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Abstract 

Designing mechanical structures exposed to random vibration loading compromises the central challenges of defining 
comprehensive load assumptions and of processing these efficiently in a fatigue assessment. For this matter of statistical load 
description, frequency-domain methods withhold major advantages. They describe random vibration loading by its power spectral 
density, which allows drastic data reduction, to conduct efficient response analyses and to derive a statistical description of resulting 
load spectra. Nevertheless, this procedure is limited to stationary Gaussian loading. Thus, this paper proposes an extension of the 
frequency-domain approach to a special class of non-stationary loading – amplitude-modulated processes. These consist of a unique 
vibration state that varies in intensity, which is represented by a modulating signal. This paper develops a methodology to test for 
amplitude-modulated processes, to derive efficient measures for the intensity variation and to include this behavior in a fatigue 
assessment carried out in frequency-domain. The full methodology is presented via a set of simulated data.  
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1. Introduction 

In numerous technical fields, mechanical structures are subjected to random stresses due to vibration loading. 
Random vibration loading is common in the automotive, railway and aerospace sector. It must be analyzed within a 
fatigue strength assessment whose purpose is to ensure the structural integrity and operation for the requested lifetime. 
This makes it an essential element throughout the design and test stages. Carrying out a fatigue assessment for 

 
 

* Corresponding author. Tel.: +49-89-1265-3345; fax: +49-89-1265-3308. E-mail address: atrapp@hm.edu 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the ICSI 2019 organizers.  

 ICSI 2019 The 3rd International Conference on Structural Integrity 

Fatigue assessment of amplitude-modulated non-stationary random 
vibration loading 

Arvid Trappa,*, Mafake James Makuaa,b, Peter Wolfsteinera  
aUniversity of Applied Sciences Munich, Department of Mechanical, Automotive and Aeronautical Engineering, 

 Dachauer Straße 98b, 80335 Munich, Germany 
bKnorr-Bremse Rail Vehicle Systems GmbH, Bogie Equipment Test, Moosacher Str. 80, 80809 Munich, Germany  

Abstract 

Designing mechanical structures exposed to random vibration loading compromises the central challenges of defining 
comprehensive load assumptions and of processing these efficiently in a fatigue assessment. For this matter of statistical load 
description, frequency-domain methods withhold major advantages. They describe random vibration loading by its power spectral 
density, which allows drastic data reduction, to conduct efficient response analyses and to derive a statistical description of resulting 
load spectra. Nevertheless, this procedure is limited to stationary Gaussian loading. Thus, this paper proposes an extension of the 
frequency-domain approach to a special class of non-stationary loading – amplitude-modulated processes. These consist of a unique 
vibration state that varies in intensity, which is represented by a modulating signal. This paper develops a methodology to test for 
amplitude-modulated processes, to derive efficient measures for the intensity variation and to include this behavior in a fatigue 
assessment carried out in frequency-domain. The full methodology is presented via a set of simulated data.  
 
© 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the ICSI 2019 organizers. 

Keywords: fatigue assessment, random loading, non-stationary loading, frequency-domain methods, spectrogram 

1. Introduction 

In numerous technical fields, mechanical structures are subjected to random stresses due to vibration loading. 
Random vibration loading is common in the automotive, railway and aerospace sector. It must be analyzed within a 
fatigue strength assessment whose purpose is to ensure the structural integrity and operation for the requested lifetime. 
This makes it an essential element throughout the design and test stages. Carrying out a fatigue assessment for 

 
 

* Corresponding author. Tel.: +49-89-1265-3345; fax: +49-89-1265-3308. E-mail address: atrapp@hm.edu 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2019.08.050&domain=pdf


380 Arvid Trapp  et al. / Procedia Structural Integrity 17 (2019) 379–386
2 Arvid Trapp/ Structural Integrity Procedia  00 (2019) 000–000 

structures exposed to random vibration loading compromises two central challenges. The first is to abstract or to define 
representative load assumptions and the second is to efficiently process these load assumptions to identify the central 
failure modes. Both are primarily a matter of statistical load description.  

Defining random vibration loading via the power spectral density (PSD) combines an effective statistical 
description with the ability to efficiently perform fatigue analyses for linear structures using frequency-domain 
methods such as the Dirlik method. The PSD is a fundamental tool for vibration fatigue. For stationary Gaussian 
loading the PSD offers a full stochastic description. Nevertheless, most real-world phenomena, e.g. measured field 
data depicting vehicle vibration, usually differ significantly from this assumption. This is due to changing operational, 
environmental or excitational conditions which result in diverse vibration with varying intensity [1,2]. An exemplary 
load is shown in Fig. 1, which was measured on the axle box of a locomotive. The moving root mean square (RMS) 
value is used to determine the evolution of the signal’s intensity. Implementing the PSD for these conditions results in 
the averaged PSD, which produces lower stress amplitudes than the referencing measured load. Hence processing the 
PSD for random loading leads to non-conservative deviations for a structure’s lifetime estimation [3].  

