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1. Introduction 
 

 The intent of this paper is to further 

explore the methodology applied to the class 

imbalance problem posed in M. Zięba et al. 

(2014) [68].  In the original paper, a boosted 

Support Vector Machine ensemble was created 

and decision rules were extracted using a JRIP 

algorithm, thus sacrificing some accuracy for a 

more interpretable model.  Our goal is to 

determine whether, at the cost of 

interpretability, a higher degree of accuracy can 

be achieved using Random Forests, therefore we 

will compare our results to those of the boosted 

SVM ensemble itself.  In the process, we will 

explore different strategies for tackling class 

imbalance and ultimately determine which of 

these achieves the best results in the context of 

our dataset.   

The data, retrieved from the UCI 

Machine Learning Repository [23], were 

originally obtained from the Department of 

Thoracic Surgery of the Medical University of 

Wroclaw and pertain to whether patients who 

had undergone major lung resections for primary 

lung cancer survived a one-year period following 

their surgery.  While originally containing data 

for over 1,200 patients, the final dataset utilized 

by the authors, after removing observations with 

missing values, contains information on only 470 

patients.  Of these, 400 survived the one-year 

period, while the other 70 died.  Additionally, 

while the original dataset contained 139 pre-, 

peri-, and post-operative predictors, the final 

dataset contains only pre-operative predictors, 

as the authors were interested in providing 

doctors with a means of assessing the risk of 

performing surgery on a given patient before the 

surgery is carried out.  Of 36 original pre-

operative predictors, 16 were chosen for the final 

dataset by performing feature selection with an 

information gain criterion [63].  Of these, three 

predictors are numeric, three are categorical,  

Table 1: Variable descriptions for thoracic surgery dataset 

 

 

and ten are binary.  Descriptions of the variables 

are given in Table 1.   

The remainder of this paper will be 

organized as follows: first, we will review the 

methodologies of Decision Trees and Random 

Forests; next, we will discuss the difficulties of 

class imbalance and the different strategies we 

will employ to tackle them; and finally, we will 

summarize the results of our employed methods 

and compare them with those of the original 

paper.  

ID Description InfoGain 
PRE14 T in clinical TNM (size of the 

original tumor, from OC11 
(smallest) to OC14 (largest)) 

0.029 

DGN Diagnosis (specific 
combination of ICD-10 codes 
for primary and secondary as 
well as multiple tumors if any) 

0.013 

PRE4 Forced vital capacity (FVC) 0.008 
PRE7 Pain (pre-surgery) 0.008 
AGE Age at surgery 0.008 

PRE6 Performance status (Zubrod 
scale) 

0.007 

PRE11 Weakness (pre-surgery) 0.004 
PRE9 Dyspnoea (pre-surgery) 0.004 

PRE10 Cough (pre-surgery) 0.003 
PRE8 Haemoptysis (pre-surgery) 0.003 

PRE25 PAD (peripheral arterial 
diseases) 

0.003 

PRE19 MI up to 6 months 0.003 
PRE5 Volume that has been exhaled 

at the end of the first second of 
forced expiration (FEV1) 

0.002 

PRE32 Asthma 0.002 
PRE30 Smoking 0.002 
PRE17 Type 2 DM (diabetes mellitus) 0.002 

Risk1Y 1-year survival period (True 
value if patient died) 
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2. Decision Trees 
 

 In order to understand Random Forests, 

we must first familiarize ourselves with Decision 

Trees.  Decision Tree Classifiers work by 

recursively partitioning the feature space of the 

data through a series of logical questions, which 

split the data into disjunct sets of decreasing size 

until some stopping rule is fulfilled or until each 

terminal “node” of the tree contains only one 

observation.  These questions take the following 

forms: 

• Is 𝑥 ≤ 𝑐?, 𝑐 constant (for quantitative 

variables) 

• Is 𝑥 ∈ 𝐴?, 𝐴 category (for categorical 

variables) 

Depending on whether or not a data point fulfills 

this criterion, it will be sent to a left (in the case 

of a “yes”) or right (in the case of a “no”) 

“daughter” node.  At each split, the set of all such 

questions across all variables is considered, and 

the question which creates the split with the 

greatest decrease in “node impurity” is chosen.  

Node impurity is typically defined either by the 

Gini Index for CART models [13] or by 

information gain for ID3, C4.5, and C5.0 models 

[46, 47].  If a tree is allowed to be split until all 

terminal nodes are “pure,” i.e. until they contain 

only observations from one class, overfitting will 

occur.  To avoid this, stopping rules can be 

introduced to the model.  Possible examples of 

stopping rules are minimum terminal node sizes, 

maximum tree lengths, and minimum impurity 

decreases arising from a split.  Alternatively, a 

tree can be grown to maximum size and be 

“pruned” backwards, as outlined in [13].  Figure 

1 shows an example tree for the thoracic surgery 

dataset using only two numeric variables, “PRE4” 

and “AGE,” and the resulting partition of the 

feature space.  Note that some splits resulted in 

a prediction of “FALSE” for both daughter nodes.  

This is because “TRUE” did not occur as 

frequently in either of the two daughter nodes  

 

Figure 1a: Example tree for thoracic surgery dataset 

 

Figure 1b: Partition of feature space for example tree 

 

 

after the split, and the predicted class for a 

terminal node is the most frequently occurring 

class in that node based on the training data. 

