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ABSTRACT

Abstract

This thesis covers the optimization of skins of a vertical stabilizer of an aircraft fighter made from
CFRP. A new invariant method is applied to optimize the laminate design considering so-called
double double laminates [±Φ,±Ψ]. This method is implemented in the DD-Design Tool (DiCaprio,
Riccio, and Tsai 2020) which has been improved and implemented in Python within the scope of
this thesis. The new tool has been proven as computationally efficient for optimizing laminated
structures and the obtained results show great weight savings for skins made of double double
laminates, compared to legacy quad laminates or aluminum constructions. Due to the partial low
loading resulting in thin laminates with a thickness of one building block, two design strategies
were defined and investigated for their effects on weight: 1st Symmetry Design Approach, 2nd Ho-
mogenization Design Approach, both applied to the digitized optimization results. It is shown that
the Symmetry Design Approach yields a significantly lower weight than homogenization for the
studied model and all considered failure criteria. In addition, the achieved skin weights for first ply
failure are compared with skin weights corresponding to last ply failure, where weight reductions
of 28% and 35% are obtained for Tsai-Wu and unit circle, respectively.
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Hauke 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Different core types in sandwich constructions, adapted from (Ueng 2002, p. 409). . 9
2.4 Different Honeycomb core geometries, adapted from (Zenkert 1997, p. 25). . . . . . 9
2.5 Coordinate system aligned with the fiber direction for unidirectional layers, adapted

from (Kollar and Springer 2003, p. 19). . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Sign convention for ply rotation angle and positive shear, adapted from (Schürmann
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INTRODUCTION

1 Introduction

Fiber Reinforced Plastics (FRP) are composite materials that consist of fibers and a matrix, where
the fibers are carrying the loads and the matrix binds the fibers together. Moreover, the matrix
acts as a load-transfer medium between the fibers and protects the fibers from being exposed to
the environment (Reddy 2004, p. 1).
FRP materials are used in various industries such as aerospace, automotive, rail industry, marine
industry and many more. All industries rely on the lightweight construction properties of the
the materials, the freedom of shaping, the possibility of integral construction and the corrosion
resistance. In addition to the above-mentioned reasons, the significantly superior fatigue strength
compared to aluminum plays a major role in the aerospace industry. Here, FRP materials are used
for cladding, secondary structures as well as primary structures (Schürmann 2007, pp. 5–11).
For example, the Airbus A350 XWB structure is made of more than 50% of composite materials.
Its wing mostly made of Carbon Fiber Reinforced Plastics (CFRP), including the upper and
lower cover. The initially higher production cost are compensated by saving money on future
maintenance costs since the material doesn’t rust or corrode. The A350 XWB requires 50% fewer
structure maintenance tasks and the threshold for airframe checks is at 12 years compared to eight
for the A380 (Airbus 2021b). In addition, the use of CFRP results in a 25% reduction in fuel
consumption compared to its aluminum competitors (Airbus 2021a).
But the design process of structures made of CFRP materials is difficult. In the early 1960s, when
CFRP began to be used in the aerospace industry, companies decided to make laminates from four
ply angles: 0°, ±45° and 90°, referred to as legacy quad. With legacy quads, a number of rules
for laminate design were developed, such as the presence of midplane symmetry, the 10% rule, the
need for balanced layup, etc. and these rules have remained until today.
Recently, a group of researchers led by Stephen W. Tsai discovered a novel method for laminate
design using an invariant based description of stiffness and strength. They forgo legacy quads and
instead use balanced laminates with two arbitrary ply angles that allow efficient optimization and
manufacturing. These laminates are called double double laminates.

1.1 Thesis objective

The objective of this work is to use the invariant methods for the design optimization of skins
of an aircraft rudder wing box made of CFRP. Three failure criteria, Tsai-Wu, Unit-Circle and
Nettles-Circle will be used to optimize the laminate angles and skin thickness profile with respect
to minimum weight for double double layups using the DD-Design Tool (DiCaprio, Riccio, and
Tsai 2020). Differences in weight will be investigated for first ply failure (FPF) and last ply failure
(LPF). Weight savings will be benchmarked to an aluminum and a legacy quad design. In addition,
laminate homogenization and the corresponding minimum repeat factors will be explored, as well
as the effect on weight if a symmetrical layup is used instead. Finally, a further optimization
potential for the optimum DD-design is determined by a genetic optimization and response surface
optimization.
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INTRODUCTION

1.2 Thesis outline

Chapter 2 covers the fundamentals of this thesis. First, a short introduction to carbon fiber
reinforced materials is given, followed by a brief description of honeycomb core materials. The
mechanical principles of multidirectional composite laminates are explained, and failure theories
for CFRPs are introduced.
In chapter 3, the invariant approach to laminate design is described and a direct sizing method
developed by Tsai is presented. In addition, the original DD-Design Tool is explained and an
improved design tool for double double laminates is presented. Both tools apply the invariant
method by Tsai, and a finite element software is used to solve the boundary problem.
Chapter 4 deals with the optimization of a vertical stabilizer of an aircraft. The improved design
tool is applied for optimization and results for double double laminates are compared to those for
legacy quad laminates and aluminum.
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2 Fundamental Background

This chapter describes the basic principles of fiber reinforced plastics. First, a brief introduction
into fiber and resin materials is given, followed by the mechanical relations of FRP materials. Since
this work considers multidirectional laminates made from unidirectional layers, other types are only
briefly discussed if at all.
It is necessary to first explain some conventions and notation simplifications that will be used in
the following chapters:

• The local (fiber-orientated) coordinate system is denoted by x1, x2, x3 and the global one by
x, y, z

• Displacements in local coordinate system are denoted as u1, u2, u3 and in the global system
as u, v, w

Furthermore, contracted notation is used for stress, strain, stiffness and compliance tensors. In
contracted notation, the number of indices is reduced by half, and the relations can be expressed
in terms of matrix equations. This is possible because these tensors are symmetric:

σ1

σ2

σ3

σ4

σ5

σ6

 =



σ11

σ22

σ33

σ23

σ13

σ12

 ;

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




ε1

ε2

ε3

ε4

ε5

ε6

 =



ε11

ε22

ε33

2ε23

2ε13

2ε12

 ;

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33



Engineering strain is used throughout this thesis, so the shear components of the tensorial strain
are multiplied by the factor two, as shown above. In addition, the contracted notation for stiffness
Cpqrs and compliance Spqrs yields second rank matrices instead of fourth rank matrices:

Cij

Sij i, j = 1, 2, ..., 6

They are not shown here, but the derivation of compliance and stiffness in contracted notation can
be found in (Tsai 2008, pp. 10–13).
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2.1 Fiber and matrix materials

CFRP materials are widely used in all industries wherever lightweight structures are needed and
high demands on stiffness and strength have to be met. CFRP offer both, low weight and high
strength and stiffness. They consist of two components: fibers and resin, where fibers are placed
in the resin matrix as shown in figure 2.1.

Figure 2.1: Unidirectional ply with fiber packing and stacking to multidirectional laminates,
adapted from (Schürmann 2007, p. 15).

Fibers
Fibers are the load-bearing parts of fiber composites and must therefore have high strength and
stiffness. Materials such as boron, carbon or silicon, for example, exhibit covalent bonding, which
theoretically allows very high strength to be achieved. In practice, the strength and stiffness of
materials depends on the occurrence and size of defects in the material structure, especially in
brittle materials such as those mentioned above. According to the so-called size effect, defects sta-
tistically occur less at lower volumes than at higher volumes and therefore thin fibers are stronger
than bulk material. The use of thin fibers divides the stressed volume of the material into many
small volumes. An additional advantage is that the small fiber cross sections also reduce the size
of the defects, thus reduce their effectiveness (Schürmann 2007, pp. 21–22).
Nowadays, the most commonly used fiber materials are carbon, glass, boron and aramid.

Glass fibers
Glass fibers are the most commonly used fibers for FRPs. They offer high tensile strength, high
chemical resistance, excellent insulating properties and are low cost. The high density, low tensile
modulus and the relatively low fatigue resistance are the disadvantages. Most commonly used glass
fibers are E-type and S-type. While fibers of E-type have the lowest cost of all FRP fibers available,
S-type offer the highest tensile strength among all fibers in use (Mallick 2008, p. 41).

Boron fibers
Boron fibers have an extremely high tensile modulus and offer, due to their relatively large diam-
eter, excellent resistance to buckling. The disadvantage of boron fibers is their high cost. They
cost more than most available carbon fibers and are therefore only used for few applications in the
aerospace sector (Mallick 2008, pp. 56–57).

Aramid fibers
Aramid fibers have the lowest density and the highest strength-to-weight ratio among all commonly
used FRP fibers. They are used in many applications where lightweight, high tensile strength, or
resistance to impact damage is needed. The disadvantages are their low compressive strength and
difficulties during machining due to their outstanding toughness. A well-known aramid fiber avail-
able on the market is Kevlar 49, which is often used in soft lightweight body armors (Mallick 2008,
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pp. 53–54).

Carbon fibers
The most important properties of carbon fibers are their high axial strength and modulus, low
density, good fatigue durability, negative thermal-expansion coefficient and excellent corrosion re-
sistance. The disadvantages are a low strain to failure, low impact resistance, electrical conductivity
and their cost (Wang and Gao 2021, p. 19).

Carbon fibers are produced by carbonization and graphitization of organic fibers. Mostly PAN
(polyacrylonitrile) precursors are used, but also pitch-based exist. After producing and stabilizing
the precursor, the carbon fibers are created by carbonization. During the carbonization, all foreign
atoms are removed from the material and a turbostratic structure of C-atoms is obtained. With
increasing treatment temperature, also the graphitic ribbon structure increases. The alignment of
the ribbons in longitudinal direction of the fibers is the prerequisite for high fiber strength and a
high modulus of elasticity. Figure (2.2) shows the change in the chemical structure of the fiber ma-
terial during carbonization. Depending on the treatment temperature, the performance of carbon
fibers alter. They can be divided in high-strength fibers (HT/HS type, 1200°C to1500°C), interme-
diate modulus fibers (IM type, 1500°C to 1800°C) and high modulus fibers (HM, UHM types, up
to 3000°C) (Lengsfeld, Mainka, and Altstädt 2020, pp. 17–31).

Figure 2.2: Change in the chemical structure of PAN under the influence of heat (Jäger and Hauke
2010).

Carbon fibers with high tensile strength have the lowest modulus among carbon fibers, while carbon
fibers with high- and ultrahigh-modulus have the lowest tensile strength and tensile strain-to-failure.
High tensile strength carbon fibers are, for example, T-300 and AS-4. T-40 and IM-7 are fibers
with an intermediate modulus and GY-70 fibers are an example of ultrahigh modulus (Mallick
2008, pp. 49–50).

Resin matrix
The matrix covers several tasks within the fiber reinforced composite. The matrix keeps the fibers
in place, transfers stress between the fibers and protects the fibers from adverse environment.
The selection of a suitable matrix is important, because it strongly influences the compressive,
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Table 2.1: Density, tensile modulus and tensile strength of selected fiber materials (Mallick 2008,
pp. 33–34).

Fiber-Type Fiber ρ[g/cm3] E1[GPa] X[GPa]

Glass E-glass 2.54 72.4 3.45
S-glass 2.49 86.9 4.3

Boron 2.7 393 3.1

Aramid Kevlar 49 1.45 131 3.62

PAN carbon T-300 1.76 231 3.65
AS-4 1.8 248 4.07
T-40 1.81 290 5.65
IM-7 1.78 301 5.31
GY-70 1.96 483 1.52

interlaminar shear and in-plane shear properties. Furthermore, the matrix supports the fibers
under compressive stress in the longitudinal direction of the fibers against buckling.
A various number of matrix materials are available for fiber reinforced plastics. They can be
divided into thermoplastic and thermosetting resins, with each offering different advantages and
disadvantages.
In a thermoplastic resin, for example, the molecules are not chemically bonded to each other, but
are held together by weak secondary bonds or intermolecular forces such as van der Waals bonds
and hydrogen bonds. Applying heat to the matrix can loosen these bonds, and by the applica-
tion of pressure, a reforming of the material is possible. Furthermore, thermosetting resins have
a relatively large strain-to-failure which provides a good resistance to matrix microcracking in the
laminate.
In contrast to thermoplastic resin, the curing process of thermosetting polymers joins molecules
chemically by creating cross-links. These cross-links form a rigid, three-dimensional network struc-
ture which can’t be resolved, once they are created. Thermosetting resin usually come with a low
molecular weight. Their low viscosity contributes to a good wet-out between the fibers and the
matrix, which is necessary to achieve fiber-matrix interaction within the composite. Thermosetting
resin are thermally stable, have a chemical resistance and also exhibit less creep and stress relax-
ation compared to thermoplastic polymers (Mallick 2008, p. 59–67).
Table (2.2) shows selected matrix materials and their typical fields of application. Due to the variety
of available matrix materials, only a limited selection can be presented here. Further information
can be found in the relevant literature.

Fiber-matrix materials in aircraft design
The first FRP used in aircraft design were a material combination of boron fibers and epoxy ma-
trices, where nowadays mostly carbon fibers are used. Both fiber material have a high modulus
and also high strength, but due to the high density of boron, carbon fibers are preferred nowadays.
Also their high corrosion and fatigue resistance is an important point (Park 2018, pp. 259–263).

CFRP material products
For highly stressed laminates, continuous fibers are mainly used. Only a few manufacturing pro-
cesses are capable to lay yarns or rovings directly as unidirectional layers with the desired fiber
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Table 2.2: Selection of matrix materials for fiber reinforced plastics and their typical fields of
application (Mallick 2008, p. 60).

Resin-Type Material fields of application

Thermoplastic Nylons injection-molded articles
thermoplastic polyesters injection-molded articles
polyether ether ketone moderately high temperature

applications

Thermosetting Epoxies aerospace and aircraft
applications

Polyimides high temp. aerospace
applications

polyesters automotive, marine, chemical
vinyl esters automotive, marine, chemical

Table 2.3: Density, tensile modulus and tensile strength of selected matrix materials (Park 2018,
pp. 199, 206).

Resin-Type ρ[g/cm3] Em[GPa] X[MPa]

Epoxy 1.2–1.4 2.5–5.0 50–110
Polyesters 1.1–1.4 1.6–4.1 35–90
Vinyl esters 1.04–1.1 3.2–3.6 68–80

Nylon 1.1 1.3–3.5 55–90
thermopl. Polyester 1.3–1.4 2.1–2.8 55–60
polyether ether ketone 1.3–1.35 3.5–4.4 100

orientations, for example pultrusion or placement using laying robots. To reduce effort in correct
fiber positioning, semi-finished products such as prepregs are used (Schürmann 2007, pp. 57–58).
Prepregs or pre-impregnated materials are thin sheets of fibers embedded in semi-cured resin ma-
terial, where the fibers may be in woven form or aligned in parallel. For example, unidirectional
(CFRP) prepreg tapes are used to manufacture wing skins of airplanes such as the Airbus A350,
A380 or A400M by automated tape laying (MTorres 2021).

Mechanical description
The behavior of composite materials is quite difficult to describe in terms of mechanical equations.
Not only the stressed fibers and matrix have to be included, but also the interaction between the
two constitutes. The interaction between individual fibers and their surrounding matrix is de-
scribed micromechanically, while in the macromechanical approach the fiber-reinforced plastics are
assumed to be a homogeneous material in which the fibers and the matrix of a single layer are
treated as one component. Micromechanics is rather used in the context of material science and
macromechanics is used by FRP designers (Schürmann 2007, pp. 16–17) .

Assuming uniformly distributed fibers, perfect bonding between fibers and matrix, linear material
behavior, void free matrix, a stress-free initial state, and forces applied either parallel or normal to
fiber direction, the material parameters of the composite material can be determined easily by the
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so-called rule of mixtures.
The composite modulus in longitudinal direction EL is intermediate between the fiber and the
matrix modulus and depends on the volume fraction of fibers in the composite (Mallick 2008,
pp. 120–125).

EL = Efvf + Emvm (2.1)

The transverse modulus ET of the composite can be derived by replacing the fibers and the matrix
by their respective equivalent volume depicted as two structural components with strong bonding.
Assuming the total deformation is the sum of fibers and matrix deformation and stresses are are
equal in fibers and matrix, the transverse modulus of the composite depends on the volume fractions
and modulus of fiber and matrix (Mallick 2008, pp. 138–144).

1

ET
=

vf

Ef
+

vm

Em
(2.2)

In addition to the elastic moduli, other parameters such as the composite density, the coefficient of
thermal expansion or the strength can be determined using the rule of mixtures.
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2.2 Core materials

Composite sandwich constructions are commonly used to obtain structures that are lightweight but
also strong and stiff. They are widely found in aerospace applications, but also in other disciplines.
In principle, sandwich structures are analogous to I-beams, where the web carries the shear forces
and the flanges provide the bending rigidity. The core of sandwich constructions has the same
functions as the web of an I-beam, and the face sheets or skins provide flexural rigidity.
To ensure this, there must be a strong adhesive bond between the core and the faces. In addition,
the shear modulus of the core must be high enough to prevent the faces from sliding relative to
each other, the Young´s modulus perpendicular to the faces must be high enough to maintain the
spacing of the faces, and the core must not fail under the applied transverse load (Ueng 2002,
p. 408). To ensure low weight, the core should have a low density.
The different types of cores can be grouped into foams, honeycombs and corrugated cores, as shown
in figure 2.3 (Zenkert 1997, p. 23). Since honeycomb cores are used in the context of this thesis,
only these will be explained below.

(a) foam (b) honeycomb (c) corrugated

Figure 2.3: Different core types in sandwich constructions, adapted from (Ueng 2002, p. 409).

Honeycomb cores are available in various cell shapes and materials, each with different character-
istics. For example, they can be square, rectangular, triangular, corrugated or in hexagonal shape,
where the latter is most commonly used. Typical materials are aluminum, impregnated glass or
aramid fiber mats, but impregnated paper is also sometimes used (Zenkert 1997, p. 25). In figure
2.4 different shapes of honeycomb cores are shown: a) the traditional hexagon shape, b) square
shape, c) an over-expanded hexagonal shape, and d) a flex-core shape.

(a) (b) (c) (d) (e)

Figure 2.4: Different Honeycomb core geometries, adapted from (Zenkert 1997, p. 25).

However, for simulation, honeycombs are commonly modeled as continuous orthotropic material
with respect to the principal directions W (width), L (length), T (transverse), as shown in figure
2.4 e). Typical mechanical properties for different honeycomb cell shapes, materials and densities
can be found in (Zenkert 1997, pp. 26–30).
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2.3 Material symmetries and constants

The amount of independent parameters to describe a material behavior is dependent on the amount
of material symmetries. For linear elastic materials without symmetry planes, the stiffness matrix
C, respectively the compliance matrix S, of the generalized Hooke´s law

σ = Cε

ε = Sσ
(2.3)

consist of 21 independent components to describe the stress-strain relationship. The stiffness matrix
C is derived by inverting the compliance matrix S whose components Sij can be determined by
testing. The index notation of the Poisson´s ratios and shear coupling coefficients in this work
follows the notation in Tsai, Melo et al. (2017), Tsai and Melo (2015) and Tsai (1992). The
coupling coefficients of the compliance matrix are normalized column-wise, resulting in an indexing
that conforms to the conventions of matrix algebra:

ν21 > ν12 if E1 > E2 (2.4)

where ν21 is the major Poisson´s ratio and ν12 the minor Poisson´s ratio.

