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Abstract. An implementation of uncertainty analysis (UA)
and quantitative global sensitivity analysis (SA) is applied
to the non-linear inversion of gravity changes and three-
dimensional displacement data which were measured in and
active volcanic area. A didactic example is included to il-
lustrate the computational procedure. The main emphasis is
placed on the problem of extended Fourier amplitude sensi-
tivity test (E-FAST). This method produces the total sensi-
tivity indices (TSIs), so that all interactions between the un-
known input parameters are taken into account. The possible
correlations between the output an the input parameters can
be evaluated by uncertainty analysis. Uncertainty analysis re-
sults indicate the general fi between the physical model and
the measurements. Results of the sensitivity analysis show
quite different sensitivities for the measured changes as they
relate to the unknown parameters of a physical model for an
elastic-gravitational source. Assuming a fi ed number of ex-
ecutions, thirty different seeds are observed to determine the
stability of this method.

1 Introduction

In Moldwin and Rose (2009), the majority of the articles sur-
veyed did not discuss measurement uncertainty or present er-
ror bars in observational or statistical analysis fi ures. We
conducted a survey of 31 articles published between 2005
and 2010 having “sensitivity analysis” as a keyword using
American Geophysical Union (AGU) Earth and Space In-
dex (EASI) search engine. The majority (21) applied the
sensitivity analysis practices to hydrology. The application
of SAs can be exiguously found in the modeling of various
branches of geodesy, e.g. non-linear geodetic data inversion
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(Tiede et al., 2005), model evaluation in engineering survey
(Schwieger, 2004), and model optimization for trajectory es-
timation (Schwieger, 2006).
The study of uncertainty is usually composed of two re-

lated activities referred as uncertainty analysis and sensitivity
analysis. Uncertainty analysis aims quantifying the overall
uncertainty associated with the response as a result of un-
certainties in the model input. Ideally, SA and UA should
be computed in tandem, with UA preceding in current prac-
tice. SA is a study of how uncertainty in the output of a
model (numerical or otherwise) can be apportioned, qualita-
tively or quantitatively, to different sources of uncertainty in
the model input, and of how the given model depends upon
the information fed into it, (Saltelli et al., 2000, 2008). It can
be seen as a tool for validating and optimizing a model due
to the determination of the sensitivities of the different output
values concerning changes in the unknown input parameters.
This knowledge results in the quantificatio as well as the
qualificatio of the unknown input parameters, so it can be
derived which parameter has to be known best in order to re-
duce the variance of a certain output value. In geodesy mea-
surement models, the inputs are the measurement quantities
and the outputs are the corrected or reduced measurements,
the estimated coordinates or other parameters. SA studies the
relationship between input and output quantities of the model
(Schwieger, 2006).
Sensitivity analysis of model output examines how a

model depends on its input parameters. Two groups of sen-
sitivity analyses are defined local sensitivity analysis and
global sensitivity analysis (Saltelli et al., 2000). One draw-
back of local SA is that it is not possible to quantify the ef-
fects caused by the interactions between the unknown input
parameters. Thus, we are using global SA techniques instead
of local SA.
Variance-based methods are a class of global SA tech-

niques. The main advantage of these methods is that they are
intuitive and quantitative. Within this class of methods, we
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strongly favor those capable of computing the so-called “To-
tal Sensitivity Indices” (TSI), which measures a parameter’s
main effect and all the interactions involving that parameter,
especially since the analyst cannot know in advance whether
his/her model will be additive in all its factors (Saltelli et al.,
2000).
Due to the lack of knowledge if the underlying physical

based mathematical model is additive or not, and its non-
linear behavior, a variance-based, global sensitivity analy-
sis which can also compute the interactions between the un-
known parameters has been chosen. Because the number of
unknown input parameters is very small with an amount of
f ve (X= [ξ, ψ, ζ, ε, m]), (details on the parameters are dis-
cussed in Sect. 2) the aspect of computation time for the anal-
ysis is negligible for the choice of the method. From the two
variance-based global techniques which allow the computa-
tion of TSIs, as Sobol’ has been discussed in Tiede (2005)
and Tiede et al. (2005), Extended Fourier Amplitude Sensi-
tivity Test (E-FAST) has been applied. E-FAST – an evolu-
tion of FAST – is a variance-based SA technique among the
methods most used. It was proposed to combine FAST better
efficien y with Sobol’ capacity to compute total effects by
Saltelli et al. (1999). The current paper gives an assessment
of this method applied to a geodetic model.