Since the PSD is not a sufficient descriptor for such loading, it must be complemented by stochastic parameters 
that reflect the deviations from a stationary Gaussian assumption. In recent research, higher-order statistical moments 
such as skewness and kurtosis have been used to describe how the probability density function (PDF) of realistic 
loading differs from stationary Gaussian vibration loading [4]. These scalar measures can be very efficient descriptors, 
however their use requires some knowledge about the nature of a load [5]. This is due to the fact that higher-order 
moments are sensitive to different effects that lead to a significant deviation from the stationary Gaussian hypothesis. 
These may be dominant periodical components, nonlinearities or non-stationary behavior. All of these can even occur 
simultaneously, therefore the description of general vibration loading via higher-order moments may be ambiguous. 
Such instances were shown in [6] that loads of same PSD and kurtosis value can distinctly deviate in their fatigue 
potential. 

Specifying the nature of a loading can ensure that the use of kurtosis and other higher-order moments is not 
misleading. Therefore, this paper focuses on a special class of non-stationary loading – amplitude-modulated (AM) 
processes. They are composed of a single PSD, representing the average vibrational loading, and its varying intensity. 
Considering vehicle excitations, this non-stationary behavior may be caused by varying surface conditions, roughness, 
curves or gradient. The varying intensity is expressed by a low-frequency function that modulates the average vibration 
process. The latter can be represented by a stationary Gaussian process. 

This paper gives a comprehensive framework for non-stationary loading under the assumption of an AM origin. It 
begins with an introduction to statistical load analysis. The second section covers non-stationary loading and reviews 
the carrier-noise model. An efficient description of these processes is derived on the basis of the abovementioned 
quantities and how this description can be estimated from real load series. Furthermore, it is demonstrated how the 
proposed measures are extended to frequency-domain, which enables testing procedures for this model. The effects of 
AM excitation on fatigue damage is investigated and a correction strategy is proposed.  
 
Nomenclature 

𝛼𝛼2 bandwidth parameter ℎ(𝜏𝜏) transfer function       𝑝𝑝(𝑥𝑥)      probability density function     
𝛽𝛽 kurtosis   𝐻𝐻(𝑓𝑓) transfer function           𝜎𝜎/𝜎𝜎2      standard deviation/variance 
𝐷𝐷𝑖𝑖  Dirlik parameter  𝜆𝜆𝑛𝑛 𝑛𝑛-th spectral moment      𝜚𝜚𝑛𝑛      𝑛𝑛-th order irregularity factor 
𝐸𝐸[⋅] expected value   𝑚𝑚(𝑡𝑡) modulating signal         𝑠𝑠      stress amplitude  
[⋅]‼ double factorial   𝑚𝑚𝑛𝑛 𝑛𝑛𝑡𝑡ℎ-order moment      𝑥𝑥(𝑡𝑡)      excitation signal  
𝐹𝐹(𝑠𝑠) load spectrum  𝜇𝜇𝑥𝑥 mean            𝑋𝑋(𝑡𝑡)      stochastic process  
𝑔𝑔(⋅) transformation function 𝜇𝜇𝑛𝑛 𝑛𝑛𝑡𝑡ℎ-order central moment      𝑋𝑋(𝑓𝑓)      Fourier coefficients 
𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) power spectral density  ν0 zero-crossing-rate       𝑦𝑦(𝑡𝑡)      response signal 
𝛾𝛾 skewness  νp peak-rate       𝑍𝑍      normalized stress amplitude 
AM Amplitude-Modulation  CN  Carrier-Noise          PDF      Probability Density Function 
PSD Power Spectral Density RFC RainFlow Counting      SDOF   Single-Degree-Of-Freedom 
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Figure 1. Measured load that varies in intensity  

2. Statistical load description 

Stationary random vibration loading conforming the central limit theorem follows the Gaussian PDF 𝑝𝑝𝑔𝑔(𝑥𝑥), which 
is fully defined by its mean 𝜇𝜇𝑥𝑥 and variance 𝜎𝜎2. 

