontend Service - Kafka Topology

The configuration of Kafka Streams is quite similar to the other services. The default
properties, shown in listing 4.3, and also the state directory configuration has to be set,
if we want to use the persistent state store, shown in listing 4.4. Additional to these
properties there is a performance optimization configuration for the KTable, which has
the effect that the source topic of the table is also used as the changelog topic (Confluent
2023). This has the positive effect that Kafka does not create a new changelog topic for the
table materialization with exact the same data inside. Because of this we save disk space
and CPU usage of Kafka. When we want to set the optimization we also have to overload
the StreamsBuilder build method, as shown in the listing 4.9 right after (Kafka 2023).

As second additional property we have to set the application server configuration, which
is necessary for the remote queries we want to implement. This should be set on the host
and port of the container of each Frontend Service instance (Confluent 2023).
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props.put(StreamsConfig. APPLICATION_SERVER_CONFIG,
String.format ("%s:%s", nodeHost,
nodePort));
props.put(StreamsConfig.TOPOLOGY_OPTIMIZATION_CONFIG,
StreamsConfig.0PTIMIZE);

this.streams = new KafkaStreams (streamBuilder
.build(props), props);

T T - ¢ B O N

Listing 4.9: Frontend Service - Kafka Streams Configuration

After starting the stream the state store materialization of the KTable can be accessed
through the store function of Streams. To do this, we have to define the store query
parameters, which can be set with the store name and the type. The store name was set in
the store supplier shown in listing 4.5. For the type we use in the frontend the read only
key-value store, because we only need the objects for specific IDs and are not interested in
objects in a specific timespan.

this.streams.start ();

StoreQueryParameters <ReadOnlyKeyValueStore<UUID,
ModelObject>> storeQueryParameters =
StoreQueryParameters.fromNameAndType (objectsStoreName,

QueryableStoreTypes.keyValueStore ());
var store = this.streams.store(storeQueryParameters);

= T S B O N

10 var modelRepository = new ModelRepositoryImpl(
11 objectsStoreName , this.streams, this.store);

13 this.environment. jersey().register (new ModelRestApi(
14 modelRepository));

Listing 4.10: Frontend Service - KTable Store Access

As shown in the listing 4.10, the key-value store can then be passed to the repository,
which then handles all internal processing and communication with the state store.
Dropwizard uses Jersey® as REST client. We have to register an API class, in which the
endpoints are defined, to the environment, so that Dropwizard handles the REST calls.

In the API file we can define the endpoints by assigning javax annotations to the
methods, like the HTTP type with GET, POST, DELETE and the path of the request with
Path.

@Produces (MediaType . APPLICATION_JSON)
@Consumes (MediaType . APPLICATION_JSON)
public class ModelRestApi {

N G e W N =

QGET

3]ersey: https://eclipse-eed]j.github.io/jersey/
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8 @Path ("{id}")
9 public Optional<ModelObject> getlId(@Context
10 HttpHeaders headers, QAuth ...,
1 @PathParam("id") UUID id) A
12 return this.modelRepository.getById(id, ...);
13 +
14
15 QPOST
16 @Path("instance")
17 public Map<UUID, ModelObject> getInstanceObjects(
18 ©@Auth ..., @Valid InstanceRequest instanceRequest)
19
{
20 return this.modelRepository
21 .getObjectsFromInstance (instanceRequest, ...);
22 }
23
24 QGET
25 public Map<UUID, ModelObject> getAll(...) {
26 return this.modelRepository.getAll(...);
27 +
28
29 @POST
30 @Path("create")
31 public UUID create(@Auth ..., @Valid ONotEmpty
3 Map<UUID, Map<String, Object>> objectChanges) {
33 var transactionId = Utils.buildTransactionId(...);
34
35 this.modelRepository.create(objectChanges, ...);
36 return transactionlId;
37 }
38
39
0 F