Decision Trees are particularly well 

suited for handling categorical data, as the 

nature of the splitting algorithm eliminates the 

need to convert categorical attributes into binary 

variables.  Continuous variables are treated as if 

they were countable, as the question “is 𝑥 ≤ 𝑐?” 

has only as many possible values for 𝑐 as there 

are unique values for the attribute.  
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3. Random Forests 
 

 Decision Trees are susceptible to the 

bias-variance tradeoff [30]: a tree of maximum 

size will be unbiased, but will not be robust to 

noise due to overfitting.  Similarly, a smaller tree 

may generalize better, but will consequently be 

biased due to impure terminal nodes.  Random 

Forests [12] present a solution to this problem 

through the creation of an ensemble of 

decorrelated trees.  Low correlation between 

individual trees is guaranteed in two ways: first, 

only a random subset of features is considered 

for possible splits at each non-terminal node; and 

second, each tree is grown using a bootstrap 

sample from the training set as large as the 

training set itself, a method known as “bootstrap 

aggregating” or “bagging” [10].  This provides 

Random Forests with a built-in method for 

estimating the generalization error, known as the 

“out-of-bag” estimate [11] (for conventional 

reasons, however, we will use ten-fold cross-

validation [52] to estimate the errors of our 

models for the thoracic surgery dataset).  Trees 

in the ensemble are grown to maximum size and 

are not pruned.  The ensemble is grown to 

contain a large number of trees which, in the final 

model, each cast a vote for the class of a “test” 

data point.  The final predicted class is the class 

with the most votes.  The benefit of using a 

Random Forest model, as opposed to a Decision 

Tree, is that it is more robust to noise while 

maintaining low bias.  

 

4. Class Imbalance 
 

In this section, we will clarify what class 

imbalance is, the issues that it causes in 

classification problems, and why class imbalance 

causes these issues. 

Table 2: Confusion matrix for Random Forest on thoracic 
surgery dataset 

 
 
 
Actual 

 Predicted Class 
Error 

FALSE TRUE  
FALSE 40 0 0 
TRUE 7 0 1 

 

Class imbalance exists in any dataset 

where the prior probabilities of its classes differ.  

According to this definition, nearly any dataset 

with labeled data will possess some degree of 

class imbalance.  However, when referring to a 

class imbalance problem, we typically mean a 

situation where a dataset contains many more 

negative (majority) examples than positive 

(minority) examples.  A measure of the degree of 

imbalance present in a dataset is the Imbalance 

Ratio [45], defined as the number of negative 

examples divided by the number of positive 

examples.  In the thoracic surgery dataset, we 

have 400 “FALSE” examples and 70 “TRUE” 

examples; thus, our Imbalance Ratio is 5.71. 

The problem that class imbalance poses 

is that most algorithms are poor at correctly 

classifying positive examples, often with 

accuracies of 0% [25], yet it is often the case that 

we are more concerned with accurately 

predicting these minority class examples.  

Without any strategy for addressing this issue, 

models will often be trivial, as they are nearly or 

completely incapable of distinguishing between 

the two classes.  To see this, consider the 

confusion matrix for a Random Forest model 

trained with 90% of the thoracic surgery data in 

Table 2.  The model simply predicts all of the test 

examples as “FALSE,” giving an error rate of 

14.9%.  In fact, the more imbalance present in a 

dataset, the lower the estimated error will be.  As 

a result, normal measures of accuracy and error 

are deceptive when dealing with imbalanced 

data, therefore we will need to use alternative 

performance measures in order to judge the 

quality of our models. 
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4.1 Performance Measures 
 

 A number of performance measures 

exist for models on imbalanced datasets.  The 

following are among the most popular: 

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

• 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

• 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

• 𝐺𝑚𝑒𝑎𝑛 =  √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

Note that the sensitivity and specificity are the 

same as the true positive rate and true negative 

rate, respectively.  While it is conventional under 

ordinary circumstances to report model 

performance in terms of error, it should be noted 

that the above measures are all accuracy 

measures and should be maximized. 

A fifth performance measure is the 

receiver operating characteristic (ROC) curve 

[24].  The ROC curve plots the false positive rate 

of a model on the x-axis against the true positive 

rate on the y-axis.  The different values along the 

curve are obtained by allowing the threshold for 

a positive classification to vary.  In the standard 

Random Forest model, we classify an observation 

as positive when there are more votes for the 

minority class than for the majority class; in other 

words, the threshold is 50%.  An ideal model 

would be found in the upper left corner of the 

ROC curve and the area under the curve (AUC) 

would be equal to 1.  It has been argued that a 

Precision-Recall (PR) curve is preferable to the 

ROC curve for classification with imbalanced data 

[51], though both are generally accepted. 

 

4.2 Difficulties of Imbalanced Data 
 

To understand the rationale of the 

methods for tackling class imbalance, it is 

important that we understand why class 

imbalance makes classification of positive 

examples difficult.  The following reasons are 

given in [25]: 

1. Small sample size: If positive examples 

are sufficiently rare, or if the size of the 

training set is small, there may not be 

enough information on the minority 

class for an algorithm to identify the 

subspace occupied by it. 

2. Class separability: If our data were 

perfectly separable, then an algorithm 

capable of reasonably approximating the 

decision boundary should have no 

difficulty distinguishing between the two 

classes.  Thus, the class imbalance 

problem implies at least a minimal 

degree of class inseparability.  Plots 1-3 

of Figure 2 contrast datasets with partial 

and complete inseparability, as well as 

low vs. high variance of the minority class 

in completely inseparable datasets.  

These datasets all possess the same level 

of imbalance, with an Imbalance Ratio of 

10.  As the degree of class inseparability 

in the data increases from Plot 1 to Plot 

3, we see that the cost of greater 

accuracy for positive examples increases 

in terms of accuracy for negative 

examples. 

3. Small disjuncts: If the subspace occupied 

by the minority class does not constitute 

a single region, but rather multiple 

subregions, then the difficulties of small 

sample size and class inseparability may 

be compounded by this fact, as the 

disjuncts may be inseparable 

themselves, and will contain only a 

fraction of the positive examples.  High 

dimensionality in the data often causes 

small disjuncts.  Plot 4 of Figure 2 shows 

an example of a dataset containing small 

disjuncts. 
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Figure 2: Different types and degrees of class inseparability 

 

5.  Methods for Imbalanced Data 
 

In this section, we will discuss the 

methods we can use to address the class 

imbalance in our data.  These methods can be 

broken down into four categories: data-level, 

cost-sensitive, ensemble, and algorithm-level 

approaches [25]. 

 

5.1 Data-Level Preprocessing Methods 
 

 Data-level or preprocessing methods 

address class imbalance by changing the 

frequencies of observations within either class, 

thus directly influencing their prior probabilities.  