ν21 = −S21

S11

ν12 = −S12

S22
= ν21

E2

E1

Note that this convention is often ignored in most common practice (row normalized coupling
coefficients): i.e. ν12 > ν21 if E1 > E2 (Tsai, José Daniel D. Melo, et al. 2017, p. 15).
The shear moduli are designated by the letter E instead of G in accordance with the previously
mentioned works. The elastic (i = 1, 2, 3) and shear moduli (i = 4, 5, 6) of the material are
determined by uniaxial tensile/compression and shear tests, respectively.

Ei =
σi
εi

=
1

Sii
i = 1, ..., 6. (2.5)

Materials without symmetry planes are called anisotropic materials or triclinic materials and
are the most general linear elastic materials. The stiffness and compliance matrix consist of 36
components and is symmetric from energy consideration (Tsai 2008, p. 13).

Sij = Sji Cij = Cji (2.6)

Thus, only 21 of the 36 components are independent.

ε1

ε2

ε3

ε4

ε5

ε6

 =



S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66





σ1

σ2

σ3

σ4

σ5

σ6

 (2.7)

In anisotropic materials, there is a shear-extension coupling, i.e. an applied normal or shear stress
produces both extensional and shear deformations.
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If one symmetry plane exists, a material is called monoclinic material. The coordinate system
is chosen so that the axes x1 and x2 are in the plane of symmetry and x3 perpendicular to it. For
monoclinic materials, the number of independent components of the stiffness or compliance matrix,
is reduced to 13. Furthermore, shear and extension are partially decoupled.

S =



S11 S12 S13 0 0 S16

S21 S22 S23 0 0 S26

S31 S32 S33 0 0 S36

0 0 0 S44 S45 0
0 0 0 S54 S55 0
S61 S62 S63 0 0 S66

 (2.8)

A material is called orthotropic material, if three orthogonal symmetry planes exist. Due to
symmetry, the number of independent components is reduced to 9. If the coordinate system is
chosen so that the axes are perpendicular to the planes of symmetry, the stiffness or compliance
matrix will have the zero/nonzero components shown in equation (2.9). In this case, shear and
extension are completely decoupled.

S =



S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

 (2.9)

Transversely isotropic materials are a special case of orthotropic materials in which one plane
is isotropic. As for orthotropic material, the coordinate system is chosen to coincide the symmetry
planes, but the x1-axis is perpendicular to the plane of isotropy as shown in figure 2.5. Due
to isotropy, the number of independent components is reduced to 5. An example of transversely
isotropic materials are unidirectional FRP layers, which are described in more detail in the following
section.
If an orthotropic or transversely isotropic material is rotated about the x3-axis, i.e. x1 and x2 are no
longer normals of the symmetry planes, the stiffness or compliance matrix has the same zero/non-
zero components as shown in equation (2.8). In other words, on-axis plies behave orthotropically
or transversely isotropically and off-axis plies behave monoclinically.
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2.4 Unidirectional Layer

In an unidirectional layer (UD-layer), all fibers are orientated in the same direction, i.e. the lon-
gitudinal direction. The coordinate system is chosen as described in the previous chapter for
transversely isotropic materials, so that the x1-axis is aligned with the fiber direction and the x2-
axis and x3-axis are in the plane of isotropy as shown on figure 2.5.

Figure 2.5: Coordinate system aligned with the fiber direction for unidirectional layers, adapted
from (Kollar and Springer 2003, p. 19).

Being a special case of orthotropic materials, the compliance and stiffness matrices of unidirectional
layers have the same zero/nonzero components as shown in equation (2.9). The engineering con-
stants of UD-layer are derived taking into account the isotropy plane, which reduces the number of
independent constants from nine to five. Engineering constants of transversely isotropic materials
are related as follows:

E3 = E2

E5 = E6

ν31 = ν21

The shear modulus E4 in the x2-x3-plane is derived similar to the shear modulus for isotropic
materials:

E4 =
E2

2(1− ν32)
(2.10)

Finally, the on-axis compliance matrix in terms of engineering constants results in:

S =



1
E1

−ν12
E2

−ν12
E2

0 0 0

−ν21
E1

1
E2

−ν23
E2

0 0 0

−ν21
E1

−ν32
E2

1
E2

0 0 0

0 0 0 2(1+ν32)
E2

0 0

0 0 0 0 1
E6

0

0 0 0 0 0 1
E6


(2.11)
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And the stiffness matrix is derived by inverting equation (2.11) C = S−1.

Usually, lightweight structures made of composite materials are large in area but thin-walled, so
that plane stress state can be considered. For plane stress, the following stress components are
zero:

σ3 = σ4 = σ5 = 0

And the stress-strain relation is reduced to:

εi = Sijσj

σi = Qijεj
i, j = 1, 2, 6 (2.12)

where Qij are the components of the reduced in-plane stiffness matrix under plane stress condition.
Q is derived by modifying the 3-dimensional Hooke´s law, which is shown in many books, including
(Tsai 2008, pp. 19–22), (Tsai and José Daniel D. Melo 2015, pp. 31–36), and (Kollar and Springer
2003, pp. 38–42). The on-axis components for the reduced stiffness matrix Qij can be calculated
as shown in equation (2.13):

Q =


E1

1− ν21ν12

ν12E1

1− ν21ν12
0

ν21E2

1− ν21ν12

E2

1− ν21ν12
0

0 0 E6

 (2.13)

2.5 Transformation of stress and strain

This section covers the transformation of stress and strain between two coordinate systems. The
transformation relations are described in terms of engineering constants and are shown for a trans-
formation about the z or x3, from on-axis to off-axis coordinate systems and vice versa. Note that
on-axis stress and strains are designated by σ12 and ε12, and off-axis by σxy and εxy.

Figure 2.6: Sign convention for ply rotation angle and positive shear, adapted from (Schürmann
2007, p. 208) and (Tsai, José Daniel D. Melo, et al. 2017, p. 1).

The rotation angle α is defined positive for a counterclockwise rotation, i.e. a mathematical pos-
itive rotation, from off-axis (global) to on-axis (local) coordinate system. Besides the definition
of a positive rotation angle, the definition for positive shear is shown in figure (2.6). Considering
an equilibrium of forces and moments, the stress transformation can be easily derived. The strain
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transformation can be derived by geometric relations before and after the element is deformed by
normal and shear strain.
Both, the stress and the strain transformation relation are second-rank tensors. Considering engi-
neering shear strain, transformation relations for stress and strain are different, because tensorial
shear is defined half in value as engineering shear (Tsai 2008, pp. 25–29).

ε12 =
ε6

2
εxy =

εs
2

(2.14)

The transformation of stress and strain from on-axis to off-axis and vice versa is shown in equations
(2.15), (2.16), (2.17), and (2.18), where the following abbreviations are made:

m = cos(α)

n = sin(α)

Stress Transformation
The stress transformation from on-axis to off-axis coordinate system:

σxy = Tσσ12σxσy
σs

 =

m2 n2 −2mn
n2 m2 2mn
mn −mn m2 − n2

σ1

σ2

σ6

 (2.15)

The stress transformation from off-axis to on-axis coordinate system is performed by inverting the
transformation tensor Tσ according to:

σ12 = T−1
σ σxyσ1

σ2

σs

 =

 m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2

σxσy
σs

 (2.16)

Strain Transformation
The strain transformation tensor is denoted Tε and differs from the stress transformation tensor
Tσ because engineering shear strain is used.

εxy = Tεε12εxεy
εs

 =

 m2 n2 −mn
n2 m2 mn

2mn −2mn m2 − n2

ε1

ε2

ε6

 (2.17)

And the transformation from off-axis to on-axis

ε12 = T−1
ε εxyε1

ε2

ε6

 =

 m2 n2 mn
n2 m2 −mn
−2mn 2mn m2 − n2

εxεy
εs

 (2.18)

The transformation tensors for stress and strain are related:

Tσ = T−Tε
T−1
σ = TT

ε
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Using Mohr´s circle to transform stresses and strains shows that there are invariants within the
aforementioned transformations. Invariants are combinations of stress or strain components that
remain constant under coordinate transformation. Table 2.4 shows the respective transformation
variables for stress and strain for the application of Mohr´s circle. One invariant is the center p
of Mohr´s circle which represents the average stress or strain, and a second invariant is the radius
R. The principal stresses/strains are invariant as per definition because they are the sum of p and
±R. Figure 2.7 shows Mohr´s circle where all invariants can be seen. In strain space εs/2 is used
because of engineering shear.

Table 2.4: Transformation variables for stress and strain in Mohr´s circle, adapted from (Tsai
2008, p. 27).

p q r tan(2α0) R2 Principal

Stress
σx + σy

2

σx − σy
2

σs
2σs

σx − σy
q2 + r2 p±R

Strain
εx + εy

2

εx − εy
2

εs
2

εs
εx − εy

q2 + r2 p±R

Mohr´s circle is an important tool for the creation of failure envelopes that will be shown in chapter
2.8. A ply rotation in the laminate corresponds to a rotation by a doubled angle in the Mohr´s
space and failure envelopes of various ply angles can be created by simple rigid body rotations
(Tsai 2008, p. 28).

(a) Stress (b) Strain

Figure 2.7: Mohr´s circle representation of stress and its principal components, adapted from (Tsai
2008, p. 28).
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2.6 Transformation of stiffness

In addition to stress and strain, the stiffness and compliance of a material can also be transformed
between different coordinate systems. The transformation relations depend directly on the trans-
formations of stress and strain as shown in the following.
The stress terms σxy and σ12 in transformation equation (2.15)

σxy = Tσσ12

are substituted, according to Hooke´s law for on-axis and off-axis, by:

σ12 = Q12ε12

σxy = Qxyεxy

The substitution yields

Qxyεxy = TσQ12ε12

where ε12 is further substituted with equation (2.18):

Qxyεxy = TσQ12T
−1
ε εxy

Finally, the relation between on-axis and off-axis stiffness results in

Qxy = TσQ12T
−1
ε (2.19)

and
Q12 = T−1

σ QxyTε (2.20)

The transformation of compliance is performed similar, using the respective stress and strain trans-
formations.
The transformation relations for stiffness under plane stress are fourth rank tensors. Considering
contracted notation, a transformation matrix for stiffness can be derived, using the same abbrevi-
ations as for stiffness and strain transformation (m = cos(α), n = sin(α)).

Qxx

Qyy

Qxy

Qss

Qxs

Qys


=



m4 n4 2m2n2 4m2n2

n4 m4 2m2n2 4m2n2

m2n2 m2n2 m4 + n4 −4m2n2

m2n2 m2n2 −2m2n2 (m2 − n2)2

m3n −mn3 mn3 −m3n 2(mn3 −m3n)

mn3 −m3n m3n−mn3 2(m3n−mn3)




Q11

Q22

Q12

Q66

 (2.21)

The powered trigonometric terms can be rewritten in the form of multiple angles, which are easier
to manipulate mathematically.
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m4 =
3 + 4 cos(2α) + cos(4α)

8

n4 =
3− 4 cos(2α) + cos(4α)

8

m3n =
2 sin(2α) + sin(4α)

8

mn3 =
2 sin(2α)− sin(4α)

8

m2n2 =
1− cos(4α)

8

(2.22)

By substitution of equation (2.22) into equation (2.21), the relation between on-axis and off-axis
stiffness can be rewritten as:

Qxx

Qyy

Qxy

Qss

Qxs

Qys


=



U1 U2 U3 0 0

U1 −U2 U3 0 0

U4 0 −U3 0 0

U5 0 −U3 0 0

0 0 0 U2
2 U3

0 0 0 U2
2 −U3





1

cos(2α)

cos(4α)

sin(2α)

sin(4α)


(2.23)

The new formulation of the stiffness transformation (2.23) is separated into two sets, material de-
pendencies in U and geometry in trigonometric functions of double and quadruple angles. Ui are
linear combinations of the on-axis stiffness Q12, where U1, U4 and U5 are invariant, U2 and U3

are not. U1 can be considered as the total stiffness potential of an anisotropic material. U2 and
U3 are responsible for the anisotropy of the ply material and are zero for isotropic materials. The
contribution of the respective stiffness components to Ui is shown in table 2.5.

Table 2.5: linear combinations of on-axis stiffness moduli, adapted from (Tsai and José Daniel D.
Melo 2015, p. 62).

Q11 Q22 Q12 Q66 invariant?

U1 = U4 + 2U5 3/8 3/8 1/4 1/2 yes
U2 1/2 -1/2 0 0 no
U3 1/8 1/8 -1/4 -1/2 no
U4 = U1 − 2U5 1/8 1/8 3/4 -1/2 yes
U5 = (U1 − U4)/2 1/8 1/8 -1/4 1/2 yes

Linear combinations of invariant Ui are also invariant. For example the trace, i.e. Tsai´s modulus,
of the stiffness matrix tr(Q) can be derived by such linear combinations. The respective shear
component must be multiplied by factor 2, as engineering shear is used.

tr(Q) = Q11 +Q22 + 2Q66 = Qxx +Qyy + 2Qss = 2(U1 + U5) (2.24)

Since invariants remain constant at whatever angle, they are crucial for the design of multidirec-
tional laminates.
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2.7 Classical Laminate Theory

The structural response of a multidirectional composite laminate can be derived using the classical
laminate theory (CLT). It can be used to calculate both, the global deformations and those of the
individual plies, and to determine the ply stresses from ply strains.
The classical laminate theory is an extension of the Kirchhoff-Love plate theory (classical plate
theory) to composite laminates, which itself is an extension of the Euler-Bernoulli-beam theory to
thin plates. The following assumptions apply to the classical plate theory (Reddy 2004, p. 113):

• Straight lines perpendicular to the midsurface (i.e. transverse normals) before deformation
remain straight after deformation

• The transverse normals do not experience elongation

• The transverse normals rotate such that they remain perpendicular to the mid-surface after
deformation

Furthermore, the extension to composite laminates assumes (Mallick 2008, p. 183):

• The laminate is thin and wide (width � thickness)

• A perfect interlaminar bond exists between various laminas

• Strain distribution in the thickness direction is linear

• All laminas are macroscopically homogeneous and behave in a linearly elastic manner

The force and moment resultants are applied to the mid surface of a laminate as shown in figure
2.8. For bending and twisting moments, the sign convention differs from other engineering fields,
e.g. Mx and My bend the plate, while Mxy twists the plate.

Figure 2.8: In-plane, bending, and twisting loads applied to a laminate (Mallick 2008, p. 185).

Considering a laminated plate, where x and y are in-plane and z out-of-plane, and the respective
displacements u0, v0, and w0. The strains εoi and curvatures κi of the reference plane are:

εox =
∂uo

∂x
εoy =

∂vo

∂y
εos =

∂uo

∂y
+
∂vo

∂x

κx = −∂
2wo

∂x2
κy = −∂

2wo

∂y2
κs = −2∂2wo

∂x∂y

(2.25)

According to the above made assumptions, the laminate strains are linearly related to the distance
z from the mid plane:
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ε =

εoxεoy
εos

+ z

κxκy
κs

 (2.26)

The resulting forces and moments (Ni,Mi) are derived by integrating the stress across the laminate
thickness, and since the stresses are not continuous through the thickness, a lamina-wise integration
is required. The stresses σk of each layer k depend on the respective stiffness matrix Qxy,k and
strains εk.

N =

∫ ht

hb

σdz =

K∑
k=1

∫ zk

zk−1

σkdz =

K∑
k=1

∫ zk

zk−1

Qxy,kεkdz (2.27)

M =

∫ ht

hb

σzdz =
K∑
k=1

∫ zk

zk−1

σkzdz =
K∑
k=1

∫ zk

zk−1

Qxy,kεkzdz (2.28)

By substituting equation (2.26) into the equations (2.27) and (2.28), the load-strain relation can
be represented as [

N
M

]
=

[
A B
B D

] [
εo

κ

]
(2.29)

where A is the extensional stiffness matrix, D is the bending stiffness matrix, and B is the bending-
extensional coupling stiffness matrix. The respective matrix components are

Aij =

K∑
k=1

Qxy,k,ij(zk − zk−1)

Bij =
1

2

K∑
k=1

Qxy,k,ij(z
2
k − z2

k−1)

Dij =
1

3

K∑
k=1

Qxy,k,ij(z
3
k − z3

k−1)

(2.30)

where Qxy,k,ij is the stiffness component ij (i, j = 1, 2, 6) belonging to layer k in the laminate
coordinate system.

[
A B
B D

]
=



A11 A12 A16 B11 B12 B16

A21 A22 A26 B21 B22 B26

A61 A62 A66 B61 B62 B66

B11 B12 B16 D11 D12 D16

B21 B22 B26 D21 D22 D26

B61 B62 B66 D61 D62 D66

 (2.31)

Multiplying equation (2.29) by the inverse of ABD yields the laminate strain ε for an external load
N,M. Since the stiffness matrix and the transformation relations for stress, strain and stiffness
are known (Eqs. 2.16, 2.18 and 2.21), the on-axis ply stresses and strains can be calculated. The
on-axis stresses and strains can then be used for strength analysis of the laminate.
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The in-plane stiffness components Aij depend on the ply orientations in the laminate, while Dij

additionally depend on the stacking order of plies. Furthermore, the ABD-matrices describe the
response of a laminate to in-plane forces and moments (Kollar and Springer 2003, pp. 72–73):

• extension-shear coupling, A16 6= 0, A26 6= 0

• bending-twist coupling, D16 6= 0, D26 6= 0

• extension-twist and bending-shear coupling, B16 6= 0, B26 6= 0

• in-plane-out-of-plane coupling, Bij 6= 0

• extension-extension coupling, A12 6= 0

• bending-bending coupling, D12 6= 0

If a laminate is build symmetric with respect to the mid-plane, i.e. material properties, locations,
and lamination scheme are symmetric about the mid-plane, the coupling stiffness are zero (Bij = 0).
If the material properties and locations are symmetric about the mid-plane, but the sign of the ply
angles is opposite, a laminate is called antisymmetric. For antisymmetric laminates the following
components are zero: A16 = A26 = D16 = D26 = 0. In a balanced laminate, for each +α ply there
is a corresponding −α ply, independent of the particular z-location, and the following components
are zero: A16 = A26 = 0. A laminate exhibits in-plane isotropy if it consists of three or more plies
oriented at the same relative angle α to adjacent plies, i.e. α = π/I, where I is the total number
of fiber orientations (I ≥ 3). Due to their in-plane isotropy, such laminates are also called black
aluminum. The stiffness components are related as follows: A11 = A22, A66 = (A11 − A12)/2, and
A16 = A26 = 0 (Reddy 2004, pp. 148–156).