Listing 4.11: Frontend Service - Rest API

In the repository we can then access the local state store with a get method, as we saw
before in listing 4.7, or with an all method, which returns all objects of this local store. The
main problem is that we can only access the objects with those keys, where the partition
of the key is handled by the instance. This means when a frontend instance gets accessed
with a request of a key not stored in this instance, we have to forward this request to
the right instance. For that Kafka offers metadata calls that we can use to find out the
right instance for the key and also all active frontend nodes (Confluent 2023). From
the metadata we get the host and the port of the respective instance, which we defined
before in the streams configuration, shown in listing 4.9. When we search for a specific
object the first instance forwards the request to the right instance if possible, described
in the concept diagram 3.3. When we want all objects of the other instances we have
to use a different request, than the getAll method, for the internal communication. A
request which returns all objects only of the own instance is used, because we do not want
the instance to also search and request others (Schmid 2018). We already defined this
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endpoint in listing 4.11 with the method getInstanceObjects. Listing 4.12 illustrates the
implementation of the getByld method in the repository.

1 public Optional<ModelObject> getById(UUID id, ...) {
2 PN

3

4 var metadata = this.streams.queryMetadataForKey (
5 this.objectsStoreName, id,

6 Serdes .UUID () .serializer ());

8 if (metadata == null) {

9 return Optional.empty();

10 T

11

12 var remoteHost = metadata.activeHost ();

13

14 if (this.hostInfo.equalsHostInfo(remoteHost.get())) {
15 return Optional.of (this.store.get(id));

16 +

17

18 var target = String.format("http://%s:%s",

19 remoteHost.get () .host (), remoteHost.get ().port());
20 var response = this.client.target(target)

21 .path(id.toString ())

2 .request (MediaType . APPLICATION_JSON_TYPE)

23 .headers (...).get O);

24

2 if (response.getStatus() > 204) {

2 // Error handling if host is unavailable

7 +

28

29 return response.readEntity (new

30 GenericType<0Optional<ModelObject>>() {});

51 )

Listing 4.12: Frontend Service - Repository - Get Object By 1D

In this implementation shown in listing 4.13 we receive all object IDs, which the user
is permitted to read, from the authorization service. With this fact we do not use the all
method of the key-value store, realizing that most of the time we do not want all objects
of the store. But the authorized object IDs are also forwarded to the other instances via
the getInstanceObjects method. This is because sending a REST API request for each ID is
slower than querying the local store for each ID in each instance

public Map<UUID, ModelObject> getObjectsFromInstance (
InstanceRequest instanceRequest, ...) A

var modelObjectIds = instanceRequest.getObjectIds ();
var allEntries = new HashMap<UUID, ModelObject>();

for (var id : modelObjectIds) {
var modelObject = this.store.get(id);

T T - N ¢ B O N

if (modelObject == null) A

o

N
(@)




4.1 Implementation

continue;

}

// Check other preconditions defined in request
if (...0) Ao

allEntries.put(id, modelObject);
+

}
return allEntries;
+
public Map<UUID, ModelObject> getAll (...) {

var allEntries = new HashMap<UUID, ModelObject>();

var instanceRequest = new InstanceRequest(
authorisedObjectIds, ...);
for (var metadata : this.streams

.streamsMetadataForStore (this.objectsStoreName)) A
if (this.hostInfo.equalsHostInfo(metadata
.hostInfo())) {
allEntries.putAll(this.getObjectsFromInstance (
instanceRequest, ...));
+ else {
var target = String.format("http://%s:%s",
metadata.host (), metadata.port());
var response = this.client.target(target)
.path("instance")
.request (MediaType.APPLICATION_JSON_TYPE)
.headers (...)
.post (Entity.json(instanceRequest));

if (response.getStatus() > 204) {
// Error handling unavailable instance

}

var remoteValues = response.readEntity (new
GenericType <Map<UUID, ModelObject>>() {});
allEntries.putAll (remoteValues);
¥
I

return allEntries;

