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Abstract
Microscopic crowd simulation, for example performed with the optimal steps model,
can support the planning process of mass events if the model parameters are cho-
sen correctly. The exact values of these parameters are often unknown, so the
input suffers from uncertainties that can affect the output. To assure that the right
conclusions are drawn from a simulation, modellers can employ forward uncertainty
quantification methods. However, applying such methods to the optimal steps model
is rather uncommon. Therefore, this thesis addresses the question which approach
is suitable for estimating the uncertainty and sensitivity of the model output. It
focuses on polynomial chaos expansions, which allow to derive statistical moments
and Sobol’ sensitivity indices for uncertainty and sensitivity analyses, respectively.
The polynomial chaos expansion combined with the point collocation method and
the pseudo-spectral approach is applied to a corridor scenario and the results are
compared to Monte Carlo simulations. Thus, it can be shown that the point collo-
cation method is efficient because it yields accurate results while the computational
effort is low. Based on that, the method is transferred to a large scale scenario, a
parade through a city center. The outcomes are interpreted to demonstrate that
they are relevant to reality.
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Zusammenfassung
Die mikroskopische Personenstromsimulation, zum Beispiel durchgeführt mit dem
Optimal Steps Model, kann den Planungsprozess von Großveranstaltungen unter-
stützen, sofern die Modellparameter richtig gewählt werden. Die exakten Werte
dieser Parameter sind allerdings oft unbekannt, weshalb die Eingangsgrößen mit
Unsicherheiten behaftet sind und die Modellantwort beeinflussen können. Um si-
cherzustellen, dass die richtigen Schlüsse aus der Simulation gezogen werden, kön-
nen Modellierer auf Methoden zur Quantifizierung von Unsicherheit zurückgreifen.
Bisher werden solche Methoden auf das Optimal Steps Model jedoch eher selten
angewandt. Deshalb geht diese Arbeit der Frage nach, welche Methode geeignet ist,
um die Unsicherheit und Sensitivität des Modellergebnisses abzuschätzen. Der Fo-
kus liegt dabei auf der polynomiellen Chaosentwicklung, mit deren Hilfe statistische
Momente beziehungsweise Sobol’ Sensitivitätsindizes abgeleitet werden. Die polyno-
mielle Chaosentwicklung in Verbindung mit Kollokation nach kleinsten Quadraten
beziehungsweise dem pseudo-spektralen Ansatz wird auf ein Korridor Szenario ange-
wandt und mit Monte Carlo Simulationen verglichen. Auf diese Weise wird dargelegt,
dass der Kollokationsansatz effizient ist, da genaue Ergebnisse bei geringem Rechen-
aufwand erzielt werden. Auf diesen Erkenntnissen aufbauend wird die Methode auf
ein großes Szenario, eine Parade durch eine Innenstadt, übertragen. Die Resultate
werden interpretiert, um deren Relevanz für die Realität aufzuzeigen.
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1 Introduction

On 24 July 2010, 21 people died and more than 500 were injured during a stampede
at the Love Parade in Duisburg, Germany. The Love Parade was a famous music
festival with more than a million expected visitors. Similar crowd disasters occur
each year in different parts of the world and they often shock victims and the public
as well. How can such tragedies happen, despite regulations, planning guidelines and
software tools that have been developed to prevent hotspot areas in advance? Hel-
bing and Mukerji [8] investigated the incident in Duisburg from a scientific point of
view and concluded that it arose from different unfortunate circumstances. Besides
other proposals to avoid crowd crushes, the researchers suggest that “computer sim-
ulations with state-of-the art pedestrian software can be useful [to determine crucial
areas], but model parameters must be carefully chosen” [8, p. 26].

Various models have been developed to simulate pedestrian flow on the macro-
scopic or microscopic scale. They are distributed either as open-source code, for
example in the framework Vadere [38], or as commercial software. In either case, all
of these models are typically subject to uncertainties, independent of their underly-
ing concept, scale or licence. These uncertainties can propagate through the model
and might affect the output significantly without being recognised. Thus, the user
could wrongly deem simulations to be reliable and draw misleading conclusions. In
the worst case, safety concepts for mass events or escape routes inside buildings
could be planned based on false assumptions. To avoid such a situation, modellers
should pay heed to uncertainties in their simulations.