Figure 2.9: Components of ABD and their effects on the laminates response (Verein Deutscher
Ingenieure 2006, p. 61).
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2.8 Failure Criteria

Lightweight components are generally designed to utilize almost the entire material capacity. A
strength analysis based on failure criteria is performed to verify that a stress or strain state is
within the allowable range, to determine safety factors and to compare different laminate designs.
Besides, the strength analysis is useful for optimization to determine best ply orientations, stacking
sequences and laminate thicknesses. For example, a fail-safe design can be achieved by designing
the laminate so that failure does not occur immediately, but rather evolutionarily, with sufficient
reserves in the plies adjacent to the failing ply. The first occurrence of failure within a laminate is
referred as first ply failure FPF and the total failure as last ply failure LPF.
During a strength analysis, failure criteria are commonly used to compare stress states with material
strength parameter. Referring to isotropic materials, the equivalent von-Mises stress is such a
criterion and is commonly compared with the materials tensile strength. For composites, the
strength analysis is much more complicated because there are different failure modes depending on
the loading direction. Furthermore, plies within the laminate are loaded differently, with failure
starting in the highest stressed layer and continuing ply-by-ply. In addition, Cracks reduce the ply
stiffness, resulting in a redistribution of stress to adjacent plies. The larger the crack, the more
stress is redistributed. Since failure is not a single event but an evolutionary process, a degradation
analysis is also performed to account for degraded ply stiffnesses (Schürmann 2007, pp. 393–397).
FRP materials have different strength characteristics for tension and compression in longitudinal
and transverse direction and for longitudinal shear. For a unidirectional layer, tensile failure in fiber
direction is designated by X, compressive failure by X’. Transverse to the fiber direction, tensile
failure is designated by Y, compressive failure Y’. Longitudinal shear failure is designated by S.
The five different failure modes of an unidirectional layer and their respective designations are also
shown in figure 2.10.
Over the years, many failure theories have been developed by various authors to represent the
different failure modes. 19 of leading failure theories are tested and compared against each other
and experimental data in the World Wide Failure Excercise (M. Hinton, P. D. Soden, and A.-S.
Kaddour 2004). The theories included in the aforementioned book are divided into interactive
failure criteria, physically based failure criteria, and damage mechanics. The former are theories
evolved from those for yielding of metals, physically based failure criteria take into account the
different failure modes of FRP and can provide predictions of the mode of failure, and last, damage
mechanics describes the whole process of failure from damage initiation, evolution and final fracture
and also considers delamination (M. Hinton, P. D. Soden, and A.-S. Kaddour 2004, pp. 11–12).
While the latter two families of criteria are usually complicated, interactive failure criteria are
rather simple and can be easily implemented in a design algorithm.
Four theories for predicting failure that make laminate optimization computationally favorable are
described in the following. Starting with the Tsai-Wu failure criteria, an interactive failure theory
included in the aforementioned work and the basis for the theories that follow. In Addition, a
simplified approach for considering material behavior after FPF for multidirectional laminates is
given.
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(a) tensile failure [0]
X

(b) compressive failure [0]
X’

(c) tensile failure [90]
Y

(d) compressive failure [90]
Y’

(e) shear failure [0]/[90]
S

Figure 2.10: Failure modes of unidirectional layer and their respective designation, adapted from
(Schürmann 2007, pp. 347, 351, 364, 365, 366).

Strength ratio
Before explaining the different failure criteria, the strength ratio R or the failure index k is de-
scribed here. The strength ratio is the relationship between the maximum, ultimate or allowable
stress and the applied stress (Tsai and José Daniel D. Melo 2015, p. 72).
Assuming that the composite is linear elastic and for each combined stress state there is a corre-
sponding combined strain state, the strength ratio for stress and strain is the same:

σmax = Rσapplied

εmax = Rεapplied
(2.32)

Where σmax, consequently εmax is defined by the chosen failure criterion. The strength ratio R
can be used for laminate design since it is a simple scaling parameter:

• R = 1 failure occurs

• R > 1 the applied load can be increased or the laminate thickness can be reduced

• R < 1 the applied load has to be reduced or the laminates thickness has to be increased

For example, R = 2 means that the load can be doubled or the thickness can be halved before
failure occurs. On the other hand, R = 0.5 means that the load has to be reduced by half or the
laminate has to be doubled. Note that the strength ratio has a physical meaning only for R ≥ 1.
Besides the strength ratio R, the failure index k and the FEA index K are often used within finite
element software where k is simply the reciprocal of R:

k =
1

R
(2.33)

And can be used to scale the thickness of the laminate. In contrast, the FEA index K is disadvan-
tageous because it cannot be used for scaling when tensile and compressive strengths are unequal.
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Tsai-Wu failure criterion in stress space
The Tsai-Wu criterion (Tsai and Wu 1971) is a common quadratic failure criterion for composite
materials. It is based on scalar products of stress or strain and is classified as interactive failure
criterion. It does not provide information on failure modes, i.e. fiber and matrix failure for tension
and compression are captured in one criterion which might be seen as a disadvantage. However, it
is simply applicable and can be used for any loading direction.
The Tsai-Wu criteria assumes that a closed failure surface with an ellipsoidal shape exists in stress
or strain space. Stress or strain conditions that are inside the body do not damage the material,
while failure occurs for conditions outside.
The failure surface f(σk) in stress space is defined as

f(σk) = Fijσiσj + Fiσi = 1 i, j, k = 1, 2, ..., 6 (2.34)

where Fi and Fij are the materials strength tensors of the second and fourth rank, respectively.
Performing uniaxial tension and compression tests, as well as pure shear tests, the parameters Fi
and Fii can be obtained. The off-diagonal interaction terms Fij , i 6= j are restricted by

FiiFjj − F 2
ij ≥ 0 (2.35)

in order to ensure the failure surface intersects each stress axis and that it is closed, i.e. that the
surface is ellipsoidal. The interaction terms Fij may be written in form of a normalized interaction
terms F ∗ij , where

Fij = F ∗ij
√
FiiFjj . (2.36)

and F ∗ij is restricted in accordance to equation (2.35) by

−1 ≤ F ∗ij ≤ 1 (2.37)

Assuming plane stress, equation (2.34) simplifies to

F11σ
2
1 + 2F12σ1σ2 + F22σ

2
2 + F66σ

2
6 + F1σ1 + F2σ2 = 1 (2.38)

when expanded in the symmetry axes, which describes an envelope.
The strength parameters Fii and Fi are obtained by substitution of the measured strength parameter
X,X’,Y,Y’,S into equation (2.38) and solving the respective equations as shown in (Tsai 2008,
p. 149).

F11 =
1

XX ′
F1 =

1

X
− 1

X ′

F22 =
1

Y Y ′
F2 =

1

Y
− 1

Y ′

F66 =
1

S2

(2.39)

By substitution of equation (2.39) into (2.38), the Tsai-Wu criterion can be written in its well-know
formulation:

σ2
1

XX ′
+

2F ∗12σ1σ2√
XX ′Y Y ′

+
σ2

2

Y Y ′
+
σ2

6

S2
+
( 1

X
− 1

X ′

)
σ1 +

( 1

Y
− 1

Y ′

)
σ2 = 1 (2.40)

Taking into account failure mode interactions, i.e. changes in strength under multiaxial loading,
the permissible range of the interaction term F ∗12 can be narrowed down to

−1 ≤ F ∗12 ≤ 0 (2.41)
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To achieve this, the admissible inclination of tangents to the failure envelopes at the four anchor
points X,X’,Y,Y’ is investigated (Tsai 2008, pp. 153–159). It is shown that the new admissible
range for the normalized interaction term F ∗12 is valid for all FRP materials.
Usually, the interaction criterion is chosen as F ∗12 = −0.5, because the well-known von-Mises crite-
rion can be reconstructed by assuming isotropic material behavior and equal values for tensile and
compressive strength (Tsai 2008, S. 151).
However, F ∗12 can be adjusted to provide a better fit to test data for compression-compression loads
(Millen and Aravand 2021, p. 5).
Note that stress space failure envelopes are dependent on the laminate layup, i.e. envelopes vary
with the presence and absence of plies at a certain angle as the laminates compliance matrix changes.
The derivation of FPF envelopes for multidirectional laminates is shown after the Tsai-Wu criterion
in strain space, since this requires a transformation to strain space.
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Tsai-Wu in strain space
The representation of failure envelopes in strain space is advantageous compared to stress space,
since (Tsai and José Daniel D. Melo 2015, S. 238):

• Strain is usually specified in the CLT

• Failure envelopes in strain space are fixed and independent of plies with different orientations
within the same laminate and therefore they can be seen as material properties

• Strains are dimensionless and therefore equal for SI and English units

The Tsai-Wu criterion in strain space is derived by substituting equation (2.12) σi = Qijεj into the
quadratic stress terms of equation (2.34):

Fijσiσj = Fij(Qikεk)(Qjlεl) = (FijQikQjl)εkεl = Gklεkεl (2.42)

where Gkl = QkiQljFij . Using the same approach for the linear stress terms yields:

Fiσi = Fi(Qijεj) = (FiQij)εj = Gjεj (2.43)

and Gj = QjiFi.
Gj and Gkl are the second and fourth rank strength tensors in strain space, respectively.
Finally, the Tsai-Wu failure criteria in strain space for plane stress is obtained as

Gijεiεj +Giεi = 1 i, j = 1, 2, 6 (2.44)

and in its expanded on-axis formulation

G11ε
2
1 + 2G12ε1ε2 +G22ε

2
2 +G66ε

2
6 +G1ε1 +G2ε2 = 1 (2.45)

Figure 2.11 a) shows a failure envelope for an interaction parameter F ∗12 = 0.5 in strain space. Due
to Poisson´s ratio, the strength parameter X,X’,Y,Y’ in strain space do not lie on the coordinate
axes. Furthermore, the major Poisson´s ratio of the ply material is the negative slope of the
connecting line between the strengths X’ and X.

−0.02 −0.01 0 0.01
−0.03

−0.02

−0.01

0

0.01

X ′

X

ε1

ε 2

(a) on-axis failure envelope

−0.03 −0.02 −0.01 0 0.01
−0.03

−0.02

−0.01

0

0.01

εx

ε y

0°
45°
90°

(b) multiple failure envelopes

Figure 2.11: Tsai-Wu failure envelopes in strain space for on-axis and various off-axis ply orienta-
tions for T300-5208, adapted from (Tsai and José Daniel D. Melo 2015, p. 239).
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The on-axis failure envelopes derived by equation (2.45) can be transformed to off-axis orientation,
corresponding to the respective ply angle α. Such transformed failure envelopes are shown in figure
2.11 b) for different α. For the fourth and second rank strength tensors in strain space Gij , Gi, the
transformation relations are the same as for elastic stiffness and stress, respectively:

Gxx

Gyy

Gxy

Gss

Gxs

Gys


=



m4 n4 2m2n2 4m2n2

n4 m4 2m2n2 4m2n2

m2n2 m2n2 m4 + n4 −4m2n2

m2n2 m2n2 −2m2n2 (m2 − n2)2

m3n −mn3 mn3 −m3n 2(mn3 −m3n)

mn3 −m3n m3n−mn3 2(m3n−mn3)




G11

G22

G12

G66



Gx

Gy

Gs

 =


m2 n2

n2 m2

mn −mn


G1

G2



(2.46)

The criterion in the off-axis coordinate system, i.e. laminate coordinate system, results in :

Gxxε
2
x +Gyyε

2
y +Gssε

2
s + 2Gxyεxεy + 2Gxsεxεs + 2Gysεyεs +Gxεx +Gyεy +Gsεs = 1 (2.47)

The transformation of strength in stress space is performed analogously using the transformation
relations for elastic compliance and strain, which can be found in (Tsai 2008, p. 162).
This is a major advantage of the Tsai-Wu or quadratic failure criteria in general, since the failure
analysis can be performed in any coordinate system.
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First ply failure envelopes
First ply failure (FPF) envelopes are characterized by stress or strain states of a multidirectional
laminate at which the first ply reaches a strength ratio R = 1, i.e. the first ply fails. In strain space,
the respective failure envelopes of each ply-orientation can simply be superimposed and the resulting
inner envelope is the FPF envelope. Superposition in stress space is not as simple as for strain
space. With the presence or absence of plies in the laminate, the stiffness and compliance matrix
alters and so do the stress failure envelopes. FPF envelopes in stress space require a transformation
to strain space as shown above, followed by a transformation back to stress space, by the means of
the laminates thickness normalized extensional compliance matrix an = a/h (Tsai 2008, p. 173).
Inserting the laminates in-plane stress-strain relation

ε◦i = anijσ
◦
j =

1

h
aijσ

◦
j (2.48)

into equation (2.44) yields
Hijσ

◦
i σ
◦
j +Hiσ

◦
i = 1 (2.49)

where the strength parameter Hij and Hi are calculated by

Hij = Gkla
n
kia

n
lj

Hi = Gja
n
ji

(2.50)

Failure envelopes in stress space controlled by Hij and Hi can be superimposed and as in strain
space, the resulting inner envelope is the FPF envelope. Figure 2.12 a) and b) show two FPF
envelopes in the stress space for the same material but with different number of [0] plies. Figure
2.12 c) shows the failure envelopes in strain space that apply to both laminates a) and b). As men-
tioned before, failure envelopes in strain space are independent of the laminate, they are material
properties.
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(a) stress space FPF envelopes
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(b) stress space FPF envelopes
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(c) strain space FPF envelopes
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Figure 2.12: FPF envelopes in stress and strain space for altered laminate layups, adapted from
(Tsai 2008, p. 173).
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Omni Failure Criterion
The Omni failure criteria is based on strain space failure envelopes determined using tensor-based
failure criteria such as the Tsai-Wu criterion. It is constructed similarly to FPF envelopes by su-
perimposing failure envelopes, but taking into account all possible ply orientations, i.e. ply angles
from 0 to 2π. The resulting inner envelope is called Omni failure envelope.
The Omni failure envelope is invariant because all possible ply orientations are covered. Further-
more, it is applied on laminate level, making a ply-by-ply strength analysis needless. Dependent
on the selected material, different ply orientations contribute to the inner envelope. These plies
are called controlling plies and can be determined by applying unit load vectors from 0 to 2π and
identifying the particular ply that fails first. Since all possible ply orientations are covered, the
Omni failure criterion represents a safe design independent of the laminates layup composition
(Tsai and Jose Daniel D. Melo 2014, p. 242).
In figure 2.13, the construction of Omni envelopes is shown for two materials, T300-5208 and
IM7 977-3. For both materials, the interaction term is chosen as F ∗12 = −0.5 and the ply angle
increments as ∆α = 15◦ to approximate the Omni envelope.
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Figure 2.13: Superimposed Tsai-Wu failure envelopes and resulting Omni envelope for T300-5208
and IM7 977-3.
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Material degradation after FPF
After a laminate encounters first ply failure, cracks occur within the matrix and the fibers resulting
in degraded material properties. The degradation can occur in one or more plies simultaneous and
degraded ply properties are derived by the means of micromechanics. Thus, the derivation of last
ply failure (LPF) as well as the derivation of the laminate strength after FPF usually requires a
progressive failure analysis of plies.
Depending on the transverse ply strain ε2, the ply can degrade twice for ε2 > 0 and only once for
ε2 ≤ 0. Assuming an initial strain ε2 > 0, the matrix degrades by micro cracks and subsequently
fiber failure leads to the second degradation. For ε2 ≤ 0, the initial degradation is directly caused
by fiber failure (Tsai, José Daniel D. Melo, et al. 2017, p. 82).
A progressive failure analysis is an iterative process and therefore time consuming. In (Tsai and
José Daniel D. Melo 2015, pp. 274–276) a simultaneous degradation approach is presented and
shown to be a sufficient simplification of the failure analysis process for a homogeneous stress
state. For simultaneous degradation, only matrix degradation is considered and instead of plies
being degraded progressively, all plies are degraded at once as one ply reaches first-ply-failure. In
addition, the ply with the lowest strength ratio yields the ultimate stress.
Among the various micromechanical formulations present for degraded ply properties, the following
formulations for matrix degradation are suggested in (Tsai, José Daniel D. Melo, et al. 2017,
pp. 83–84):

Ẽ2 =
1 + η2

1−υf
υf

1

E2
+
η2

1−υf
υf

(E∗mEm + E2(1− E∗m))

E2E∗mEm

Ẽ6 =
1 + η6

1−υf
υf

1

E6
+
η6

1−υf
υf

(E∗mGm + E6(1− E∗m))

E6E∗mGm

ν̃21 = E∗mν21

F̃ ∗xy = E∗mF
∗
xy

(2.51)

Where η2 and η6 are stress partitioning parameters for transverse and shear, υf is the fiber volume
fraction of the ply, Gm is the matrix shear modulus, and E∗m is the matrix degradation factor.
E2 and E6 are the ply materials transverse modulus and shear modulus. For most unidirectional
composites, it was found the following parameters work best (Tsai, José Daniel D. Melo, et al.
2017, p. 84):

η2 = 0.516

η6 = 0.316

E∗m = 0.15
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Tsai-Wu and Omni failure envelopes for LPF
Failure envelopes for the same materials as in figure 2.13 are plotted in figure 2.14 but with degraded
material properties. The envelopes in a) and c) are determined by the Tsai-Wu failure criterion
and in b) and d), the respective inner, i.e. LPF, envelopes are shown.
For both materials, the controlling plies for LPF, i.e. the inner envelope, are the [0°] and [90°] plies.
Furthermore, this accounts for all CFRP, as no CFRP has been found where the shear strength of
other plies are significantly smaller to become the controlling plies (Tsai and Jose Daniel D. Melo
2016, p. 73).
For laminates containing these plies, LPF will always be controlled by them, and if they are not
present in the laminate, the LPF Omni envelope will be conservative.
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Figure 2.14: Superimposed Tsai-Wu LPF failure envelopes and resulting LPF Omni envelope for
T300-5208 and IM7 977-3.
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Unit Circle Failure Criterion
The unit circle failure criterion (Tsai and Jose Daniel D. Melo 2016) is derived by simplifications
of the Omni failure envelope for LPF which are controlled by the failure envelopes of [0°] and [90°]
ply for degraded material properties. Unit circle failure envelopes can be derived for any CFRP
if the anchor points of a unit circle are multiplied with the respective failure strains εX and εX′

as shown in figure 2.15 a) and equation (2.52). Figure 2.15 b) shows the unit circle LPF failure
envelope for IM7 977-3.
The unit circle failure envelope can be plotted according to the following equation:

εuc =

[
εI
εII

]
=

[
cos(φ)εf1
sin(φ)εf2

] εf1

{
εX , for −π2 ≤ φ ≤

π
2

εX′ , for π
2 ≤ φ ≤

3π
2

εf2

{
εX , for 0 ≤ φ ≤ π
εX′ , for π ≤ φ ≤ 2π

εX =
X

E1

εX′ =
X ′

E1

(2.52)

There is a problem with obtaining the strains to failure directly from experiments since [0] test
coupons have a Poisson´s ratio higher than zero. By considering degraded material properties
the Poisson´s ratio is approximately zero and the failure strains determined by uniaxial tests are
essentially the same as the anchor points shown in figure 2.15 b) (Tsai and Jose Daniel D. Melo
2016, p. 73).
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Figure 2.15: Unit circle failure envelope and anchor points obtained by Omni LPF envelope.

In (Tsai and Jose Daniel D. Melo 2016, pp. 75–77), the unit circle failure criterion is evaluated
in terms reliability using experimentally obtained failure data from (P. Soden 1998) and (P. D.
Soden, M. J. Hinton, and A. S. Kaddour 2002). It was found that a good correlation between
prediction by unit circle and experimental data exist for tension-tension loads. Somewhat lower,
but still good, is the correlation for tension-compression loads. For compression-compression loads,
however, the correlation between theoretical and experimental data is low, which is attributed to
buckling and the resulting reduction in strength.
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In order to apply the advantages of the unit circle, i.e. the reduced amount of necessary test, to
FPF envelopes, the Omni envelopes for FPF and LPF can be superimposed. The anchor points in
compression are taken from the LPF envelope and for tension from the FPF envelope as shown in
figure 2.16.
The anchor points for the FPF unit circle are derived by:

εY =
Y

E2

εX′Y ′ = min
(X ′
E1
,
Y ′

E2

) (2.53)

The anchor points in compression are defined either by the longitudinal compression failure strain
or by the transverse compression failure strain of the material, dependent on which is the controlling
one. In figure 2.16 a) the compressive failure strains in longitudinal direction X′/E1 are applied and
in b) the compressive failure strains in transverse direction Y ′/E2.
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Figure 2.16: Unit circle FPF envelopes by superimposed Omni FPF and LPF envelopes.