                    𝑝𝑝𝑔𝑔(𝑥𝑥) =  
1

√2𝜋𝜋𝜎𝜎2 
𝑒𝑒(−
(𝑥𝑥−𝜇𝜇𝑥𝑥)2
2𝜎𝜎2 )    (1) 

Both quantities belong to a wider range of statistical measures termed statistical moments 𝑚𝑚𝑛𝑛, including the mean 
𝜇𝜇𝑥𝑥 = 𝑚𝑚1, and central moments 𝜇𝜇𝑛𝑛 (𝜎𝜎2 = 𝜇𝜇2) which measure the spread about the mean.  

     𝑚𝑚𝑛𝑛 = 𝐸𝐸[𝑋𝑋𝑛𝑛(𝑡𝑡)] = ∫ 𝑥𝑥𝑛𝑛∞
− ∞ 𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑥𝑥;                  𝜇𝜇𝑛𝑛 = 𝐸𝐸[(𝑋𝑋(𝑡𝑡) − 𝐸𝐸[𝑋𝑋(𝑡𝑡)])𝑛𝑛] = ∫ (𝑥𝑥 − 𝜇𝜇𝑥𝑥)𝑛𝑛

∞
− ∞ 𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑥𝑥  (2) 

The generalization from 2𝑛𝑛𝑛𝑛  to higher-order moments is required for a more thorough description of random 
loading and to determine the deviation of its PDF 𝑝𝑝(𝑥𝑥) from the stationary Gaussian assumption. Higher-order 
moments of a Gaussian distribution 𝜇𝜇𝑛𝑛,𝑔𝑔 can be stated in terms of the second central moment, with [⋅]‼ denoting the 
double factorial.  

                    𝜇𝜇𝑛𝑛,𝑔𝑔 =  {(𝑛𝑛 − 1)‼ 𝜎𝜎
𝑛𝑛 = (𝑛𝑛 − 1)‼ 𝜇𝜇2

(𝑛𝑛/2)    𝑛𝑛 even     
0 𝑛𝑛 uneven

   (3) 

To compare loading of different variance, higher-order moments are normalized by the standard deviation 
𝜎𝜎 =  √𝜎𝜎2 . This introduces the well-known normalized moments skewness  𝛾𝛾 = 𝜇𝜇3/𝜎𝜎3 , describing asymmetric 
properties of the spread, and kurtosis 𝛽𝛽 = 𝜇𝜇4/𝜎𝜎4, specifying the tails of the PDF. Studying structures subjected to 
random vibration loading inevitably leads to the PSD  𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) . The PSD depicts the squared amplitudes of all 
harmonics that compose a load series. The integral of these contributions also results in the second central moment 𝜇𝜇2, 
suggesting the interpretation of the PSD as the decomposition of variance over frequency.  

                    𝜇𝜇2 = 𝜎𝜎2 = ∫ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)
∞
0 𝑑𝑑𝑓𝑓    (4) 

The frequency-domain description via PSD allows an efficient definition of a random loading as a continuous 
function, which enables them to be processed in stress response analyses of linear structures or to analyze the response 
of unknown structures. For stationary Gaussian processes, the PSD carries further information that is accessible via 
spectral moments 𝜆𝜆𝑛𝑛, which are defined by            

                    𝜆𝜆𝑛𝑛 = ∫ 𝑓𝑓𝑛𝑛 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)
∞
0 𝑑𝑑𝑓𝑓    (5) 

This definition can be related to derivatives in frequency-domain where the PSD of a derivative process �̇�𝑥(t) can 
simply be determined by means of 𝐺𝐺�̇�𝑥�̇�𝑥(𝑓𝑓) = (2𝜋𝜋𝑓𝑓)2 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓). On this basis, statistical measures of time-domain 
quantities, such as zero-crossing- ν0 and peak-rate νp, can be stated by spectral moments. Their ratio further indicates 
the bandwidth 𝛼𝛼2 of a vibration process.  

                    𝜈𝜈0 = √
𝜆𝜆2
𝜆𝜆0
;                                   𝜈𝜈𝑝𝑝 = √

𝜆𝜆4
𝜆𝜆2
;                                  𝛼𝛼2 =

𝜈𝜈0
𝜈𝜈𝑝𝑝
= 𝜆𝜆2
√𝜆𝜆0𝜆𝜆4

   (6) 
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This establishes a framework that enables a fatigue analysis in the frequency-domain. For narrow-band stationary 
processes (𝛼𝛼2 = 1), the distribution of stress cycles in a structural response can be expressed by an analytical solution 
based on the Rayleigh distribution [7]. For common broadband processes, empirical solutions such as the Dirlik 
method have been derived [8]. They approximate the stress cycle distribution by superimposing parametrical 
distributions. Eq. 8 estimates the load spectrum 𝐹𝐹𝐷𝐷𝐷𝐷(𝑠𝑠) via the Dirlik method which requires determining the Dirlik-
parameters (𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, 𝑥𝑥𝑚𝑚, 𝑄𝑄, 𝑅𝑅). 