Listing 4.13: Frontend Service - Repository - Get All

The concept of the KTable is a read-only state storage, so we cannot create or update
changes, and we also want to change the state only in the Object Changes Handler as
defined before in section 3.1. For this reason all change requests like the create method
push the changes into the Kafka topic which is consumed by the Split Service.
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4.2 Testing

4.2.1 Simulation Service

The Simulation Service is implemented as a simple service starting a couple of jobs that
are executed in a certain interval. Every job gets a number of object keys and then creates
many objects with random number values for a simulated device. Since the main focus is
on the performance of the number of objects handled by the model services, all the objects
have only two values. One is a random number that should be updated in the object and
the second one is an increment value, which should be incremented in the model service
each time. These two types are used, because they are the most used in the predecessor
service.

For job handling we can use Quartz*, which is a very well featured job scheduling
library for Java. We want to execute many jobs in parallel. So we set the thread pool
number to the number of jobs in the scheduler configuration.

var props = new Properties();

props.put("org.quartz.scheduler.instanceName", schedName) ;

props.put("org.quartz.threadPool.class",
"org.quartz.simpl.SimpleThreadPool");

props.put("org.quartz.threadPool.threadCount",
numDevices.toString ());

var factory = mnew StdSchedulerFactory(props);
this.scheduler = factory.getScheduler ();

= T N & N

Listing 4.14: Simulation Service - Scheduler Configuration

We have to create a job that creates every time a new value for each object and then
sends the data to the Kafka topic, consumed either by the Split Service or the consumer of
the predecessor implementation. For the device ID we use a random ID, because we want
to divide the data evenly into the Kafka partitions and the device ID is not relevant for
this test case.

for (var objectId : jobData.getObjectIds()) A

1

2 var tV = new ValueChange (Math.random(),

3 ValueChangeType.Set);

4 var tInc = new ValueChange (1,

5 ValueChangeType.Increment) ;

6

7 objectChanges.put (objectId, Map.of ("TV", tV, ...));
s ¥

9

10 var modelChanges = new ModelChanges (..., objectChanges);
11 var changeRequest = new AuthenticatedMessage <>(

12 transactionlId, jobData.getUserId(), modelChanges);
13 jobData.getChangesProducer ().accept (UUID.randomUUID ()

14 .toString (), changeRequest);

Listing 4.15: Simulation Service - Data Job

4Quartz: http://www.quartz-scheduler.org/
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4.2 Testing

In the end we only have to add these jobs and a trigger to the scheduler. For every
device we create the defined object IDs and pass them to the job via the job data, so that
the job sends the changes made to the same objects each time.

for (var i = 0; i < numDevices; i++) {

var job = JobBuilder.newJob(SimulateDataJob.class)
.withIdentity ("Job" + i)
.setJobData (jobDataMap).build ();

var trigger = TriggerBuilder
.newTrigger () .withIdentity ("T" + 1i).startNow ()
.withSchedule (SimpleScheduleBuilder

.simpleSchedule () .withIntervalInSeconds (sec)
10 .repeatForever ())
1 .forJob(job).build ();

T T - ¢ B O N

13 this.scheduler.scheduleJob(job, trigger);

Listing 4.16: Simulation Service - Schedule Job

Now, in the Dropwizard configuration, we can define the interval time in seconds, the
number of devices and objects within a device each time the service is started.

4.2.2 Metrics

For collecting metrics we use Prometheus>, which is an open source monitoring system. Tt
provides metrics like counter, timer or a histogram and also other metrics can be published
to it. We measure latency and throughput of the services with the Histogram metric, by
starting the timer at the beginning of the process and stop it at the end, as shown in listing
4.17 inside the Objects Changes Handler.

public static final Histogram processHistogram =
Histogram.build () .buckets (0.00005, 0.0001, ...)
.name ("object_changes_process").register ();

1
2
3
4
5 public void process (Record<IK, IV> inputRecord) A
6 var processTimer = ObjectChangesProcessor.