This is achieved by means of two methods: 

oversampling and undersampling.  When 

oversampling, one creates more positive 

observations by randomly sampling the minority 

class training examples with replacement, and 

appending these on to the existing training set.  

Conversely, undersampling is performed by 

randomly sampling without replacement from 

the negative examples of the training set, and the 

entirety of the majority examples are replaced 

with this new, smaller training set.  Both methods 

increase the prior probability of the minority 

class and decrease that of the majority class in 

the training set. 

 In practice, both of these methods are 

flawed, but they constitute the foundational 

ideas behind all other preprocessing methods for 

class imbalance.  Undersampling can result in a 

loss of useful information, while oversampling 

can overfit the model to individual positive 

examples.  The remaining methods in this section 
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will seek to modify the oversampling and 

undersampling procedures in order to address 

their fundamental issues. 

 

5.1.1 One-Sided Selection 
 

 One-sided selection offers a solution to 

the problem of information loss through 

undersampling by proposing that certain 

negative examples are more informative for 

classification than others [36].  Majority class 

samples are sorted into four categories: (1) 

samples suffering from class-label noise; (2) 

borderline examples which can be easily 

misclassified due to attribute noise; (3) 

redundant examples which are not at risk of 

being misclassified, but which increase 

classification costs; and (4) “safe” examples 

which should be kept in the training set.  The goal 

of one-sided selection is to remove all borderline, 

noisy, and redundant samples from the majority 

class, leaving only the safe examples.  Redundant 

examples can be identified by classifying each 

sample in the training set according to the 1-NN 

(first nearest neighbor) rule [22], using only the 

positive examples and one randomly selected 

negative example for comparison.  Meanwhile, 

borderline and noisy examples can be identified 

with the help of Tomek links [59], defined as 

follows: 

 Denote 𝛿(𝑥, 𝑦) as the distance 

between 𝑥 and 𝑦.  The pair (𝑥, 𝑦) is 

called a Tomek link if no example 𝑧 

exists such that 𝛿(𝑥, 𝑧) < 𝛿(𝑥, 𝑦) or 

𝛿(𝑦, 𝑧) < 𝛿(𝑦, 𝑥). 

The procedure for one-sided selection is outlined 

in Algorithm 1. 

 

Algorithm 1 One-Sided Selection 

1.  Let 𝑆 be the original training set. 

2.  Initially, 𝐶 contains all positive examples from 

𝑆 and one randomly selected negative 

example. 

3. Classify 𝑆 with the 1-NN rule using the 

examples in 𝐶, and compare the assigned 

concept labels with the original ones.  Move 

all misclassified examples into 𝐶 that is now 

consistent with 𝑆 while being smaller. 

4. Remove from 𝐶 all negative examples 

participating in Tomek links.  This removes 

those negative examples that are believed 

borderline and/or noisy.  All positive 

examples are retained.  The resulting set is 

referred to as 𝑇. 

 

5.1.1.1 A Note on Distance Measures 
 

 Because our data contain both numeric 

and categorical features, proper scaling between 

continuous and nominal predictors must occur to 

ensure that neither type of variable has greater 

influence on the calculated distance.  One 

suitable distance measure is the Heterogeneous 

Value Distance Metric (HVDM) [61], defined as 

follows: 

𝐻𝑉𝐷𝑀(𝑥, 𝑦) = √∑ 𝑑𝑎
2(𝑥𝑎, 𝑦𝑎)

𝑚

𝑎=1

 

where 𝑥 and 𝑦 are input vectors, 𝑑𝑎(𝑥, 𝑦) is the 

difference between 𝑥 and 𝑦 for attribute 𝑎, and 

𝑚 is the number of attributes.  𝑑𝑎(𝑥, 𝑦) takes on 

the following values: 

𝑑𝑎(𝑥, 𝑦) =

{

1, if 𝑥 or 𝑦 is unknown; otherwise …
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎 , if 𝑎 is nominal

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎, if 𝑎 is continuous 
. 
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Furthermore, 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎(𝑥, 𝑦) =

 √∑ |
𝑁𝑎,𝑥,𝑐

𝑁𝑎,𝑥
−

𝑁𝑎,𝑦,𝑐

𝑁𝑎,𝑦
|

2
𝐶
𝑐=1 , 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎(𝑥, 𝑦) =
|𝑥−𝑦|

4𝜎𝑎
, 

where 𝑁𝑎,𝑥 is the number of instances in the 

training set that have value 𝑥 for attribute 𝑎, 

𝑁𝑎,𝑥,𝑐 is the number of instances in 𝑁𝑎,𝑥 that 

have output class 𝑐, and 𝐶 is the number of 

classes.  Note that values of 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎 

are constrained between zero and √𝐶 and, 

assuming differences of continuous variables are 

normally distributed, dividing by four standard 

deviations gives 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎 a range of 

approximately one.  However, experiments in 

[61] found very little difference between the 

average distances of 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎 and 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎 even for multi-class 

problems with many output levels. 

 

5.1.2 SMOTE 
 

The Synthetic Minority Oversampling 

Technique (SMOTE) [16] provides a solution to 

the issue of overfitting individual positive 

examples when performing oversampling.  

Instead of using random sampling with 

replacement, new data is synthesized by linearly 

interpolating between minority class samples.  

For a chosen value of 𝑘, a single neighbor of the 

𝑘 nearest positive neighbors of a positive 

example is selected at random.  The differences 

between the attributes of these two examples 

are multiplied by a random value between zero 

and one, and are then added to the values of the 

attributes of the original example.  Thus, a new 

example is synthesized at a random location on a 

line between the original example and one of its 

nearest minority class neighbors.  This allows a 

model to identify broader classification regions 

for the minority class, instead of individual 

examples. 

The amount of data synthesized is 

determined by an “oversample percentage” 𝑁.  

For values of 𝑁 less than 100, 𝑁% of the size of 

the minority class training set 𝑇 (rounded to the 

nearest integer) new examples will be 

synthesized.  Once the number of examples to be 

synthesized is known, a sample of the same size 

is drawn from 𝑇 without replacement, and one 

new example is synthesized for each point in the 

sample.  For values of 𝑁 greater than or equal to 

100, 𝑁 signifies the number of new examples to 

be synthesized for each example in the training 

set.  Thus, beyond a value of 100, 𝑁 must be a 

multiple of 100. 

