

Masterthesis:

Random Forest for Prediction with
Unbalanced Data

Masterthesis im Studiengang

„Stochastic Engineering in Business and Finance“

vorgelegt von:

Name: Greg Peargin

Matrikelnr: 08435816

eingereicht bei Prof. Dr. Manfred Gruber, Fakultät Informatik und Mathematik

Erklärung

Hiermit erkläre ich, dass ich die Arbeit selbständig verfasst, noch nicht anderweitig für

Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen oder Hilfsmittel

benutzt, sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet habe.

München, 11.02.19 __________________________

 Unterschrift

Table of Contents
1. Introduction 1

2. Decision Trees 2

3. Random Forests 3

4. Class Imbalance 3

4.1 Performance Measures 4

4.2 Difficulties of Imbalanced Data 4

5. Methods for Imbalanced Data 5

5.1 Data-Level Preprocessing Methods 5

5.1.1 One-Sided Selection 6

5.1.1.1 A Note on Distance Measures 6

5.1.2 SMOTE 7

5.1.3 SMOTE-Tomek 7

5.1.4 Other Data-Level Preprocessing Methods 8

5.2 Cost-Sensitive Learning 9

5.3 Ensemble Methods 9

5.3.1 SMOTEBoost and SMOTEBagging 10

5.3.2 Other Ensemble Methods 10

5.4 Algorithm-Level Methods 11

5.4.1 Other Algorithm-Level Methods 11

6. Applications to the Thoracic Surgery Dataset 12

6.1 Methodology 12

6.1.1 Packages Used 13

6.1.2 Parameter Values 13

6.2 Results of Optimization: Computational Expense 13

6.3 Results of Optimization: Accuracy 15

7. Conclusion 16

 References 17

1

1. Introduction

 The intent of this paper is to further

explore the methodology applied to the class

imbalance problem posed in M. Zięba et al.

(2014) [68]. In the original paper, a boosted

Support Vector Machine ensemble was created

and decision rules were extracted using a JRIP

algorithm, thus sacrificing some accuracy for a

more interpretable model. Our goal is to

determine whether, at the cost of

interpretability, a higher degree of accuracy can

be achieved using Random Forests, therefore we

will compare our results to those of the boosted

SVM ensemble itself. In the process, we will

explore different strategies for tackling class

imbalance and ultimately determine which of

these achieves the best results in the context of

our dataset.

The data, retrieved from the UCI

Machine Learning Repository [23], were

originally obtained from the Department of

Thoracic Surgery of the Medical University of

Wroclaw and pertain to whether patients who

had undergone major lung resections for primary

lung cancer survived a one-year period following

their surgery. While originally containing data

for over 1,200 patients, the final dataset utilized

by the authors, after removing observations with

missing values, contains information on only 470

patients. Of these, 400 survived the one-year

period, while the other 70 died. Additionally,

while the original dataset contained 139 pre-,

peri-, and post-operative predictors, the final

dataset contains only pre-operative predictors,

as the authors were interested in providing

doctors with a means of assessing the risk of

performing surgery on a given patient before the

surgery is carried out. Of 36 original pre-

operative predictors, 16 were chosen for the final

dataset by performing feature selection with an

information gain criterion [63]. Of these, three

predictors are numeric, three are categorical,

Table 1: Variable descriptions for thoracic surgery dataset

and ten are binary. Descriptions of the variables

are given in Table 1.

The remainder of this paper will be

organized as follows: first, we will review the

methodologies of Decision Trees and Random

Forests; next, we will discuss the difficulties of

class imbalance and the different strategies we

will employ to tackle them; and finally, we will

summarize the results of our employed methods

and compare them with those of the original

paper.

ID Description InfoGain
PRE14 T in clinical TNM (size of the

original tumor, from OC11
(smallest) to OC14 (largest))

0.029

DGN Diagnosis (specific
combination of ICD-10 codes
for primary and secondary as
well as multiple tumors if any)

0.013

PRE4 Forced vital capacity (FVC) 0.008
PRE7 Pain (pre-surgery) 0.008
AGE Age at surgery 0.008

PRE6 Performance status (Zubrod
scale)

0.007

PRE11 Weakness (pre-surgery) 0.004
PRE9 Dyspnoea (pre-surgery) 0.004

PRE10 Cough (pre-surgery) 0.003
PRE8 Haemoptysis (pre-surgery) 0.003

PRE25 PAD (peripheral arterial
diseases)

0.003

PRE19 MI up to 6 months 0.003
PRE5 Volume that has been exhaled

at the end of the first second of
forced expiration (FEV1)

0.002

PRE32 Asthma 0.002
PRE30 Smoking 0.002
PRE17 Type 2 DM (diabetes mellitus) 0.002

Risk1Y 1-year survival period (True
value if patient died)

2

2. Decision Trees

 In order to understand Random Forests,

we must first familiarize ourselves with Decision

Trees. Decision Tree Classifiers work by

recursively partitioning the feature space of the

data through a series of logical questions, which

split the data into disjunct sets of decreasing size

until some stopping rule is fulfilled or until each

terminal “node” of the tree contains only one

observation. These questions take the following

forms:

• Is 𝑥 ≤ 𝑐?, 𝑐 constant (for quantitative

variables)

• Is 𝑥 ∈ 𝐴?, 𝐴 category (for categorical

variables)

Depending on whether or not a data point fulfills

this criterion, it will be sent to a left (in the case

of a “yes”) or right (in the case of a “no”)

“daughter” node. At each split, the set of all such

questions across all variables is considered, and

the question which creates the split with the

greatest decrease in “node impurity” is chosen.

Node impurity is typically defined either by the

Gini Index for CART models [13] or by

information gain for ID3, C4.5, and C5.0 models

[46, 47]. If a tree is allowed to be split until all

terminal nodes are “pure,” i.e. until they contain

only observations from one class, overfitting will

occur. To avoid this, stopping rules can be

introduced to the model. Possible examples of

stopping rules are minimum terminal node sizes,

maximum tree lengths, and minimum impurity

decreases arising from a split. Alternatively, a

tree can be grown to maximum size and be

“pruned” backwards, as outlined in [13]. Figure

1 shows an example tree for the thoracic surgery

dataset using only two numeric variables, “PRE4”

and “AGE,” and the resulting partition of the

feature space. Note that some splits resulted in

a prediction of “FALSE” for both daughter nodes.

This is because “TRUE” did not occur as

frequently in either of the two daughter nodes

Figure 1a: Example tree for thoracic surgery dataset

Figure 1b: Partition of feature space for example tree

after the split, and the predicted class for a

terminal node is the most frequently occurring

class in that node based on the training data.

Decision Trees are particularly well

suited for handling categorical data, as the

nature of the splitting algorithm eliminates the

need to convert categorical attributes into binary

variables. Continuous variables are treated as if

they were countable, as the question “is 𝑥 ≤ 𝑐?”

has only as many possible values for 𝑐 as there

are unique values for the attribute.