Uncertainty quantification in pedestrian dynamics is a rather new development.
In recent years, a few researchers presented different approaches to analyse the un-
certainty and sensitivity of microscopic crowd simulations. For example, Monte
Carlo or polynomial chaos expansions are applied in [1, 30] to determine the uncer-
tainty and sensitivity of pedestrian models such as the optimal steps model. While
the optimal steps model is widely adopted [15], none of these uncertainty quantifica-
tion methods has been established as common practice in pedestrian dynamics yet.
Moreover, the analysed scenarios are usually small examples and can be transferred
to reality only to a limited extent. Practitioners would benefit from simulations that
approximate actual scenarios more closely because they were able to identify crucial
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areas or influencing factors on a more detailed level. For example, authorities could
estimate better which measures are useful to ensure the safety of a parade through a
city centre. The scenario for a small parade, not to be associated with a mass event
as the Love Parade, is suitable as subject for a first step to apply uncertainty quan-
tification methods to large scale scenarios because it has relatively few individual
influencing factors and unknowns.

Hence two questions arise that I focus on in this thesis: Which method is ap-
propriate to carry out forward uncertainty quantification in microscopic crowd sim-
ulations, for example performed with the optimal steps model? Once the right
method is found and applied to the parade scenario, one can study the uncertainty
quantification results, which leads to the second issue. How do uncertain input
parameters affect the output of the model and how does the importance of those
observed parameters change over time?

I adopt the following methodology to resolve theses questions. The first research
question is answered by comparing the results of different uncertainty quantification
methods to a reference solution obtained with Monte Carlo simulations. The meth-
ods under consideration are the point collocation method and the pseudo-spectral
approach. Both of them are based on the polynomial chaos expansion, which ap-
proximates the probability density functions of the model response. Measures of
uncertainty and sensitivity can be derived from these distribution functions. I apply
the two methods with different configurations to a small but prominent example,
the corridor scenario implemented in the optimal steps model in Vadere. The sim-
ulations are evaluated in terms of accuracy and computational effort. On the basis
of this rating, I select one method that is suited for further analyses.

The second research question will be satisfied by applying the chosen uncertainty
quantification method to a parade scenario with two uncertain input parameters.
Again, the optimal steps model is employed. In this manner, I determine the un-
certainty of the output. The sensitivity analysis provides information about the
importance of each parameter. It employs Sobol’ indices calculated from the de-
composed polynomial chaos expansion.

The thesis is structured as follows. At first, I give an overview of models for
microscopic crowd simulation and uncertainty quantification methods. In this con-
text, the optimal steps model and uncertainty quantification based on polynomial
chaos expansions are presented in detail. The subsequent section connects these
two fields of research, as I present the state of the art of uncertainty quantification
in microscopic crowd simulation. Chapter 3 is dedicated to the adaptation of two
uncertainty quantification methods to the corridor scenario. The methods under
consideration are the point collocation method and the pseudo-spectral approach as
part of the polynomial chaos expansion. The aim is to find a suitable configuration
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for both methods and to select the one that performs best. In Chapter 4, I apply
the chosen method to different scenarios. At first, the corridor scenario serves as
subject of research to get acquainted with interpreting the results of the uncertainty
quantification. The next step focuses on the main purpose of this thesis: I apply the
polynomial chaos expansion to a large scale scenario, a parade through a city centre,
to analyse the uncertainty and sensitivity of the model. Finally, these outcomes and
their relevance to the real world are discussed.

3
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2 Theoretical Foundations and State of the
Art

Modelling pedestrian dynamics is becoming more and more important to engineers,
safety engineers in particular. They can build on many different pedestrian loco-
motion models when analysing any aspect related to microscopic crowd behaviour.
For instance, planning exit routes for mass events can be much easier with com-
puter simulations than with experimental data. As interdisciplinary as this field of
research is, as many different models have been developed to simulate crowd be-
haviour. The optimal steps model is one example, which is subject to this thesis.
Therefore, its principle idea will be introduced in this chapter.

The advantage of computer models over controlled experiments is that they can
be adapted to most problems simply by changing the settings and input parame-
ters. Albeit these parameters are defined carefully, they are subject to aleatory and
epistemic uncertainties [6]. These can influence the model output to a significant
extent and therefore they should be accounted for, otherwise the user might draw
false conclusions from the result. Uncertainty quantification (UQ) methods target
this issue by estimating the uncertainty and sensitivity of the model to input param-
eters. Because there are various techniques that are suitable for different purposes,
the second part of this chapter provides an overview of approaches relevant to the
context of this thesis.

2.1 Modelling Pedestrian Dynamics
Modelling pedestrian dynamics is a method to analyse human locomotion and to
establish a better understanding thereof. Most of these studies investigate crowd
behaviour because computer models support planning processes in different fields of
application where aggregation of pedestrians is crucial: Designing safety plans for
buildings, developing crowd management strategies for mass events, or optimizing
traffic flow are a few examples.