Algorithms 2 and 3 give the pseudocode 

for the SMOTE algorithm and the function for 

generating synthetic examples, respectively.  

Note that a method for synthesizing data with 

nominal attributes is not detailed.  In [16], the 

authors considered separate methods for data 

with nominal or mixed features, SMOTE-N and 

SMOTE-NC.  These methods propose choosing 

the value of a categorical attribute of a 

synthesized example to be the mode of its 𝑘 

nearest positive neighbors.  In many software 

applications, however, the value is simply 

randomly chosen to be either the value of the 

original point or that of the selected nearest 

neighbor. 

 

5.1.3 SMOTE-Tomek 
 

Oversampling and undersampling 

methods can also be combined in order to 

mitigate the issues associated with either 

approach.  SMOTE-Tomek [4] is one such hybrid 

technique, combining synthetic data generation 

with one-sided selection.  Because the number of 

Tomek links in a data set depends on the number 



8 
 

Algorithm 2 SMOTE 

1.  function 𝑆𝑀𝑂𝑇𝐸(𝑇, 𝑁, 𝑘) 
Input: Number of minority class samples 𝑇; Amount of SMOTE 𝑁%; Number of nearest neighbors 𝑘 
Output: (𝑁/100) ∗ 𝑇 synthetic minority class samples 
Variables: 𝑆𝑎𝑚𝑝𝑙𝑒[][]: array for original minority class samples; 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥: keeps a count of number 

of synthetic samples generated, initialized to 0; 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[][]: array for synthetic samples 
2. if 𝑁 < 100 then 
3. Randomize the 𝑇 minority class samples 
4. 𝑇 = 𝑁/100 ∗ 𝑇 
5. 𝑁 = 100 
6. end if 
7. 𝑁 = (𝑖𝑛𝑡)𝑁/100         #The amount of SMOTE is assumed to be in integral multiples of 100. 
8. for 𝑖 = 1 to 𝑇 do 
9. Compute KNN for 𝑖, and save the indices in the 𝑛𝑛𝑎𝑟𝑟𝑎𝑦 
10. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐸(𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦) 
11. end for 
12.  end function 

 

Algorithm 3 Function to generate synthetic samples 

1. function 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐸(𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦) 
 Input: Instances to create 𝑁, Original sample index 𝑖, Array of nearest neighbors 𝑛𝑛𝑎𝑟𝑟𝑎𝑦 
 Output: 𝑁 new synthetic samples in 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 array 
2. while 𝑁 ≠ 0 do 
3. 𝑛𝑛 =  𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑘) 
 4. for 𝑎𝑡𝑡𝑟 = 1 to 𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑠 do             #𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑠 = Number of attributes 

5. Compute: 𝑑𝑖𝑓 = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑛𝑛𝑎𝑟𝑟𝑎𝑦[𝑛𝑛]][𝑎𝑡𝑡𝑟] − 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟] 

6. Compute: 𝑔𝑎𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 
7. 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥][𝑎𝑡𝑡𝑟] = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟] + 𝑔𝑎𝑝 ∙ 𝑑𝑖𝑓 
8. end for 
9. 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 + + 
10. 𝑁 = 𝑁 − 1 
11. end while 
12.  end function 

 

of examples in the minority class, the SMOTE 

component of this technique is carried out first. 

 

5.1.4 Other Data-Level Preprocessing 

Methods 
 

 Many other extensions of oversampling, 

undersampling, and hybrid resampling 

approaches have been developed.  Other 

undersampling techniques include the 

Condensed Nearest Neighbor Rule (US-CNN) 

[29], the Neighborhood Clearing Rule (NCL) [38], 

Class Purity Maximization (CPM) [66], 

Undersampling Based on Clustering (SBC) [64, 

65], and NearMiss approaches [67], among more 

advanced techniques involving evolutionary 

algorithms, ensembles, or clustering [25].  Most 

oversampling methods are extensions of SMOTE, 

for example: Borderline-SMOTE [28], Adjusting 

the Direction of the Synthetic Minority Class 

Examples (ADOMS) [56], Adaptive Synthetic 

Sampling Approach (ADASYN) [31], Random 
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Oversampling Examples (ROSE) [43], Safe-Level- 

SMOTE [14], Density-Based SMOTE (DBSMOTE) 

[15], Majority Weighted Minority Oversampling 

Technique (MWMOTE) [3], and Mahalanobis 

Distance-Based Oversampling Technique (MDO) 

[1].  Additional hybrid methods include SMOTE 

with Edited Nearest Neighbor Rule (SMOTE-ENN) 

[5], Agglomerative Hierarchical Clustering (AHC) 

[21], SPIDER [7, 55], SMOTE-RSB [48], and 

SMOTE-IPF [50]. 

 

5.2 Cost-Sensitive Learning 
 

 Cost-sensitive learning introduces the 
idea of unequal misclassifications costs for 
different types of misclassification as a solution 
to class imbalance.  Consider the 0-1 loss function 
of a typical error-minimizing model: correctly 
classified observations carry a misclassification 
cost of zero, while misclassified examples have a 
misclassification cost of one; minimizing the sum 
of the misclassification costs of the model, or 
simply minimizing the number of misclassified 
observations, is therefore equivalent to 
minimizing the error [25].   Assuming different 
costs for different types of misclassification, we 
can obtain a cost matrix like that illustrated in 
Table 3. 