3

3. Random Forests

 Decision Trees are susceptible to the

bias-variance tradeoff [30]: a tree of maximum

size will be unbiased, but will not be robust to

noise due to overfitting. Similarly, a smaller tree

may generalize better, but will consequently be

biased due to impure terminal nodes. Random

Forests [12] present a solution to this problem

through the creation of an ensemble of

decorrelated trees. Low correlation between

individual trees is guaranteed in two ways: first,

only a random subset of features is considered

for possible splits at each non-terminal node; and

second, each tree is grown using a bootstrap

sample from the training set as large as the

training set itself, a method known as “bootstrap

aggregating” or “bagging” [10]. This provides

Random Forests with a built-in method for

estimating the generalization error, known as the

“out-of-bag” estimate [11] (for conventional

reasons, however, we will use ten-fold cross-

validation [52] to estimate the errors of our

models for the thoracic surgery dataset). Trees

in the ensemble are grown to maximum size and

are not pruned. The ensemble is grown to

contain a large number of trees which, in the final

model, each cast a vote for the class of a “test”

data point. The final predicted class is the class

with the most votes. The benefit of using a

Random Forest model, as opposed to a Decision

Tree, is that it is more robust to noise while

maintaining low bias.

4. Class Imbalance

In this section, we will clarify what class

imbalance is, the issues that it causes in

classification problems, and why class imbalance

causes these issues.

Table 2: Confusion matrix for Random Forest on thoracic
surgery dataset

Actual

 Predicted Class
Error

FALSE TRUE
FALSE 40 0 0
TRUE 7 0 1

Class imbalance exists in any dataset

where the prior probabilities of its classes differ.

According to this definition, nearly any dataset

with labeled data will possess some degree of

class imbalance. However, when referring to a

class imbalance problem, we typically mean a

situation where a dataset contains many more

negative (majority) examples than positive

(minority) examples. A measure of the degree of

imbalance present in a dataset is the Imbalance

Ratio [45], defined as the number of negative

examples divided by the number of positive

examples. In the thoracic surgery dataset, we

have 400 “FALSE” examples and 70 “TRUE”

examples; thus, our Imbalance Ratio is 5.71.

The problem that class imbalance poses

is that most algorithms are poor at correctly

classifying positive examples, often with

accuracies of 0% [25], yet it is often the case that

we are more concerned with accurately

predicting these minority class examples.

Without any strategy for addressing this issue,

models will often be trivial, as they are nearly or

completely incapable of distinguishing between

the two classes. To see this, consider the

confusion matrix for a Random Forest model

trained with 90% of the thoracic surgery data in

Table 2. The model simply predicts all of the test

examples as “FALSE,” giving an error rate of

14.9%. In fact, the more imbalance present in a

dataset, the lower the estimated error will be. As

a result, normal measures of accuracy and error

are deceptive when dealing with imbalanced

data, therefore we will need to use alternative

performance measures in order to judge the

quality of our models.

4

4.1 Performance Measures

 A number of performance measures

exist for models on imbalanced datasets. The

following are among the most popular:

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

• 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

• 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

• 𝐺𝑚𝑒𝑎𝑛 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

Note that the sensitivity and specificity are the

same as the true positive rate and true negative

rate, respectively. While it is conventional under

ordinary circumstances to report model

performance in terms of error, it should be noted

that the above measures are all accuracy

measures and should be maximized.

A fifth performance measure is the

receiver operating characteristic (ROC) curve

[24]. The ROC curve plots the false positive rate

of a model on the x-axis against the true positive

rate on the y-axis. The different values along the

curve are obtained by allowing the threshold for

a positive classification to vary. In the standard

Random Forest model, we classify an observation

as positive when there are more votes for the

minority class than for the majority class; in other

words, the threshold is 50%. An ideal model

would be found in the upper left corner of the

ROC curve and the area under the curve (AUC)

would be equal to 1. It has been argued that a

Precision-Recall (PR) curve is preferable to the

ROC curve for classification with imbalanced data

[51], though both are generally accepted.

4.2 Difficulties of Imbalanced Data

To understand the rationale of the

methods for tackling class imbalance, it is

important that we understand why class

imbalance makes classification of positive

examples difficult. The following reasons are

given in [25]:

1. Small sample size: If positive examples

are sufficiently rare, or if the size of the

training set is small, there may not be

enough information on the minority

class for an algorithm to identify the

subspace occupied by it.

2. Class separability: If our data were

perfectly separable, then an algorithm

capable of reasonably approximating the

decision boundary should have no

difficulty distinguishing between the two

classes. Thus, the class imbalance

problem implies at least a minimal

degree of class inseparability. Plots 1-3

of Figure 2 contrast datasets with partial

and complete inseparability, as well as

low vs. high variance of the minority class

in completely inseparable datasets.

These datasets all possess the same level

of imbalance, with an Imbalance Ratio of

10. As the degree of class inseparability

in the data increases from Plot 1 to Plot

3, we see that the cost of greater

accuracy for positive examples increases

in terms of accuracy for negative

examples.

3. Small disjuncts: If the subspace occupied

by the minority class does not constitute

a single region, but rather multiple

subregions, then the difficulties of small

sample size and class inseparability may

be compounded by this fact, as the

disjuncts may be inseparable

themselves, and will contain only a

fraction of the positive examples. High

dimensionality in the data often causes

small disjuncts. Plot 4 of Figure 2 shows

an example of a dataset containing small

disjuncts.

5

Figure 2: Different types and degrees of class inseparability

5. Methods for Imbalanced Data

In this section, we will discuss the

methods we can use to address the class

imbalance in our data. These methods can be

broken down into four categories: data-level,

cost-sensitive, ensemble, and algorithm-level

approaches [25].

5.1 Data-Level Preprocessing Methods

 Data-level or preprocessing methods

address class imbalance by changing the

frequencies of observations within either class,

thus directly influencing their prior probabilities.

This is achieved by means of two methods:

oversampling and undersampling. When

oversampling, one creates more positive

observations by randomly sampling the minority

class training examples with replacement, and

appending these on to the existing training set.

Conversely, undersampling is performed by

randomly sampling without replacement from

the negative examples of the training set, and the

entirety of the majority examples are replaced

with this new, smaller training set. Both methods

increase the prior probability of the minority

class and decrease that of the majority class in

the training set.

 In practice, both of these methods are

flawed, but they constitute the foundational

ideas behind all other preprocessing methods for

class imbalance. Undersampling can result in a

loss of useful information, while oversampling

can overfit the model to individual positive

examples. The remaining methods in this section

6

will seek to modify the oversampling and

undersampling procedures in order to address

their fundamental issues.

5.1.1 One-Sided Selection

 One-sided selection offers a solution to

the problem of information loss through

undersampling by proposing that certain

negative examples are more informative for

classification than others [36]. Majority class

samples are sorted into four categories: (1)

samples suffering from class-label noise; (2)

borderline examples which can be easily

misclassified due to attribute noise; (3)

redundant examples which are not at risk of

being misclassified, but which increase

classification costs; and (4) “safe” examples

which should be kept in the training set. The goal

of one-sided selection is to remove all borderline,

noisy, and redundant samples from the majority

class, leaving only the safe examples. Redundant

examples can be identified by classifying each

sample in the training set according to the 1-NN

(first nearest neighbor) rule [22], using only the

positive examples and one randomly selected

negative example for comparison. Meanwhile,

borderline and noisy examples can be identified

with the help of Tomek links [59], defined as

follows:

 Denote 𝛿(𝑥, 𝑦) as the distance

between 𝑥 and 𝑦. The pair (𝑥, 𝑦) is

called a Tomek link if no example 𝑧

exists such that 𝛿(𝑥, 𝑧) < 𝛿(𝑥, 𝑦) or

𝛿(𝑦, 𝑧) < 𝛿(𝑦, 𝑥).