𝐷𝐷1 =  
2(𝑥𝑥𝑚𝑚−𝛼𝛼22)
1+𝛼𝛼22

; 𝐷𝐷2 =  
1−𝛼𝛼2−𝐷𝐷1+𝐷𝐷12

1−𝑅𝑅 ; 𝐷𝐷3 = 1 − 𝐷𝐷1 − 𝐷𝐷2; 𝑥𝑥𝑚𝑚 =  
𝜆𝜆1
𝜆𝜆0
√𝜆𝜆2𝜆𝜆4 ; 𝑄𝑄 =

1.25(𝛼𝛼2−𝐷𝐷3−𝐷𝐷2𝑅𝑅)
𝐷𝐷1

; 𝑅𝑅 = 𝛼𝛼2−𝑥𝑥𝑚𝑚−𝐷𝐷1
2

1−𝛼𝛼2−𝐷𝐷1+𝐷𝐷12
  (7) 

                    𝐹𝐹𝐷𝐷𝐷𝐷(𝑠𝑠) = 𝐷𝐷1𝑒𝑒−𝑍𝑍/𝑄𝑄 + 𝐷𝐷2𝑒𝑒−𝑍𝑍
2/2𝑅𝑅2 + 𝐷𝐷3𝑒𝑒−𝑍𝑍

2/2;               𝑍𝑍 =  𝑠𝑠√𝜆𝜆0   (8) 

As Eq. 4 suggests, all this information is limited to processes that are fully defined by the second central moment – 
stationary Gaussian processes. The following section considers non-stationary loading. 

3. Non-Stationary loading  

Unlike a stationary Gaussian loading which is stochastically fully defined by the PSD, non-stationary resp. non-
Gaussian loading, i.e. realistic vibration, must cover additional stochastic parameters. Most of the commonly used 
parameters, such as the kurtosis are derived from higher-order statistical moments. They describe a non-Gaussian PDF 
relative to a Gaussian PDF.   

This paper covers a concrete model for non-stationary random loading, which consist of a unique vibrational state 
derived from a PSD, that varies in intensity. The varying intensity can be expressed by a modulating function that 
describes the evolution of the signal’s intensity (magnitudes). As this elementary vibration process is generally a 
broadband process, the model is resumed as an AM ‘carrier-noise’ process in reference to the general modulation 
techniques. 

3.1. Carrier-noise model for non-stationary loading 

Realistic loading often varies in intensity caused by diverse operational, environmental or excitational conditions, 
which motivates the definition of the carrier-noise (CN) model. It is based on amplitude-modulation (AM), where a 
low-frequency information signal generally modulates a high-frequency wave (carrier). To align this simple 
modulation technique to broadband random vibration, the CN model describes a broadband noise that is modulated 
by a varying low-frequency intensity. A realization 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) for such a loading must conform to the model 

                    𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) = 𝑥𝑥𝑔𝑔(𝑡𝑡) 𝑚𝑚(𝑡𝑡)    (9) 

whereby 𝑥𝑥𝑔𝑔(𝑡𝑡) ∼ 𝒩𝒩(𝜇𝜇 = 0, 𝜎𝜎 = 𝜎𝜎𝑎𝑎𝑚𝑚)  is a stationary zero-mean Gaussian realization that is linearly modulated by 
the modulating signal 𝑚𝑚(𝑡𝑡). The stochastic characteristics of the Gaussian realization are fully defined by the PSD 
𝐺𝐺𝑥𝑥𝑥𝑥,𝑔𝑔(𝑓𝑓). The modulating function 𝑚𝑚(𝑡𝑡) is a low-frequency signal which is normalized so that the standard deviation 
𝜎𝜎𝑎𝑎𝑚𝑚 =  𝜎𝜎𝑔𝑔 remains equal.  
      To take a more detailed view at the latter condition and to establish a concise description for the non-stationary 
behavior, the 𝑛𝑛𝑡𝑡ℎ-order irregularity factor 𝜚𝜚𝑛𝑛  is introduced. This measure is motivated by the assumption that an 
in-service modulating function 𝑚𝑚(𝑡𝑡) is of random nature and therefore suggests a description analogous to statistical 
moments. It is derived by inserting Eq. 9 in 2. The mean 𝜇𝜇𝑥𝑥,𝑎𝑎𝑚𝑚 = 0 is set to zero and since a Gaussian 𝑋𝑋𝑔𝑔(𝑡𝑡) and a 
modulating process 𝑀𝑀(𝑡𝑡) are statistically independent, the expected value operator can be separated. This defines the 
𝑛𝑛𝑡𝑡ℎ-order irregularity factor by 𝜚𝜚𝑛𝑛 = 𝐸𝐸[𝑀𝑀𝑛𝑛(𝑡𝑡)]. 