7 processHistogram.startTimer () ;

8

9 processTimer .observeDuration ();

10 this.context.forward (...);

nor

Listing 4.17: Metrics - Histogram Implementation

For the REST API response metrics we can use the metrics Dropwizard already provides.
Jersey has different annotations that we can use to instrument methods, so that the response
time or rate is written into metrics (Dropwizard 2023). We intend to track the response
time, which we can achieve with the @Timed annotation on class basis, so that all methods

>Prometheus: https://prometheus.io/
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are tracked. As output we get a histogram with the response time divided into different
percentiles, with the 50% percentile representing the median.

4.2.3 Testing Environment

For testing all the services and Kafka as well as MongoDB for the predecessor implementa-
tion, the resources and dependencies have been deployed on Azure®. The utility services
like the authorization service, the Prometheus or the Simulation Service are running on a
VM named Standard_DS2_v2 specification” with 2 vCPUs and 7 GiB of memory. Kafka is
running with three brokers on three VMs named Standard_D8as_v4 speciﬁcation8, with 8
vCPUs and 32 GiB of memory. In the tests with the new model, all services run on the
Standard_D8as_v4 specification VM. For better comparability the predecessor implementa-
tion and the MongoDB replica set are run on the same machine in the comparative tests.
The replica set consists of three nodes, where one node is the primary and handles all
client requests and appends the updated data to the secondary nodes.

The azure infrastructure is created via Terraform®, which allows you to easily build
or change infrastructure components like compute instances, storage or networking.
Kubernetes resources like the services are managed with Helm!" in Helmfiles!'!.

With this environment we can easily deploy, destroy or change the services and the
configurations.

4.3 Performance Tests

4.3.1 Configuration

In all tests the same number of 50 devices are used, because it is also interesting to compare
the latency change of the Split Service and that depends on the number of objects inside
one device message. The device number does not affect the latency of the old predecessor
implementation, because there the time is measured, which every object needs to apply its
changes and not the time every device message needs. It also does not affect the latency of
the new Object Changes Handler, because this service gets one message per object. So the
number of objects by device are only adjusted.

In addition, the same interval time of 1 second is used for the test data in all tests and
each measurement covers a period of 10 minutes.

For the frontend tests 100 messages per second are simulated. A REST client sends
a request every 5 seconds in a timespan of 5 minutes per method. In order to test the
remote queries, the getld call was executed twice for every configuration. Once the query
is sent to the correct instance, where the ID is stored, and once the query is sent to the
wrong instance, which then must forward it to the instance that stores the ID.

6Azure: https://azure.microsoft.com/de-de
7Standard_DS2_v?2 specification: https://azureprice.net/vm/Standard_DS2_v2
8Standard_D8as_v4 specification: https://azureprice.net/vm/Standard_D8as_vé
9Terraform: https://developer.hashicorp.com/terraform

10Helm: https://helm.sh/

UHelmfiles: https://helmfile.readthedocs.io/en/latest/
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4.3 Performance Tests

The partitioning and replication of Kafka is always the same. 12 partitions are always
used, which allow to divide by 2 and 3 for the tests of the new services with up to 3
instances and which also allow to divide by 2, 6 and 12 for the old predecessor implemen-
tation. This has the reason that all instances should have the same number of partitions at
any time for the best performance of the respective service. More partitions are not equal
to a higher throughput and would also bring problems with it, because every client buffers
per partition and so the memory consumption increases with the partitions (Zelenin and
Kropp 2022, P. 60).

The Kafka brokers and also the MongoDB cluster was not adjusted during the tests.
Kafka is always running with three brokers and clusters on three different VMs. And Mon-
goDB is also running with one replica set consisting of three nodes. Both configurations
were already described in section 4.2.3. Every time the CPU and memory usage of these
two tools are shown, the summary of all clusters, brokers or nodes are displayed. The
new model services are also summarized in the resource utilization, because a comparison
between the old predecessor implementation and the whole new system is made. And the
predecessor implementation contains all three functionalities inside one service, while
the new system is divided into these three services. The three services are also performing
three different jobs, so that the comparison between these services is not relevant.