The procedure for one-sided selection is outlined

in Algorithm 1.

Algorithm 1 One-Sided Selection

1. Let 𝑆 be the original training set.

2. Initially, 𝐶 contains all positive examples from

𝑆 and one randomly selected negative

example.

3. Classify 𝑆 with the 1-NN rule using the

examples in 𝐶, and compare the assigned

concept labels with the original ones. Move

all misclassified examples into 𝐶 that is now

consistent with 𝑆 while being smaller.

4. Remove from 𝐶 all negative examples

participating in Tomek links. This removes

those negative examples that are believed

borderline and/or noisy. All positive

examples are retained. The resulting set is

referred to as 𝑇.

5.1.1.1 A Note on Distance Measures

 Because our data contain both numeric

and categorical features, proper scaling between

continuous and nominal predictors must occur to

ensure that neither type of variable has greater

influence on the calculated distance. One

suitable distance measure is the Heterogeneous

Value Distance Metric (HVDM) [61], defined as

follows:

𝐻𝑉𝐷𝑀(𝑥, 𝑦) = √∑ 𝑑𝑎
2(𝑥𝑎, 𝑦𝑎)

𝑚

𝑎=1

where 𝑥 and 𝑦 are input vectors, 𝑑𝑎(𝑥, 𝑦) is the

difference between 𝑥 and 𝑦 for attribute 𝑎, and

𝑚 is the number of attributes. 𝑑𝑎(𝑥, 𝑦) takes on

the following values:

𝑑𝑎(𝑥, 𝑦) =

{

1, if 𝑥 or 𝑦 is unknown; otherwise …
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎 , if 𝑎 is nominal

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎, if 𝑎 is continuous
.

7

Furthermore,

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎(𝑥, 𝑦) =

 √∑ |
𝑁𝑎,𝑥,𝑐

𝑁𝑎,𝑥
−

𝑁𝑎,𝑦,𝑐

𝑁𝑎,𝑦
|

2
𝐶
𝑐=1 ,

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎(𝑥, 𝑦) =
|𝑥−𝑦|

4𝜎𝑎
,

where 𝑁𝑎,𝑥 is the number of instances in the

training set that have value 𝑥 for attribute 𝑎,

𝑁𝑎,𝑥,𝑐 is the number of instances in 𝑁𝑎,𝑥 that

have output class 𝑐, and 𝐶 is the number of

classes. Note that values of 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎

are constrained between zero and √𝐶 and,

assuming differences of continuous variables are

normally distributed, dividing by four standard

deviations gives 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎 a range of

approximately one. However, experiments in

[61] found very little difference between the

average distances of 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑣𝑑𝑚𝑎 and

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖𝑓𝑓𝑎 even for multi-class

problems with many output levels.

5.1.2 SMOTE

The Synthetic Minority Oversampling

Technique (SMOTE) [16] provides a solution to

the issue of overfitting individual positive

examples when performing oversampling.

Instead of using random sampling with

replacement, new data is synthesized by linearly

interpolating between minority class samples.

For a chosen value of 𝑘, a single neighbor of the

𝑘 nearest positive neighbors of a positive

example is selected at random. The differences

between the attributes of these two examples

are multiplied by a random value between zero

and one, and are then added to the values of the

attributes of the original example. Thus, a new

example is synthesized at a random location on a

line between the original example and one of its

nearest minority class neighbors. This allows a

model to identify broader classification regions

for the minority class, instead of individual

examples.

The amount of data synthesized is

determined by an “oversample percentage” 𝑁.

For values of 𝑁 less than 100, 𝑁% of the size of

the minority class training set 𝑇 (rounded to the

nearest integer) new examples will be

synthesized. Once the number of examples to be

synthesized is known, a sample of the same size

is drawn from 𝑇 without replacement, and one

new example is synthesized for each point in the

sample. For values of 𝑁 greater than or equal to

100, 𝑁 signifies the number of new examples to

be synthesized for each example in the training

set. Thus, beyond a value of 100, 𝑁 must be a

multiple of 100.

Algorithms 2 and 3 give the pseudocode

for the SMOTE algorithm and the function for

generating synthetic examples, respectively.

Note that a method for synthesizing data with

nominal attributes is not detailed. In [16], the

authors considered separate methods for data

with nominal or mixed features, SMOTE-N and

SMOTE-NC. These methods propose choosing

the value of a categorical attribute of a

synthesized example to be the mode of its 𝑘

nearest positive neighbors. In many software

applications, however, the value is simply

randomly chosen to be either the value of the

original point or that of the selected nearest

neighbor.

5.1.3 SMOTE-Tomek

Oversampling and undersampling

methods can also be combined in order to

mitigate the issues associated with either

approach. SMOTE-Tomek [4] is one such hybrid

technique, combining synthetic data generation

with one-sided selection. Because the number of

Tomek links in a data set depends on the number

8

Algorithm 2 SMOTE

1. function 𝑆𝑀𝑂𝑇𝐸(𝑇, 𝑁, 𝑘)
Input: Number of minority class samples 𝑇; Amount of SMOTE 𝑁%; Number of nearest neighbors 𝑘
Output: (𝑁/100) ∗ 𝑇 synthetic minority class samples
Variables: 𝑆𝑎𝑚𝑝𝑙𝑒[][]: array for original minority class samples; 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥: keeps a count of number

of synthetic samples generated, initialized to 0; 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[][]: array for synthetic samples
2. if 𝑁 < 100 then
3. Randomize the 𝑇 minority class samples
4. 𝑇 = 𝑁/100 ∗ 𝑇
5. 𝑁 = 100
6. end if
7. 𝑁 = (𝑖𝑛𝑡)𝑁/100 #The amount of SMOTE is assumed to be in integral multiples of 100.
8. for 𝑖 = 1 to 𝑇 do
9. Compute KNN for 𝑖, and save the indices in the 𝑛𝑛𝑎𝑟𝑟𝑎𝑦
10. 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐸(𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦)
11. end for
12. end function

Algorithm 3 Function to generate synthetic samples

1. function 𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐸(𝑁, 𝑖, 𝑛𝑛𝑎𝑟𝑟𝑎𝑦)
 Input: Instances to create 𝑁, Original sample index 𝑖, Array of nearest neighbors 𝑛𝑛𝑎𝑟𝑟𝑎𝑦
 Output: 𝑁 new synthetic samples in 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 array
2. while 𝑁 ≠ 0 do
3. 𝑛𝑛 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑘)
 4. for 𝑎𝑡𝑡𝑟 = 1 to 𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑠 do #𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑠 = Number of attributes

5. Compute: 𝑑𝑖𝑓 = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑛𝑛𝑎𝑟𝑟𝑎𝑦[𝑛𝑛]][𝑎𝑡𝑡𝑟] − 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟]

6. Compute: 𝑔𝑎𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)
7. 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐[𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥][𝑎𝑡𝑡𝑟] = 𝑆𝑎𝑚𝑝𝑙𝑒[𝑖][𝑎𝑡𝑡𝑟] + 𝑔𝑎𝑝 ∙ 𝑑𝑖𝑓
8. end for
9. 𝑛𝑒𝑤𝑖𝑛𝑑𝑒𝑥 + +
10. 𝑁 = 𝑁 − 1
11. end while
12. end function

of examples in the minority class, the SMOTE

component of this technique is carried out first.

