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and Filzmoser, 2009. As multiple OLS is a linear regression
method, calibration functions have to be linear in their pa-
rameters. In this paper a multivariable polynomial is chosen
as the calibration function to linearize the sensor behavior
over specification The polynomial function is capable of lin-
earizing continuous, differentiable sensor readouts to a given
specification In some cases, polynomial functions of very
high order are needed to reach the desired calibration accu-
racy. Then, it is useful to switch to other functions, reach-
ing accuracy goals with fewer parameters, or even switch to
other regression methods, e.g., support vector regression (see
Smola and Scholkopf, 2004).

2.1 Linear regression model for polynomial calibration

A calibration function gives the sensor output signal as a
function of the sensor’s raw values. Multiple regression cal-
ibration is used to generate an appropriate calibration func-
tion for given reference values. The OLS calibration method
is an integral part of research and production in many field
of applications (shown in Eriksson et al., 2006). A linear re-
gression model for N observations can be expressed as

y = Xβ + ε, (1)

where y is denoted as dependent variable (set of reference
values measured at the calibration points), X is a matrix of
independent variables (functions of sensor raw values at the
calibration points), β is the calibration parameter vector and
ε is the error term vector, describing the calibration errors at
the distinct calibration points.
In matrix notation, the calibration problem transforms to

 y1
.
.
.
yN

 =


1 x11 . . . x1M
.
.
.

.

.

. . . .
.
.
.

1 x1N . . . xNM


 β0

.

.

.
βM

+
 ε1

.

.

.
εN

 , (2)

whereM =N−1 and rank (X)=N.N calibration points are
required to calculate a unique solution for the calibration pa-
rameters β. Each single row of X describes an independent
variable vector of the calibration function used. An indepen-
dent variable vector

[
1, xij , . . ., xiM

]
describes transformed

raw sensor readouts at specifi reference sensor readout yi .
When calibration uses a polynomial function with a single
raw sensor readout signal,M =N−1 is also the polynomial
order K; so that

yk,poly = β0+β1xraw,k +β2x
2
raw,k + . . .+βKx

K
raw,k

=

K∑
i=0

βix
i
raw,k = β0+

M∑
i=1

βixk,i (3)

describes the polynomial approximation of yk , where k ∈
(1, . . .,N). If M <N − 1, the OLS fi produces an error εk .
When having p raw sensor readout signals, the polynomial

approximation expands to

yk,poly =
p∏
j=1

 Kj∑
i=0

βj,ix
i
raw,j,k

= β0+ M∑
i=1

βixk,i, (4)

needing

N =M + 1=
p∏
j=1

(
Kj + 1

)
(5)

calibration points to calculate a unique solution to the multi-
ple sensor signal calibration problem. The parameterKj , j ∈[
1, . . .,p

]
describes the polynomial order for each raw sensor

signal used for calibration.
For example, MEMS pressure sensors with raw tempera-

ture xraw,T and raw pressure readout xraw,P are usually cali-
brated with a polynomial of order 2 in temperature and order
1 in pressure:

ypoly =
(
β1,0+β1,1xraw,T +β1,2x

2
raw,T

)(
β2,0+β2,1xraw,P

)
= β0+β1xraw,T +β2x

2
raw,T +β3xraw,P +β4xraw,P xraw,T

+β5xraw,P x
2
raw,T . (6)

In this case, N = (2+ 1)(1+ 1), six calibration points
are required to determine all calibration parameters βi, i ∈
(0, . . .,5).

2.2 Calibration criteria and option selection

In the following ki denotes a set of calibration points. For
the example from Eq. (6), each ki contains three tempera-
ture points (T 1, T 2, T 3) and two pressure points (P1, P2)
coupled in a row, leading to

ki =


(P1,T 1)
(P1,T 2)
(P1,T 3)
(P2,T 1)
(P2,T 2)
(P2,T 3)

 . (7)

To decide which sets of calibration points give the best
sensor accuracy a reference data set is necessary. This refer-
ence data is measured at discrete values within the measure-
ment range of the sensor. In the following we assume that
all calibration points match the discrete values of the refer-
ence data. This leads to a finit number of possible sets of
calibration point combinations [k1, . . .,kL] . In Fig. 1 this is
shown for the example given above. The reference data was
measured for all points denoted with an “X”, the group of six
grey circles is one set of calibration points.
For each ki , the OLS regression is performed using the

polynomial from Eq. (4). This leads to B = [β1, . . .,βL] sets
of identifie polynomial parameters for a given sensor. To
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Figure 1. Six selected calibration points for digital barometric pres-
sure sensors, chosen from a reference data set (marked with ×);
recorded data is in ascending order to avoid temperature hysteresis
effects.