𝜇𝜇𝑛𝑛,𝑎𝑎𝑚𝑚 = 𝐸𝐸[(𝑋𝑋𝑎𝑎𝑚𝑚(𝑡𝑡) − 𝜇𝜇𝑥𝑥,𝑎𝑎𝑚𝑚)
𝑛𝑛] = 𝐸𝐸 [(𝑋𝑋𝑔𝑔(𝑡𝑡)𝑀𝑀(𝑡𝑡))

𝑛𝑛
] =  𝐸𝐸[𝑋𝑋𝑔𝑔𝑛𝑛(𝑡𝑡)]𝐸𝐸[𝑀𝑀𝑛𝑛(𝑡𝑡)] = 𝜇𝜇𝑛𝑛,𝑔𝑔 𝐸𝐸[𝑀𝑀𝑛𝑛(𝑡𝑡)] =  𝜇𝜇𝑛𝑛,𝑔𝑔 𝜚𝜚𝑛𝑛  (10) 

      Since the second moment 𝜇𝜇2,𝑔𝑔 = 𝜇𝜇2,𝑎𝑎𝑚𝑚 defines the condition of equal standard deviation, a normalized modulating 
function can now be stated by ϱ2,𝑚𝑚 = 1. In case of a non-normalized realization �̃�𝑚(t), this condition can be executed 
via 𝑚𝑚(𝑡𝑡) =  �̃�𝑚(𝑡𝑡)/√𝜚𝜚2,�̃�𝑚. Generally, irregularity factors 𝜚𝜚𝑛𝑛 can only be calculated for even moments for the reason 
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that uneven Gaussian moments are zero (Eq. 3). Nevertheless, due to the symmetric Gaussian distribution, absolute 
moments may be used to determine irregularity factors 𝜚𝜚𝑛𝑛 of any arbitrary order. In order to derive the 𝑛𝑛𝑡𝑡ℎ-order 
irregularity factor 𝜚𝜚𝑛𝑛 from a given load 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡), the ratio of the even higher-order moments 𝜇𝜇𝑛𝑛,𝑎𝑎𝑚𝑚 to its corresponding 
Gaussian moments 𝜇𝜇𝑛𝑛,𝑔𝑔 is determined (compare Eq. 3).  

                    𝜚𝜚𝑛𝑛 =
𝜇𝜇𝑛𝑛,𝑎𝑎𝑚𝑚
𝜇𝜇𝑛𝑛,𝑔𝑔
= 1
(𝑛𝑛−1)‼

𝜇𝜇𝑛𝑛,𝑎𝑎𝑚𝑚
𝜇𝜇2,𝑔𝑔
(𝑛𝑛/2)    (11) 

The proposed description permits an efficient definition for a non-stationary random loading of AM origin by its 
PSD 𝐺𝐺𝑥𝑥𝑥𝑥,𝑔𝑔(𝑓𝑓) = 𝐺𝐺𝑥𝑥𝑥𝑥,𝑎𝑎𝑚𝑚(𝑓𝑓) and a set of irregularity factors, e.g. 𝜚𝜚4, 𝜚𝜚6, …, that can be directly related to the statistical 
moments and the PDF of a referencing load. They indicate the deviation from a stationary Gaussian loading (𝛽𝛽𝑔𝑔 = 3), 
here illustrated by the kurtosis 𝛽𝛽𝑎𝑎𝑚𝑚 = 𝛽𝛽𝑔𝑔 ⋅ 𝜚𝜚4 = 3𝜚𝜚4.  

3.2. Generating a carrier-noise load 

In order to synthetically generate a varying load signal 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡),  a low-frequency signal 𝑚𝑚(𝑡𝑡) is required that 
represents the variation of intensity whose magnitudes modulate the high-frequency broadband 'carrier-noise' 
𝐺𝐺𝑥𝑥𝑥𝑥,g (𝑓𝑓) of the actual vibration process within the time-domain. This obligates the modulating signal 𝑚𝑚(𝑡𝑡) to have 
the same length as the stationary Gaussian realization 𝑥𝑥𝑔𝑔(𝑡𝑡) ∼ 𝐺𝐺𝑥𝑥𝑥𝑥,g(𝑓𝑓). It is created in a way, that the resulting load 
series 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) has a specified kurtosis 𝛽𝛽𝑎𝑎𝑚𝑚.  
Here it is generated as a random realization through the following steps:  

(i) Generating a stationary Gaussian realization 𝒙𝒙𝒈𝒈(𝒕𝒕) from the PSD 𝑮𝑮𝒙𝒙𝒙𝒙,𝒈𝒈(𝒇𝒇) = 𝑮𝑮𝒙𝒙𝒙𝒙,𝒂𝒂𝒂𝒂(𝒇𝒇) which functions as 
the 'carrier-noise'. 