5.1.4 Other Data-Level Preprocessing

Methods

 Many other extensions of oversampling,

undersampling, and hybrid resampling

approaches have been developed. Other

undersampling techniques include the

Condensed Nearest Neighbor Rule (US-CNN)

[29], the Neighborhood Clearing Rule (NCL) [38],

Class Purity Maximization (CPM) [66],

Undersampling Based on Clustering (SBC) [64,

65], and NearMiss approaches [67], among more

advanced techniques involving evolutionary

algorithms, ensembles, or clustering [25]. Most

oversampling methods are extensions of SMOTE,

for example: Borderline-SMOTE [28], Adjusting

the Direction of the Synthetic Minority Class

Examples (ADOMS) [56], Adaptive Synthetic

Sampling Approach (ADASYN) [31], Random

9

Oversampling Examples (ROSE) [43], Safe-Level-

SMOTE [14], Density-Based SMOTE (DBSMOTE)

[15], Majority Weighted Minority Oversampling

Technique (MWMOTE) [3], and Mahalanobis

Distance-Based Oversampling Technique (MDO)

[1]. Additional hybrid methods include SMOTE

with Edited Nearest Neighbor Rule (SMOTE-ENN)

[5], Agglomerative Hierarchical Clustering (AHC)

[21], SPIDER [7, 55], SMOTE-RSB [48], and

SMOTE-IPF [50].

5.2 Cost-Sensitive Learning

 Cost-sensitive learning introduces the
idea of unequal misclassifications costs for
different types of misclassification as a solution
to class imbalance. Consider the 0-1 loss function
of a typical error-minimizing model: correctly
classified observations carry a misclassification
cost of zero, while misclassified examples have a
misclassification cost of one; minimizing the sum
of the misclassification costs of the model, or
simply minimizing the number of misclassified
observations, is therefore equivalent to
minimizing the error [25]. Assuming different
costs for different types of misclassification, we
can obtain a cost matrix like that illustrated in
Table 3.

 We can express the expected cost 𝑅(𝑖|𝑥)

of classifying instance 𝑥 as belonging to the 𝑖-th

class as:

𝑅(𝑖|𝑥) = ∑ 𝑃(𝑗|𝑥) ∙ 𝐶(𝑖, 𝑗)

𝑀

𝑗=1

,

where 𝐶(𝑖, 𝑗) is the cost associated with
misclassifying an observation belonging to the 𝑗-
th class as belonging to the 𝑖-th class, and 𝑃(𝑗|𝑥)
is the estimated probability of instance 𝑥
belonging to the 𝑗-th class, with a set of 𝑀
classes. Predicting an observation as belonging
to the class for which the expected cost is lower,
we can express the condition for which we will
predict an observation as belonging to the
minority class as:

Table 3: Cost matrix

 True
positive

True
negative

Predicted
positive

𝐶(0,0) 𝐶(0,1)

Predicted
negative

𝐶(1,0) 𝐶(1,1)

𝑃(0|𝑥) ∙ 𝐶(1,0) + 𝑃(1|𝑥) ∙ 𝐶(1,1) ≤

𝑃(0|𝑥) ∙ 𝐶(0,0) + 𝑃(1|𝑥) ∙ 𝐶(0,1)

After collecting like terms and accounting for
𝐶(0,0) = 𝐶(1,1) = 0, this reduces to:

𝑃(0|𝑥) ∙ 𝐶(1,0) ≤ 𝑃(1|𝑥) ∙ 𝐶(0,1).

Finally, we obtain a threshold 𝑝∗ where we
classify an observation 𝑥 as positive if
𝑃(1|𝑥) ≥ 𝑝∗:

𝑝∗ =
𝐶(1,0)

𝐶(1,0) − 𝐶(0,1)
.

Thus, as we increase the cost associated with a

false negative misclassification, we bias our

model in favor of positive examples by raising the

threshold required for classifying an observation

as negative.

When using instance weighting for
classification trees [58], misclassification costs
are converted to weights for individual classes.
These weights then impact the impurity
decreases when splitting a node, as well as the
class ratios in the end nodes. Weighted
Random Forests [18] apply this same
methodology to their trees.

5.3 Ensemble Methods

 Ensemble methods for imbalanced
data consist of two kinds of approaches:
bagging and boosting. Both kinds of
approaches are characterized by training
many models, using a “weak learner” as a base
classifier, and letting these models vote on the

10

Algorithm 4 AdaBoost

1. Input: Training set 𝑆 = {𝒙𝑖, 𝑦𝑖}, 𝑖 = 1, … , 𝑁; and 𝑦𝑖 ∈ {−1, +1}; 𝑇: Number of iterations; 𝐼: Weak
learner

 Output: Boosted classifier: 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1), where ℎ𝑡, 𝛼𝑡 are the induced classifiers

(with ℎ𝑡(𝑥) ∈ {−1, +1}) and their assigned weights, respectively
2. 𝐷1(𝑖) ← 1/𝑁 for 𝑖 = 1, … , 𝑁
3. for 𝑡 = 1 to 𝑇 do
4. ℎ𝑡 ← 𝐼(𝑆, 𝐷𝑡)
5. 𝜀𝑡 ← ∑ 𝐷𝑡(𝑖)𝑖,𝑦𝑖≠ℎ𝑡(𝑥𝑖)

6. if 𝜀𝑡 > 0.5 then
7. 𝑇 ← 𝑡 − 1
8. return
9. end if

10. 𝛼𝑡 =
1

2
ln (

1−𝜀𝑡

𝜀𝑡
)

11. 𝐷𝑡+1(𝑖) = 𝐷𝑡(𝑖) ∙ 𝑒(−𝛼𝑡ℎ𝑡(𝒙𝑖)𝑦𝑖) for 𝑖 = 1, … , 𝑁
12. Normalize 𝐷𝑡+1 to be a proper distribution
13. end for

final prediction of test data. The two
approaches differ in how they guarantee the
uniqueness of their constituent classifiers (an
ensemble of identical classifiers would be
meaningless). As noted earlier, Random
Forests are a kind of bagged classifier. Bagging
[10] works by performing random sampling
with replacement to construct the training
sets of the individual classifiers, while boosting
[53] assigns weights to individual samples in
the training set, and updates these after the
creation of each new classifier according to
whether or not these samples were
misclassified when resubstituting them into
the most recently created classifier. Updating
the weights shifts the decision boundary
towards the misclassified observations and
away from the correctly classified
observations. Some ensembles, such as
AdaBoost [26], the representative algorithm
for the family of boosting algorithms, assign
additional weights to the individual classifiers
themselves, and make a final prediction based
on a weighted vote. The pseudocode for the
AdaBoost algorithm is outlined in Algorithm 4.
A Boosted Random Forest [44] is a Random
Forest of boosted trees, where the weights are
normalized to form a probability distribution
to instruct the bagging procedure.