 We can express the expected cost 𝑅(𝑖|𝑥) 

of classifying instance 𝑥 as belonging to the 𝑖-th 

class as: 

𝑅(𝑖|𝑥) = ∑ 𝑃(𝑗|𝑥) ∙ 𝐶(𝑖, 𝑗)

𝑀

𝑗=1

, 

where 𝐶(𝑖, 𝑗) is the cost associated with 
misclassifying an observation belonging to the 𝑗-
th class as belonging to the 𝑖-th class, and 𝑃(𝑗|𝑥) 
is the estimated probability of instance 𝑥 
belonging to the 𝑗-th class, with a set of 𝑀 
classes.  Predicting an observation as belonging 
to the class for which the expected cost is lower, 
we can express the condition for which we will 
predict an observation as belonging to the 
minority class as: 

Table 3: Cost matrix 

 True 
positive 

True 
negative 

Predicted 
positive 

𝐶(0,0) 𝐶(0,1) 

Predicted 
negative 

𝐶(1,0) 𝐶(1,1) 

 

𝑃(0|𝑥) ∙ 𝐶(1,0) + 𝑃(1|𝑥) ∙ 𝐶(1,1) ≤ 

𝑃(0|𝑥) ∙ 𝐶(0,0) + 𝑃(1|𝑥) ∙ 𝐶(0,1) 

After collecting like terms and accounting for 
𝐶(0,0) = 𝐶(1,1) = 0, this reduces to: 

𝑃(0|𝑥) ∙ 𝐶(1,0) ≤ 𝑃(1|𝑥) ∙ 𝐶(0,1). 

Finally, we obtain a threshold 𝑝∗ where we 
classify an observation 𝑥 as positive if 
𝑃(1|𝑥) ≥ 𝑝∗: 

𝑝∗ =
𝐶(1,0)

𝐶(1,0) − 𝐶(0,1)
. 

Thus, as we increase the cost associated with a 

false negative misclassification, we bias our 

model in favor of positive examples by raising the 

threshold required for classifying an observation 

as negative. 

When using instance weighting for 
classification trees [58], misclassification costs 
are converted to weights for individual classes.  
These weights then impact the impurity 
decreases when splitting a node, as well as the 
class ratios in the end nodes.  Weighted 
Random Forests [18] apply this same 
methodology to their trees. 

 

5.3 Ensemble Methods 
 

 Ensemble methods for imbalanced 
data consist of two kinds of approaches: 
bagging and boosting.  Both kinds of 
approaches are characterized by training 
many models, using a “weak learner” as a base 
classifier, and letting these models vote on the  
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Algorithm 4 AdaBoost 

1. Input: Training set 𝑆 = {𝒙𝑖, 𝑦𝑖}, 𝑖 = 1, … , 𝑁; and 𝑦𝑖 ∈ {−1, +1}; 𝑇: Number of iterations; 𝐼: Weak 
learner 

 Output: Boosted classifier: 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 ), where ℎ𝑡, 𝛼𝑡 are the induced classifiers 

(with ℎ𝑡(𝑥) ∈ {−1, +1}) and their assigned weights, respectively 
2. 𝐷1(𝑖) ← 1/𝑁 for 𝑖 = 1, … , 𝑁 
3. for 𝑡 = 1 to 𝑇 do 
4. ℎ𝑡 ← 𝐼(𝑆, 𝐷𝑡) 
5. 𝜀𝑡 ← ∑ 𝐷𝑡(𝑖)𝑖,𝑦𝑖≠ℎ𝑡(𝑥𝑖)  

6. if 𝜀𝑡 > 0.5 then 
7. 𝑇 ← 𝑡 − 1 
8. return 
9. end if 

10. 𝛼𝑡 =
1

2
ln (

1−𝜀𝑡

𝜀𝑡
) 

11. 𝐷𝑡+1(𝑖) = 𝐷𝑡(𝑖) ∙ 𝑒(−𝛼𝑡ℎ𝑡(𝒙𝑖)𝑦𝑖) for 𝑖 = 1, … , 𝑁 
12. Normalize 𝐷𝑡+1 to be a proper distribution 
13. end for 

 

final prediction of test data.  The two 
approaches differ in how they guarantee the 
uniqueness of their constituent classifiers (an 
ensemble of identical classifiers would be 
meaningless).  As noted earlier, Random 
Forests are a kind of bagged classifier.  Bagging 
[10] works by performing random sampling 
with replacement to construct the training 
sets of the individual classifiers, while boosting 
[53] assigns weights to individual samples in 
the training set, and updates these after the 
creation of each new classifier according to 
whether or not these samples were 
misclassified when resubstituting them into 
the most recently created classifier.  Updating 
the weights shifts the decision boundary 
towards the misclassified observations and 
away from the correctly classified 
observations.  Some ensembles, such as 
AdaBoost [26], the representative algorithm 
for the family of boosting algorithms, assign 
additional weights to the individual classifiers 
themselves, and make a final prediction based 
on a weighted vote.  The pseudocode for the 
AdaBoost algorithm is outlined in Algorithm 4.  
A Boosted Random Forest [44] is a Random 
Forest of boosted trees, where the weights are 
normalized to form a probability distribution 
to instruct the bagging procedure. 

5.3.1 SMOTEBoost and SMOTEBagging 

 

 Just as oversampling and undersampling 

methods can be combined, so too can 

resampling methods be used in conjunction with 

ensemble methods.  Not to be confused with 

“First SMOTE then Boost,” SMOTEBoost [17] 

incorporates SMOTE into a boosting algorithm, 

the procedure for which is detailed in Algorithm 

5.  Similarly, SMOTEBagging [34, 60] performs 

SMOTE on the training set before a bag is drawn 

for each weak learner in the ensemble. 

 

5.3.2 Other Ensemble Methods 
 

 Many other bagging, boosting, and 

hybrid/double ensemble methods have been 

developed specifically for imbalanced datasets.  

To name a few: UnderBagging [2], RUSBoost [54], 

EUSBoost [27], and EasyEnsemble [42]. 
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Algorithm 5 SMOTEBoost 

1. Given: Set 𝑆 {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} 𝑥𝑖 ∈ 𝑋, with labels 𝑦𝑖 ∈ 𝑌 = {1, … , 𝐶}, where 𝐶𝑚, (𝐶𝑚 < 𝐶) 
corresponds to a minority class. 