Improvements in the accuracy of failure prediction are not the advantages of the unit circle criterion,
but the mathematical simplicity, the reduced effort in producing strength parameters and the fact
that it applies to all CFRP laminates regardless of ply orientations, are. In addition, due to its
simplicity it can be easily implemented in design optimization algorithms (Tsai and Jose Daniel D.
Melo 2016, p. 77).
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Nettles circle
The Nettles circle is a simple and conservative failure criterion for FRP, where the strain is cut off
at a fixed value. Either an experimentally determined value for FPF tensile strain or εf = 0.004 can
be used. The latter is suggested by Allen Nettles and is the most conservative since no structure has
been fabricated with a lower limit. Furthermore, the laminates damage tolerance against impacts
is sufficiently guaranteed (Tsai 2021, p. 7). The radius can be chosen even smaller, making the
Nettles circle more conservative. Figure 2.17 shows the Nettles circle for T300-5208 and IM7 977-3,
additionally Omni LPF and FPF envelopes as well as FPF unit circles are included.
The Nettles circle envelope can be calculated by

εnc = εf

[
cos(φ)
sin(φ)

]
(2.54)

where εf represents the strain cutoff, i.e. the circle´s radius. Since Nettles circle requires the least
amount of data of all criteria presented, it can be applied directly for optimizing the preliminary
laminate design. As mentioned above, εf = 0.004 can be used before determining the strength
parameters of the material. This is especially useful when initial results need to be delivered
quickly.
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Figure 2.17: Nettles circle for two materials in strain space, including FPF and LPF Omni failure
envelopes, and FPF unit circle envelopes.
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3 FRP Design Methodologies

In this chapter a new approach to composite design is presented that facilitates the optimization of
laminates. In this approach, laminates are described by their stiffness trace and ply orientations are
not longer fixed. Quad laminates are replaced by so-called double double laminates with two ply
angles [±Φ,±Ψ], and homogenization of the laminate eliminates the need for mid-plane symmetry.
Thus, ply drop for thickness tapering can be done individually.
These principles are applied in optimization procedures described in the second part of this chapter.

3.1 A novel invariant method

In this section, the theoretical aspects of the invariant approach to composite design are presented.
It aims to describe the properties of carbon fiber composites with a reduced number of parameter.
Applying the failure theories in strain space as described in the previous chapter also simplifies the
prediction of failure. In addition, the use of double double laminates facilitates optimization of the
laminate design since ply angles are not limited to discrete values.
First, Tsai´s modulus is introduced and described in combination with the concept of master ply.
Next, normalized stiffness and homogenization of laminates is explained, followed by a comparison
of legacy quad and double double laminates. Finally, a method for designing laminates based on
these principles is presented.

3.1.1 Tsai´s modulus and the master ply concept

Stiffness and compliance of unidirectional layers of CFRP depend on several parameters including
matrix and fiber moduli. In chapter 2 a small selection of commonly used materials is given and
in table 3.1 it can be seen that for each combination of fiber and matrix material, unique stiffness
properties are obtained. To describe the stiffness or compliance of unidirectional plies, at least four
parameters (E1, E2, ν21, E6) are required, which must be determined by tests.
The stiffness and compliance matrices of UD layers are tensors and therefore there are invariants
associated with them. For example, the trace of the stiffness tensor is a material dependent value
that remains the same in any orientation and can therefore be treated as a material constant that
is unique to each CFRP material. Using engineering constants and assuming a plane stress state,
the trace of stiffness matrices is calculated by:

tr(Q) = Q11 +Q22 + 2Q66 (3.1)

In (Tsai and José Daniel D. Melo 2015, pp. 281–282) it is shown that CFRP materials share com-
mon stiffness properties if they are normalized by their respective trace tr(Q). Especially in the
fiber direction, the trace normalized stiffness parameters of various materials are very close to each
other. Table 3.1 shows the material parameters and trace normalized stiffness components (plane
stress) of 15 CFRP materials. Comparing the moduli E1 and the trace normalized moduli E∗1
among all materials, the high standard deviation and variation almost vanished for the normalized
values.

The last row of table 3.1 shows the so-called master ply values of the respective material parameter,
which are obtained by the arithmetic mean of the trace normalized stiffness parameters. E∗2 and E∗6
are derived analogously by their means and are shown in table 3.2, where all master ply material
parameters are given. These master ply values apply to all CFRP materials, as explained below.
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Table 3.1: Material parameters and trace normalized plane stress stiffness components of various
CFRP, adapted from (Tsai and José Daniel D. Melo 2015, p. 281).

Material E1 E2 ν21 E6 Q∗11 Q∗22 Q∗12 Q∗66 tr(Q) E∗1
[GPa] [GPa] [GPa] [GPa]

IM6/epoxy 203 11.2 0.32 8.40 0.8791 0.0485 0.0155 0.0362 232 0.874
IM7/977-3 191 9.94 0.35 7.79 0.8825 0.0459 0.0161 0.0358 218 0.877
T300/5208 181 10.30 0.28 7.17 0.8805 0.0501 0.0140 0.0347 206 0.877
IM7/MTM45 175 8.20 0.33 5.50 0.9014 0.0422 0.0139 0.0282 195 0.897
T800/Cytec 162 9.00 0.40 5.00 0.8955 0.0497 0.0199 0.0274 183 0.888
IM7/8552 159 8.96 0.32 5.50 0.8888 0.0501 0.0160 0.0306 180 0.884
T800S/3900 151 8.20 0.33 4.00 0.9034 0.0491 0.0162 0.0238 168 0.898
T300/F934 148 9.65 0.30 4.55 0.8878 0.0579 0.0174 0.0271 168 0.883
T700 C-Ply 64 141 9.30 0.30 5.80 0.8713 0.0575 0.0172 0.0356 163 0.866
AS4/H3501 138 8.96 0.30 7.10 0.8567 0.0556 0.0167 0.0438 162 0.852
T650/epoxy 139 9.40 0.32 5.50 0.8724 0.0590 0.0189 0.0343 160 0.866
T4708/MR60H 142 7.72 0.34 3.80 0.9029 0.0491 0.0167 0.0240 158 0.897
T700/2510 126 8.40 0.31 4.20 0.8827 0.0588 0.0182 0.0292 144 0.877
AS4/MTM45 127 7.93 0.30 3.60 0.8938 0.0558 0.0167 0.0252 143 0.889
T700 C-Ply 55 121 8.00 0.30 4.70 0.8746 0.0578 0.0173 0.0338 139 0.869

Std dev 24.6 1.0 0.029 1.5 0.0132 0.0053 0.0016 0.0056 0.013
Coeff var % 16.0 10.9 9.0 27.2 1.5 10.1 9.6 17.9 1.5

Master ply 0.32 0.8849 0.0525 0.0167 0.0313 1 0.880

Table 3.2: Master ply material parameter.

E∗1 E∗2 E∗6 ν21 Q∗11 Q∗22 Q∗12 Q∗66 tr(Q∗)

0.880 0.052 0.031 0.32 0.8849 0.0525 0.0167 0.0313 1

As already mentioned, normalized stiffness components in fiber direction are very close to each
other whereas matrix-dominated stiffnesses show larger dispersion. A close estimation for trace for
all CFRP materials can be obtained by:

tr(Q) ≈ E1

0.88
(3.2)

which can be verified using table 3.1. Considering that Q∗11 accounts for about 88.5% of the trace,
the larger scatter of matrix-dominated stiffnesses is not problematic since they are only responsible
for the remaining 11.5%. Furthermore, testing for E2 and E6 is no longer required, since they can
be derived by trace and the respective master ply parameter E∗2 or E∗6 . The errors generated by
this assumption were evaluated in (Tsai, José Daniel D. Melo, et al. 2017, pp. 8–9), where it is
shown that the average relative error for trace is 1.76% and the errors by assuming master ply
values for E2 and E6 are below 1%. In honor of Prof. Tsai for these findings, the trace of CFRP
materials is named Tsai´s modulus (Arteiro et al. 2020, p. 3).

The use of master ply in combination with the classical laminate theory enables the generation
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of trace-normalized laminate factors for stiffness components of multidirectional laminates. The
trace normalized in-plane laminate stiffness A∗ can be derived by summation of the respective
transformed trace normalized ply stiffnesses Q∗xy,i, normalized by the number of plies n.

A∗ =
1

n

n∑
i=1

Q∗xy,i (3.3)

Laminate factors E∗x, E
∗
y , E

∗
s , i.e. trace normalized engineering constants, are derived by:

E∗i =
Ei

tr(A∗)
i = x, y, s (3.4)

Since tr(A∗) = tr(Q∗), the value of trace can be determined by testing a laminate in its longitudinal
direction for its Young´s modulus and dividing it by the corresponding trace normalized laminate
factor (Arteiro et al. 2020, p. 6):

tr(Q∗) = tr(A∗) =
Ex
E∗x

(3.5)

A major advantage of this method is that process-related defects in the material are already taken
into account when determining the stiffness parameters, and these thus correspond to those of the
finished laminate (Tsai and José Daniel D. Melo 2015, p. 285).

3.1.2 Normalized stiffness of laminates and homogenization

The components of the ABD matrix are calculated according to the classical laminate theory and
using non-normalized material parameters have different units for A, B, and D. Therefore, the sub
matrices can not be compared directly. By choosing suitable normalization factors, i.e. thickness
normalization, their units can be adjusted to each other as shown in table 3.3. Note that thickness
normalized stiffnesses are designated by ( )n and trace normalized values by ( )∗.

Table 3.3: Load-strain relationship in absolute and normalized form.

absolute thickness normalized[
N
M

]
=

[
A B
B D

] [
ε◦

κ

] [
σ◦

σf

]
=

[
An Bn

3 Bn Dn

] [
ε◦

εf

]
Aij [N/m] Anij [N/m2]

Bij [N ] Bn
ij [N/m2]

Dij [Nm] Dn
ij [N/m2]

Thickness normalized stiffnesses are calculated as shown in equation (3.6), where the in-plane
stiffness A is simply divided by the laminate thickness h and the flexural stiffness D is corrected by
a normalized moment of inertia of a rectangular section. The components of the coupling matrix
B are normalized by a more arbitrary factor (Tsai and José Daniel D. Melo 2015, pp. 164–165).

An =
1

h
A

Bn =
2

h2
B

Dn =
12

h3
D

(3.6)
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Using these factors for normalization, all sub matrices of ABDn have the same units, and in
addition, the traces of the normalized in-plane and flexural stiffnesses are equal. They are also
equal to the trace of the ply stiffness Q:

tr(An) = tr(Dn) = tr(Q) (3.7)

The components of An are independent of the stacking sequence, but those of Dn are not, so
their values are not necessarily equal. But as the number of stacked sub-laminates increases, their
components converge to the same values. Moreover, the order of magnitude of Bn decreases sharply
compared to those of An and Dn. This characteristic is called homogenization and is an effective
way to achieve out-of-plane homogeneity.

Anij ≈ Dn
ij � Bn

ij (3.8)

With homogenization, there is no longer a need to design laminates with mid-plane symmetry
in order to avoid in-plane-out-of-plane coupling because homogenized laminates are intrinsically
symmetric. The absence of mid-plane symmetry allows continuous ply stacking, which is faster and
less prone to error when it comes to manufacturing. In addition, with homogenized laminates, ply
drops can be done individually, providing more flexibility for design optimization, e.q. thickness
tapering (Tsai, José Daniel D. Melo, et al. 2017, p. 46).
The homogeneity of a laminate can be evaluated using the master ply values of ABD∗, i.e. trace
normalized values of equation (3.6), where laminates can be considered homogenized if the following
conditions are met (Tsai 2021, pp. 2–4):

D∗11 −A∗11

D∗66 −A∗66

|D∗16|
|D∗26|
|B∗ij |


≤ 0.02 = 2% (3.9)

The required number of repeats for laminate homogeneity can be determined by evaluating equation
(3.9) while increasing the number of repeats. Note that some researcher prefer to normalize B by
1/h2 or 4/h2, which may yield different number of repeats.
Figure 3.1 shows the required number of repeats for a hard laminate with symmetry a), the same
hard laminate without symmetry b) and a double double laminate c). Two repeats corresponding
to 40 plies are required if symmetry is considered, three repeats corresponding to 30 plies without
symmetry, and 4 repeats equal to 16 plies for double double.
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Figure 3.1: Trace normalized stiffness components (%) and required number of repeats r for ho-
mogeneity for: a) [0,45,0,-45,90,45,0,0,-45,0]rS , b) [0,45,0,-45,90,45,0,0,-45,0]r and c) [18,-62,-18,62]r.
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In (Tsai 2021, pp. 2–4) it is shown that among all four double double stacking sequences

• staggered 1: [Φ,−Ψ,−Φ,Ψ]

• staggered 2: [Φ,Ψ,−Φ,−Ψ]

• staggered 3: [Φ,−Ψ,Ψ,−Φ]

• staggered 4: [Φ,−Φ,Ψ,−Ψ]

staggered 1 reaches homogeneity first. Usually, three or four repeats of sub-laminates are required,
resulting in a laminate with 12 to 16 plies and a thickness of 0.75mm to 1mm if thin plies of
t = 0.0625mm are used.
Using thin plies, laminates not only homogenize faster, i.e. with lower laminate thickness, but
also result in a finer micro structure as shown in figure 3.2. Thus, the toughness and strength of
the laminate are higher and interlaminar stresses at free edges are lower, making the laminate less
susceptible to delamination (Tsai, José Daniel D. Melo, et al. 2017, p. 46).

Figure 3.2: Increasing homogenization of a [0/90] laminate with different ply thickness and repeats,
adapted from (Tsai, José Daniel D. Melo, et al. 2017, p. 45).

3.1.3 Legacy quad and double-double laminates

In 1960, when the use of fiber reinforced materials started in the aerospace industry, it was common
to choose the laminate as [0p,±45q, 90r] which is referred as legacy quad. Depending on the required
behavior of the laminate, i.e. directionality or orthotropy, p, q, r is raised until the maximum number
of 10 plies in the sub-laminate is reached. The idea was to design not only for primary loads but also
for secondary loads which may not be as well understood or defined as the primary. Sub-laminates
with more than 10 plies become too difficult to design and manufacture, instead the sub-laminate
is stacked until the required thickness is reached.
For quad laminate design, the following rules must be taken into account (Tsai, José Daniel D.
Melo, et al. 2017, pp. 115–116):

• Laminates must have mid-plane symmetry

• Each of the four ply orientations has to be at least 10% of the total laminates thickness

• No more than 3 plies of the same orientation should be grouped together, in order to minimize
delamination

• Ply drops for thickness tapering must maintain mid-plane symmetry

• Laminates must have a balanced layup, i.e. n−45 = n+45, to avoid shear-coupling
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The application of these rules and the consideration of a discrete ply thickness makes the design
of conventional laminates difficult because it is formulated as a discrete optimization problem.
Sub-laminates limited to a thickness of 4 to 10 plies reduce the optimization problem, but is still
computationally expensive. The permutations of the stacking sequence for different sub-laminate
thicknesses are (Tsai, José Daniel D. Melo, et al. 2017, p. 121):

• 4-ply sub-laminate: 24

• 6-ply sub-laminate: 120

• 8-ply sub-laminate: 2520

• 10-ply sub-laminate: 25250

For in-plane laminate design problems, the stacking sequence can often be neglected, only the num-
ber of layers in each direction needs to be evaluated (Gürdal, Haftka, and Hajela 1999, p. 187).
Among other, genetic algorithm are capable of such integer optimization but usually it is still com-
putationally expensive.

Contrary to the legacy quad, double double laminates, i.e. balanced sub-laminates with four plies
and two arbitrary ply angles [±Φ,±Ψ], offer much more flexibility. Indeed, they can be perfectly
adapted to the loading conditions. In addition, replacing legacy quad laminates with double double
laminates is possible with a very good approximation and if the cross-ply ratio equals unity, double
double can replace the quad exact, e.g. [(0, 90)3,±45] can be matched exactly by [±15,±75]. Their
thickness normalized in-plane stiffnesses A11, A22, A66 are identical and both experience the same
laminate strain under applied load. If the omni strain failure envelope is applied to these two
laminates, their strength and safety factor, i.e. strength ratio, will also be the same (Tsai, José
Daniel D. Melo, et al. 2017, p. 113).
Considering homogenization, double double laminates are an enabler for efficient laminate opti-
mization. As mentioned in the previous section, DD laminates homogenize with three to four
stacking repeats corresponding to 0.75mm and 1mm respectively. With homogenized laminates,
mid-plane symmetry is no longer required and thickness tapering can be performed one-by-one. In
addition, the laminates become tougher, their strength will be higher and inter laminar stresses
are reduced compared to traditional laminate designs (Tsai, José Daniel D. Melo, et al. 2017, p. 46).

3.1.4 Trace-based sizing method

In (Tsai, José Daniel D. Melo, et al. 2017, pp. 259–268) and (Tsai, Arteiro, and Jose D. D.
Melo 2016, pp. 590–593), a trace-based laminate sizing method is proposed that is suitable for any
laminate. The method can be used for legacy quad laminates as well as for double double laminates
to determine the best thickness and material.
Starting from a predefined design and any baseline material, universal laminate factors are deter-
mined by Tsai´s modulus for the selected material. Since the material can be changed later, the
baseline material does not have to be the final one. Solving the laminates boundary-value problem
for one or multiple loads yields the strain field εi (i = x, y, s) which is transformed to principle
strain space εj (j = I, II). The unit circle is applied to determine the strength parameter/ratio
R = 1/k for each load case and the global strength distribution is calculated by min(R) in every
point (x, y) of the laminate. In the following step, the thickness is obtained with respect to the
strength ratios. Crucially, the unit circle is defined as a one-parameter criterion where the tensile
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and compressive failure strains are assumed to be equal (εX = εX′ = min(εX , εX′)), so the solution
can be easily scaled to any CFRP material based on trace. For example, a material with a failure
strain 20% higher than the baseline material will have a strength ratio 20% higher for the same
loading scenario. A two-parameter unit circle with actual failure strains in tension and compression,
as well as other higher-order failure criteria in strain space, can be used in the final step to further
improve the optimal solution. In the works mentioned above, it is suggested to re-run critical
load cases with the new material and tapered configuration when stiffness requirements need to be
considered, since the elastic response cannot be well predicted by simple scaling between different
materials.
Later, it will be shown that an iterative determination of the optimum laminate as implemented in
the DD-Design Tool is also required due to the stress redistribution caused by updated ply angles.

Layup
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Universal laminate factors

Solve boundary-
value problem

Calculate principal strain
field εI , εII from εx, εy, εs
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parameter RLC

Global distribution
of R = min(RLC)
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Figure 3.3: Flowchart trace-based sizing method, adapted from (Tsai, Arteiro, and Jose D. D.
Melo 2016, p. 591).
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3.2 Optimization frameworks

In this section, the optimization frameworks used are presented. First, the optimization algorithm
implemented in the Lamsearch Excel is briefly explained, followed by a description of the DD-
Design Tool, since both form the basis for the method used in this work. Finally, the improved
DD-Design Tool is explained.

3.2.1 Lamsearch

Lamsearch is an Excel-based optimization tool that applies the invariant methods described earlier
to find the best double double laminates and laminate thicknesses. The tool is developed by Stephen
W. Tsai, Thierry Massard and Pranav D. Shah and can be obtained by contacting Professor Tsai
at Stanford (stsai@stanford.edu).
Four failure criteria are implemented within Lamsearch to find the best laminate with respect to
first ply failure:

• Tsai-Wu

• Unit circle

• Nettles circle

• Maximum strain

Lamsearch is able to consider up to 49 loads to find the best laminate among double double or
quad families. In the following, the application is described for double double laminates, since the
DD-Design Tool and the improved tool are based on the procedure implemented in the Excel file.