5.3.1 SMOTEBoost and SMOTEBagging

 Just as oversampling and undersampling

methods can be combined, so too can

resampling methods be used in conjunction with

ensemble methods. Not to be confused with

“First SMOTE then Boost,” SMOTEBoost [17]

incorporates SMOTE into a boosting algorithm,

the procedure for which is detailed in Algorithm

5. Similarly, SMOTEBagging [34, 60] performs

SMOTE on the training set before a bag is drawn

for each weak learner in the ensemble.

5.3.2 Other Ensemble Methods

 Many other bagging, boosting, and

hybrid/double ensemble methods have been

developed specifically for imbalanced datasets.

To name a few: UnderBagging [2], RUSBoost [54],

EUSBoost [27], and EasyEnsemble [42].

11

Algorithm 5 SMOTEBoost

1. Given: Set 𝑆 {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} 𝑥𝑖 ∈ 𝑋, with labels 𝑦𝑖 ∈ 𝑌 = {1, … , 𝐶}, where 𝐶𝑚, (𝐶𝑚 < 𝐶)
corresponds to a minority class.

2. Let 𝐵 = {(𝑖, 𝑦): 𝑖 = 1, … , 𝑚, 𝑦 ≠ 𝑦𝑖}
3. Initialize the distribution 𝐷1 over the examples, such that 𝐷1(𝑖) = 1/𝑚.
4. For 𝑡 = 1, 2, 3, 4, … , 𝑇
5. Modify distribution 𝐷𝑡 by creating 𝑁 synthetic examples from minority class 𝐶𝑚 using the SMOTE

algorithm.
6. Train a weak learner using distribution 𝐷𝑡
7. Compute weak hypothesis ℎ𝑡: 𝑋 × 𝑌 → [0,1]

8. Compute the pseudo-loss of hypothesis ℎ𝑡: 𝜀𝑡 = ∑ 𝐷𝑡(𝑖, 𝑦)(𝑖,𝑦)∈𝐵 (1 − ℎ𝑡(𝑥𝑖, 𝑦𝑖) + ℎ𝑡(𝑥𝑖, 𝑦))

9. Set 𝛽𝑡 = 𝜀𝑡/(1 − 𝜀𝑡) and 𝑤𝑡 = (1/2) ∙ (1 − ℎ𝑡(𝑥𝑖, 𝑦) + ℎ𝑡(𝑥𝑖, 𝑦𝑖))

10. Update 𝐷𝑡: 𝐷𝑡+1(𝑖, 𝑦) = (𝐷𝑡(𝑖, 𝑦)/𝑍𝑡) ∙ 𝛽𝑡
𝑤𝑡, where 𝑍𝑡 is a normalization constant chosen such

that 𝐷𝑡+1 is a distribution.

11. Output the final hypothesis ℎ𝑓𝑛 = arg 𝑚𝑎𝑥
𝑦∈𝑌

∑ (log
1

𝛽𝑡
) ∙ ℎ𝑡(𝑥, 𝑦)𝑇

𝑡=1

5.4 Algorithm-Level Methods

 Algorithm-level approaches to class

imbalance directly modify the learning

procedures of classifiers themselves. For

Decision Trees, algorithm-level methods have

focused primarily on alternative splitting criteria.

One such criterium is the Hellinger distance [32],

which is a measure of divergence between two

probability distributions and is calculated with

the Bhattacharyya coefficient [6]. For a two-class

problem in countable space, the Hellinger

distance can be expressed as:

𝑑𝐻(𝑃(𝑚+), 𝑃(𝑚−)) =

 √∑ (√𝑃(𝑌+|𝑋𝑖) − √𝑃(𝑌−|𝑋𝑖))
2

𝑖 ,

which can be derived from the confusion matrix

as follows:

𝑑𝐻(𝑇𝑃𝑅, 𝐹𝑃𝑅) =

√(√𝑇𝑃𝑅 − √𝐹𝑃𝑅)
2

+ (√1 − 𝑇𝑃𝑅 − √1 − 𝐹𝑃𝑅)
2

.

Hellinger distance trees [19, 20] have

been shown to perform well in cases of class

imbalance. Figure 3 [25] shows a comparison of

partitions of a two-dimensional feature space

constructed from the “yeast” dataset [23], where

multiple classes have been combined to form a

majority class such that the data possess an

Imbalance Ratio of 41.6. The left and right sides

show partitions resulting from Gini and Hellinger

trees, respectively, while parts (a) and (b) show

complete and localized views of the feature

space. Note two major differences between the

two partitions: firstly, that the positive

classification regions resulting from the Hellinger

trees are bounded, reducing unnecessary

misclassification of the majority class; and

secondly, that their positive classification regions

are broader than those of the Gini trees, causing

them to be more robust to attribute noise in the

minority class.

5.4.1 Other Algorithm-Level Methods

 Other proposals for splitting criteria

suitable for handling class imbalance include the

off-centered entropy [39], minority entropy [8],

and Class Confidence Proportion [41].

12

Figure 3: Comparison of Gini and Hellinger trees. Source: Fernandéz, et al., 2018.

6. Applications to the Thoracic Surgery

Dataset

 In this section, we will state our chosen

methods for our applications to the thoracic

surgery dataset, then display and discuss the

results of our experiments.

6.1 Methodology

 Our experiments on the thoracic dataset

will take a two-staged approach. In the first

stage, we will perform a grid search across a

shared set of parameter values and make a side-

by-side comparison of the best models obtained

for each method. In addition to reporting the

parameter values for these models, our metrics

for judging each method will be the Gmean

(calculated from the 10-fold cross-validated

specificity and sensitivity), as well as a

benchmark for the computational time of the

cross-validated output of the optimal model.

Computationally expensive methods will be

excluded from a second stage of optimization,

where the set of parameter values will be specific

to each method and will depend on the optimal

values resulting from the first stage. Our applied

methods will include: a baseline Random Forest

model (RF), random oversampling and

undersampling (RUSROS), one-sided selection

with additional random oversampling (OSS),

SMOTE with random undersampling (SMOTE),

SMOTE-Tomek (STMK), cost-sensitive learning

with class weights (CSL), SMOTEBagging and

SMOTEBoost with random undersampling (SBAG

and SBST, respectively), and a Random Forest

constructed from Hellinger trees (HDRF). The

original Boosted-SVM for Imbalanced Data

method from [68] is denoted as BSI.

13

6.1.1 Packages Used

 The experiments on the thoracic dataset

were carried out in R. Though not an exhaustive

list, the following packages represent those

which were instrumental to carrying out the

aforementioned methods: “caret” [37];

“CORElearn” [49]; “randomForest” [40]; “ranger”

[62]; “rpart” [57]; and “UBL” [9]. It should be

noted here that, due to the lack of support for

random feature selection at individual splits

among the available Decision Tree packages in R,

alterations were made to the ensemble methods

mentioned above. Intead of using Decision

Trees, the ensembles generated from the

SMOTEBoost method consist of 100 Random

Forests. For SMOTEBagging, Decision Trees were

kept as the weak learners, and random feature

selection was implemented using the Random

Subspace Method [33], where each tree is grown

using a randomly selected subset of the

variables.