2. Let 𝐵 = {(𝑖, 𝑦): 𝑖 = 1, … , 𝑚, 𝑦 ≠ 𝑦𝑖} 
3. Initialize the distribution 𝐷1 over the examples, such that 𝐷1(𝑖) = 1/𝑚. 
4. For 𝑡 = 1, 2, 3, 4, … , 𝑇 
5. Modify distribution 𝐷𝑡 by creating 𝑁 synthetic examples from minority class 𝐶𝑚 using the SMOTE 

algorithm. 
6. Train a weak learner using distribution 𝐷𝑡 
7. Compute weak hypothesis ℎ𝑡: 𝑋 × 𝑌 → [0,1] 

8. Compute the pseudo-loss of hypothesis ℎ𝑡: 𝜀𝑡 = ∑ 𝐷𝑡(𝑖, 𝑦)(𝑖,𝑦)∈𝐵 (1 − ℎ𝑡(𝑥𝑖, 𝑦𝑖) + ℎ𝑡(𝑥𝑖, 𝑦)) 

9. Set 𝛽𝑡 = 𝜀𝑡/(1 − 𝜀𝑡) and 𝑤𝑡 = (1/2) ∙ (1 − ℎ𝑡(𝑥𝑖, 𝑦) + ℎ𝑡(𝑥𝑖, 𝑦𝑖)) 

10. Update 𝐷𝑡: 𝐷𝑡+1(𝑖, 𝑦) = (𝐷𝑡(𝑖, 𝑦)/𝑍𝑡) ∙ 𝛽𝑡
𝑤𝑡, where 𝑍𝑡  is a normalization constant chosen such 

that 𝐷𝑡+1 is a distribution. 

11. Output the final hypothesis ℎ𝑓𝑛 = arg 𝑚𝑎𝑥
𝑦∈𝑌

∑ (log
1

𝛽𝑡
) ∙ ℎ𝑡(𝑥, 𝑦)𝑇

𝑡=1  

 

5.4 Algorithm-Level Methods 

 

 Algorithm-level approaches to class 

imbalance directly modify the learning 

procedures of classifiers themselves.  For 

Decision Trees, algorithm-level methods have 

focused primarily on alternative splitting criteria.  

One such criterium is the Hellinger distance [32], 

which is a measure of divergence between two 

probability distributions and is calculated with 

the Bhattacharyya coefficient [6].  For a two-class 

problem in countable space, the Hellinger 

distance can be expressed as: 

𝑑𝐻(𝑃(𝑚+), 𝑃(𝑚−)) =

 √∑ (√𝑃(𝑌+|𝑋𝑖) − √𝑃(𝑌−|𝑋𝑖))
2

𝑖 , 

which can be derived from the confusion matrix 

as follows: 

𝑑𝐻(𝑇𝑃𝑅, 𝐹𝑃𝑅) = 

√(√𝑇𝑃𝑅 − √𝐹𝑃𝑅)
2

+ (√1 − 𝑇𝑃𝑅 − √1 − 𝐹𝑃𝑅)
2

. 

Hellinger distance trees [19, 20] have 

been shown to perform well in cases of class 

imbalance.  Figure 3 [25] shows a comparison of 

partitions of a two-dimensional feature space 

constructed from the “yeast” dataset [23], where 

multiple classes have been combined to form a 

majority class such that the data possess an 

Imbalance Ratio of 41.6.  The left and right sides 

show partitions resulting from Gini and Hellinger 

trees, respectively, while parts (a) and (b) show 

complete and localized views of the feature 

space.  Note two major differences between the 

two partitions: firstly, that the positive 

classification regions resulting from the Hellinger 

trees are bounded, reducing unnecessary 

misclassification of the majority class; and 

secondly, that their positive classification regions 

are broader than those of the Gini trees, causing 

them to be more robust to attribute noise in the 

minority class. 

 

5.4.1 Other Algorithm-Level Methods 
 

 Other proposals for splitting criteria 

suitable for handling class imbalance include the 

off-centered entropy [39], minority entropy [8], 

and Class Confidence Proportion [41]. 
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Figure 3: Comparison of Gini and Hellinger trees. Source: Fernandéz, et al., 2018. 

 

6. Applications to the Thoracic Surgery 

Dataset 
 

 In this section, we will state our chosen 

methods for our applications to the thoracic 

surgery dataset, then display and discuss the 

results of our experiments. 

 

6.1 Methodology 
 

 Our experiments on the thoracic dataset 

will take a two-staged approach.  In the first 

stage, we will perform a grid search across a 

shared set of parameter values and make a side-

by-side comparison of the best models obtained 

for each method.  In addition to reporting the 

parameter values for these models, our metrics 

for judging each method will be the Gmean 

(calculated from the 10-fold cross-validated 

specificity and sensitivity), as well as a 

benchmark for the computational time of the 

cross-validated output of the optimal model.  

Computationally expensive methods will be 

excluded from a second stage of optimization, 

where the set of parameter values will be specific 

to each method and will depend on the optimal 

values resulting from the first stage.  Our applied 

methods will include: a baseline Random Forest 

model (RF), random oversampling and 

undersampling (RUSROS), one-sided selection 

with additional random oversampling (OSS), 

SMOTE with random undersampling (SMOTE), 

SMOTE-Tomek (STMK), cost-sensitive learning 

with class weights (CSL), SMOTEBagging and 

SMOTEBoost with random undersampling (SBAG 

and SBST, respectively), and a Random Forest 

constructed from Hellinger trees (HDRF).  The 

original Boosted-SVM for Imbalanced Data 

method from [68] is denoted as BSI. 
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6.1.1 Packages Used 
 

 The experiments on the thoracic dataset 

were carried out in R.  Though not an exhaustive 

list, the following packages represent those 

which were instrumental to carrying out the 

aforementioned methods: “caret” [37]; 

“CORElearn” [49]; “randomForest” [40]; “ranger” 

[62]; “rpart” [57]; and “UBL” [9].  It should be 

noted here that, due to the lack of support for 

random feature selection at individual splits 

among the available Decision Tree packages in R, 

alterations were made to the ensemble methods 

mentioned above.  Intead of using Decision 

Trees, the ensembles generated from the 

SMOTEBoost method consist of 100 Random 

Forests.  For SMOTEBagging, Decision Trees were 

kept as the weak learners, and random feature 

selection was implemented using the Random 

Subspace Method [33], where each tree is grown 

using a randomly selected subset of the 

variables. 