Based on the selected failure criterion, strength ratio fields R(Φ,Ψ) are calculated for each load
case as a function of Φ and Ψ by transforming the input stress to strain and evaluating the failure
criterion. The strength ratio fields are represented by 2 dimensional matrices with discrete values
for Φ and Ψ between 0° and 90° as shown in figure 3.4.

Figure 3.4: Double double laminate strength ratio field determined by the Lamsearch Excel tool.

The combination of Φ and Ψ yielding the highest value for strength ratio R defines the best double
double laminate for the respective load case.
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To evaluate the best laminate considering all load cases, a new strength ratio field is determined by
the minimum strength of all load cases for each combination of Φ and Ψ. This procedure is shown
schematically in figure 3.5. The best double double angles Φ,Ψ are then determined by the highest
strength ratio of this matrix.

R1

R2

Rn

R

min
(
R(Φi,Ψj)

)

Figure 3.5: Schematic determination of the strength ratio field R for n load cases.

Finally, the laminates thickness is scaled by

tnew =
told
R

with respect to the strength ratio R(Φ,Ψ) found in the previous step and an initial thickness told.

3.2.2 DD-Design Tool

The DD-Design Tool (DiCaprio, Riccio, and Tsai 2020) is a fully automated optimization frame
work to find the best double double laminate and thickness distribution for structural components
with respect to strength. Ansys is used to determine the structural response to external loading
and the Lamsearch Excel to optimize the laminate design.
The model can be partitioned into up to 49 cells to account for thickness tapering, with each cell
subjected to an individual loading condition depending on the applied external forces. Based on
an iterative scheme, the tool finds the best laminate design for the structure (Φ,Ψ, ti), taking into
account the change in cell loading conditions due to variation of fiber directions and laminate thick-
nesses.
In figure 3.6 the workflow of the DD-Design Tool is shown. Starting from an initial Ansys model
with predefined cells and laminate design, a finite element simulation is performed to obtain the
loading conditions for each cell. Thickness normalized force resultants are calculated for each cell
by averaging the output of all elements belonging to the respective cell. The cell loads and thick-
nesses are then transferred to the Lamsearch Excel, where the optimal double double angles Φ and
Ψ and each cell thickness are determined with respect to the selected failure criterion as described
in the previous section. Finally, the convergence criteria are checked. If no convergence is found,
the Ansys model is updated and a new iteration is started, or in case of convergence, a digitized
model is created where the laminate thicknesses are discretized taking into account the material
ply thickness.

The DD-Design Tool assumes the optimization to be converged if the following criteria are fulfilled:
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• The change in fiber orientation is zero between two iterations ∆Φ = ∆Ψ = 0

• The averaged strength ratio of all cells equals |Ravg − 1| ≤ 0.1 (default value)

• The averaged strength ratio of each cell i has a minimum value of Ri ≥ 0.9

Start design

FE simulation

Lamsearch Excel

conv.?

digitizing

Final design

Update model

σi, ti

Φ,Ψ, Ri

Yes

No

Figure 3.6: Flowchart DD-Design Tool.

3.2.3 Improved DD-Design Tool

The original DD-Design Tool (DiCaprio, Riccio, and Tsai 2020) as described in the previous sec-
tion was further improved within this thesis. Instead of using Ansys macros and the Lamsearch
Excel, the procedure is now completely implemented in Python and any finite element software can
be used to determine the structural response. The original version is limited because a maximum
of 49 cells and only one loading condition per cell can be considered for optimization. However,
usually several load cases have to be taken into account during the design process of components.
A further restriction associated with the Lamsearch Excel is that the angle increment for double
double angles is fixed at 7.5° (see figure 3.4), which limits the design space of Φ and Ψ.
The improved version is more flexible because any number of cells and load cases can be consid-
ered and the angle increment can be selected at any number. The only restriction to the angle
increment is that 90 has to be a multiple. In addition, a symmetry option is included that allows
the optimization of symmetrical structures such as sandwich constructions, where the layup and
thickness must be identical in different areas of the structure. This is important for the model
studied in chapter 4, which is a vertical stabilizer of an aircraft designed as a symmetric sandwich
construction. Here, the load cases can occur in both directions and would have to be simulated
separately. When using the symmetry condition, however, only one direction has to be considered,
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since internally the skins are treated as one component that is subjected to the loads from both
skins.
The Failure criteria can be selected with respect to first ply failure (TW, UC, NC) or last ply failure
(TW, UC), and the convergence criteria have been modified to improve the optimization behavior
for structures with low loaded cells.

In general, the optimization procedure of the improved tool is based on the original DD-Design
Tool and the Lamsearch Excel, evaluating strength ratios in each cell of the structure to determine
Φ,Ψ and the thicknesses ti. The optimization flowchart is shown in figure 3.7.
Starting from an initial FE model with predefined cells, laminate design and load cases, a finite
element simulation is performed to obtain the membrane stress distribution of the laminate for
all load cases. The results of the FE software are then averaged load case wise over all elements
belonging to a cell to obtain loading conditions that apply to the entire cell for a specific load case.
If the symmetry option is enabled, the loads of each symmetry cell are assigned to the respective
main cell, because they are treated in the optimization procedure as a single cell subjected to the
load cases of both. In the next step, Φ and Ψ are determined based on the strength ratios resulting
for each cell from the selected failure criterion and the cell loading for each load case. The thick-
nesses of the cells ti are then scaled according to the strength ratio resulting from the previously
determined angles Φ and Ψ. Subsequently, if no convergence is found, the FE model is updated and
the next iteration is started. If the convergence criteria are fulfilled, a digitized model is created,
i.e. the laminate thicknesses are discretized taking into account the material ply thickness.

As mentioned, the convergence criteria are modified to improve the optimization behavior for
structures where low loaded cells are present. The convergence criterion |Ravg − 1| ≤ 0.1 leads to
a high number of iterations or non-convergence for these structures. Low loaded areas yield a high
strength ratio, which leads to very low thicknesses in the next iteration according to:

tnew =
told
R

However, in the digitizing step the thicknesses of these cells are discretized to the thickness of a
building block and therefore iterations to satisfy the strength criteria in these area are unnecessary.
The convergence criteria is modified in a way, that these low loaded cells are not considered for the
calculation of Ravg.

In appendix A.2, the Python implementation of the improved DD-Design Tool is shown. The im-
proved DD-Design Tool developed in this work is evaluated and verified by comparing optimization
results of both tools, the original and the improved one. An example is shown in appendix A.3,
where a plate of 49 cells is tested for 2 different load cases and the failure criteria Tsai-Wu, unit
circle and Nettles circle. The results shown differ only slightly from each other, if at all.

In addition to the procedure described above, a method for optimizing traditional quad laminates
[0,±45, 90] is implemented in the improved tool, where all three failure criteria can be applied.
Since the laminate angles are fixed, only the thickness distribution is determined and in the final
step, a digitized model is created.
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Start design

Run FE simulation

Avg. cell loads
for each load case

sym.?
Assign sym.-cell loads
to the respective cell

Determine Φ and Ψ

Thickness scal-
ing in each cell

conv.? Update FE model

Digitizing

Final design

No

Yes

Yes

No

Python implementation

Figure 3.7: Optimization Flowchart of the improved DD-Design Tool.
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4 Invariant Based Optimization Of A CFRP Wing Box

In this chapter, the invariant based optimization of a CFRP wing box is covered. The investigated
model is a vertical stabilizer of a fighter aircraft and is derived from (Rother 1985). In the work,
two design approaches with respect to minimum weight were studied: Quad laminate skins on a
honeycomb sandwich core and quad laminate skins on a stringer-only construction. Two load cases,
subsonic with skid/slip and supersonic with rudder movement and skid/slip, were considered and
it was found that a honeycomb sandwich construction resulted in a significantly lower total mass.
In (Neuhäusler 2019, pp. 77–90), the model was investigated again with respect to mass, but the
skins were designed as double double laminates. The same material was used as in the original work
and the study was carried out considering the design approach of honeycomb sandwich construction,
subjecting the structure to the same loads. Optimal double double angles Φ and Ψ were found
and a thickness distribution was determined leading to a reduction of skin weight of about 14 %
compared to the original work. The results were achieved taking into account not only the strength
requirements but also stiffness requirements related to buckling. The outcome of this work was also
published in (Neuhäusler and Rother 2021).
In the present work, the model is investigated again with skins made of double double laminates.
The optimizations are mainly conducted using the improved DD-Design Tool to determine the best
double double angles Φ and Ψ and the resulting thickness distribution. A homogenized design
approach as well as a symmetric design approach using double double laminates are studied and
compared with respect to weight. In addition, a quad laminate design and an aluminum design
are developed to investigate differences in skin weight compared to skins made of double double
laminates.

4.1 Model description

The simulation model of the wing structure used in this work was adapted from the CAD model
of (Neuhäusler 2019), who reconstructed the original model from a technical drawing in (Rother
1985). Similar to (Neuhäusler 2019), the finite element model of the wing structure is modeled
using Abaqus/CAE and solved using Abaqus/Standard. In figure 4.1 the model is shown.
The structure consists of two spars, an upper skin and a lower skin with a honeycomb core in
between, a tip shell with honeycomb core and a rudder shell with honeycomb core and is symmetric
about the xy-plane. The spars, the upper and the lower skin are connected to the honeycomb core
by tie constraints which allows no relative displacement between the parts. Likewise, the shell and
the core of the tip, as well as the shell and the core of the rudder are connected to each other by
means of tie-constraint. The rudder and the main structure are connected by a coupling constraint
of the type continuum distributing, to transfer the load between both parts while allowing relative
displacement. The connection of tip and main structure again is modeled using tie constraints.
Boundary conditions are applied at x = 0 at the main core, where all translational degrees of
freedom are constrained. The edges of the spars and the upper and lower skin are also constrained
in x = 0, but in addition to the translational dofs, the rotational dofs are also set to 0. Furthermore,
the movement of the rudder in the y direction is partially constrained.
The model is meshed as shown in figure 4.1 b) applying a global seed size of 40mm and local
refinement in few areas. Full integrated linear hexahedron elements (C3D8) are used for all solid
parts and full integrated linear quadrilateral shell elements (S4) for all surface parts.
The loads are the same as in (Neuhäusler 2019) where they are applied as concentrated forces in
discrete points, since the original finite element model from 1985 was much coarser due to lower
computational capabilities. The load introduction points are shown on figure 4.1 a) as black points.
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(a) geometry (b) mesh

Figure 4.1: Wing model geometry with highlighted load introduction points and finite element
mesh.

The materials used in the model are aluminum (tip and rudder shells, spars, skins), ACA CFRP
(skins) and a HRP honeycomb core. The respective material parameters are given in table 4.1. As
in (Neuhäusler 2019) and (Rother 1985), the lower shear modulus is used in L and W direction for
the HRP honeycomb material. The Poisson´s ratio of HRP material is an arbitrary value, as it is
not given in (Rother 1985). However, since for sandwich constructions the global ratio of the panel
is mainly dependent on the laminate Poisson´s ratios, this assumption is valid (Zenkert 1997, p. 31).

Table 4.1: Material parameters of aluminum, HRP 4.8 honeycomb and unidirectional ACA layer,
taken from (Rother 1985, p. 14).

Material Elastic moduli Strength Density Poisson´s
[MPa] [MPa] [kg/mm3] ratio

Aluminum E = 68900

Es = 26500

X = 206

S = 118.9

ρ = 2.7 · 10−6 ν21 = 0.3

HRP E3 = 311.5

Es = 34.5

Z = 2.98

S = 0.76

ρ = 6.4 · 10−8 ν21 = 0.49

ACA E1 = 140000

E2 = 6000

E6 = 1300

X = 1300 X ′ = 1000

Y = 25 Y ′ = 100

S = 40

ρ = 1.55 · 10−6 ν21 = 0.3

Degraded properties of the ACA ply material (carbon fibers in epoxy resin) are calculated by equa-
tion (2.51). Due to missing data, the matrix modulus is calculated using the rule of mixtures in
equations (2.1) and (2.2). A fiber volume fraction of the unidirectional layer of vf = 0.6 is assumed,
which is a common value (Schürmann 2007, p. 160), and the epoxy Poisson´s ratio is assumed to
be νm = 0.37 (Schürmann 2007, p. 132). Using the ACA material properties from table 4.1 and the
aforementioned vf and νm, yields a matrix modulus Em ≈ 2500 [MPa] which is also a common value
for epoxy resin according to table 2.3. The matrix shear modulus is obtained as Gm = 1984 [MPa].
The degraded material properties in table 4.2 are calculated using these parameters.
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Table 4.2: Degraded material parameters for ACA plies.

E1 [MPa] Ẽ2 [MPa] Ẽ6 [MPa] ν̃21 F̃ ∗xy

140000 1339 790 0.045 −0.075

Eventually, using the material parameters from table 4.1 and 4.2, the failure envelopes are calculated
using the respective equations from chapter 2. In figure 4.2 the failure envelopes for the ACA
material are shown. Note that the Nettles circle for ACA is defined by a strain cut-off of 4000
microstrain.
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Figure 4.2: Failure envelopes for ACA unidirectional layer.

4.2 Influence of partitioning on the double double laminate of the wing skin

Before optimizing the wing, the influence of partitioning, i.e. discretization of the structure into
cells, on the double double laminate of the wing skins is investigated. Note that the mesh density
can be much higher and cells are rather element sets of certain areas that are assigned specific
thicknesses.
As described in chapter 3, the best double double angles Φ and Ψ are found by evaluating the
strength ratios of all cells, which depend on the loading. Since the membrane stress of all elements
belonging to a cell is averaged, the resulting strength ratios may be affected as local highly stressed
areas within a cell may become invisible. In other words, the optimum double double laminate may
depend on the number and size of cells.

A convergence study is carried out to determine the effects of the number of cells on the wing
structure. Both load cases are considered in this study and the optimization are run with an angle
increment set to 7.5°. The failure criteria used are Tsai-Wu, unit circle and Nettles circle. The
number of cells nc is raised square nc = n2 in the range n = [2, 10], examples are shown in figure 4.3.
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(a) n = 2 (b) n = 5 (c) n = 10

Figure 4.3: Partitioned skins for different number of cells nc = n2.

The study shows that the optimal double double angles Φ and Ψ for the wing skins are indepen-
dent of the number of cells nc, if unit circle or Nettles circle is chosen as failure criterion. For both
criteria, the optimal angles result in Φ = 22.5◦ and Ψ = 52.5◦.
For Tsai-Wu, the optimal angles converge to Φ = 37.5◦ and Ψ = 45.0◦. In addition, figure 4.4 a)
shows that for nc = 32 and nc = 42 a different solution is obtained which could be caused by the
the stress averaging in each cell.
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Figure 4.4: Optimal double double angles dependent on the number of cells (nc = n2) and the
respective failure criterion.

In the following sections, all optimization are performed using skin partitioning of nc = 100 to
reduce the effect of stress averaging, where highly stressed areas become invisible. This aims in a
optimization result that is more similar to the final design, where a ply-by-ply strength analysis
must be performed for each element as part of the validation process.
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4.3 Skin optimization with Double-Double laminates

This chapter covers the optimization of the wing skins made of double double laminates and the
ACA material, using the improved DD-Design Tool as described in chapter 3. The optimization
are performed using Tsai-Wu, unit circle and Nettles circle as failure criteria in terms of first and
last ply failure. Different angle increments are taken into account for optimization to modify the
resolution of the strength ratio field. In figure 4.5 this is shown schematically for angle increments
of 7.5° and 2.5°.

Φ Ψ 0° 7.5° 15° ... ... 82.5° 90°
0° ... ... ... ... ... ... ...

7.5° ... ... ... ... ... ... ...

15° ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

82.5 ... ... ... ... ... ... ...

90° ... ... ... ... ... ... ...

(a) ∆Φ,∆Ψ = 7.5◦

Φ Ψ 0° 2.5° 5° ... ... 87.5° 90°
0° ... ... ... ... ... ... ...

2.5° ... ... ... ... ... ... ...

5° ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

87.5 ... ... ... ... ... ... ...

90° ... ... ... ... ... ... ...

(b) ∆Φ,∆Ψ = 2.5◦

Figure 4.5: Resolution of the strength parameter field R(Φ,Ψ) based on different angle increments.

The angle increments used for optimization are [1, 1.5, 2, 2.5, 3, 4.5, 5, 6, 7.5, 9, 10] in order to deter-
mine the best double double angles Φ and Ψ with respect to the lowest skin weight. Due to the
applied load cases, the optimization yields skin thicknesses in certain areas of only one sub-laminate
(4 plies). Since homogenization usually requires three to four repeats of sub-laminates, a symmetric
design approach using double double laminates and symmetric stacking in each skin is defined and
the weight difference with the homogenized design is investigated.
Skin weights are calculated compared for the digitized solution as obtained by the improved DD-
Design Tool, the symmetric design approach and the homogenized design approach. In addition,
the digitized solutions for first ply failure are compared with results for last ply failure.
Last, the best designs for symmetric and homogenized design approaches for all three failure cri-
teria are used to investigate further weight reduction potential. These designs are used as baseline
models for optimization using the response surface method and a genetic algorithm.

Figure 4.6: Double Double ply orientations for skin optimization.
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4.3.1 Determination of the best design using Tsai-Wu

In figure 4.7, the achieved skin weights for the digitized design, the symmetric design and the ho-
mogenized design are shown for all considered angle increments. In all cases, the digitized solution
offers the lowest weight because design rules are not applied: simply the optimization results are
up rounded to the next discrete thickness value. For symmetric designs, the respective digitized
design is evaluated and the symmetry design rule is applied. For cells with an odd number of
building blocks, the number is rounded up to an even number and mid-plane symmetry is applied.
The homogenized design is achieved by evaluating the required number of building block repeats
for the specific laminate (Φ, Ψ). For cells with less building blocks as required for homogeneity,
the number is raised.
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Figure 4.7: Skin weights for different angle increments and design approaches, using the Tsai-Wu
failure criterion for FPF.

Figure 4.7 shows that the homogenized design approach yields a higher weight than the symmetric
design approach. Digitized thicknesses of only one building block due to only slightly loaded cells
are the reason for this observation.

Figure 4.8: Wing skin thickness profile for the Tsai-Wu FPF criterion.

In figure 4.8, the thickness distribution is shown for the digitized design, and the thin cells are
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shown in dark blue. For homogeneity, 3 to 4 repeats of building blocks are required, while the
symmetry condition can be satisfied with 2 repetitions and thus a lower weight is achieved.
The best laminate design, i.e. best double double angles Φ and Ψ, by applying the Tsai-Wu failure
criterion is achieved using an angle increment of 2.5°. A skin weight of m = 2.3029kg with Φ = 47.5°
and Ψ = 47.5° is obtained for the digitized design. The skin weight for the symmetric design is
msym = 2.9677kg and for the homogenized design mhom = 3.4544kg. Homogeneity of the laminate
is achieved with 3 repeats. Figure 4.9 shows the history plot of a) DD-angles and b) the average
strength. Within 3 iterations, the optimization procedure yields the best DD-angles Φ = Ψ = 47.5°
and it takes three more iterations until the strength requirement is satisfied.
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Figure 4.9: Double double angles and averaged strength for all iterations for the best design derived
by the Tsai-Wu failure criterion and an angle increment of 2.5°.