6.1.2 Parameter Values

 In the first stage of our experiments,

parameter values used in our grid searches are

shared across all methods (where applicable) to

allow for better comparison of their

performance. The values searched across

possess a wide range and a large step size. This

was done in the interest of time, as some of the

methods used are quite computationally

expensive. It will be noted here that the values

of ntree, the number of trees in the Random

Forest, and mtry, the number of features

randomly selected for consideration at each split,

are held constant across all methods and both

stages at 500 and 4, respectively. The shared

parameter values for the first stage are as

follows:

• nodesize: the minimum size of a terminal

node within a Decision Tree

o From: 10; To: 50; By: 10

• cutoff: the minimum proportion

(inclusive) of votes for the minority class

required for a positive final prediction

o From: 0.1; To: 0.5; By: 0.1

• over: the amount of oversampling

performed, expressed as a percentage of

the original size of the minority class

training set, ie. 100% oversampling

results in a minority class training set

200% its original size

o From: 0%; To: 500%; By: 100%

• under: the amount of undersampling

performed, expressed as a percentage of

the original size of the majority class

training set, ie. 100% undersampling

results in the complete removal of the

majority class examples

o From: 0%; To 80%; By: 20%

• k: the number of neighbors searched for

in nearest-neighbor calculations

o From: 1; To: 5; By: 2

• cost (for CSL only): the cost of

misclassifying positive examples (cost of

misclassifying negative examples is held

constant at one)

o From: 1; To: 10; By: 1

6.2 Results of Optimization:

Computational Expense

 The results of the preliminary stage of

optimization are shown in Table 4. While we are

ultimately concerned with the performance of

our models in terms of the Gmean, in this stage

we are also concerned with computational

expense, expressed as the “Mean Time.” The

mean time does not refer to the average time to

compute the cross-validation function for all

attempted parameter values; rather, it is the

average computational time of five executions of

14

Table 4: First round of optimization

Method Gmean TNR TPR nodesize cutoff over under k cost Mean
Time

RF 62.30 54.58 71.12 10 0.1 - - - - 0.72s
RUSROS 65.44 55.10 77.71 30 0.2 200% 0% - - 0.78s

OSS 62.94 60.59 65.39 40 0.4 200% - - - 14.85m
SMOTE 67.51 64.09 71.11 20 0.2 100% 0% 5 - 1.17s
STMK 64.60 69.28 60.24 20 0.3 100% - 1 - 4.87m

CSL 65.92 61.37 70.81 50 0.4 - - - 6 0.55s
SBAG 62.11 66.41 58.10 30 0.3 100% 20% 5 - 2.13m
SBST 62.77 61.95 63.60 30 0.3 200% 0% 3 - 2.50m
HDRF 42.73 19.92 91.67 10 0.1 - - - - 14.71s

BSI 65.73 72.00 60.00 - - - - - - -

Table 5: Second round of optimization

Method Gmean TNR TPR nodesize cutoff over under k cost
RF 65.27 54.82 77.71 6 0.11 - - - -

RUSROS 67.44 67.26 67.62 5 0.15 50% 0% - -
SMOTE 67.87 64.56 71.35 25 0.2 100% 0% 7 -

CSL 66.46 62.38 70.81 46 0.4 - - - 6
HDRF 67.02 64.61 69.52 1 0.14 - - - -

BSI 65.73 72.00 60.00 - - - - - -

the cross-validation function, using the optimal

parameter values as inputs. In this way, this

statistic does not represent a thorough analysis

of the computational expense of each method,

but does provide for a quick comparison of scale.

In making comparisons, it is important to be

aware of the effects different parameter values

can have on the computational time. For

example, considering the same function was

used for the base Random Forest model and

Cost-Sensitive Learning, it is unlikely that CSL is

actually faster than RF, and only appears to be so

because the minimum node size for the optimal

CSL model was much larger, thus its trees were

grown shorter and therefore quicker.

Additionally, larger oversampling percentages

slow down the execution of the SMOTE and One-

Sided Selection methods considerably. Noting

the weaknesses of this measure, it is primarily

given as a way to identify methods which are

particularly slow to compute, namely: One-Sided

Selection; SMOTE-Tomek; SMOTEBagging; and

SMOTEBoost. Of these, it should be unsurprising

that the ensemble methods are slow: instead of

performing SMOTE ten times per cross-validated

estimate, SMOTEBagging and SMOTEBoost must

perform SMOTE 5,000 and 1,000 times,

respectively. One-Sided Selection and SMOTE-

Tomek, on the other hand, seem unreasonably

slow; the problem here likely lies not only with

the computational expense of these methods but

also with inefficiencies in the code for the One-

Sided Selection function. In any case, all four of

these methods were not optimized beyond the

first stage as a result of their slow computational

times.

 For the second stage of optimization, the

results of which are given in Table 5, optimization

was still performed globally, but step size was

tailored to each function depending on how

many parameters needed to be optimized for the

respective method. Consider the example of

SMOTE: with a minimum step size of 1/500 trees

15

and an upper bound of 1/2 for the cutoff, there

are 250 possible values for the vector of cutoffs;

assuming an average of 90% of the minority

training examples present in any training set for

ten-fold cross validation, there are 70 × 0.9 =

63 possible oversampling percentages up to

100%, plus an additional four if the Imbalance

Ratio of 5.71 is taken as an upper bound;

similarly, 400 × 0.9 = 360 possible values exist

for the undersampling percentage; ignoring the

vectors of values for the node size and 𝑘, for

which determining upper bounds is more of a

qualitative decision, optimizing these three

vectors alone, globally, and with their minimum

step size, results in a search grid of 6.03 × 106

combinations. Such tasks are best left to

supercomputers. The modeler posed with this

problem can take one or both of two

compromises: either they can maintain a low

step size and search locally among values close to

the previously optimal ones, or they can search

globally but decrease the step size to a lesser

extent. We have chosen the second of these

options. Describing in detail the discretionary

decisions made for the parameter searches of

each method in the second stage of optimization

would be tedious, but to give the reader an idea:

for SMOTE, the step sizes of the cutoff, minimum

node size, and undersampling percentage were

reduced by one half, while the range of 𝑘 was

increased to nine and the range of oversampling

percentages was expanded to include values

under 100%, resulting in a search grid of 45,000

combinations. This represented the largest

search grid, while RF and HDRF had the smallest

at 2,500 combinations each, resulting from 50

values tried for the node size and cutoff.

6.3 Results of Optimization: Accuracy

 The first round of optimization already

demonstrates the power of Random Forests in

handling imbalanced data. Not only do the

SMOTE and CSL models already outperform the

original BSI model, but the base RF model itself

does surprisingly well with appropriate choices

for the minimum node size and cutoff. HDRF, on

the other hand, at first appears to be a very poor

model, with a Gmean below 50%.