2 Case study Merapi volcano

As a case study, gravity changes (dg) and three-dimensional
displacements (dx, dy and dz) were measured at different
time epochs in a permanently active area around Merapi vol-
cano located at Java, Indonesia. One possible explanation
for the measured changes in gravity and three-dimensional
displacements is given by a changing status of the magma
chamber of the volcano happened within the time period be-
tween measurement epoch t and t+1. Such a status change
of the magma chamber can be produced by a change in its
position, mass and its energy change of the intrusion which
all would cause signals at the surface that can be measured
by different sensors like GPS and gravitymeters.
Figure 1 describes the model,whereby the unknown pa-

rameters of the model are given by its position (the east co-
ordinate (ξ ), the north coordinate (ψ) and the depth (ζ )), the
mass (m) and the energy of the intrusion (ε) described by the
product of pressure (p) and cubed radius (r). Table 1 shows
the boundaries of the unknown input parameters. The pa-
rameters of the magma chamber are estimated by the model
in Eq. (2) using gravity changes (dg), height displacements
(uz), east displacements (ux) and north displacements (uy)
at about 20 observation points arranged in a loop based net-
work structure around the volcano.
The used forward model for estimating the unknown pa-

rameters of the source is based on the generalized static
Navier equations which couple elastic and gravitational ef-
fects in a homogeneous half space, given by Love (1911) and
Rundle (1980).

Fig. 1. Elastic-gravitational model (Tiede, 2005).

Table 1. Range limitations for the input parameters used for the
computation.

Unknown input parameter Lower bound Upper bound

East ξ (103m) 37 41
North ψ (103m) 65 68
Height ζ (103m) 0.01 0.5
Energy ε (1014 N·m) 0 800
Mass m (1012 kg) 0.01 0.5
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with u= displacement vector, φ = gravitational poten-
tial, ρ0 = undisturbed density, G= gravitational constant,
gez = surface gravitational acceleration, σ =Poisson ratio
and µ= shear modulus. Equation (2) is solved by Rundle
(1980), Rundle (1982) for a layered homogeneous half space.
Rundle (1982) and Fernández and Rundle (1994) evaluate
the equations that are satisf ed by the displacement vector u
and perturbation potential φ by obtaining a general solution
at the height z= 0.
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For the purpose of this inversion the values which describe
the medium of the subsurface are given by the Poisson’s ratio
σ , chosen as 0.25 for an elastic medium. The Young’s mod-
ulus E was considered to be 30GPa, according to Beaudu-
cel et al. (2000). The mean density for this area is given as
2242 kgm−3, a value which was derived by gravity data in-
version for the area of interest (Tiede et al., 2005).
For the computation of the most probable values of the

unknown parameters a global optimization technique such as
genetic algorithm (GA) has been used (Tiede, 2005), which
maximizes the objective function that is given as the χ2
value. For the estimation of the unknown parameters of
Eq. (2), the objective function χ (comp)2 (“comp” stands for
“complete”) is computed by taking all kind of changes: grav-
ity changes as well as the three-dimensional displacements
into account, Eq. (2).

χ (comp)2 =
vT Q−1v

n−u
(2)

with n as number of all observations (here 80), u as num-
ber of unknown model parameters (here 5), v as the vector
of residuals between modeled and measured values and Q

as covariance matrix holding the variances of the measured
values on its diagonal. Within the generated sensitivity anal-
yses, Sect. 4, we use additional objective functions χ (dg)2,
χ (ux)2, χ (uy)2, and χ (uz)2 (based on Eq. (2) but only com-
puted via gravity changes, east, north and height displace-
ments separately). The objective functions are computed by
the kind of observation which is given in brackets.
Table 2 presents the observed changes in east ux, north uy,

height uz and gravity dg, including their mean standard de-
viations σ̄ of 20 points. Due to the small standard deviations
of the measurements we just take the standard deviations into
account as weights in the computation of the objective func-
tions. But generally we do not compute an uncertainty ana-
lysis based on observational uncertainties here. It could be
discussed in a subsequent paper.