All CPU resources are measured and displayed in cpu units, whereby 1 CPU unit is
equivalent to 1 virtual core. With this unit, the test results are mostly independent of
the computing power of the VM used. This is also the unit for resource requests used in
container creation in Kubernetes (Kubernetes 2023).

4.3.2 State Store Type Comparison

In the first comparison the following tests are executed for the two types of the local state
store.

Instances
State Store Simulated Msg/s | Split | Object Changes | Frontend
In-Memory | 1000; 2000; 5000; 10000 1 1 1
In-Memory | 1000; 2000; 5000; 10000 1 2 1
In-Memory | 1000; 2000; 5000; 10000 1 3 1
Persistent 1000; 2000; 5000; 10000 1 1 1
Persistent 1000; 2000; 5000; 10000 1 2 1
Persistent 1000; 2000; 5000; 10000 1 3 1

Table 4.1: State Store Type Comparison - Test Configuration

In this comparison we want to look at the performance difference between the two
state store types Kafka provides as key-value stores. The first one is the in-memory
store which only holds the data in the memory of the instance. The second one is the
persistent state store, which holds the data also in Random Access Memory (RAM), but
also asynchronously persists it to disk, as discussed in section 2.7.7. For all the tests only
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the Object Changes Handler was increased in the number of instances, because the other
services are not relevant for the comparison.

Chart 4.1 illustrates the latency comparison of the two types of state stores as well as
the comparison of a different number of Object Changes Handler instances.

State Store Type - Object Store - Latency
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Figure 4.1: State Store Type - Object Store - Latency

As we can see, the latency of the persistent state store is higher, but it does not have a
great impact. We also see that the number of instances affects latency, but only to a small
extent. Even three instances with the in-memory store have lower latency than one with
the persistent state store. It is also shown that the amount of throughput does not affect
the latency. In summary, the selection of the state store has the greatest impact on latency
in this test.

In the next charts we want to compare the CPU and memory usage of the Kafka brokers
and the model services.
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We can see that there is no clear difference between the two state store types when it
comes to CPU and memory usage of Kafka or the model services. The only difference
is seen between the number of instances. The memory consumption of Kafka and the
model services increases with the number of instances. And the CPU usage of the model
services decreases with the number of instances as shown in chart 4.4. We also see that the
CPU utilization is linearly dependent on the amount of throughput, while the memory
consumption is not so much increasing due to the number of messages.

4.3.3 In-Memory State Store Performance

Now we want to see what one instance of the Object Changes Handler can achieve with
the in-memory state store implementation. For this purpose, the following tests are
performed, using the test results of one instance with the in-memory state store from
above (cf. table 4.1).
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Instances
State Store Simulated Msg/s | Split | Object Changes | Frontend
In-Memory | 100; 200; 300; 500; 1000 1 1 1
In-Memory | 1000; 2000; 5000; 10000 1 1 1
In-Memory | 20K; 25K; 30K; 35K; 40K 1 1 1

Table 4.2: In-Memory State Store Performance - Test Configuration

The other two services are also running with one instance each, like in the tests before.
For this purpose the next chart 4.6 shows the difference between the simulated and the
actual processed number of objects. And besides that the latency required by the Object
Changes Handler to process the amount of objects is shown in chart 4.7.
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As you can see the maximum number of objects that can be processed by this imple-
mentation is round about 26 thousand objects per second. And the time required for each
object to be processed did not change significantly with the number of objects. Only the
small numbers under 1000 objects per second have a better latency.

The following charts display the CPU and memory usage of Kafka and the model
services for that scenario.
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The CPU usage of the model services and also of Kafka increase linearly with the
number of messages. Only after 25 thousand messages the load of the CPU and memory
of the services are rising significantly to handle this amount of incoming data. Most of the
time the memory consumption of Kafka and the model services was increase linearly on a
small base.