(ii) Defining a PSD shape 𝑮𝑮𝒙𝒙𝒙𝒙,𝒂𝒂(𝒇𝒇) for the modulating signal 𝒂𝒂(𝒕𝒕) that has a low-frequency content. Thereafter 
a stationary Gaussian realization 𝒂𝒂(𝒕𝒕) ∼ 𝓝𝓝(𝝁𝝁 = 𝟎𝟎, 𝝈𝝈 = 𝟏𝟏)  is generated with the same sampling as the 
'carrier-noise' 𝒙𝒙𝒈𝒈(𝒕𝒕). 

(iii) Using the absolute values |𝒂𝒂(𝒕𝒕)|  which ensures positive values. This prevents complications with the 
operations applied in the following step and produces an initial kurtosis 𝜷𝜷𝒂𝒂𝒂𝒂 > 𝟑𝟑 . 

(iv) Iterating the exponent 𝒑𝒑 (stretching the PDF) and adding a tolerance 𝚫𝚫𝒂𝒂 (threshold to zero) until a desired 
kurtosis value is generated. 

 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) = 𝑥𝑥𝑔𝑔(𝑡𝑡) (|�̃�𝑚(𝑡𝑡)|𝑝𝑝 + 𝛥𝛥𝑚𝑚)   (12) 

3.3. Testing procedure for carrier-noise model 

While the former section presents a way of 
synthetically generating random AM loads, real 
applications raise the question of attributing 
loading to this model.  A subjective approach would 
be to estimate the time-frequency evolution of a 
reference load via a spectrogram, which contains 
𝑘𝑘 = 1,2, . . , 𝐾𝐾 frequency intervals and 𝑙𝑙 = 1,2, . . , 𝐿𝐿 
time segments (compare Fig. 2). Visually 
examining the spectrogram can lead to the 
conclusion that the load has a unique PSD shape 
that varies in intensity and thus appears to be of AM 
origin. However, this subjective approach has two 
flaws, namely the spectrogram depends heavily on 
its parameters (window-length, -function, -overlap, etc.) and its results are based on an exclusively visual observation. 
Thus, a new measure is proposed that verifies the model quantitatively from the spectrogram. It is based on the 
assumption that the variation in intensity can also be found in the frequency-selective evolution of the spectrogram. 
Thus, the proposed irregularity factors 𝜚𝜚𝑛𝑛
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Figure 2. Schematic visualization of spectrogram and derivable quantities. 
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hypothesis is that if 𝜚𝜚𝑛𝑛(𝑓𝑓) is constant along the frequency axis and equals the global value 𝜚𝜚𝑛𝑛, then the loading is of 
an AM origin. In practical application (compare Fig. 3), due to the random nature and the data split, the function 𝜚𝜚𝑛𝑛(𝑓𝑓) 
fluctuates around the global value 𝜚𝜚𝑛𝑛. Thus, it should be pointed out that the conformity of 𝜚𝜚𝑛𝑛(𝑓𝑓) with 𝜚𝜚𝑛𝑛 can strongly 
depend on a suitable choice of the spectrogram’s parameters. Fig. 2 further shows how a modulating signal can be 
recovered from an AM loading by summation and normalization along frequency. 

3.4. Adjustment procedure on response load spectra 

The following section proposes an approach to reflect non-stationary behavior caused by varying intensity within 
a fatigue strength assessment and to implement load spectra estimators in frequency-domain. This involves the 
response behavior of structures subjected to an excitation. General mechanical structures are modelled as linear time-
invariant systems, allowing the use of linear operator theory. This implicates that a linear time-invariant system 
responds proportionally to a varying intensity. Thus, the following approach takes on the separation of the AM non-
stationary excitation 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) = 𝑥𝑥𝑔𝑔(𝑡𝑡) 𝑚𝑚(𝑡𝑡) to assemble the response 𝑦𝑦𝑎𝑎𝑚𝑚(𝑡𝑡) in the same manner, which results in a 
stationary Gaussian response process 𝑦𝑦𝑔𝑔(𝑡𝑡) that is modulated by 𝑚𝑚(𝑡𝑡). The calculation can be carried out in time- 
(homogenous and particularly solution 𝑦𝑦𝑔𝑔(𝑡𝑡)) or frequency-domain (particularly solution �̃�𝑦𝑔𝑔(𝑡𝑡)): 
𝑦𝑦𝑎𝑎𝑚𝑚(𝑡𝑡) = 𝑦𝑦𝑔𝑔(𝑡𝑡) 𝑚𝑚(𝑡𝑡) = ∫ ℎ(𝜏𝜏)𝑥𝑥𝑔𝑔(𝑡𝑡 − 𝜏𝜏) 𝑑𝑑𝜏𝜏