3 Methods

3.1 Uncertainty analysis

The uncertainty of measurement is a parameter, associated
with the result of a measurement, that characterizes the dis-
persion of the values that could reasonably be attributed
to the measurand (GUM, 2008). In geodesy measurement,
there are a number of sources of uncertainty, which include:
parameter randomness due to geodetic processes; the lack
of dense spatial measurements of geodetic parameters; un-
certainty due to incomplete historical geodetic data collec-
tion, data measurement error, and unpredictability of future
geodetic events; and model uncertainty attributed to the lim-
itation of a simulation model to correctly represent the phys-
ical processes of the system.

Table 2. Observation changes of the points including the mean stan-
dard deviations.

Maximum Minimum σ̄

ux (cm) 21.9 −3.3 0.4
uy (cm) 58.4 −18.6 0.3
uz (cm) 25.7 −11.5 2.4
dg (mGal) 0.149 −0.048 0.012

UA refers to the determination of the uncertainty in ana-
lysis results that derives from uncertainty in analysis input.
Important components of uncertainty analysis include qual-
itative analysis that identifie the uncertainties, quantitative
analysis of the effects of the uncertainties on the decision
process, and communication of the uncertainty. The analysis
of the uncertainty depends on the problem.
The approach for assessing parameter uncertainty involves

the following steps, in Smith (2002):

1. Select a distribution to describe possible values of a pa-
rameter.

2. Generate data from this distribution.

3. Use the generated data as possible values of the param-
eter in the model to produce output.

3.2 Variance-based Extended Fourier Amplitude
Sensitivity Test (E-FAST) SA

The main idea of variance-based global sensitivity analyses
is based on the idea that one can determine the nature of the
sensitivity through the variance V and then evaluate how the
input variance contributes to the output variance. By setting
(X1, ..., Xk) as the vector of independent unknown input pa-
rameters and Y = f (X1, ..., Xk) as the output value, with
f as model function, an indicator for the importance of an
input Xi can be set by evaluating the variance of the output
Y V (Y |Xi). This is done by fixin Xi to a value xi . V (Y |Xi)

is called the conditional variance of Y withXi = xi . The true
value of xi is not known, so instead of V (Y |Xi) the expec-
tation of the conditional variance, noted as E [V (Y |Xi)] is
studied, whereby it is built into all possible values of xi . The
variance of Y is given by

V (Y )=V (E [Y |Xi])+E [V (Y |Xi)]. (3)

where V (E [Y |Xi]) represents the firs order effect for each
factor and describes the importance of Xi on the variance Y .
The variance of the conditional expectation, V (E [Y |Xi]) is
sometimes called main effect and used as an indicator of the
significanc ofXi on the variance of Y , which is equivalent to
the sensitivity of Y to Xi . Normalizing the sensitivity value
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Si as the ratio between the variance of the expectation value
and the variance of the output value leads to

Si =
V (E [Y |Xi])

V (Y )
(4)

and is called the firs order sensitivity index, correlation ratio
or importance measure and describes the main effect of the
unknown parameter Xi on the output value Y .
Related to Confalonieri et al. (2010), the total sensitivity

index (TSI) corresponding to a single factor (index i) and
the interaction of more factors that involve the index i and at
least one index j 6= i from 1 to n:

STi =
∑

Si+
∑
j 6=i

Sij + ...+S1...n (5)

Both the main effects Si , the interaction terms Sij and
higher-order terms could be computed by straightforward
Monte-Carlo integration of multidimensional integrals. The
main effect (or firs order) sensitivity index measures only the
main effect contribution of each input parameter on the out-
put variance. The interactions among the input parameters
are not taken into account. If the total effect on the output of
input parameters is not equal to the sum of their firs order
effects is called interact. A model with interactions is said to
be non-additive. For non-additive models information from
all interactions is searched for, as well as the firs order effect.
For nonlinear models the sum of all firs order indices can be
very low. The sum of all the order effects that a parameter
accounts for is called the total effect. So, for an input Xi , the
total sensitivity index STi (Eq. 5) is define as the sum of all
indices relating to Xi (firs and higher orders).
The classical FAST method, created in the 1970s by