The optimal double double angles Φ and Ψ for all angle increments are shown in table 4.3. Except
for angle increments of 7.5° and 9.0°, the optimum converged to a single double layup, i.e. Φ = Ψ.
Furthermore, angle increments of 1.0°, 1.5°, 2.0°, 3.0° and 6.0° converged to the same layup of
Φ = Ψ = 48.0 and therefore their obtained weights are equal. The digitized mass is m = 2.3064kg,
the mass for the symmetric design approach is msymm = 2.9805kg and for homogeneity mhom =
3.4798kg. An angle increment of 4.5° obtained Φ = Ψ = 49.5 and a digitized mass of m = 2.3635,
resulting in msym = 3.0001kg and mhom = 3.5560kg. Angle increments of 5° and 10° converged to
Φ = Ψ = 50.0° with masses of m = 2.3924kg, msym = 3.0821kg and mhom = 3.5722kg. An angle
increment of 7.5° converged to Φ = 37.5° and Ψ = 67.5°, resulting in a skin weight of m = 2.7824
and msym = 3.4281kg, mhom = 3.8727kg respectively. A slightly higher mass was obtained by an
angle increment of 9.0° which led to Φ = 36.0° and Ψ = 63.0°. A digitized mass of m = 2.6514kg is
achieved which yields, msym = 3.2827kg and mhom = 3.7561kg.
All achieved laminates (Φ,Ψ) require 3 repeats until homogeneity, i.e. the condition in equation
(3.9), is reached. Furthermore, the optimization converged within 6 or 7 iterations for all angle
increments.

Table 4.3: Optimal double double angles Φ, Ψ derived by different angle increments using the
Tsai-Wu failure criterion.

angle incr. 1.0° 1.5° 2.0° 2.5° 3.0° 4.5° 5.0° 6.0° 7.5° 9.0° 10.0°

Φ [deg] 48.0 48.0 48.0 47.5 48.0 49.5 50.0 48.0 37.5 36.0 50.0
Ψ [deg] 48.0 48.0 48.0 47.5 48.0 49.5 50.0 48.0 67.5 63.0 50.0
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Figure 4.10 shows the digitized skin weight for all angle increments, for first ply failure and last ply
failure. Note that for an angle increment of 1°, no convergence was reached for LPF and therefore
only FPF is shown.
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Figure 4.10: Differences in weight for FPF and LPF for Tsai-Wu failure criterion optimizations (no
convergence was achieved for 1° LPF).

For last ply failure, the lowest weight is achieved using an angle increment of 1.5°, yielding double
double angles Φ = Ψ = 57.0° and a mass of m = 1.6547kg. Figure 4.11 shows the corresponding
thickness distribution.
The weight difference between the best design for first ply failure and the best design for last ply
failure is ∆m = 0, 6482kg, which is 28% less. Note that the laminate is different for both designs,
so the weight difference cannot be considered a safety factor between FPF and LPF.

Figure 4.11: Wing skin thickness profile for the Tsai-Wu LPF criterion.

4.3.2 Determination of the best design using unit circle

In figure 4.12, the achieved skin weights for the digitized design, the symmetric design and the
homogenized design are shown for all considered angle increments. As for the Tsai-Wu failure
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criterion, the digitized solution offers the lowest weight in all cases because design rules are not
applied: simply the optimization results are up rounded to the next discrete thickness value. For
symmetric designs, the respective digitized design is evaluated and the symmetry design rule is
applied. For cells with an odd number of building blocks, the number is rounded up to an even
number and mid-plane symmetry is applied. The homogenized design is achieved by evaluating
the required number of building block repeats for the specific laminate (Φ, Ψ). For cells with less
building blocks as required, the number is raised.
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Figure 4.12: Skin weights for different angle increments and design approaches, using the unit circle
failure criterion for FPF.

As shown in figure 4.12, the homogenized design approach yields a higher weight than the symmet-
ric design approach for all angle increments. The reason is that most of the optimized structure
is subjected to small loads only, which results in digitized thicknesses equal to only one building
block. Figure 4.13 shows the thickness distribution of the wing skin for the digitized design. While
homogeneity requires 3 to 4 repeats of building blocks, the symmetry condition can be satisfied
with 2 repeats, and therefore a lower weight is achieved.

Figure 4.13: Wing skin thickness profile for the unit circle FPF criterion.
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By applying the unit circle failure criterion, an angle increment of 4.5° obtained the best lami-
nate. The digitized thickness yields a skin weight of m = 2.7270kg with Φ = 40.5° and Ψ = 63.0°.
The skin weight for the symmetric design is msym = 3.3313kg and for the homogenized design
mhom = 3.8611kg. Homogeneity of this laminate is achieved with 3 repeats. Figure 4.14 shows the
history plot of a) DD-angles and b) the average strength Ravg. Within 2 iterations, the optimization
procedure yields the best DD-angles Φ = 40.5° and Ψ = 63.0° and it takes a total of 7 iterations
until the strength requirement is satisfied.
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Figure 4.14: Double double angles and averaged strength for all iterations for the best design
derived by the unit circle failure criterion and an angle increment of 4.5°.

The optimal double double angles Φ and Ψ for all angle increments are shown in table 4.4. Unlike
for Tsai-Wu failure criterion, the optimization for all applied angle increments converged to double
double laminates with Φ 6= Ψ.
Angle increments of 1.0° and 1.5° give the highest skin weights for the digitized solution, with a
mass of m = 3.2038kg and m = 3.2096kg, respectively. Their laminate angles are almost identical
with Φ = 49.0° and Ψ = 64.0° for the 1.0° increment and Φ = 49.5° and Ψ = 63.0° for 1.0°. The
symmetric design approach results in weights of msym = 3.9211kg and msym = 3.9326kg and for
the homogenized approach in mhom = 4.3494kg and mhom = 4.3552kg.
With mhom = 4.6205kg, the highest weight for the homogenized design approach is obtained by
an angle increment of 9.0°. The optimization yields double double angles of Φ = 36° and Ψ = 72°,
for which a stack repeat of 4 building blocks is required to achieve homogeneity. Even though the
mass for the digitized design is not the highest compared to those of the other increment sizes, it
can be seen here that the stack repeats can have a large impact on the weight achieved.
For all other angle increments, the resulting weights are between those of 4.5° and 1.5°.

Table 4.4: Optimal double double angles Φ, Ψ derived by different angle increments using the unit
circle failure criterion.

angle incr. 1.0° 1.5° 2.0° 2.5° 3.0° 4.5° 5.0° 6.0° 7.5° 9.0° 10.0°

Φ [deg] 49.0 49.5 46.0 45.0 45.0 40.5 45.0 36.0 37.5 36.0 40.0
Ψ [deg] 64.0 63.0 64.0 65.0 63.0 63.0 65.0 66.0 67.5 72.0 70.0

Figure 4.15 shows the digitized skin weights for all angle increment, for first and last ply failure.
The lowest weight is obtained by an angle increment of 4.5° for both, first and last ply failure.
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For last ply failure, a skin weight of m = 1.7585kg is achieved with a double double laminate of
[±36.0,±67.5]. The corresponding thickness distribution is shown in figure 4.16. The optimization
yields a difference in weight for FPF and LPF of ∆m = 0, 9685kg equal to 42%.
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Figure 4.15: Differences in weight for FPF and LPF for unit circle failure criterion optimizations.

Figure 4.16: Wing skin thickness profile for the unit circle LPF criterion.

4.3.3 Determination of the best design using Nettles circle

In figure 4.17, the achieved skin weights corresponding to the Nettles circle failure criterion for the
digitized design, the symmetric design, and the homogenized design are shown for all considered
angle increments. As for Tsai-Wu and unit circle, the digitized solution offers the lowest weight
for all angle increments because design rules are not applied: the optimization results are up just
rounded to the next discrete thickness value. Symmetric designs are created by evaluation of the
digitized design and applying the rules for symmetry design. For cells with an odd number of
building blocks, the number is rounded up to an even number and mid-plane symmetry is used.
The homogenized design is achieved by evaluating the required number of building block repeats
for the specific laminate (Φ, Ψ). For cells with less building blocks as required, the number is raised.
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Figure 4.17: Skin weights for different angle increments and design approaches, using the Nettles
circle failure criterion.

The skin weight is higher for the homogenized design approach than for the symmetric design
approach because a large part of the skin is lightly stressed and the digitized thickness is only
one building block thick as shown in figure 4.18. While homogeneity requires 3 to 4 repeats of
building blocks, depending on Φ and Ψ, the symmetry condition can be satisfied with a minimum
of 2 repeats.

Figure 4.18: Wing skin thickness profile for the Nettles circle criterion.

Using Nettles circle as failure criterion, the best laminate design is achieved as [±36.0,±66.0] by
an angle increment of 6.0°. The corresponding weights are m = 2.9398kg for the digitized design,
msym = 3.5296kg for the symmetric design, and mhom = 3.9793kg for the homogenized design,
where homogeneity is obtained by 3 repeats of building blocks. Figure 4.19 shows the history plot
of a) the DD-angles and b) averaged strength ratio Ravg. The best laminate is found already in
the first iteration and it takes 7 iterations until the strength requirements are met.
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Figure 4.19: Double double angles and averaged strength for all iterations for the best design
derived by the Nettles circle failure criterion and an angle increment of 6.0°.

Table 4.5 shows the laminate angles obtained by the Nettles circle failure criterion and all angle
increments. Similar to the unit circle criterion, all increments used result in ply orientations with
Φ 6= Ψ.
As mentioned, the design corresponding to the lowest weight is achieved by an angle increment
of 6.0° yielding a mass of m = 2.9398kg for the digitized design. This is the only design that
accomplishes a weight below 3kg. Close results are obtained by angle increments of 2.5°, 3°,4.5°,5°,
and 7.5° where weights between m = 3.0150kg and m = 3.0467kg are achieved for the digitized
designs. The highest weights for digitized designs are achieved for angle increments of 1.0° and 1.5°
with m = 3.3971kg and m = 3.4092kg, respectively. Taking into account the homogeneity design
approach, the heaviest design is obtained by an angle increment of 9° which results in [±36.0,±72.0]
laminate and yields a mass of mhom = 4.7717kg. In this case, homogeneity is reached with 4 sub-
laminates stacked, while all other designs only require 3.

Table 4.5: Optimal double double angles Φ, Ψ derived by different angle increments using the
Nettles circle failure criterion.

angle incr. 1.0° 1.5° 2.0° 2.5° 3.0° 4.5° 5.0° 6.0° 7.5° 9.0° 10.0°

Φ [deg] 49.0 49.5 46.0 45.0 45.0 40.5 45.0 36.0 37.5 36.0 40.0
Ψ [deg] 65.0 64.5 66.0 65.0 63.0 67.5 65.0 66.0 67.5 72.0 70.0

4.3.4 Summary DD optimization using the improved DD-Design Tool

The optimization performed in the previous sections show that the improved DD-Design Tool yield
laminate designs and thickness distributions computationally inexpensive. Results are obtained
within 6 to 7 iterations for any failure criterion. The best optimization results corresponding to
the lowest weight are summarized for all failure criteria in table 4.6.

Table 4.6: Skin weight for different failure criteria and failure modes.

Failure Mode TW [kg] UC [kg] NC [kg]

FPF 2.30 2.73 2.94
LPF 1.65 1.76 -
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The lowest weight is achieved by the Tsai-Wu failure criterion for both, first and last ply failure.
For first ply failure, a mass off m = 2.3kg is obtained, and for last ply failure m = 1.65kg, which
equals a weight reduction of 28%. A more conservative design is achieved by applying the unit circle
as failure criterion. Unit circle yields a weight of m = 2.73kg for first ply failure and m = 1.76kg for
last ply failure, equal to a weight reduction of 35%. The most conservative criterion considered in
this work is the Nettles circle. With Nettles circle, the weight of a skin is obtained as m = 2.94kg.
Considering first ply failure, the obtained weight for unit circle is 18% higher than for Tsai-Wu,
and the weight achieved by Nettles circle is 28% higher than for Tsai-Wu.
Note that the skin weights shown in table 4.6 correspond to the digitized designs. For mid-plane
symmetry or homogeneity, the weights are greater. They are shown in table 4.7.

Table 4.7: Skin weight for different failure criteria and design approaches.

Design approach TW [kg] UC [kg] NC [kg]

Digitized (FPF) 2.30 2.73 2.94
Symmetry 2.97 3.33 3.53
Homogenization 3.45 3.86 3.98

The skin weights considering mid-plane symmetry are 29% higher for Tsai-Wu, 22% higher for unit
circle, and 20% higher for Nettles circle, compared to the digitized design. Taking into account
laminate homogenization, the weight for Tsai-Wu is 50% higher, the weight for unit circle is 41%
higher and for Nettles circle 35% higher, compared to the digitized design.

Table 4.8 shows the obtained double double laminate angles and the corresponding angle increment
for optimization. It can be seen that each failure criterion yields a different optimum laminate.
While Tsai-Wu converged to a single double laminate for the investigated structure, for unit circle
and Nettles circle true double double laminates were determined with similar ply angles.

Table 4.8: Optimal double double angles obtained by different failure criteria.

Angles/Incr. TW [deg] UC [deg] NC [deg]

Increment 2.5 4.5 6.0
Φ 47.5 40.5 36.0
Ψ 47.5 66.0 66.0

More important is the observation that the implemented procedure to determine the laminate
angles does not yield a better solution for a higher resolution of design space, i.e. smaller angle
increment. The laminate designs corresponding to the lowest weight are achieved by an angle
increment of 2.5° for Tsai-Wu, 4.5° for unit circle, and 6° for Nettles circle. Smaller increments,
e.g. 1.5° for UC and 1.5° or 3° for NC, yield different laminate angles and higher skin weights, even
though the same results as in table 4.8 lay in the design space. This is due to the implementation
of the iterative laminate angle determination process in the optimization procedure, where they are
rather determined by a maximum strength objective than a minimum weight objective.
An alternative approach that considers the structural weight to determine Φ and Ψ is presented in
chapter 5 Outlook.
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4.3.5 Further optimization potential of best DD designs determined by RSM and
GA

Further weight optimization potential of the best double double designs is evaluated in this section.
Designs considering mid-plane symmetry and laminate homogenization are optimized using the
response surface method (RSM) and a genetic algorithm (GA), respectively. The study is carried
out for all three failure criteria (TW, UC, NC) and therefore six optimizations per design approach
are executed. A minimum weight objective is chosen and the design space of the double double ply
angles is set to

Φ, Ψ ∈ [0.0, 0.5, 1.0, ... , 90.0]

Starting from the thickness profile obtained by previous optimizations using the improved DD-
Design Tool, the ply angles are changed by RSM or GA and a simulation is performed to determine
the cell loads. Similar to the procedure in the aforementioned tool, new thickness distributions are
determined based on the cell strength ratios, but the ply angles are kept as defined by RSM and
GA, respectively.
Table 4.9 shows the optimal double double angles and the resulting total weight per skin for
homogenized laminate designs derived by the improved tool, by RSM and by GA optimization.
Independent of the failure criterion applied, the total weight is approximately the same for all
optimization methods shown. Furthermore, in all cases, the response surface method yields the
design with the lowest mass, followed by GA and DD-Tool. Even though the improved DD-Design
Tool yields the skin profile with the highest weight, its computational cost is significantly lower
compared to RSM and GA. Using Tsai-Wu as failure criterion, RSM required 97 iterations and GA
170 iterations, while the improved DD-Design Tool offers an adequate solution within 6.

Table 4.9: Comparison of optimized designs based on DD-Tool, RSM and GA optimization for
homogenized laminate design.

Crit. DD-Tool RSM GA

TW m [kg] 3.4544 3.35923 3.36325
Φ [deg] 47.5 46.0 44.0
Ψ [deg] 47.5 46.0 45.5
iterations 6 97 170

UC m [kg] 3.8611 3.67301 3.69377
Φ [deg] 40.5 36.0 34.0
Ψ [deg] 63.0 59.0 61.0
iterations 7 301 160

NC m [kg] 3.9793 3.78149 3.78149
Φ [deg] 36.0 38.5 38.5
Ψ [deg] 66.0 62.0 62.0
iterations 7 163 120

The optimal double double angles and resulting total weights per skin for symmetric laminate de-
signs are shown in table 4.10. Again, the results obtained by the improved DD-Design Tool are
compared with the designs derived by GA and RSM optimization.
Applying Tsai-Wu as failure criterion for optimization the resulting laminate angles are equally
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derived as Φ = 47.5° and Ψ = 47.5° by all three methods. Similar to the symmetric design opti-
mizations, GA required the most iterations with 90, followed by RSM with 85 iterations, and the
improved DD-Design Tool with only 6 iterations. Even though the same ply angles are obtained
by all three methods, the weight obtained by the improved Tool is not equal to the results of RSM
and GA. The weight derived by RSM and GA is m = 2.96kg, which is a difference of less than
-1%. This observation is due to the result of the improved tool being taken as the baseline model
for GA and RSM, where new thicknesses are evaluated based on the strength ratio and present cell
thicknesses.
When using unit circle as failure criterion, the lowest weight is obtained by RSM with a weight
saving of 1.8% compared to the baseline model. The response surface method converged after 103
iterations and the genetic algorithm after 180. Again, the DD-Tool required the lowest computa-
tional effort with 7 iterations.
Applying Nettles circle as failure criterion, equal double double angles are obtained for all methods
used with Φ = 36.0 and Ψ = 66.0. Accordingly, the skin weights achieved by RSM and GA are
also the same at m = 3.35kg, which is 4.8% less than the design obtained by the DD-Tool. The
optimal design was derived by GA after 90 iterations and RSM required 157 iterations, while the
DD-Tool converged after 7 iterations.

Table 4.10: Comparison of optimized designs based on DD-Tool, RSM and GA optimization for
symmetric laminate design.

Crit. DD-Tool RSM GA

TW m [kg] 2.9677 2.94583 2.94583
Φ [deg] 47.5 47.5 47.5
Ψ [deg] 47.5 47.5 47.5
iterations 6 85 90

UC m [kg] 3.3313 3.27349 3.29426
Φ [deg] 40.5 35.0 34.0
Ψ [deg] 63.0 58.5 59.5
iterations 7 103 180

NC m [kg] 3.5296 3.35433 3.35433
Φ [deg] 36.0 36.0 36.0
Ψ [deg] 66.0 66.0 66.0
iterations 7 157 90

For both design approaches it is shown above, that the improved DD-Design Tool offers computa-
tionally inexpensive optimization results. The obtained results are close to those derived by RSM
and GA optimizations, with differences in weight below 5%.
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4.4 Comparison of Double Double with Legacy Quad and Aluminum designs

In this section, the skin profile is optimized using aluminum and black aluminum, i.e. quasi-isotropic
legacy quad laminates made from CFRP.
The optimization of quad laminates is performed using a new method implemented in the improved
DD-Design Tool. Similar to the procedure for double double laminates, cell thicknesses are deter-
mined by strength ratios with respect to the cell loading conditions. As the laminate angles are
fixed, only a thickness scaling is performed and a digitized model is created when convergence is
met.
The aluminum design is also obtained by the new quad optimization procedure, but since the
material is isotropic the plies behave equally in all directions. Thickness scaling is performed by
applying the Tsai-Wu failure criterion because it corresponds to the von-Mises criterion for isotropic
materials with equal tensile and compressive strength.
In table 4.11 the achieved skin weights for legacy quad laminates and aluminum construction are
compared with the best designs achieved by double double laminates. For legacy quad laminates,
three failure criteria are used for optimization: Tsai-Wu, unit circle, and Nettles circle, and as
already mentioned, for aluminum only Tsai-Wu is used.