 

6.1.2 Parameter Values 
 

 In the first stage of our experiments, 

parameter values used in our grid searches are 

shared across all methods (where applicable) to 

allow for better comparison of their 

performance.  The values searched across 

possess a wide range and a large step size.  This 

was done in the interest of time, as some of the 

methods used are quite computationally 

expensive.  It will be noted here that the values 

of ntree, the number of trees in the Random 

Forest, and mtry, the number of features 

randomly selected for consideration at each split, 

are held constant across all methods and both 

stages at 500 and 4, respectively.  The shared 

parameter values for the first stage are as 

follows: 

• nodesize: the minimum size of a terminal 

node within a Decision Tree 

o From: 10; To: 50; By: 10 

• cutoff: the minimum proportion 

(inclusive) of votes for the minority class 

required for a positive final prediction 

o From: 0.1; To: 0.5; By: 0.1 

• over: the amount of oversampling 

performed, expressed as a percentage of 

the original size of the minority class 

training set, ie. 100% oversampling 

results in a minority class training set 

200% its original size 

o From: 0%; To: 500%; By: 100% 

• under: the amount of undersampling 

performed, expressed as a percentage of 

the original size of the majority class 

training set, ie. 100% undersampling 

results in the complete removal of the 

majority class examples 

o From: 0%; To 80%; By: 20% 

• k: the number of neighbors searched for 

in nearest-neighbor calculations 

o From: 1; To: 5; By: 2 

• cost (for CSL only): the cost of 

misclassifying positive examples (cost of 

misclassifying negative examples is held 

constant at one) 

o From: 1; To: 10; By: 1 

 

6.2 Results of Optimization: 

Computational Expense 
 

 The results of the preliminary stage of 

optimization are shown in Table 4.  While we are 

ultimately concerned with the performance of 

our models in terms of the Gmean, in this stage 

we are also concerned with computational 

expense, expressed as the “Mean Time.”  The 

mean time does not refer to the average time to 

compute the cross-validation function for all 

attempted parameter values; rather, it is the 

average computational time of five executions of 
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Table 4: First round of optimization 

Method Gmean TNR TPR nodesize cutoff over under k cost Mean 
Time 

RF 62.30 54.58 71.12 10 0.1 - - - - 0.72s 
RUSROS 65.44 55.10 77.71 30 0.2 200% 0% - - 0.78s 

OSS 62.94 60.59 65.39 40 0.4 200% - - - 14.85m 
SMOTE 67.51 64.09 71.11 20 0.2 100% 0% 5 - 1.17s 
STMK 64.60 69.28 60.24 20 0.3 100% - 1 - 4.87m 

CSL 65.92 61.37 70.81 50 0.4 - - - 6 0.55s 
SBAG 62.11 66.41 58.10 30 0.3 100% 20% 5 - 2.13m 
SBST 62.77 61.95 63.60 30 0.3 200% 0% 3 - 2.50m 
HDRF 42.73 19.92 91.67 10 0.1 - - - - 14.71s 

BSI 65.73 72.00 60.00 - - - - - - - 
 

Table 5: Second round of optimization 

Method Gmean TNR TPR nodesize cutoff over under k cost 
RF 65.27 54.82 77.71 6 0.11 - - - - 

RUSROS 67.44 67.26 67.62 5 0.15 50% 0% - - 
SMOTE 67.87 64.56 71.35 25 0.2 100% 0% 7 - 

CSL 66.46 62.38 70.81 46 0.4 - - - 6 
HDRF 67.02 64.61 69.52 1 0.14 - - - - 

BSI 65.73 72.00 60.00 - - - - - - 
 

the cross-validation function, using the optimal 

parameter values as inputs.  In this way, this 

statistic does not represent a thorough analysis 

of the computational expense of each method, 

but does provide for a quick comparison of scale.  

In making comparisons, it is important to be 

aware of the effects different parameter values 

can have on the computational time.  For 

example, considering the same function was 

used for the base Random Forest model and 

Cost-Sensitive Learning, it is unlikely that CSL is 

actually faster than RF, and only appears to be so 

because the minimum node size for the optimal 

CSL model was much larger, thus its trees were 

grown shorter and therefore quicker.  

Additionally, larger oversampling percentages 

slow down the execution of the SMOTE and One-

Sided Selection methods considerably.  Noting 

the weaknesses of this measure, it is primarily 

given as a way to identify methods which are 

particularly slow to compute, namely: One-Sided 

Selection; SMOTE-Tomek; SMOTEBagging; and 

SMOTEBoost.  Of these, it should be unsurprising 

that the ensemble methods are slow: instead of 

performing SMOTE ten times per cross-validated 

estimate, SMOTEBagging and SMOTEBoost must 

perform SMOTE 5,000 and 1,000 times, 

respectively.  One-Sided Selection and SMOTE-

Tomek, on the other hand, seem unreasonably 

slow; the problem here likely lies not only with 

the computational expense of these methods but 

also with inefficiencies in the code for the One-

Sided Selection function.  In any case, all four of 

these methods were not optimized beyond the 

first stage as a result of their slow computational 

times. 