4.3.4 Split Message Service

To determine the relationship between the number of objects per device and the latency
of the Split Service, the following tests were run with a different number of objects and
instances:

Instances
Number Devices Simulated Msg/s | Split | Object Changes | Frontend
50 1000; 2000; 5000; 10000 1 1 1
50 1000; 2000; 5000; 10000 2 1 1
50 1000; 2000; 5000; 10000 3 1 1

Table 4.3: Split Message Service - Test Configuration

With these tests the correlation between the number of objects per device and the
latency is shown.
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Split Service - Processed Objects per Device - Latency
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Obviously the latency of the split service is not dependent on the number of instances,
which means that the number of devices that are processed by an instance does not affect
the latency. The latency increases only with the number of objects per device.

4.3.5 New - Old Comparison

At last we want to see the difference between the new solution and the old predecessor
model implementation. In this scenario 100 up to 1000 messages are used, because the
high latency of the predecessor implementation only allows lower throughput for each
instance as we can see in chart 4.11. In comparison to the old model, the in-memory
state store implementation is used here, because as seen above in chart 4.1 the two state
store types do not have a significant difference in their latency time. In addition only one
instance of the in-memory solution is used due to the reason, that the one instance of the
Object Changes Handler can already perform 25 thousand messages per second. It did not
have to be scaled for these numbers used in this scenario in a production environment.

Apply Changes Performance

The tests performed for the comparison are listed in this table 4.4, while the results of the
in-memory state store performance test are taken from the test above (cf. table 4.2).
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Instances
Version Simulated Msg/s | Old Model | New Services
New - InMemory | 100; 200; 300; 500; 1000 0 1
Old - MongoDB 100; 200 1 0
Old - MongoDB 100; 200 2 0
Old - MongoDB 100; 200; 300; 500 6 0
Old - MongoDB 100; 200; 300; 500; 1000 12 0

Table 4.4: New/Old Comparison - Apply Changes Performance - Test Configuration

For the processing of the changes per model object the time each object needs to
get authorized, validated, compared and stored is tracked and the average time per
throughput is shown in chart 4.11. Chart 4.12 is displayed with a logarithmic scale for
the latency to illustrate the difference between the old and the new service, because the
difference is too big to show it in the linear scale.
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We can realize that the latency of the old system is up to 400 times higher than the new
system. And the latency of the old service increases up to 30% for each instance added
to the environment. Chart 4.12 shows that the processing time of the new model service
does not really increase with the number of messages, what has already been established
in the latency comparison between the state store types (cf. 4.1) and also in the in-memory
test with one instance (cf. 4.7). The latency of the predecessor implementation in 4.11
shows, that there is a slight correlation between the throughput and the latency.

The CPU and memory usage of the model services and Kafka is shown in the following
charts.
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We can see that the CPU usage of the model services depends on the number of instances
and the throughput, while the throughput effects the CPU more on the old system than on
the new services. The memory usage of the services is mostly depending on the number
of instances, but the new service has a higher consumption than the old service with more
or equal than two instances. The CPU and memory usage of Kafka is also only dependent
on number of instances, but we cannot see a clear difference between the new and the old
system.
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New/Old - Comparison - CPU Usage - MongoDB
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Figure 4.17: New/Old - Comparison - CPU
Usage - MongoDB

The above charts shown the CPU and memory consumption of all MongoDB nodes
additionally used in the tests with the predecessor implementation. The first chart 4.17
clearly shows the relationship between the increase in CPU utilization of MongoDB and
the amount of throughput. On the contrary, it also shows that the CPU usage decreases
with the number of instances. Memory consumption of MongoDB increases the most with
the addition of model instances (cf. chart 4.18).

Frontend Request Performance

Finally, we also present the difference between the implementations when it comes to
frontend REST API requests. For that all implementations are tested with 100 messages
per second and with a different number of frontend instances as we can see in the following
table.