Table 4.11: Comparison of skin weights of legacy quad and aluminum design with digitized double
double laminates.

Material Failure criterion Quad skin weight DD skin weight ∆m

ACA Tsai-Wu 3.62 kg 2.30 kg -36.5%
ACA Unit circle 3.73 kg 2.73 kg -26.8%
ACA Nettles circle 4.04 kg 2.94 kg -27.2%
Aluminum Tsai-Wu 5.92 kg 2.30 kg -61.1%

It is shown that significant weight savings are possible if double double laminates are considered
for the skins. Applying the Tsai-Wu failure criterion, the skin weight can be reduced from 3.62kg
to 2.30kg, equal to a reduction of 36.5%. Unit circle yields a weight reduction of 1kg which corre-
sponds to a weight saving of 26.8% and with Nettles circle, the skin weight can be reduced 27%.
The highest weight saving is achieved compared to aluminum, where the weight can be reduced
61% from 5.92kg to 2.30kg. Note that for the aluminum design, thickness drops are performed with
a step size of 0.25mm, and the quad laminate designs already consist of mid-plane symmetry.

In table 4.12 and table 4.13, similar evaluations are shown but the quad and aluminum designs are
compared with symmetry and homogenized double double laminates, respectively.
Considering symmetric double double laminates, there are also significant weight savings. For Tsai-
Wu, the weight can be reduced from 3.62kg to 2.97kg, a reduction of 18%. Applying unit circle or
Nettles circle as failure criterion, weight reductions of 10.7% and 12.6%, respectively, are possible.
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Table 4.12: Comparison of skin weights of legacy quad and aluminum design with symmetric double
double laminates.

Material Failure criterion Quad skin weight DD sym. weight ∆m

ACA Tsai-Wu 3.62 kg 2.97 kg -18.0%
ACA Unit circle 3.73 kg 3.33 kg -10.7%
ACA Nettles circle 4.04 kg 3.53 kg -12.6%
Aluminum Tsai-Wu 5.92 kg 2.97 kg -49.8%

Higher weights are obtained if the laminate is build with respect to homogeneity. For Tsai-Wu, the
weight of the homogenized double double laminate is only 4.7% less than for legacy quads. With
unit circle, the achieved weight for homogenized DD laminates is 3.5% higher and Nettles circle
yields a weight reduction of only 1.5%. Even though, the weight savings are small if homogenized
double double laminates are compared with quad laminates, they yield a weight saving of 41.7% if
they are used instead of aluminum profiles.
The reason for the low weight saving potential for homogenized double double laminates is that
homogenization requires three to four repeats of sub-laminates stacked. Since there are several
low-loaded cells in the wing skin, the thicknesses to meet the strength criterion in these areas are
only one building block (four plies). However, this behavior corresponds to the considered model
and load cases, other structures may show higher weight savings.

Table 4.13: Comparison of skin weights of legacy quad and aluminum design with homogenized
double double laminates.

Material Failure criterion Quad skin weight DD hom. weight ∆m

ACA Tsai-Wu 3.62 kg 3.45 kg -4.7%
ACA Unit circle 3.73 kg 3.86 kg +3.5%
ACA Nettles circle 4.04 kg 3.98 kg -1.5%
Aluminum Tsai-Wu 5.92 kg 3.45 kg -41.7%
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5 Summary and Conclusion

Within the scope of this thesis, the vertical stabilizer model from (Rother 1985) and (Neuhäusler
2019, S. 77–90) is optimized with a focus on reducing the skin weights by the application of double
double laminates [±Φ,±Ψ]. A new invariant-based method for laminate design is used in which
stiffness is described by Tsai´s modulus, homogenization of laminates is considered as an alternative
for mid-plane symmetry and failure criteria in strain space are evaluated to obtain the laminate
thicknesses.
The method is applied to the FE model by an improved version of the DD-Design Tool (DiCaprio,
Riccio, and Tsai 2020), which was developed in the context of this work and allows the optimization
of symmetric sandwich structures as required for the wing model. The improved tool is fully imple-
mented in Python and any external finite element software can be used to determine the laminate
loads. Furthermore, it applies the same optimization procedure as the original tool but is more
flexible because it is designed to consider any number of partitions and any number of load cases.
The model is optimized using three different failure criteria to predict first ply failure (Tsai-Wu, unit
circle, and Nettles circle), and two criteria for last ply failure (Tsai-Wu and unit circle). For each
criterion, the optimization is executed for angle increments of 1°,1.5°,2,2.5°,3°,4.5°,5°,6°,7.5°,9°,10°,
which define the resolution of the design space for Φ and Ψ. A total of 55 different optimization
configurations were run.
The best result for Tsai-Wu FPF is achieved by an angle increment of 2.5° and for LPF by 1.5°.
Applying unit circle as failure criterion, the best design for FPF and LPF is obtained by an incre-
ment of 4.5°, and the lowest weight considering Nettles circle was achieved by an angle increment of
6°. The comparisons between FPF and LPF are performed using the digitized optimization results.
Among these three criteria, Tsai-Wu yields the lowest weight mdigi = 2.3029kg, followed by unit
circle mdigi = 2.7270kg and finally Nettles circle with mdigi = 2.9398kg. Using last ply failure
as optimization criterion, weight savings of 28% for Tsai-Wu and 35% for unit circle compared to
FPF. Note that the obtained ply angles differ from those for FPF.
Due to partially low resulting skin thicknesses of only one building block, two design methods are
defined and compared concerning skin weight: A homogenized design approach using DD laminates,
and a symmetric design approach using DD laminates in combination with mid-plane symmetry in
each skin. It is shown that the symmetric approach yields a lower skin weight for all three failure
criteria, but this is not generally the case. For the wing model, a greater area of the structure meets
the strength criterion already with a thickness of one building block. Consequently, symmetry can
be achieved by two repeats of sub-laminate, while homogeneity requires three to four. Thus, for
thin-walled DD laminates, the symmetric design approach may yield a better solution.
The best designs for symmetry and homogeneity for all three failure criteria are used as baseline
models for optimization using RSM and GA and further optimization potential is investigated. In
all cases, the baseline models are close if not equal to the designs derived by RSM and GA. In
addition, the model is also optimized considering skins made from legacy quad laminates (quasi-
isotropic) and aluminum. Comparing legacy quad with double double laminate design, it is shown
for all three failure criteria that double double results in weight savings between 27% and 37%. In
Addition, skins made of double double laminates allow a weight saving of 61% compared to skins
made of aluminum. However, taking into account design approaches like mid-plane symmetry or
homogenization, achieved weight savings are lower.
To sum up, using double double laminates, lower skin weights are achieved for the present model
compared to constructions made of legacy quad laminates or aluminum. The improved DD-Design
Tool is able to provide an optimized design computationally inexpensive within few iterations,
which can be used as baseline model for further improvements. However, the outcome also shows
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that the obtained designs depend on the selected angle increment and finer resolution does not
necessarily yield a better solution when using the procedure implemented in the DD-Design Tool.
Furthermore, if the optimization yields thin-walled structures, a symmetric design approach using
DD laminates may yield a better solution compared to homogenization.

Outlook
As mentioned previously, the DD-Design Tool obtained lower skin weights if double double lami-
nates are used instead of legacy quads or aluminum. But it is also shown that a finer resolution of
the strength field, i.e. a smaller angle increment, does not necessarily lead to a better solution in
terms of weight. For unit circle and Nettles circle, the designs corresponding to the lowest weight
were achieved by an angle increment of 4.5° and 6°, respectively. Finer increments instead yield
a higher weight. The reason for this behavior is that the laminate angles Φ and Ψ are rather
determined by a maximum strength objective than a minimum weight in the Lamsearch algorithm.
In other words, the weight reduction is just a consequence of the implemented strength optimiza-
tion process, where the cell with the highest strength ratio determines Φ and Ψ, and subsequently,
the cell thicknesses are scaled concerning these ply angles. Finer angle increments can result in
a higher strength ratio in the crucial cell and thus a lower cell thickness. However, depending on
the loading conditions in the remaining cells, their thicknesses may be higher, resulting in a higher
total weight.
In a further version of the tool, the determination of Φ and Ψ could be implemented concerning the
total weight. Instead of evaluating just strength ratio fields R(Φ,Ψ), a volume field V (Φ,Ψ) could
be determined for each cell, using the respective strength field to obtain a thickness field t(Φ,Ψ),
which is multiplied by the respective cell area. By summing the cell volume fields, a total volume
field can then be calculated, as shown in the following equation:

V (Φ,Ψ) =

nc∑
k=1

Vk(Φ,Ψ) =

nc∑
k=1

tk(Φ,Ψ)Ak =

nc∑
k=1

told,k
Rk(Φ,Ψ)

Ak (5.1)

Where Φ and Ψ are determined by the lowest (total) volume. Note that Φ and Ψ are discrete sets
that dependent on the angle increment.
Furthermore, new failure criteria such as Puck, Hashin, or Cuntze could be implemented, as well as
more finite element software conversions to make the improved DD-Design Tool even more flexible
and useful.
The algorithm proposed above should be tested and evaluated for its optimization potential con-
cerning a minimum weight in further study. The wing model can provide a good basis for evaluation
since the results of the present work can be used to compare.
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A Optimization code

A.1 User manual

A few examples are shown of how to apply the optimization code.
The application as presented here uses Abaqus to obtain the cell loads. Some inputs are Abaqus
specific and need to be changed if another finite element software is used. The following examples
show the main code that has to be adapted by the user. Changes in Python classes are not neces-
sary, except to implement further failure criteria.
Examples are shown for a simple model that contains one laminate and one load case, and a more
advanced model where symmetry is present and two load cases are considered. In addition, a code
snippet is shown as an example for running the quad laminate optimization. In principle, only a
few lines of code need to be adapted to the specific case.

A.1.1 Setup for a simple model with 1 load case

In this section, a code to run a simple double double optimization is explained. Code is given on
the following page and only represents the main code, classes are not shown. By simple, a structure
consisting of only one area with any number of cells is meant.
The following steps have to be executed before the optimization can be started:

• set the angle increment (line 5: 7.5)

• set the cell names as defined in Abaqus (line 6: C)

• set the number of cell, same number as modeled in Abaqus (line 7: 100)

• set the failure criterion and the failure mode (line 8&9: TW, LPF)

• define the material parameter for optimization (line 10-29)

• set the material name used in Abaqus (line 30: ACA)

The following lines (33-39) can be used as shown. In these lines some allocations are done,
only line 37 may need to be modified if a different failure strain for Nettles circle is required
(ap Nettles=0.004).
Line 42 to 45 define the step names, part names, instance names, and composite names as modeled
within Abaqus. Note that the instance name is written in capital letters. This is required to enter
the odb file correctly. Line 47 is optional and only required if the optimization is started from the
windows command line. If the code is started from the Gui, this line can be removed.
Line 42 controls the number of load steps required. In the present case only one load step Step-1 is
used for optimization. Multiple load cases can be considered by adding the names of all load cases
as modeled in Abaqus, e.g. [’Step-1’,’Step-2’,...,’Step-n’].
The optimization procedure is activated and run in line 55 and 56. In line 55 the design tool is set
and in line 56 the quad laminate optimization is performed. The parameter strengthAvg=’thick’
means that low loaded areas of the structure are excluded from the convergence criteria.
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A.1.2 Setup for a symmetric model with 2 load cases

To run an optimization considering two load cases for a symmetric model, the following steps
(similar to the example shown above) have to be executed:

• set the angle increment (line 5: 7.5)

• set the cell names as defined in Abaqus (line 6: C)

• set the number of cell, same number as modeled in Abaqus (line 7: 100)

• set the failure criterion and the failure mode (line 8&9: TW, LPF)

• define the material parameter for optimization (line 10-29)

• set the material name used in Abaqus (line 30: ACA)

The following lines (33-39) can be used as shown. In these lines some allocations are done,
only line 37 may need to be modified if a different failure strain for Nettles circle is required
(ap Nettles=0.004).
Line 42 to 47 define the step names, part names, instance names, and composite names as modeled
within Abaqus. Note that the instance names are written in capital letters. This is required to
enter the odb file correctly. Line 49 is optional and only required if the optimization is started from
the windows command line. If the code is started from the Gui, this line can be removed.

The optimization procedure is activated and run in line 59 and 61. In line 59 the design tool is set
and in line 61 the laminate optimization is performed. The parameter strengthAvg=’thick’ means
that low loaded areas of the structure are excluded from the convergence criteria.

Note that for symmetry, the structure needs to be modeled that the stacking directions, i.e. face
normals, of the laminate area and the symmetry area point in the same direction. The code
automatically stacks the plies in the right order to obtain a true symmetric design.
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A.1.3 Setup for a quad laminate model

Quad laminate optimizations can be run the same way as for double double laminates. The only
difference is that the last is changed to: dd.runQuadLaminateOptimization().
The following steps (similar to the examples shown above) have to be executed before the opti-
mization can be started:

• set the angle increment (line 5: 7.5)

• set the cell names as defined in Abaqus (line 6: C)

• set the number of cell, same number as modeled in Abaqus (line 7: 100)

• set the failure criterion and the failure mode (line 8&9: TW, LPF)

• define the material parameter for optimization (line 10-29)

• set the material name used in Abaqus (line 30: ACA)

The following lines (33-39) can be used as shown. In these lines some allocations are done,
only line 37 may need to be modified if a different failure strain for Nettles circle is required
(ap Nettles=0.004).
Line 42 to 45 define the step names, part names, instance names, and composite names as modeled
within Abaqus. Note that the instance name is written in capital letters. This is required to enter
the odb file correctly. Line 47 is optional and only required if the optimization is started from the
windows command line. If the code is started from the Gui, this line can be removed.

The optimization procedure is activated and run in line 55 and 56. In line 55 the design tool is set
and in line 56 the quad laminate optimization is performed. The parameter strengthAvg=’thick’
means that low loaded areas of the structure are excluded from the convergence criteria.
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A.1.4 Format of the output file

During the optimization, an output file is created where the optimization parameters are summa-
rized, as well as the cell dependent outputs are given. The file is updated in every iteration and
can be viewed while the code is running.
At the top of the output file, the optimization parameters are summarized. Starting by the failure
criterion and in addition the respective failure mode (FPF,LPF). In the following, the convergence
criteria are given: criterion 1 - change of DD angle between two iterations, criterion 2 - averaged
strength minus one, criterion 3 change of averaged strength between two iterations. The maximum
number of iterations allowed and the FE material name are given. If symmetry cells are used
they are indicated by True, if not, by False. The selected angle increment is given, as well as the
strength average method (thick/all) and the laminate optimization method (DD/Quad). Note that
for strength avg. equal to thick, cell with a thickness below one ply (e.g. approx. 0.0625 for thin
plies and approx. 0.125 for standard plies) are not considered for the averaged strength convergence
criterion.

The following two figures show frames of the iteration procedure. Each iteration is indicated, fol-
lowed by a summary of the laminate angles and averaged strength. Since for iteration 1 no current
ply angles are defined, their field is empty, but the resulting ply angles and averaged strength of
iteration one are given. In the column ”current” the setup before the design update is given and
in the column ”resulting” the resulting setup.
Similarly, the cell data are given. In the columns below ”current configuration”, the current cell
configuration is given, as well as the corresponding cell loads, obtained by the finite element soft-
ware. In the columns below ”iteration outcome”, the resulting strength ratios for the laminate
as evaluated in the current iteration are given for all considered load cases, as well the respective
thicknesses and the thickness used in the next iteration.
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After finding convergence or if the maximum number of iterations is reached, the procedure stops
and the cell thicknesses for the digitized design are given.
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A.2 Python implementation

A short introduction to the classes of the improved DD-Design Tool follows. The detailed docu-
mentation of all classes and methods is contained in the Python code as docstring. A total of 5
classes are implemented in the code, each with unique methods and variables. In addition, the
classes are sorted by their tasks to give the code a logical structure.

AbaqusConversion
The class AbaqusConversion is the connection to Abaqus/Cae. The class consists of methods to
run simulations, read data from the output odb file, process the element outputs and to update the
Abaqus model configuration.

Material
The Material class is used to perform all material dependent calculations such as universal engi-
neering constants or degraded material properties. All material dependent parameters are stored
within this class.

Cell
The Cell class in combination with the Lamsearch Class is the heart of the Python code. Within
the cell class, the strength ratio fields are calculated for all cell loads and thickness scaling is also
performed.

Lamsearch
The Lamsearch class is used organize and control all instances of the Cell class. Cell loads are as-
signed to the respective cells to calculate the cell dependent strength fields. With the cell-dependent
strength fields, the global strength field is calculated by this class and the best double double angles
are determined.

DDTool
The DDTool class is used to run the optimization procedures, connect all other classes and control
the instance of the Lamsearch class. In addition, the optimization output file is also created by
this class.

The Python implementation of the improved DD-Design Tool is not included in this version.
Please contact Prof. Klemens Rother (klemens.rother@hm.edu) or Timo Stiels (timo.stiels@hotmail.de).
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A.3 Python code verification

The DD-Design Tool implemented in Python was verified by optimizing several test cases in both
the Ansys version (DiCaprio, Riccio, and Tsai 2020) and the Python implementation. This chap-
ter presents an exemplary verification for a composite plate and two load cases. The results were
compared and only negligible small differences were observed.

(a) Load case 1 (b) Load case 2

Figure A.1: Test case: rectangular plate with 49 partitions and two load cases.

The tested plate has a length of l = 700mm and a height of h = 350mm. The cells have a length
of l = 100mm and a height of h = 50mm. Figure A.1 shows both load cases that are applied to
the plate and their values are shown in table A.1.
Note that a separate optimization was performed for each load case.

Table A.1: Two load cases for plate optimization.

Load case F1x F1y F2x F2y

1 150 kN 30 kN 60 kN 75 kN

2 150 kN -30 kN -60 kN 75 kN

For all optimization, the start design is chosen as [0,−45, 90, 45]s and C-Ply 64 as material. For both
load cases, the optimization results of both tools are approximately the same. For the thicknesses
and strength values, minor differences from the third decimal place onwards can be observed. The
digitized thicknesses are the same for both tools.
In the following sub-chapters, the optimization results for both load cases (LC1 and LC2) and all
failure criteria (Tsai-Wu, uni circle, Nettles circle) are presented. The convergence criteria of the
python code were applied to match the convergence criteria of the original DD-Design Tool.
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A.3.1 Load case 1, Tsai-Wu failure criterion

Table A.2: Resulting cell thicknesses for LC 1 and Tsai-Wu failure criterion.

(a) DD-Design Tool

1.246 1.193 1.035 0.895 0.808 0.770 0.779

0.772 0.738 0.654 0.626 0.644 0.694 0.795

0.570 0.472 0.478 0.565 0.642 0.713 0.865

0.417 0.367 0.484 0.612 0.689 0.778 0.942

0.301 0.388 0.595 0.693 0.765 0.873 1.007

0.230 0.546 0.739 0.782 0.864 0.997 1.058

0.237 0.765 0.849 0.891 0.990 1.134 1.120

(b) Python Version

1.245 1.192 1.034 0.894 0.807 0.771 0.779

0.772 0.738 0.654 0.626 0.654 0.693 0.794

0.570 0.472 0.478 0.566 0.642 0.711 0.865

0.417 0.367 0.484 0.613 0.688 0.778 0.942

0.301 0.388 0.595 0.694 0.764 0.872 1.008

0.230 0.546 0.739 0.781 0.863 0.997 1.058

0.237 0.766 0.849 0.890 0.990 1.134 1.120

Table A.3: Resulting cell strengths for LC 1 and Tsai-Wu failure criterion.