evaluate the calibration quality, the identifie parameters are
inserted into ypoly and used to calculate the calibration error
over the sensor working range. As calibration error indicator,
the calibration root mean squared error (rms error),

e =

√√√√ 1
R− 1

R∑
j=0

(
yj,poly(βj ,xj,raw,1, . . .,xj,raw,p)− yj,ref

)2
, (8)

is calculated from the reference data yref and the polynomial
approximation ypoly, whereR is the number of reference data
points. N < R describes the case, when more than one cal-
ibration option is available. In this case the calibration task
has

Ocal =

(
Rj

Kj + 1

)K
(9)

possible calibration options. For a multidimensional calibra-
tion problem

Ocal =
p∏
j=1

(
Rj

Kj + 1

)Kj
(10)

calibration options are possible, when the sensor is influ
enced by p signals/factors. From all calibration options,

C=
[
k1,k2, . . .,kOcal

]
, C ∈ RNxOcal , (11)

those are seen as optimal calibration options 0, where

0 =
[
ek1 , . . .,ekOcal

]
. (12)

2.3 Statistical evaluation

For a batch of I sensors, with evaluated rms errors atC, there
are

O0 = {01, . . .,0I } (13)

optimal calibration options. It can happen that some optimal
calibration options are identical. If the batch of sensors is
representative for a specifi sensor type, the most common
optimal calibration option should be preferred. However as
sensors are influence by multiple parameters, it is not very

likely to fin sensors having exactly the same calibration rec-
ommendation.
To retrieve more information about field of attraction for

best calibration options in a multidimensional optimization
problem, a selection criteria weaker than Eq. (12) is pro-
posed. The criteria

099 ⊂
[
ek1 , . . .,ekOcal

]
(14)

dismisses those 99% calibration options, which have the
highest rms errors according to Eq. (8). The 099 criteria is
applied to each sensor of a batch. This results in a calibration
recommendation for an investigated sensor type

0r99 =
[
099,1, . . .,099,I

]
, (15)

which will be used in the following as a multidimensional
indicator for close to optimal calibration points.

3 Software implementation

The proposed sensor calibration approach was implemented
in a framework, written in Python language, to investigate
commercial MEMS sensors with digital data readout. It uses
the Fortran package LAPACK (Linear Algebra PACKage)
to solve linear equations using LU (lower, upper) decom-
position (Strang, 1980) with partial pivoting and row inter-
change. A typical calibration workfl w is depicted in Ta-
ble 1. Four steps are needed to retrieve meaningful statisti-
cal data out of given digital raw sensor readout and reference
values: data processing, calibration, comparison and statisti-
cal evaluation. If the number of required calibration points
N is much smaller than the amount of available reference
points for calibration R or more than two independent sensor
readouts p are used for calibration, the amount of OLS calls
can get too high for desktop computers to solve within a rea-
sonable time. In consequence, the framework should only be
used for low- to medium-order polynomials, having only a
few independent readout signals used for calibration.

4 Application example – barometric MEMS pressure
sensors

In this section, the new framework is applied to three types of
commercial barometric MEMS pressure sensors, which are
calibrated against temperature and barometric pressure using
polynomials (see Kim et al., 2012; Köster et al., 2003; Bosch
Sensortec, 2008, 2013; EPCOS, 2013). Three batches of six
barometric MEMS pressure sensors each, of the type EPCOS
T5400, Bosch BMP 180 and Bosch BMP 085, are used to
calculate calibration point recommendations for a multipara-
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Table 1. A typical calibration workfl w using the proposed framework; data processing, calibration and evaluation are implemented in
independent modules.

Step 1: data processing Step 2: calibration Step 3: comparison Step 4: statistical evaluation

Build containers for measurement
data recorded from the sensor batch
and sort recorded data into seg-
ments.

Select calibration polynomial order
in each given sensor raw data read-
out signal, calculate all possible cal-
ibration options with Eq. (11) and
run sensor multiple OLS polyno-
mial calibrations for each sensor of
the given batch.

Test the calibration parameters
against the reference data set using
the rms error approach from Eq. (8)
with respect to Eq. (9), calculate
Eq. (15) in respect to Eq. (16). Re-
peat this procedure for each sensor
of the batch.

Use the framework for statisti-
cal evaluation (histograms, multi-
dimensional probability plots, cal-
ibration point recommendations,
nonlinearity plots, parameter and
calibration function influences)

metrical second-order calibration polynomial,

yBaro = β0+β1xraw,t +β2x
2
raw,t +β3xraw,p

+β4xraw,txraw,p +β5x
2
raw,txraw,p, (16)

using the sensor’s raw temperature readout xraw,t and a raw
pressure readout xraw,p.