Cukier, Schaibly and others, and further developed by Koda
and McRae, estimates the first-orde effects. Saltelli et al.
(1999) propose the E-FAST method, which computes both
first-orde effects and total effects. The term total means the
factor’s main effect and all the interaction terms of that factor.
The main advantages of the E-FAST is pointed out in Saltelli
et al. (1999) is that it allows the simultaneous computation of
the firs and total effect indices for a given factor. And it is
robust at low sample size and computational efficient
The main idea of the FAST method is to convert the mul-

tidimensional integral in X into a one-dimensional integral
in s by using the transformation functions Xi =Gi (sin ωis)
for i = 1, ..., k. s ∈ (−π,π) is a scalar variable and ωi
is a set of integer angular frequencies. The basic idea
behind the computation of the total indices by the FAST
method is to consider the frequencies that do not belong
to the set {p1ω1,p2ω2,...,pkωk}, for pi = 1,2,...,∞ and
∀i= 1,2,...,k. These frequencies contain information about
the residual variance V −

∑k
i Vi that is not accounted for by

the first-orde indices, that is, including the interactions be-
tween the factors at any order.
We assign a frequency ωi for the factor Xi and a set of

almost identical frequencies, but different from ωi , to all the

Fig. 2. χ (comp)2 distribution against the east component ξ relative
to the 28 645 Monte Carlo samples.

remaining factors, denoted by ω∼i . We use ∼ i to represent
“all but i”. The chosen frequencies and their harmonics have
to be linear independent. Thus, by evaluating the spectrum
at the frequencies ω∼i and related higher harmonics pωi , we
can compute the partial variance V∼i . V∼i is a measure in-
cluding all the effects of any orders that do not involve the
factor Xi . The total index, denoted by TS(i), is computed by
using the following equation

TS(i)= 1−
V∼i

V
(6)

4 Results

4.1 Uncertainty analysis

In this case, the probability density functions (pdfs) of the
unknown input parameters had been anticipated as uniform
because it has not been possible to specify any areas or cer-
tain value ranges which are more likely than others within
the given limits for the unknown input parameters given in
Table 1. Furthermore, in cases with only poor prior knowl-
edge of the unknown input parameters pdfs, Saltelli et al.
(2000) also suggests a unique distribution.
The E-FAST consists of 28 645Monte Carlo samples. Fig-

ures 2 and 3 show the output value χ (comp)2 plotted against
the east component ξ and the mass component m of the un-
known input parameter separately. From these plots it can
be evaluated whether the anticipated physical model explains
the measurements at all (by evaluating the values of the ob-
jective function). If the value of the objective function is in a
reasonable area, the model explains the data.
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Fig. 3. χ (comp)2 distribution against the mass component m rela-
tive to the 28 645 Monte Carlo samples.

Furthermore, the distributions of the uncertainty plots
are analyzed: Analyzing the distribution of χ (comp)2 in
Fig. 2, high values can be observed for east components
ξ 37 · 103 ≤ ξ ≤ 37.8 · 103m as well as one more region
38.5 ·103 ≤ ξ ≤ 40 ·103m which show large variance in the
objective function. Large values indicate a large value of the
objective function which implies a bad fi between measured
data and physical model. Taking the range of ξ where the
small values of χ (comp)2 appear (37.8 ·103 ≤ ξ ≤ 38.5 ·103
or 40 · 103 ≤ ξ ≤ 41 · 103 ) for analysis leads to better fi
between measurements and model. As shown in Fig. 3,
the values of the χ (comp)2 follow a homogeneous distri-
bution over the range of mass component m values. The
χ (comp)2 can be seen as the sum of the four objective func-
tions χ (dg)2, χ (ux)2, χ (uy)2 and χ (uz)2. The effect of
the mass component is overlapping, so no clear behavior can
be determined out in this plot. Nevertheless, the distribu-
tion of χ (dg)2 (see Fig. 4) against mass componentm shows
small value of χ (dg)2 for smallm. The dispersion is increas-
ing with enlarging m. The analysis of the relation between
χ (dg)2 and the the mass component m results in a region
0≤m≤ 0.15 ·1012 kg. This small dispersion together with
small values of the objective function state that small mass
values explain the measurements at best.