(a) DD-Design Tool

1.001 0.959 0.950 0.973 0.997 1.004 1.004

0.974 0.997 1.043 1.061 1.022 1.003 0.991

0.973 1.060 1.093 1.024 0.980 0.967 0.982

1.023 1.126 1.044 0.965 0.948 0.946 0.999

1.097 1.159 0.991 0.954 0.950 0.950 1.029

1.187 1.111 0.989 0.985 0.969 0.971 1.064

1.311 1.032 1.030 1.021 1.012 1.021 1.102

(b) Python Version

1.001 0.959 0.951 0.973 0.998 1.004 1.004

0.974 0.997 1.043 1.062 1.030 1.004 0.991

0.972 1.061 1.093 1.022 0.980 0.968 0.982

1.023 1.126 1.044 0.964 0.949 0.947 0.998

1.097 1.159 0.990 0.954 0.950 0.950 1.029

1.187 1.110 0.989 0.985 0.969 0.971 1.064

1.312 1.031 1.030 1.021 1.012 1.021 1.102

Table A.4: Resulting digitized cell thicknesses for LC 1 and Tsai-Wu failure criterion.

(a) DD-Design Tool

1.250 1.250 1.250 1.000 1.000 1.000 1.000

1.000 0.750 0.750 0.750 0.750 0.750 1.000

0.750 0.500 0.500 0.750 0.750 0.750 1.000

0.500 0.500 0.500 0.750 0.750 1.000 1.000

0.500 0.500 0.750 0.750 1.000 1.000 1.250

0.250 0.750 0.750 1.000 1.000 1.000 1.250

0.250 1.000 1.000 1.000 1.000 1.250 1.250

(b) Python Version

1.250 1.250 1.250 1.000 1.000 1.000 1.000

1.000 0.750 0.750 0.750 0.750 0.750 1.000

0.750 0.500 0.500 0.750 0.750 0.750 1.000

0.500 0.500 0.500 0.750 0.750 1.000 1.000

0.500 0.500 0.750 0.750 1.000 1.000 1.250

0.250 0.750 0.750 1.000 1.000 1.000 1.250

0.250 1.000 1.000 1.000 1.000 1.250 1.250
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Figure A.2: Double Double angles and averaged strength of all iterations for LC 1 and Tsai-Wu
failure criterion.
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A.3.2 Load case 1, unit circle failure criterion

Table A.5: Resulting cell thicknesses for LC 1 and unit circle failure criterion.

(a) DD-Design Tool

1.744 1.598 1.364 1.135 0.971 0.896 0.920

0.951 0.856 0.714 0.648 0.661 0.752 0.942

0.612 0.483 0.451 0.537 0.647 0.783 1.063

0.399 0.322 0.423 0.577 0.702 0.886 1.197

0.263 0.304 0.524 0.666 0.797 1.026 1.322

0.178 0.416 0.657 0.766 0.925 1.194 1.432

0.163 0.609 0.764 0.874 1.074 1.377 1.546

(b) Python Version

1.743 1.597 1.363 1.133 0.969 0.897 0.920

0.951 0.856 0.714 0.648 0.678 0.751 0.942

0.612 0.483 0.451 0.538 0.647 0.781 1.063

0.399 0.322 0.424 0.578 0.701 0.884 1.197

0.263 0.304 0.525 0.666 0.797 1.025 1.322

0.178 0.416 0.657 0.766 0.924 1.194 1.432

0.162 0.609 0.764 0.874 1.073 1.377 1.546

Table A.6: Resulting cell strengths for LC 1 and unit circle failure criterion.

(a) DD-Design Tool

0.900 0.900 0.906 0.936 0.983 1.013 1.010

0.962 0.987 1.038 1.088 1.083 1.048 0.998

1.030 1.082 1.150 1.118 1.068 1.020 0.972

1.110 1.197 1.166 1.080 1.038 0.988 0.957

1.191 1.263 1.106 1.046 1.011 0.964 0.948

1.302 1.202 1.066 1.028 0.990 0.951 0.941

1.373 1.119 1.053 1.020 0.977 0.946 0.935

(b) Python Version

0.901 0.900 0.906 0.936 0.983 1.013 1.010

0.962 0.986 1.038 1.088 1.081 1.048 0.998

1.030 1.082 1.150 1.118 1.067 1.021 0.972

1.110 1.197 1.166 1.079 1.038 0.988 0.957

1.191 1.263 1.105 1.045 1.012 0.965 0.948

1.302 1.201 1.065 1.028 0.990 0.951 0.941

1.373 1.118 1.053 1.020 0.977 0.946 0.935

Table A.7: Resulting digitized cell thicknesses for LC 1 and unit circle failure criterion.

(a) DD-Design Tool

1.750 1.750 1.500 1.250 1.000 1.000 1.000

1.000 1.000 0.750 0.750 0.750 1.000 1.000

0.750 0.500 0.500 0.750 0.750 1.000 1.250

0.500 0.500 0.500 0.750 0.750 1.000 1.250

0.500 0.500 0.750 0.750 1.000 1.250 1.500

0.250 0.500 0.750 1.000 1.000 1.250 1.500

0.250 0.750 1.000 1.000 1.250 1.500 1.750

(b) Python Version

1.750 1.750 1.500 1.250 1.000 1.000 1.000

1.000 1.000 0.750 0.750 0.750 1.000 1.000

0.750 0.500 0.500 0.750 0.750 1.000 1.250

0.500 0.500 0.500 0.750 0.750 1.000 1.250

0.500 0.500 0.750 0.750 1.000 1.250 1.500

0.250 0.500 0.750 1.000 1.000 1.250 1.500

0.250 0.750 1.000 1.000 1.250 1.500 1.750
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Figure A.3: Double Double angles and averaged strength of all iterations for LC 1 and unit circle
failure criterion.
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A.3.3 Load case 1, Nettles circle failure criterion

Table A.8: Resulting cell thicknesses for LC 1 and Nettles circle failure criterion.

(a) DD-Design Tool

3.176 2.979 2.543 2.080 1.669 1.379 1.346

1.498 1.382 1.092 0.897 0.822 0.971 1.283

0.863 0.668 0.562 0.623 0.771 0.986 1.431

0.512 0.373 0.445 0.630 0.823 1.121 1.591

0.311 0.297 0.519 0.721 0.941 1.314 1.719

0.183 0.376 0.654 0.837 1.103 1.539 1.818

0.145 0.550 0.781 0.968 1.295 1.770 1.938

(b) Python Version

3.171 2.975 2.538 2.074 1.658 1.382 1.347

1.498 1.384 1.094 0.899 0.879 0.970 1.282

0.864 0.669 0.564 0.628 0.771 0.983 1.430

0.513 0.374 0.446 0.633 0.822 1.119 1.592

0.311 0.297 0.520 0.723 0.940 1.312 1.720

0.183 0.377 0.655 0.838 1.102 1.538 1.818

0.144 0.551 0.782 0.968 1.293 1.769 1.938

Table A.9: Resulting cell strengths for LC 1 and Nettles circle failure criterion.

(a) DD-Design Tool

0.945 0.931 0.923 0.928 0.953 0.999 1.020

0.963 0.983 1.027 1.083 1.095 1.070 1.012

1.021 1.070 1.135 1.121 1.077 1.033 0.978

1.097 1.173 1.152 1.078 1.042 0.995 0.967

1.177 1.215 1.094 1.042 1.014 0.970 0.971

1.265 1.162 1.058 1.024 0.991 0.958 0.982

1.291 1.109 1.042 1.013 0.975 0.957 0.996

(b) Python Version

0.945 0.931 0.924 0.928 0.954 0.999 1.020

0.962 0.982 1.027 1.082 1.092 1.070 1.012

1.020 1.068 1.133 1.118 1.076 1.034 0.978

1.096 1.172 1.151 1.075 1.043 0.996 0.967

1.176 1.215 1.093 1.041 1.015 0.971 0.971

1.265 1.161 1.056 1.024 0.992 0.959 0.982

1.291 1.107 1.041 1.013 0.976 0.957 0.996

Table A.10: Resulting digitized cell thicknesses for LC 1 and Nettles circle failure criterion.

(a) DD-Design Tool

3.250 3.000 2.750 2.250 1.750 1.500 1.500

1.500 1.500 1.250 1.000 1.000 1.000 1.500

1.000 0.750 0.750 0.750 1.000 1.000 1.500

0.750 0.500 0.500 0.750 1.000 1.250 1.750

0.500 0.500 0.750 0.750 1.000 1.500 1.750

0.250 0.500 0.750 1.000 1.250 1.750 2.000

0.250 0.750 1.000 1.000 1.500 2.000 2.000

(b) Python Version

3.250 3.000 2.750 2.250 1.750 1.500 1.500

1.500 1.500 1.250 1.000 1.000 1.000 1.500

1.000 0.750 0.750 0.750 1.000 1.000 1.500

0.750 0.500 0.500 0.750 1.000 1.250 1.750

0.500 0.500 0.750 0.750 1.000 1.500 1.750

0.250 0.500 0.750 1.000 1.250 1.750 2.000

0.250 0.750 1.000 1.000 1.500 2.000 2.000
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Figure A.4: Double Double angles and averaged strength of all iterations for LC 1 and Nettles
circle failure criterion.
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A.3.4 Load case 2, Tsai-Wu failure criterion

Table A.11: Resulting cell thicknesses for LC 2 and Tsai-Wu failure criterion.

(a) DD-Design Tool

1.863 1.458 1.117 0.908 0.737 0.612 0.645

0.545 0.554 0.452 0.363 0.356 0.422 0.625

0.098 0.113 0.113 0.123 0.208 0.346 0.708

0.019 0.022 0.025 0.040 0.101 0.261 0.813

0.004 0.004 0.007 0.016 0.044 0.180 0.963

0.001 0.001 0.004 0.009 0.026 0.146 1.200

0.000 0.002 0.004 0.008 0.027 0.126 1.496

(b) Python Version

1.861 1.457 1.116 0.908 0.736 0.612 0.645

0.545 0.554 0.452 0.362 0.369 0.421 0.624

0.099 0.114 0.113 0.124 0.208 0.347 0.708

0.020 0.022 0.025 0.040 0.101 0.261 0.813

0.004 0.004 0.007 0.016 0.044 0.179 0.963

0.001 0.001 0.004 0.009 0.026 0.146 1.200

0.000 0.002 0.004 0.008 0.027 0.126 1.494

Table A.12: Resulting cell strengths for LC 2 and Tsai-Wu failure criterion.

(a) DD-Design Tool

0.989 0.991 0.993 0.992 0.995 1.001 1.004

1.001 0.996 0.997 1.008 1.010 1.009 1.002

1.106 1.079 1.067 1.059 1.025 1.010 0.996

1.214 1.179 1.158 1.111 1.051 1.019 0.994

1.346 1.300 1.231 1.132 1.084 1.031 0.993

1.464 1.371 1.216 1.130 1.085 1.026 0.992

1.477 1.325 1.179 1.114 1.073 1.021 0.991

(b) Python Version

0.989 0.991 0.993 0.992 0.994 1.001 1.004

1.001 0.995 0.996 1.008 1.010 1.009 1.002

1.106 1.079 1.066 1.059 1.025 1.010 0.996

1.214 1.178 1.157 1.111 1.051 1.019 0.994

1.345 1.299 1.230 1.131 1.084 1.031 0.993

1.462 1.368 1.214 1.129 1.085 1.026 0.992

1.475 1.322 1.177 1.113 1.073 1.021 0.991

Table A.13: Resulting digitized cell thicknesses for LC 2 and Tsai-Wu failure criterion.

(a) DD-Design Tool

2.000 1.500 1.250 1.000 0.750 0.750 0.750

0.750 0.750 0.500 0.500 0.500 0.500 0.750

0.250 0.250 0.250 0.250 0.250 0.500 0.750

0.250 0.250 0.250 0.250 0.250 0.500 1.000

0.250 0.250 0.250 0.250 0.250 0.250 1.000

0.250 0.250 0.250 0.250 0.250 0.250 1.250

0.250 0.250 0.250 0.250 0.250 0.250 1.500

(b) Python Version

2.000 1.500 1.250 1.000 0.750 0.750 0.750

0.750 0.750 0.500 0.500 0.500 0.500 0.750

0.250 0.250 0.250 0.250 0.250 0.500 0.750

0.250 0.250 0.250 0.250 0.250 0.500 1.000

0.250 0.250 0.250 0.250 0.250 0.250 1.000

0.250 0.250 0.250 0.250 0.250 0.250 1.250

0.250 0.250 0.250 0.250 0.250 0.250 1.500
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Figure A.5: Double Double angles and averaged strength of all iterations for LC 2 and Tsai-Wu
failure criterion.
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A.3.5 Load case 2, unit circle failure criterion

Table A.14: Resulting cell thicknesses for LC 2 and unit circle failure criterion.

(a) DD-Design Tool

2.129 1.565 1.158 0.941 0.766 0.640 0.677

0.718 0.690 0.512 0.385 0.383 0.448 0.653

0.108 0.130 0.115 0.117 0.217 0.367 0.751

0.014 0.018 0.018 0.032 0.097 0.270 0.883

0.002 0.002 0.003 0.011 0.037 0.182 1.019

0.000 0.000 0.002 0.006 0.023 0.144 1.230

0.000 0.001 0.002 0.006 0.026 0.124 1.515

(b) Python Version

2.127 1.563 1.157 0.941 0.766 0.640 0.677

0.719 0.691 0.513 0.385 0.393 0.447 0.652

0.108 0.130 0.115 0.117 0.217 0.368 0.751

0.014 0.018 0.019 0.032 0.097 0.270 0.883

0.002 0.002 0.003 0.011 0.037 0.181 1.019

0.000 0.000 0.002 0.006 0.023 0.143 1.229

0.000 0.001 0.002 0.006 0.026 0.124 1.513

Table A.15: Resulting cell strengths for LC 2 and unit circle failure criterion.

(a) DD-Design Tool

0.995 0.997 0.998 0.996 0.996 1.001 1.002

0.991 0.988 0.988 1.000 1.004 1.005 1.001

1.062 1.041 1.037 1.043 1.015 1.005 0.998

1.180 1.146 1.137 1.095 1.037 1.013 0.996

1.352 1.303 1.229 1.119 1.069 1.024 0.996

1.537 1.421 1.228 1.129 1.072 1.022 0.995

1.556 1.380 1.197 1.116 1.058 1.019 0.994

(b) Python Version

0.995 0.997 0.998 0.996 0.996 1.001 1.002

0.991 0.987 0.988 1.000 1.004 1.005 1.001

1.062 1.041 1.037 1.043 1.015 1.005 0.998

1.179 1.146 1.136 1.095 1.037 1.013 0.996

1.351 1.303 1.228 1.118 1.070 1.024 0.996

1.536 1.420 1.227 1.129 1.072 1.022 0.995

1.554 1.378 1.196 1.116 1.058 1.019 0.994

Table A.16: Resulting digitized cell thicknesses for LC 2 and unit circle failure criterion.

(a) DD-Design Tool

2.250 1.750 1.250 1.000 1.000 0.750 0.750

0.750 0.750 0.750 0.500 0.500 0.500 0.750

0.250 0.250 0.250 0.250 0.250 0.500 1.000

0.250 0.250 0.250 0.250 0.250 0.500 1.000

0.250 0.250 0.250 0.250 0.250 0.250 1.250

0.250 0.250 0.250 0.250 0.250 0.250 1.250

0.250 0.250 0.250 0.250 0.250 0.250 1.750

(b) Python Version

2.250 1.750 1.250 1.000 1.000 0.750 0.750

0.750 0.750 0.750 0.500 0.500 0.500 0.750

0.250 0.250 0.250 0.250 0.250 0.500 1.000

0.250 0.250 0.250 0.250 0.250 0.500 1.000

0.250 0.250 0.250 0.250 0.250 0.250 1.250

0.250 0.250 0.250 0.250 0.250 0.250 1.250

0.250 0.250 0.250 0.250 0.250 0.250 1.750
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Figure A.6: Double Double angles and averaged strength of all iterations for LC 2 and unit circle
failure criterion.
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A.3.6 Load case 2, Nettles circle failure criterion

Table A.17: Resulting cell thicknesses for LC 2 and Nettles circle failure criterion.

(a) DD-Design Tool

3.234 2.490 2.006 1.712 1.471 1.412 1.657

0.967 0.899 0.726 0.762 0.942 1.076 1.477

0.138 0.160 0.163 0.318 0.633 0.924 1.457

0.019 0.025 0.034 0.120 0.343 0.699 1.507

0.003 0.003 0.011 0.045 0.140 0.387 1.518

0.000 0.001 0.008 0.024 0.059 0.179 1.502

0.000 0.001 0.007 0.021 0.043 0.118 1.639

(b) Python Version

3.231 2.489 2.006 1.712 1.472 1.411 1.657

0.968 0.900 0.727 0.763 0.920 1.077 1.477

0.138 0.160 0.163 0.318 0.634 0.923 1.457

0.019 0.024 0.034 0.119 0.345 0.699 1.506

0.003 0.003 0.011 0.045 0.140 0.387 1.517

0.000 0.001 0.008 0.024 0.059 0.179 1.502

0.000 0.001 0.007 0.021 0.042 0.118 1.638

Table A.18: Resulting cell strengths for LC 2 and Nettles circle failure criterion.

(a) DD-Design Tool

0.994 0.997 0.996 0.995 0.999 1.003 1.002

0.992 0.990 0.998 1.004 1.003 1.006 1.003

1.082 1.065 1.068 1.030 1.003 1.002 1.001

1.202 1.175 1.153 1.057 1.018 1.004 0.998

1.367 1.316 1.173 1.085 1.047 1.022 0.997

1.596 1.376 1.157 1.098 1.067 1.040 0.997

1.670 1.337 1.147 1.095 1.063 1.035 0.994

(b) Python Version

0.994 0.997 0.996 0.995 0.999 1.003 1.002

0.992 0.990 0.998 1.004 1.003 1.005 1.003

1.082 1.065 1.068 1.030 1.003 1.002 1.001

1.203 1.176 1.154 1.057 1.017 1.004 0.998

1.368 1.317 1.173 1.086 1.047 1.022 0.997

1.598 1.377 1.158 1.099 1.067 1.040 0.997

1.675 1.339 1.148 1.095 1.064 1.035 0.994

Table A.19: Resulting digitized cell thicknesses for LC 2 and Nettles circle failure criterion.

(a) DD-Design Tool

3.250 2.500 2.250 1.750 1.500 1.500 1.750

1.000 1.000 0.750 1.000 1.000 1.250 1.500

0.250 0.250 0.250 0.500 0.750 1.000 1.500

0.250 0.250 0.250 0.250 0.500 0.750 1.750

0.250 0.250 0.250 0.250 0.250 0.500 1.750

0.250 0.250 0.250 0.250 0.250 0.250 1.750

0.250 0.250 0.250 0.250 0.250 0.250 1.750

(b) Python Version

3.250 2.500 2.250 1.750 1.500 1.500 1.750

1.000 1.000 0.750 1.000 1.000 1.250 1.500

0.250 0.250 0.250 0.500 0.750 1.000 1.500

0.250 0.250 0.250 0.250 0.500 0.750 1.750

0.250 0.250 0.250 0.250 0.250 0.500 1.750

0.250 0.250 0.250 0.250 0.250 0.250 1.750

0.250 0.250 0.250 0.250 0.250 0.250 1.750
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Figure A.7: Double Double angles and averaged strength of all iterations for LC 2 and Nettles
circle failure criterion.
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