4.1 Calibration setup

The test equipment uses a pressurized climate chamber, a
General Electric PACE 5000 pressure controller as pressure
calibration reference and a combination of Peltier elements
and a type K thermocouple for reference temperature con-
trol, attached close to the sensor site. Data is recorded using
a National Instruments USB-8451 I2C device, connected to
the digital barometric MEMS pressure sensors, soldered on
to a printed circuit board.

4.2 Calibration task

For all further investigations, it is assumed that the sensors
deliver reproducible results. As barometric MEMS pressure
sensors suffer from temperature hysteresis (see Waber et al.,
2013), data was recorded in ascending temperature order to
minimize the hysteresis effect.
Sensors used in the experiment have a measurement range

from −40 to 90 ◦C and from 300 to 1100 hPa. To test the
calculated sensor calibration, discrete points at [−40, −30,
. . . , 90 ◦C] are chosen as test temperature points and [300,
400, . . . , 1100 hPa] are chosen as test pressure points. Within
the measurement range, the sensor’s raw values, the refer-
ence pressure and the reference temperature are recorded in
a sequence to avoid disturbances from temperature hystere-
sis, as described in Fig. 1. At each point, the measurement
device waits until stable pressure and temperature conditions
are reached. Data recorded consists of time stamp, raw pres-
sure, raw temperature, reference pressure and reference tem-
perature. Six points are numerated and marked in grey. They
exemplarily stand for a calibration point set, as presented in
Eq. (7). In the following, this and all other possible calibra-
tion options will be evaluated to determine the best combina-
tions possible.

4.3 Calibration point recommendation

Data is recorded according to the description in Sect. 4.2.
For the calibration polynomial from Eq. (16), the most likely
best calibration point combinations were calculated using the
procedure taken from Table 1. The experimental results are
shown in a distribution landscape plot in Fig. 2. The plot ex-
emplarily separates the firs 3 calibration points (upper row in
Fig. 2) from the calibration points 4–6 (second row in Fig. 2).
This clustering into two distribution plots provides informa-
tion about how to combine temperature points, when calibra-
tion is restricted to only two possible pressure conditions, as
it can happen in industrial sensor production to save calibra-
tion time. Figure 2 shows, that the investigated T5400 sensor
should be calibrated at points at the borders of pressure range
(300 and 1100 hPa), while the other sensor types investigated
show a more heterogeneous calibration point recommenda-
tion (300, 900 and 1100 hPa).

5 Other applications

The proposed method can be applied to all sorts of sensors,
having one output signal and a at minimum one input signal.
For computational complexity reasons, the number of mea-
surement points for searching the optimal calibration option
should be low. In the pressure sensor example there are 9
pressure points and 14 temperature points, resulting in a grid
of 126 measurement points for calibration. This is already a
demanding task, for a polynomial order 3 in both parameters
(16 parameter polynomial), according to Eq. (10). The pro-
posed method can be applied to sensors like gyroscopes (see
Aggarwal et al., 2006) or any other kind of sensor, as long as
the number of parameters for calibration and the number of
measurement points investigated is comparable to the num-
bers from the barometric pressure sensor example. For the
gyroscope example in Aggarwal et al. (2006), the parame-
ter y is a combined error including scale factor and bias in
one direction, and the parameters of x include six calibra-
tion points. As directions x, y and z are assumed to be inde-
pendent, three independent optimal calibration models with
six calibration points can be calculated with the proposed
method.
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Figure 2. Recommended six calibration points for second order polynomial barometric pressure sensor calibration; frequency of the firs
three calibration points shown in the upper part; frequency of the last three calibration points shown in the lower part of the f gure.

6 Conclusions

The proposed framework was used to calibrate barometric
MEMS pressure sensors with six calibration points and a
second-order calibration polynomial in temperature and first
order in pressure. For all sensors investigated, points selected
at the upper and lower borders of temperature and pressure
range increase the likelihood of appearing within the best 1%
of the calibration options. The proposed framework deter-
mines all possible calibration options for a given set of sensor
measurement data using a linear polynomial regression ap-
proach and then applies the rms error over measured test con-
ditions as calibration benchmark. The worst 99% of the cal-
ibrations are dismissed to show areas of attraction for good
calibration options. For further research, calibration point ex-
trapolation will be implemented to reduce the amount of cal-
ibration points measured. This is used to achieve the sensor
specificatio required by statistically estimating offset values
for higher-order calibration polynomial parameters. Further
calibration uncertainty considerations will be evaluated ac-
cording to Waber et al. (2013), Heydorn and Anglov (2002)
and Brüggemann and Wennrich (2002).
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