The ensemble methods SBAG and SBST

have yielded lackluster results, with the Gmean

of SBAG falling below that of the base RF model

and SBST scoring slightly above it. Without

further optimization, it is impossible to draw

conclusions about how these models would rank

against the others, although their accuracies

would no doubt improve. We can, however,

speculate as to why they have performed poorly

in the first stage of optimization. For

SMOTEBagging, for example, the

implementation of random feature selection

before constructing the trees is likely not as

robust as randomly selecting a subset of features

at each split. On the other hand, for

SMOTEBoost, two possible reasons may have

reduced accuracy: firstly, using Random Forests

as the weak learners was computationally

expensive, and in the interest of time ensembles

of only 100 Random Forests were grown, which

may have been too small. Secondly, Boosting

works by shifting the decision boundary towards

examples which are difficult to classify. Beyond

the general risk of any data set to possess noisy

examples, the relatively small size of our minority

class training set may increase this risk, as there

may be isolated examples which could prove to

be members of small clusters if the sample size

were larger. Additionally, the SMOTE algorithm

itself runs the risk of generating noisy examples

if there are already noisy examples present in the

data or if the value of 𝑘 is chosen to be too large,

as new data can be synthesized between

clusters, between noisy examples, or between a

noisy example and a cluster. The Boosting

algorithm, instead of ignoring the noise, will

focus more and more on these impossible to

classify examples. Neither SBAG or SBST

16

performs altogether poorly, however, and if the

above-mentioned issues do, in fact, detract from

their accuracies, the extent to which they do so

is likely not great.

Other interesting observations can be

drawn by comparing the different data-level

preprocessing methods. It seems that, for this

data set, oversampling proves to be a much

stronger approach than undersampling, for three

reasons: firstly, because SMOTE was the best

performing method of all; secondly, because the

optimal models for the resampling methods for

which undersampling was optional chose, with

the exception of SBAG, to perform no

undersampling at all; and thirdly, because STMK

outperformed OSS, but RUSROS with 0%

undersampling outperformed both of these. It is

also interesting to note that, where oversampling

was performed, the oversampling percentages

for the optimal models lie well below the

Imbalance Ratio, leaving their training sets still

quite imbalanced in favor of the majority class.

The second round of optimization

improved the results of all retained methods,

such that all but the base RF model

outperformed the original BSI model. Here,

RUSROS and SMOTE were the best performing

methods, again with no undersampling

performed and with only a small amount of

oversampling. This seems to indicate that data-

level preprocessing approaches are good

solutions when faced with imbalanced data, but

that they should not be used to completely

eliminate imbalance in the data set. The method

which benefitted the most from the additional

optimization was HDRF, whose Gmean increased

by 24.29% to beat out CSL for the third-best

method. Here, the optimal model contained only

pure end nodes, indicating a considerable

improvement to the splitting function. The

example of HDRF demonstrates the importance

of proper optimization when judging the quality

of a model. With the exception of RUSROS,

whose optimal minimum node size in the second

stage of optimization differed significantly from

that of the first, most of the optimal models

could have been found with a localized

parameter search centered on the optimal values

from the first stage. It is likely that most of the

methods would have seen greater increases in

their Gmean estimates had the second stage of

optimization been performed locally and with a

smaller step size.

7. Conclusion

 In this paper, we have demonstrated the

strength of Random Forests in handling

imbalanced data, owing to the control they give

the modeler over generalization (minimum node

size) and bias towards the minority class (vote

threshold). Of the variety of methods applied to

the problem, SMOTE performed best, and

oversampling methods appeared to perform

particularly well, even though the optimal

amount of oversampling often preserved a high

level of imbalance in the training set. With

proper optimization, all methods, aside from the

base Random Forest model, outperformed the

original Boosted-SVM for Imbalanced Data

method. Further work could involve additional

localized optimization with reduced step sizes for

all methods, including the ensemble- and

undersampling-based methods left out of the

second stage of optimization. Additionally,

subsets of the data could be created by

incrementally raising the minimum information

gain requirement from Table 1 in order to

explore the effects of dimensionality on the

accuracy of the models. Lastly, HDRF could be

applied to additional datasets to test whether

trees of maximum size should always be grown,

which would reduce the number of parameters

to optimize for this method to one.

17

References

1. Abdi, L., & Hashemi, S. (2016). To combat multi-class imbalanced problems by means of over-sampling

techniques. IEEE Transactions on Knowledge and Data Engineering, 238-251.

2. Barandela, R., Valdovinos, R., & Sánchez, J. (2003). New applications of ensembles of classifiers. Pattern

Analysis, 245-256.

3. Barua, S., Islam, M., Yao, X., & Murase, K. (2014). MWMOTE-majority weighted minority oversampling

technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering, 405-

425.

4. Batista, G., Bazzan, A., & Monard, M. (2003). Balancing Training Data for Automated Annotation of

Keywords: a Case Study. Revista Tecnologia da Informação, 15-20.

5. Batista, G., Prati, R., & Monard, M. (2004). A study of the behaviour of several methods for balancing

machine learning training data. SIGKDD Explorations, 20-29.

6. Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their

probability distributions. Bulletin of the Calcutta Mathematical Society, 99-109.

7. Błaszczynski, J., Deckert, M., Stefanowski, J., & Wilk, S. (2010). Integrating selective pre-processing of

imbalanced data with ivotes ensemble. Rough Sets and Current Trends in Computing (pp. 148-157).

Berlin/Heidelberg: Lecture Notes in Computer Science.

8. Boonchuay, K., Sinapiromsaran, K., & Lursinsap, C. (2017). Decision tree induction based on minority entropy

for the class imbalance problem. Pattern Analysis, 769-782.

9. Branco, P., Ribeiro, R. P., & Torgo, L. (2016). UBL: an R Package for Utility-Based Learning. Retrieved from

http://arxiv.org/abs/1604.08079

10. Breiman, L. (1996). Bagging Predictors. Machine Learning, 123-140.

11. Breiman, L. (1996). Out-of-bag estimation. Retrieved from

https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf

12. Breiman, L. (2001). Random Forests. Machine Learning, 5-32.

13. Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and Regression Trees. Taylor & Francis.

14. Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe–level–SMOTE: safe–level–synthetic

minority over–sampling TEchnique for handling the class imbalanced problem. Proceedings of the 13th

Pacific–Asia Conference on Advances in Knowledge Discovery and Data Mining, (pp. 475-482). Bangkok.

15. Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2012). DBSMOTE: density-based synthetic

minority over-sampling TEchnique. Applied Intelligence, 664-684.

16. Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: synthetic minority oversampling

technique. Journal of Artificial Intelligence, 321-357.

18

17. Chawla, N., Lazarevic, A., Hall, L., & Bowyer, K. (2003). SMOTEBoost: improving the prediction of the minority

class in boosting. Proceedings of the 7th European Conference on Principles and Practice of Knowledge

Discovery in Databases (pp. 107-119). Berlin/Heidelberg: Springer.

18. Chen, C., Liaw, A., & Breiman, L. (2004). Using Random Forest to Learn Imbalanced Data. University of

California, Berkeley.

19. Cieslak, D., & Chawla, N. (2008). Learning decision trees for unbalanced data. Proceedings of the European

Conference on Machine Learning and Knowledge Discovery in Databases, (pp. 241-256). Antwerp.

20. Cieslak, D., Hoens, T., Chawla, N., & Kegelmeyer, W. (2012). Hellinger distance decision trees are robust and

skew-insensitive. Data Mining and Knowledge Discovery, 136-158.

21. Cohen, G., Hilario, M., Sax, H., Hugonnet, S., & Geissbuhler, A. (2006). Learning from imbalanced data in

surveillance of nosocomial infection. Artificial Intelligence, 7-18.

22. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification . IEEE Transactions on Information

Theory, 21-27.

23. Dua, D., & Karra Taniskidou, E. (2018). UCI Machine Learning Repository. Irvine, CA: University of California,

School of Information and Computer Science. Retrieved from http://archive.ics.uci.edu/ml

24. Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition, 861-874.

