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Introduction 

The initial wet web strength (IWWS) is one of the most important parameters for effective paper 
machine performance[1]. As previous research has shown, a huge variety of parameters is already 
known to have an impact on the IWWS [2]. Despite this fact, there is still an on-going discussion on 
possible explanations for the mechanisms of initial wet web strength development [3]. One fact is that 
the mechanisms for strength development at low solid contents are quite different from those of dry 
paper. However up to today it is not clearly defined which forces are addressed to which fibre 
characteristics at certain dryness levels, and their effect on the IWWS. The goal of this paper is to 
discuss existing explanation models for IWWS development and to complement these, generating an 
advanced model by the inclusion of own trial results. 

Methods 

For this study full factorial design of experiments (DOE) [4]was implemented in order to determine the 
weighting of important factors like dryness level, degree of refining, degree of hornification and 
conductivity on the IWWS. The goal was to use this DOE-method within the field of paper strength 
research in order to receive advanced information on the mechanisms of strength development at 
different dryness levels. The study was carried out with laboratory hand sheets, made of commercial 
bleached soft wood pulp, which was refined in a laboratory valley beater. The IWWS was measured 
according to a German standard DIN 54514.  

Results 

The data analysis showed that weighing of IWWS-influencing factors is possible. This may lead to a 
better understanding of paper strength development mechanisms at dryness levels below 50%. The 
applied method has proven to be reliable for the determination of impact factor weighing.  
This work carried out to what extent changed parameters changes the IWWS in relation to the 
baselines of beating and dryness. So it was shown that the effect of dryness level as well as the 
degree of beating are as expected positive and quite big. In relation to this, the effect of hornification is 
low and the one of conductivity is highly negative. These results give deeper insights into the 
mechanism of IWWS development and an advanced explanatory model will be presented. The 
generated knowledge provides the tool for a better understanding of the phenomena of IWWS 
development and enables the papermaker to optimize the production processes accordingly. 
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HYPOTHESIS (Erhard 2010) 

1.STAGE: Dry content < ~25 %  (Kendall 2001,  
      Paavilainen 1993, Weise 1996) 

– capillary forces between fibers, 
– frictional connection and form fit of fibers, 
– fiber collaps is starting and 
– initial fiber approach. 

 

2. STAGE: Dry content ~25 - ~50% 
      (McKenzie 1984, Pelton 1993,  
      Wagberg 1997, Nilsson 2000) 

 

– A flexible, visco-elastic and soft fiber is needed for inter fiber bonding 
 diffusion of microfibrils, polymer chains and polyelectrolytes from 

wood polysaccharides, especially from xylan 
− H-bridge-bonds 
− Van der Waals bonds 
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1.STAGE: CAPILLARY FORCES 

D: water film thickness 

With increased dewatering D is getting smaller  
and the capillary force increases. 
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Dryness 
< 25% 

F~ 1
𝐷2

 

Ek, Paper Chemistry and Technology 
2009, Berlin: Walter de Gruyter 
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1. STAGE: CAPILLARY FORCE 

Research Question: 
• This model acts on the assumption of rigid 

bodies. 
• Surfaces have to be smooth to develop 

proper adhesion. 
BUT 
Cellulose fibers are flexible and elastic! 
The fiber surface is rough! 
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1.STAGE: RESEARCH QUESTION 
  CAPILLARY FORCE 

• In-elastic, hornificated fibers should 
increase the capillary forces 
– High lignin content 
– Dried fibers 
– Low fiber swelling

• Smoth fiber surface  
– Virgin fibers,  
– Unbleached hardwood pulp 
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1. STAGE: FRICTIONAL CONNECTION 
AND FORM FIT ARE DEPENDING ON … 

− initial approach of fibers 
− entanglement of fibers 
− roughness of fibers 
− rigidity of fibers 
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AND FORM FIT ARE DEPENDING ON …AND FORM FIT ARE DEPENDING ON …
Dryness 
< 25% 
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1. STAGE: UN-SWOLLEN FIBER 

For example due to: 
• hornification of fibers 

– Dried pulp 
– Recycled pulp/paper  

• high pulp suspension conductivity 
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2. STAGE: FLEXIBLE, VISCOELASTIC, 
SMOOTH FIBER SURFACE… 