 For the second stage of optimization, the 

results of which are given in Table 5, optimization 

was still performed globally, but step size was 

tailored to each function depending on how 

many parameters needed to be optimized for the 

respective method.  Consider the example of 

SMOTE: with a minimum step size of 1/500 trees 
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and an upper bound of 1/2 for the cutoff, there 

are 250 possible values for the vector of cutoffs; 

assuming an average of 90% of the minority 

training examples present in any training set for 

ten-fold cross validation, there are 70 × 0.9 =

63 possible oversampling percentages up to 

100%, plus an additional four if the Imbalance 

Ratio of 5.71 is taken as an upper bound; 

similarly, 400 × 0.9 = 360 possible values exist 

for the undersampling percentage; ignoring the 

vectors of values for the node size and 𝑘, for 

which determining upper bounds is more of a 

qualitative decision, optimizing these three 

vectors alone, globally, and with their minimum 

step size, results in a search grid of 6.03 × 106 

combinations.  Such tasks are best left to 

supercomputers.  The modeler posed with this 

problem can take one or both of two 

compromises: either they can maintain a low 

step size and search locally among values close to 

the previously optimal ones, or they can search 

globally but decrease the step size to a lesser 

extent.  We have chosen the second of these 

options.  Describing in detail the discretionary 

decisions made for the parameter searches of 

each method in the second stage of optimization 

would be tedious, but to give the reader an idea: 

for SMOTE, the step sizes of the cutoff, minimum 

node size, and undersampling percentage were 

reduced by one half, while the range of 𝑘 was 

increased to nine and the range of oversampling 

percentages was expanded to include values 

under 100%, resulting in a search grid of 45,000 

combinations.  This represented the largest 

search grid, while RF and HDRF had the smallest 

at 2,500 combinations each, resulting from 50 

values tried for the node size and cutoff. 

 

6.3 Results of Optimization: Accuracy 
 

 The first round of optimization already 

demonstrates the power of Random Forests in 

handling imbalanced data.  Not only do the 

SMOTE and CSL models already outperform the 

original BSI model, but the base RF model itself 

does surprisingly well with appropriate choices 

for the minimum node size and cutoff.  HDRF, on 

the other hand, at first appears to be a very poor 

model, with a Gmean below 50%.   

The ensemble methods SBAG and SBST 

have yielded lackluster results, with the Gmean 

of SBAG falling below that of the base RF model 

and SBST scoring slightly above it.  Without 

further optimization, it is impossible to draw 

conclusions about how these models would rank 

against the others, although their accuracies 

would no doubt improve.  We can, however, 

speculate as to why they have performed poorly 

in the first stage of optimization.  For 

SMOTEBagging, for example, the 

implementation of random feature selection 

before constructing the trees is likely not as 

robust as randomly selecting a subset of features 

at each split.  On the other hand, for 

SMOTEBoost, two possible reasons may have 

reduced accuracy: firstly, using Random Forests 

as the weak learners was computationally 

expensive, and in the interest of time ensembles 

of only 100 Random Forests were grown, which 

may have been too small.  Secondly, Boosting 

works by shifting the decision boundary towards 

examples which are difficult to classify.  Beyond 

the general risk of any data set to possess noisy 

examples, the relatively small size of our minority 

class training set may increase this risk, as there 

may be isolated examples which could prove to 

be members of small clusters if the sample size 

were larger.  Additionally, the SMOTE algorithm 

itself runs the risk of generating noisy examples 

if there are already noisy examples present in the 

data or if the value of 𝑘 is chosen to be too large, 

as new data can be synthesized between 

clusters, between noisy examples, or between a 

noisy example and a cluster.  The Boosting 

algorithm, instead of ignoring the noise, will 

focus more and more on these impossible to 

classify examples.  Neither SBAG or SBST 
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performs altogether poorly, however, and if the 

above-mentioned issues do, in fact, detract from 

their accuracies, the extent to which they do so 

is likely not great. 

Other interesting observations can be 

drawn by comparing the different data-level 

preprocessing methods.  It seems that, for this 

data set, oversampling proves to be a much 

stronger approach than undersampling, for three 

reasons: firstly, because SMOTE was the best 

performing method of all; secondly, because the 

optimal models for the resampling methods for 

which undersampling was optional chose, with 

the exception of SBAG, to perform no 

undersampling at all; and thirdly, because STMK 

outperformed OSS, but RUSROS with 0% 

undersampling outperformed both of these.  It is 

also interesting to note that, where oversampling 

was performed, the oversampling percentages 

for the optimal models lie well below the 

Imbalance Ratio, leaving their training sets still 

quite imbalanced in favor of the majority class. 

The second round of optimization 

improved the results of all retained methods, 

such that all but the base RF model 

outperformed the original BSI model.  Here, 

RUSROS and SMOTE were the best performing 

methods, again with no undersampling 

performed and with only a small amount of 

oversampling.  This seems to indicate that data-

level preprocessing approaches are good 

solutions when faced with imbalanced data, but 

that they should not be used to completely 

eliminate imbalance in the data set.  The method 

which benefitted the most from the additional 

optimization was HDRF, whose Gmean increased 

by 24.29% to beat out CSL for the third-best 

method.  Here, the optimal model contained only 

pure end nodes, indicating a considerable 

improvement to the splitting function.  The 

example of HDRF demonstrates the importance 

of proper optimization when judging the quality 

of a model.  With the exception of RUSROS, 

whose optimal minimum node size in the second 

stage of optimization differed significantly from 

that of the first, most of the optimal models 

could have been found with a localized 

parameter search centered on the optimal values 

from the first stage.  It is likely that most of the 

methods would have seen greater increases in 

their Gmean estimates had the second stage of 

optimization been performed locally and with a 

smaller step size. 

 

7. Conclusion 
 

 In this paper, we have demonstrated the 

strength of Random Forests in handling 

imbalanced data, owing to the control they give 

the modeler over generalization (minimum node 

size) and bias towards the minority class (vote 

threshold).  Of the variety of methods applied to 

the problem, SMOTE performed best, and 

oversampling methods appeared to perform 

particularly well, even though the optimal 

amount of oversampling often preserved a high 

level of imbalance in the training set.  With 

proper optimization, all methods, aside from the 

base Random Forest model, outperformed the 

original Boosted-SVM for Imbalanced Data 

method.  Further work could involve additional 

localized optimization with reduced step sizes for 

all methods, including the ensemble- and 

undersampling-based methods left out of the 

second stage of optimization.  Additionally, 

subsets of the data could be created by 

incrementally raising the minimum information 

gain requirement from Table 1 in order to 

explore the effects of dimensionality on the 

accuracy of the models.  Lastly, HDRF could be 

applied to additional datasets to test whether 

trees of maximum size should always be grown, 

which would reduce the number of parameters 

to optimize for this method to one.  
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