4.2 Variance-based Extended Fourier Amplitude
Sensitivity Test (E-FAST) SA

The previous discussed results show firs relations between
unknown input parameters and the output values and will be
analyzed in more detail by applying the E-FAST variance-
based sensitivity analysis. Therefore, the firs order effects
as well as the TSIs are computed after Sect. 3.2 for all f ve

Fig. 4. χ (dg)2 distribution against the mass component m relative
to the 28 645 Monte Carlo samples.

Fig. 5. First order effects and TSIs computed by E-FAST sensi-
tivity analysis for the Monte Carlo sampling (one run consisting of
28 645 samples).

outputs and visualized in a comparison in Fig. 5. Analyzing
the differences between the firs order effects and the TSIs,
it can be seen that the model is clearly dominated by higher
order effects. It means the model is a so-called non-additive
model, and only taking the firs order indices into account
would lead to wrong sensitivity anticipations of the influenc
of a certain unknown to the different kind of output data.
Furthermore, all the firs order indices are smaller than 0.02.
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Fig. 6. Normalized E-FAST firs order indices for the f ve define
output parameters (one run consisting of 28 645 samples).

It indicates that all TSIs are driven primarily by interactions
between the input parameters.
Figures 6 and 7 display the normalized E-FAST

firs order indices and TSIs with respect to the un-
known input parameters for all kind of output val-
ues (χ(dg)2,χ(uz)2,χ(ux)2,χ(uy)2,χ(comp)2) separately.
The normalization is investigated according to

S()n,i = S()i/

5∑
i=1
S()i (7)

TSI()n,i = TSI()i/
5∑
i=1

TSI()i (8)

with S()n,i = normalized fir t order sensitivity index of the
values given in the brackets due to the specif ed unknown in-
put parameter i, S()i = firs order sensitivity index concern-
ing the unknown input parameter i, TSI()n,i = normalized
TSI due to the unknown input parameter i and TSI()i = total
sensitivity index due to the unknown input parameter i.
The obvious changes in sensitivity indices in Figs. 6 and 7

caused by higher order effects confir the described results
in Fig. 5.
By analyzing the E-FAST TSIs, the influence on the ob-

served values due to the unknown input parameters are obvi-
ous. All output values are almost equally sensitive to changes
in the three location parameters (ξ , ψ , and ζ ). The three lo-
cation parameters of the source have similar influence (ap-
proximately 25%) on these output values. The mass m has
only few influenc (below 5%) on the output values except
χ (dg)2 values (15%). The energy effect ε, by contrast, has
similar influence (around 15%) on the output values except
χ (dg)2 values (6%).

Fig. 7. Normalized E-FAST Total Sensitivity Indices (TSI) for the
f ve define output parameters (one run consisting of 28 645 sam-
ples).

Table 3. Nonnormalized E-FAST TSIs for the f ve define output
parameters with respect to the height component ζ with 4 different
seeds (1, 500, 4000, 10 000) and the mean TSIs of 30 executions
(the standard deviation see Table 6 row 3).

Output value
Seed

Mean
1 500 4000 10 000

χ (dg)2 0.7610 0.8260 0.8288 0.8026 0.8124
χ (uz)2 0.8514 0.7861 0.8546 0.8659 0.8210
χ (ux)2 0.8624 0.8383 0.8696 0.8739 0.8559
χ (uy)2 0.8579 0.8689 0.8185 0.8685 0.8555
χ (comp)2 0.8568 0.8580 0.8590 0.8728 0.8593

From the sensitivity analysis concerning all χ2 values,
conclusions about the estimation of the unknown input pa-
rameters can be drawn from Fig. 7:

– The mass component m can be computed most effec-
tively by χ (dg)2 due to its large influenc on this out-
put value. The observations of gravity changes are most
important for the determination of m.

– For the estimation of the energy effect ε all the output
values are appropriate except χ (dg)2.

– The three location parameters east component ξ , north
component ψ , and height component ζ are good to be
estimated by all the measurement.

E-FAST method requires two parameters: seed and num-
ber of executions. In SIMLAB (Simlab, 2010), a software
designed for global uncertainty and sensitivity analysis, the
random numbers are generated based on a user define start-
ing point (seed) (Saltelli et al., 2004). Table 3 presents the
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Table 4. Nonnormalized E-FAST TSIs for the f ve define output
parameters with respect to the mass component m with 4 different
seeds (1, 500, 4000, 10 000) and the mean TSIs of 30 executions
(the standard deviation see Table 6 row 5).