• Plastic flow of the fiber surface (Persson 2013) 

• Needed conditions: 
– High degree of swelling 
– Low Young‘s modulus of single fiber 
– Low amount of lignin 
– High degree of refining
– Many fibrils 
– High water retention value 
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2. STAGE: SWOLLEN FIBER 

For example due to 
• Low pulp suspension 

conductivity 
• Never dried pulp  
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Water 

GEL STRUCTURE:  
surface interaction: fiber-water 
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STRENGTH DEVELOPEMENT MODEL 

H-bridge-bonds 

Van der Waals bonds 

Fiber morphology/ form fit 

capillary 
forces 

sheet dryness % 

100 0 75 25 50 

rigid 
fibers 

flexible fibers 
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STRENGTH DEVELOPMENT:  
      dewatering and pressing 

(micro-) fibrils 
in water 

Dewatering  
and 

pressing 
Entanglement of   
(micro-) fibrils 
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APPROACH 

• Show the difference between the 
mechanisms at dryness levels  
< 25 % and > 25% 
– capillary forces via hornification and 
– response on salt content / conductivity. 

 
Show a possible weighing of the impact 

factors. 
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SAMPLE PREPARATION FOR HORNIFICATION 
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usage for trials 

conservation and storage 

pulping of each sample  with ultrapure water  and 
beating to °SR 20 and 32 

sample 1: fridge 
sample 2: drying at 20°C sample 3: drying at 105°C 

washing and centrifugation  with ultrapure water  
measuring of conductivity: desired value < 1µS/cm 

pulping with ultrapure water  

never dried softwood pulp (ECF) 
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HORNIFICATION vs. SR 
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HORNIFICATION vs. SR 

19 

W
W

S 
(N

m
/g

) 

Dryness 
> 25% 

in
cr

ea
si

ng
 h

or
ni

fic
at

io
n 


 



26.2.2014 

INTERMEDIATE RESULTS: Hornification 

• Hornification has a slightly positive effect 
on WWS at low dryness levels. 
 

• Hornification has a negative effect on 
WWS at high dryness levels. 
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SALT CONTENT (NaCl)  vs. SR 
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SALT CONTENT (NaCl) vs. SR 
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INTERMEDIATE RESULT:  
   Salt Content / Conductivity 

Salt concentration / conductivity has in any 
case a negativ effect on WWS. 
There is no significant effect on capillary 

forces. 
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CALCULATION OF EFFECTS 
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 𝑬𝑬𝑬𝑬𝑬𝑬𝒅𝒅𝒅𝒅𝑬𝒅𝒅 = 𝑪+𝑫
𝟐

 − 𝑨+𝑩
𝟐
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WEIGHING OF HORNIFICATION 
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DRYNESS LEVEL vs. HORNIFICATION 
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WEIGHING OF SALT CONTENT 
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HYPOTHESIS AND RANKING 

28 

1. Dry content < ~25 %    (Kendall 2001,  
      Paavilainen 1993, Weise 1996) 

1. frictional connection and form fit of fibers, 
2. capillary forces between fibers, 
3. fiber collaps is starting and 
4. initial approach of fibers. 

 

2. Dry content ~25 - ~50% 
      (McKenzie 1984, Pelton 1993, 
      Wagberg 1997, Nilsson 2000) 

 

 A flexible, visco-elastic and soft fiber is needed for inter fiber bonding 
 diffusion of microfibrils, polymer chains and polyelectrolytes from  

wood polysaccharides, especially from xylan 
 H-bridge-bonds 
 Van der Waals bonds 
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CONCLUSION 

Paper strength at dryness levels  
 < 25 % is mainly influenced by means of the 

fiber morphology. 
Promoted by rigid and hornificated fibers with low 

water retention value. 
 > 25 % is mainly influence by the fiber flexibility. 
Increasing the amount of fiber contact points for 

H-bridge-bond generation. 
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APPLICABILITY 

Important questions to be answered before and 
during the optimization prozess: 

– What dryness levels are reached at the first open 
draw? 

– Which mechanism should/must be adressed for 
optimization? 

– Pay attention to possible interactions in the 
process e.g. 

• Fiber swelling and drying efficiency. 
• Conductivity and additive efficiency. 
• … . 
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COOPERATION MATRIX – BFS INF 1000_11 
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