Instances
Version Simulated Msg/s | Old Model | Split | O. Changes | Frontend
Old - MongoDB 100 1 0 0 0
Old - MongoDB 100 2 0 0 0
Old - MongoDB 100 3 0 0 0
New - InMemory 100 0 1 1 1
New - InMemory 100 0 1 1 2
New - InMemory 100 0 1 1 3
New - Persistent 100 0 1 1 1
New - Persistent 100 0 1 1 2
New - Persistent 100 0 1 1 3

Table 4.5: New/Old Comparison - Frontend Request Performance - Test Configuration

Chart 4.19 illustrates the time the REST API needs to respond the “get all objects”
request between the old model service and the two state store types of the new system for
different numbers of frontend instances.
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New/Old - Comparison - Frontend - Response Time - Get All Request
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Figure 4.19: Frontend - Get All

We can see that the response time of the “get all” call with one instance is mostly
the same in all three implementations. When it comes to more than one instance the
implementation with MongoDB is significantly faster. The response time of the new
service also increases with the number of Frontend Service instances, resulting from the
current implementation, where all instances are queried one after the other (shown in
listing 4.13). This can be improved with asynchronous requests, which will be discussed
later in chapter 6. The chart also shows that the two state store types did have quite
similar response times, only with one instance the in-memory state store is the fastest of
the three implementations.

The next two charts show the response time of the “get object by ID” request, which
searches for one specific object ID and returns the object. The first chart 4.20 presents the
average response time of all requests. In the second chart 4.21 we can see the difference
between the response times sending the request to the instance which stores the ID and
the instance which has to forward the request to another instance, because it does not
store the partition of the ID in the local state store (Remote Query, cf. section 3.1.3).
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Figure 4.20: Frontend - Get Object by ID

40



4.3 Performance Tests
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Figure 4.21: Frontend - Get Object by ID - Remote Query - Wrong/Right Instance Comparison

We can see that response time of the “get object by ID” request is with both state store
implementations faster than the old system, when the frontend service is running with
one instance. But when it comes to many instances the old system performs much better,
especially when we call the wrong instance. As demonstrated in the above tests the two
state store types are quite similar in response time. In chart 4.21 we see that the remote
query effects the response time on the smaller percentiles, but when we come to the high
percentiles, also named tail latencies, the response times are converging. This can be
explained by the metadata call, which is executed in both scenarios as described before in
section 3.1.3. But we can also see in that chart that the response time for the percentiles
up to 75% are not worse than the old system when the query accesses the right instance.
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5 Summary

The implementation of this thesis confirms that an in-memory object state store using a
log-based message broker such as Kafka is possible. Kafka Streams supported us with the
provided functionalities, making it relatively easy to replace a database for an object state
store as shown in the implementation section 4.1. This implementation of a distributed
state storage is easily scalable and also persistent, since the changelog topic is stored on
disk. The topic also can be replicated with distributed replications across many brokers
on different servers resulting in a very good persistence of the data.

In the implementation we also saw that we can provide the state store data via the
changelog topic to various services, which then make the object data available in different
materialized views, like the key-value read-only store shown in section 4.1.3.

In the test results we realized that the performance of this implementation is much
better than the predecessor implementation of this service using a NoSQL database as
object storage like MongoDB. Latency is up to 400 times lower than the old service (cf.
chart 4.11) and the CPU usage is also up to 5 times lower with the new implementation.
The memory consumption of the services is higher in the new system. But the sum of
all CPU and memory usage is already higher with only one instance of the old system
if we also add the resource utilization required by MongoDB, which is shown in these
two charts: 4.17, 4.18. The new services do not require any additional resources, because
they only use Kafka and the resources utilized by the service itself. The big difference
between the latencies also comes from the fact that we need many instances of the old
model service to process the same throughput that a single new service can handle. The
other reason is that the latency of the new system does not increase with the amount of
throughput as seen in chart 4.7, while the latency of the predecessor implementation
increases slightly (shown in chart 4.11). When comparing the latencies of the new system
with the different types of state stores, chart 4.1 illustrates that the new system is much
more parallelizable and thus better scalable when we need a higher throughput. The
throughput with one instance of the new system is also much higher and we can process
up to 25 thousand messages per second, as shown in chart 4.6.