Output value
Seed

Mean
1 500 4000 10 000

χ (dg)2 0.6430 0.8433 0.5266 0.6145 0.6352
χ (uz)2 0.4553 0.5463 0.3891 0.5504 0.4658
χ (ux)2 0.2294 0.5586 0.3261 0.4641 0.4701
χ (uy)2 0.3543 0.4726 0.3012 0.4078 0.3828
χ (comp)2 0.2183 0.6112 0.2093 0.3223 0.3795

Table 5. Standard deviation of nonnormalized E-FAST firs order
indices with 30 different seeds.

σ
χ(dg)2 σ

χ(uz)2 σ
χ(ux)2 σ

χ(uy)2 σ
χ(comp)2

East (ξ ) 0.0056 0.0067 0.0059 0.0083 0.0068
North (ψ) 0.0036 0.0042 0.0035 0.0026 0.0031
Height (ζ ) 0.0011 0.0012 0.0035 0.0032 0.0035
Energy (ε) 0.0004 0.0026 0.0033 0.0036 0.0044
Mass (m) 0.0034 0.0004 0.0004 0.0003 0.0004

nonnormalized TSIs for the output parameters with respect
to the height component ζ and the mean TSIs of 30 execu-
tions. These 4 different seeds are chosen from 1 to 10 000
randomly. The height component has similar influence on
all the outputs with different seeds. In contrast, the discrep-
ancies between the TSIs with respect to the mass component
m (see Table 4) are much greater. The mass component al-
ways has largest influenc on the χ (dg)2.
The standard deviations of the nonnormalized firs order

indices in Table 5 are much smaller than for the nonnormal-
ized TSIs in Table 6. Furthermore, the TSIs of the east, north
and height components are much stabler than that of the en-
ergy and mass components. The nonsignifican standard de-
viations of the three position parameters (east, north, and
height) due to the use of different seeds become in fact neg-
ligible which shows that the sample size is large enough for
these parameters. But the analysis of the energy and mass is
impossible here. In consequence, we try to fi the east, north,
and height components and do the SA again just taking the
energy and mass as the input parameters.

5 Conclusions

The paper evaluates E-FAST variance-based UA and SA ap-
plied for geodetic data in order to determine a deeper insight
into the behavior between the unknown input parameters of
the physical based mathematical model and the modeled out-
put values. The application of UA presents the general fi

Table 6. Standard deviation of nonnormalized E-FAST TSIs with
30 different seeds.

σ
χ(dg)2 σ

χ(uz)2 σ
χ(ux)2 σ

χ(uy)2 σ
χ(comp)2

East (ξ ) 0.0239 0.0203 0.0316 0.0192 0.0256
North (ψ) 0.0186 0.0223 0.0174 0.0428 0.0280
Height (ζ ) 0.0525 0.0493 0.0262 0.0221 0.0213
Energy (ε) 0.2154 0.1256 0.1043 0.0933 0.0968
Mass (m) 0.1188 0.2227 0.2292 0.1732 0.2268

between model and data. By using E-FAST SA the influ
ences on the observed values due to the unknown input pa-
rameters are determined and the computation of the input pa-
rameters can be drawn. In particular, the sensitivity concern-
ing the mass and the energy for the objective function con-
cerning the gravity changes are quite different compared to
the other objective functions. Furthermore, E-FAST method
is stable with varying number of the seed except for the en-
ergy and mass components: it has to be pointed out that no
concrete analysis of mass and energy sensitivity is possible
due to the large variance of the output when choosing differ-
ent seeds. The next steps are to fi the east, north and height
parameters and repeat the uncertainty and sensitivity analysis
for the remaining parameters mass and energy.
Unlike the local SA, the introduced global SA applied into

a geodetic model gives both a quantitative result as well as
the computation of the interactions between the unknown
input parameters. Our results show that it would lead to
large mistakes just applying local sensitivity analyses with
no quantitative information.
The paper shows in addition that global sensitivity analysis

helps in the analysis and setup of the optimization process of
the unknown model parameters: in our case, the sensitivity
analysis results in the consequence that we will firs fi the
three parameters east, north and height before we will get
more information about the remaining parameters mass and
energy.
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