∞
0  𝑚𝑚(𝑡𝑡); �̃�𝑦𝑎𝑎𝑚𝑚(𝑡𝑡) = �̃�𝑦𝑔𝑔(𝑡𝑡) 𝑚𝑚(𝑡𝑡) =  𝑖𝑖𝐹𝐹𝐹𝐹𝑖𝑖{𝑋𝑋𝑔𝑔(𝑓𝑓)𝐻𝐻(𝑓𝑓)} 𝑚𝑚(𝑡𝑡)  (13) 

In contrast to a direct solution of the non-stationary excitation (ℎ(𝜏𝜏)𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡 − 𝜏𝜏)), this procedure provides the 
opportunity to describe loading and response via statistical quantities. Therefore, the response analysis may also be 
carried out via PSD 𝐺𝐺𝑦𝑦𝑦𝑦,𝑔𝑔 = 𝐺𝐺𝑥𝑥𝑥𝑥,𝑔𝑔(𝑓𝑓)|𝐻𝐻(𝑓𝑓)|2. As a consequence, frequency-domain methods can be adapted into the 
fatigue assessment. This allows to estimate the load spectrum 𝐹𝐹𝑦𝑦,𝑔𝑔(𝑠𝑠) using frequency-domain estimators such as the 
Dirlik-method (Eq. 8).  

To tie in the non-stationary behavior, its influence is now be considered in terms of effects on the resulting load 
spectrum 𝐹𝐹𝑦𝑦,𝑎𝑎𝑚𝑚(𝑠𝑠). While the normalized modulating signal 𝑚𝑚(𝑡𝑡) does not affect the PSD, it does deform the PDF as 
well as the load spectrum compared to a stationary Gaussian process. This deformation can already be assessed from 
the excitation, comparing the excitational AM load spectrum 𝐹𝐹𝑥𝑥,𝑎𝑎𝑚𝑚(𝑠𝑠) to its corresponding stationary Gaussian 
spectrum 𝐹𝐹𝑥𝑥,𝑔𝑔(𝑠𝑠). This defines a transformation 𝑔𝑔(⋅) that corrects the load spectra of a linear time-invariant system 
under varying intensity.  

𝑔𝑔(⋅) =  𝐹𝐹𝑥𝑥,𝑎𝑎𝑚𝑚
−1 (𝑠𝑠) 
𝐹𝐹𝑥𝑥,𝑔𝑔−1(𝑠𝑠)  

            (14) 

Resulting load spectra 𝐹𝐹𝑦𝑦,𝑎𝑎𝑚𝑚(𝑠𝑠) can thereupon be derived by: 

𝐹𝐹𝑦𝑦,𝑎𝑎𝑚𝑚(𝑠𝑠) =  𝑔𝑔(𝐹𝐹𝑦𝑦,𝑔𝑔(𝑠𝑠))            (15) 

The transformation 𝑔𝑔(⋅) requires a single evaluation for the excitation and is then valid for all response load spectra. 
This procedure barely extends the expense of the efficient frequency-domain fatigue estimation and will reduce the 
duration of a fatigue assessment for random vibration loading by several orders compared to time-domain.  

The presented approach is based on the prerequisite that a vibration excitation can be identified as having an AM 
origin and thus can be decomposed into a stationary Gaussian process and its varying intensity. As a consequence, the 
non-stationary and stationary response have the same PSD. Therefore, both responses share many fundamental 
characteristics. For example, the non-stationary and its corresponding stationary response have the same zero-
crossing- and peak-rate and thus result in the same amount of damaging cycles (compare Eq. 5). The isolated non-
stationary properties described by 𝑚𝑚(𝑡𝑡) merely modifies the PDF and load spectra. In case that an excitation is non-
stationary because of a composition of various vibrations states this conclusion does not apply. These different 
vibration states affect the response PSD in a way that it cannot be predicted on the basis of the averaged PSD 
𝐺𝐺𝑦𝑦𝑦𝑦,𝑎𝑎𝑚𝑚 ≠ 𝐺𝐺𝑦𝑦𝑦𝑦,𝑔𝑔(𝑓𝑓). 