25. Fernandéz, A., García, S., Galar, M., Prati, R., Krawczyk, B., & Herrera, F. (2018). Learning from Imbalanced

Data Sets. Cham: Springer.

26. Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application

to boosting. Journal of Computer and Systems Sciences, 119-139.

27. Galar, M., Fernández, A., Barrenechea, E., & Herrera, F. (2013). Eusboost: enhancing ensembles for highly

imbalanced data-sets by evolutionary undersampling. Pattern Recognition, 3460-3471.

28. Han, H., & Wang, W. M. (2005). Borderline-SMOTE: a new over-sampling method in imbalanced data sets

learning. Proceedings of the 2005 International Conference on Intelligent Computing (pp. 878-887). Hefei:

Lecture Notes in Computer Science.

29. Hart, P. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 515-516.

30. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. New York: Springer.

31. He, H., Bai, Y., & Garcia, E. L. (2008). ADASYN: adaptive synthetic sampling approach for imbalanced learning.

Proceedings of the 2008 International Joint Conference on Neural Networks, (pp. 1322-1328). Hong Kong.

32. Hellinger, E. (1909). Neue Begründung der Theorie quadratischer Formen von unendlichvielen

Veränderlichen. Journal für die reine und angewandte Mathematik, 210-271.

33. Ho, T. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 832-844.

34. Hu, S., Liang, Y., Ma, L., & He, Y. (2009). MSMOTE: Improving classification performance when training data

is imbalanced. 2nd International Workshop on Computer Science and Engineering, (pp. 13-17). Qingdao.

35. Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in

Artificial Intelligence, 221-232.

19

36. Kubat, M., & Matwin, S. (1997). Addressing the Curse of Imbalanced Training Sets: One-Sided Selection.

Proceedings of the Fourteenth International Conference on Machine Learning (pp. 176-189). San Francisco:

Morgan Kaufmann.

37. Kuhn, M. (2018). caret: Classification and Regression Training. Retrieved from https://CRAN.R-

project.org/package=caret

38. Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution.

Proceedings of the 8th Conference on AI in Medicine in Europe, (pp. 63-66). Cascais.

39. Lenca, P., Lallich, S., Do, T., & Pham, N. (2008). A comparison of different off-centered entropies to deal with

class imbalance for decision trees. Proceedings of the 12th Pacific-Asia Conference on Advances in

Knowledge Discovery and Data Mining, (pp. 634-643). Osaka.

40. Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. Retrieved from

https://CRAN.R-project.org/doc/Rnews/

41. Liu, W., Chawla, S., Cieslak, D., & Chawla, N. (2010). A robust decision tree algorithm for imbalanced data

sets. Proceedings of the SIAM International Conference on Data Mining, (pp. 766-777). Columbus.

42. Liu, X., Wu, J., & Zhou, Z. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions

on Systems, Man, and Cybernetics, 539-550.

43. Menardi, G., & Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data

Mining and Knowledge Discovery, 92-122.

44. Mishina, Y., Tsuchiya, M., & Fujiyoshi, H. (2014). Boosted Random Forest. Proceedings of the International

Conference on Computer Vision Theory and Applications, (pp. 594-598). Lisbon.

45. Orriols-Puig, A., & Bernadó-Mansilla, E. (2009). Evolutionary rule-based systems for imbalanced data sets.

Soft Computing, 213-225.

46. Quinlan, J. (1986). Induction of Decision Trees. Machine Learning, 81-106.

47. Quinlan, J. (1993). C4.5: Programs for Machine Learning. San Francisco: Morgan Kaufmann.

48. Ramentol, E., Caballero, Y., Bello, R., & Herrera, F. (2012). SMOTE-RSB*: a hybrid preprocessing approach

based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets

theory. Knowledge and Information Systems, 245-265.

49. Robnik-Sikonja, M., & Savicky, P. (2018). CORElearn: Classification, Regression, and Feature Evaluation.

Retrieved from https://CRAN.R-project.org/package=CORElearn

50. Sáez, J., Luengo, J., Stefanowski, J., & Herrera, F. (2015). SMOTE-IPF: addressing the noisy and borderline

examples problem in imbalanced classification by a re-sampling method with filtering. Information Science,

184-203.

51. Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when

evaluating binary classifiers on imbalanced datasets. PloS One.

52. Schaffer, C. (1993). Selecting a Classification Method by Cross-Validation. Machine Learning, 135-143.

53. Schapire, R. (1990). The strength of weak learnability. Machine Learning, 197-227.

54. Seiffert, C., Khoshgoftaar, T., Van Hulse, J., & Napolitano, A. (2010). Rusboost: a hybrid approach to

alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics, 185-197.

20

55. Stefanowski, J., & Wilk, S. (2008). Selective pre-processing of imbalanced data for improving classification

performance. Proceedings of the 10th International Conference on Data Warehousing and Knowledge

Discovery, (pp. 283-292). Turin.

56. Tang, S., & Chen, S. (2008). The generation mechanism of synthetic minority class examples. Proceedings of

the Fifth International Conference on Information Technology and Applications in Biomedicine , (pp. 444-

447). Shenzhen.

57. Therneau, T., & Atkinson, B. (2018). rpart: Recursive Partitioning and Regression Trees. Retrieved from

https://CRAN.R-project.org/package=rpart

58. Ting, K. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on

Knowledge and Data Engineering, 659-665.

59. Tomek, I. (1976). Two Modifications of CNN. IEEE Transactions on Systems, Man and Communications(SMC-

6), 769-772.

60. Wang, S., & Yao, X. (2009). Diversity analysis on imbalanced datasets by using ensemble models. IEEE

Symposium on Computational Intelligence and Data Mining, (pp. 324-331). Nashville.

61. Wilson, D., & Martinez, T. (1997). Improved Heterogeneous Distance Functions. Journal of Artificial

Intelligence Research, 1-34.

62. Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional

Data in C++ and R. Journal of Statistical Software, 1-17. doi:10.18637/jss.v077.i01

63. Yang, Y., & Pederson, J. (1997). A comparative study on feature selection in text categorization. Proceedings

of the Fourteenth International Conference on Machine Learning (pp. 412-420). Morgan Kaufmann.

64. Yen, S., & Lee, Y. (2006). Under-sampling approaches for improving prediction of the minority class in an

imbalanced dataset. Proceedings of the International Conference on Intelligent Computing (pp. 731-740).

Kunming: Lecture Notes in Control and Information Sciences.

65. Yen, S., & Lee, Y. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert

Systems with Applications, 5718-5727.

66. Yoon, K., & Kwek, S. (2005). An unsupervised learning approach to resolving the data imbalanced issue in

supervised learning problems in functional genomics. Proceedings of the Fifth International Conference on

Hybrid Intelligence Systems, (pp. 303-308). Rio de Janeiro.

67. Zhang, J., & Mani, I. (2003). KNN approach to unbalanced data distributions: a case study involving

information extraction. Proceedings of the 20th International Conference on Machine Learning.

68. Zięba, M., Tomczak, J. M., Lubicz, M., & Świątek, J. (2014). Boosted SVM for extracting rules from imbalanced

data inapplication to prediction of the post-operative life expectancy in the lung cancer patients. Applied

Soft Computing, 99-108.