As far as response times to REST API requests are concerned, we recognized that
the new Frontend Service can achieve just as fast processing times as the predecessor
implementation, if only one frontend instance is running. But when it comes to many
instances we have a significantly worse response time especially when we look at the
tail latencies. This bad performance comes from remote queries, this means when we
have to call many instances the API request from one instance to another is very time
consuming. As the tests are only performed with 100 messages per second, the response
times of MongoDB are optimized. We are not talking about real production times, since
for the MongoDB cluster it is easy to hold the 100 objects in the RAM. In a production
environment, however, objects that are older and no longer stored in RAM have to be
queried from the disk. And when MongoDB is additional a sharded resource and not only
used with one replica set the mongos instance has to route the queries to the shards, which
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5 Summary

also adds a amount of time to the request latency (MongoDB 2023). Chart 4.21 shows the
difference between a getID request to the instance which stores the ID on the one hand
and an instance, which has to forward the request to an other instance on the other hand.
We noted that the most requests are much slower when the Frontend Service instance has
to forward the request to an other instance. At the same time we also saw that the tail
latencies are mostly the same, which may be due to the fact that the metadata call takes
its time. This poor performance of the REST API with many instance can be improved, for
which suggestions are made in chapter 6.

In the tests, it is also showed that the only difference between the two types of state
stores is that the latency of the in-memory store is lower than the one of the persistent
store, while CPU and memory usage are nearly the same. This results from the fact, that
the persistent state store also keeps all objects in memory, when the memory has enough
free space, and only additionally persists the data asynchronously to disk. This means
that the latency increases if the memory is too small, but in this scenario the in-memory
state store would not work correctly. Because of the fact, that we do not expect such large
objects, that the size of the memory is the relevant factor, and with the reason that the
only other advantage of the persistent state store is, that the data can be restored faster,
the in-memory state store is the right type for this scenario. With the in-memory state
store we can achieve higher throughput and the service can also be deployed as stateless
Kubernetes resource, which simplifies the deployment of the service.
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6 Future Work

In the REST API response time tests shown in section 4.3.5, it was fairly clear that the
performance of the requests for remote queries across many instances can be improved.
The implementation of the getAll request can be optimized by making the API calls to
other instances asynchronously. Another performance issue are the REST calls themselves,
these text protocols use all technologies for the web, from JSON as representation format
down to HTTP and the entire networking stack (Goetsch 2017). Replacing REST with
binary protocols, as it is also done at MongoDB with the so named Wire protocol (MongoDB
2023), will reduce the response time of remote queries. To prevent the converging of
the tail latencies in the get/d remote query comparison (shown in chart 4.21), it could be
examined whether the metadata call is a deciding point. For that the local state store can
first be queried for the ID and if it does not return an object, the metadata call will be
executed.

To perform more complex queries on the actual state, a new service can be implemented,
which also consumes the changelog topic but then runs an indexing algorithm over the
data. So there would be another materialized view of the data, which would allow queries
like filtering or searching for a specific value within an object.

The other solution for more complex queries is to investigate other external databases,
which can consume the changelog topic. For this solution, the database must be able to
handle the number of data updates. Otherwise, with an upstream KTable, the database
would always consume only the latest values, no matter how fast it can process them.

The impact of the threading model explained in section 2.7.5 can also be examined,
by increasing the number of threads per instance in contrast to adding instances of the
model services. Increasing the number of threads should have the same effect as adding
new instances, because chart 4.1 already shows that the number of instances does not
have a big influence on the latency, unlike the old system shown in chart 4.11.
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Glossary

API Application Programming Interface.

CDC Change Data Capture.
CPU Central Processing Unit.

DSL Domain Specific Language.
DT Digital Twin.

ID identifier.
loT Internet of Things.

JSON JavaScript Object Notation.
JVM Java Virtual Machine.

RAM Random Access Memory.

REST Representational State Transfer.

VM Virtual Machine.

Web-UIl web based user interface.
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