4. Sample Data 

A simple single-degree-of-freedom system (SDOF) is used to determine and compare the fatigue damage caused 
by a stationary Gaussian and an AM loading. Fig. 3 covers the simulation of a SDOF with a damped eigenfrequency 
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Figure 3. Simulation of SDOF system subjected to AM non-stationary loading. 

𝑓𝑓𝐷𝐷 = 60 Hz. The left-hand side of Fig. 3 assembles the information of the excitation. It shows a Gaussian realization 
𝑥𝑥𝑔𝑔(𝑡𝑡) ∼ 𝐺𝐺𝑥𝑥𝑥𝑥,𝑔𝑔(𝑓𝑓) that is derived from the PSD. The Gaussian realization is modulated by the synthetically generated 
modulating signal representing the non-stationary character. Its effects can be summarized by the irregularity factors 
𝜚𝜚2, 𝜚𝜚4 that preserve the variance but scale the kurtosis. The representation of the latter over frequency 𝜚𝜚4(𝑓𝑓) suggests 
a uniform modulation of the frequency content. Applied to measured data, this would mark the starting point of the 
method. The bottom shows the load spectra (inverted) that are derived from the Gaussian and the AM excitation. Their 
ratio defines the transformation 𝑔𝑔(⋅) due to the non-stationary behavior which is to be retrieved in a response analysis.   
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The right-hand side depicts the evaluation of the SDOF. On the top it shows the response 𝑦𝑦𝑔𝑔(𝑡𝑡) caused by the Gaussian 
excitation which is expectedly Gaussian. The modulating signal is used to modulate the response 𝑦𝑦𝑔𝑔(𝑡𝑡) 𝑚𝑚(𝑡𝑡). This 
serves as a visual verification to the following time series, showing the non-Gaussian response 𝑦𝑦𝑎𝑎𝑚𝑚(𝑡𝑡) due to the AM 
excitation 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) . This confirms the equivalence of the non-Gaussian 𝑦𝑦𝑎𝑎𝑚𝑚(𝑡𝑡) and the decomposed Gaussian 
𝑦𝑦𝑔𝑔(𝑡𝑡) 𝑚𝑚(𝑡𝑡) responses, which emphasizes the assumption that the non-stationary behavior is transferred through the 
time-invariant system. Both responses result in the same PSD. The lower plots show the load-spectral evaluation of 
the responses. The discrepancies in the Gaussian and non-Gaussian load spectra remain unchanged. By applying the 
transformation 𝑔𝑔(⋅) derived from the excitation load spectra, which serves as a correction function, the Gaussian load 
spectra can be adjusted to the non-stationary behavior. The lower right plot illustrates the central advantage of this 
procedure – which is to carry out the fatigue assessment in frequency-domain by using load spectra estimators. 
Extending this simulation to further SDOF systems (e.g. Fatigue Damage Spectra, finite-element mesh) would show 
that non-stationary excitation scales the damage of the corresponding stationary excitation proportionally upwards. In 
case of a stationary excitation, the transformation 𝑔𝑔(⋅) = 1 has no effect and 𝐹𝐹𝑦𝑦,𝑎𝑎𝑚𝑚(𝑠𝑠) = 𝐹𝐹𝑦𝑦,𝑔𝑔(𝑠𝑠).  

5. Conclusion 

This paper discusses non-stationary amplitude-modulated (AM) vibration loading. Through the carrier-noise (CN) 
model, it is possible to generate synthetic loads that approximate realistic loading. While this portrays a limited class 
of non-stationary loading, it is worthwhile to be analyzed in detail. The CN model, in its simple composition, clearly 
addresses the disadvantages of a frequency-domain approach for non-stationary processes. It is that the power spectral 
density (PSD) averages non-stationary behavior but it does not cover any information of its evolution. Loading that 
follows a non-stationary characteristic generally causes greater damage than its averaged counterpart. The CN model 
provides a corrective approach to handle these flaws. Based on the assumption that a vibration process consists of a 
unique PSD shape, the non-stationary evolution can fully be expressed by a modulating function. To avoid the effort 
related with the modulating function’s estimation, it is proposed to use irregularity factors. The concept is well known 
from higher-order moments to which it integrates seamlessly. By expanding these irregularity factors to frequency, it 
is further possible to test for the amplitude-modulated origin. It is shown how this can be done on the basis of the well-
known spectrogram. Further, this paper addresses the desire to reflect the non-stationary behavior in an efficient fatigue 
assessment. Thus, the existing theory of frequency-domain fatigue assessment is extended to AM non-Gaussian 
vibration loading. A correction strategy is proposed on the basis of the excitational load spectra. Sample data shows 
how this extends the applicability of a frequency-domain fatigue assessment. 
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