Such situations are analysed in the scope of controlled experiments, e.g. in [45].
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However, the main disadvantages of controlled experiments is that they are time
consuming, they require organisational effort and a lot of participants. These obser-
vations under laboratory conditions and in particular field studies depend on many
different influencing factors [40]. For example, the crowd might behave differently
if an experiment is repeated several times or if the participants know each other.
Therefore, the measurements can vary to a considerable degree, so it is not always
possible to generalise the findings to any arbitrary situation.

To solve these problems, computer models have been developed. As computing
capacity rises, simulations can become computationally expensive, which allows to
increase the level of detail. Kleinmeier et al. give an overview of various existing
models in [15], and categorise them by their scale as follows: Macroscopic models
represent an accumulation of pedestrians, i.e. a crowd, as continuum, whereas mi-
croscopic models consider all individuals and their specific attributes, e.g. desired
speed, separately. This thesis focuses on a microscopic model, the optimal steps
model. Application and objective of microscopic crowd simulations are presented in
the following section.

2.1.1 Microscopic Crowd Simulation

The microscopic approach entails that each pedestrian’s walking behaviour is sim-
ulated, which is a complex task. This issue has been addressed in many different
ways and according to [15] it has lead to the development of models based on

• cellular automata [4],
• ordinary differential equations [7, 9],
• cognitive heuristics [24, 41],
• optimizing a utility, e.g. the optimal step model [25, 28, 29, 30].

Depending on the application, one approach is superior to the others. For ex-
ample, in cellular automata, virtual pedestrians, often referred to as agents, move
from cell to cell on a fixed grid. Rules determine the next step depending on the
surrounding fields. This procedure can approximate human behaviour well, and
most notably, it is fast. However, agents can neither move in arbitrary directions
nor can such models represent dense crowds because compression is impossible [25].

In contrast to that, social force models are continuous in time and space. As
the name suggests, they employ forces to determine the agents’ movement. That is,
obstacles and other agents act repulsive while the target acts attractive on the agent
under consideration. This model suffers from effects such as inertia, which can lead
to oscillating patterns of motion and colliding agents [16, 25].

Seitz and Köster combine the advantages of these two approaches, namely rule
based, stepwise movement inspired by cellular automata and a spatially continuous
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domain borrowed from social force models, and develop the optimal steps model
(OSM) in [25]. An improved version thereof is implemented in Vadere, an open-
source simulation framework for microscopic crowd simulation [15, 29]. Because the
OSM is subject to this thesis, it is explained in detail in the next section.

2.1.2 Optimal Steps Model

The following description of the OSM refers to the implemented version in Vadere
[15, 39]. Agent l walks stepwise from its source towards its target. A Nelder-Mead
simplex algorithm optimizes a utility function to find the position for each step [29].
Figuratively, the utility represents a potential field, also known as floor field, in
which agent l moves. A higher potential value expresses a greater geodesic distance
from the target. In contrast to euclidean distances, geodesic distances include paths
around obstacles and can be obtained by solving the eikonal equation:

‖∇u(x)‖ f(x) = 1 for x ∈ Ω ⊂ R2 (2.1)
u(x) = 0 if x ∈ Γ (2.2)

Sethian’s Fast Marching Method solves this non-linear partial differential equation
[26, 27]. Figure 2.1 visualises the potential field as wave front, which starts in the
target region Γ and propagates through the whole area Ω with speed f . Alterna-
tively, one can consider the floor field as hilly terrain represented by contour lines.
The agent takes always the steepest path starting from a mountain top or higher
elevation down to a valley.

(a) Topography (b) Static floor field

Figure 2.1: Topography (a) contains a source (green), obstacles (gray) and a target
(orange). The corresponding static floor field (b) is represented by isolines, which start
at the target and flow around obstacles. Low potentials are blue, whereas high potentials
are red.

From a mathematical point of view, the potential field Pl is a sum of a globally
defined potential Pt that depends on the distance to the target and is embodied in
the solution of the eikonal equation, and local contributions to the potential inflicted
by surrounding pedestrians Pp, l, i or obstacles Po, j. The full potential for agent l is
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defined by [38]:

Pl(x) = Pt(x) +
n∑

i=1, i 6=l
Pp, l, i(x) + max

j∈{1, ...,m}
Po, j(x) (2.3)

In this manner, the model takes into account that pedestrians consciously or sub-
consciously try to keep a certain distance from obstacles or other persons. The
latter is expressed by the idea of (inter-) personal space, mathematically described
in [15, 29, 31]. The potential is recalculated for each time step, which can be quite
computationally expensive for large scale scenarios. For that reason, it is necessary
to consider the static instead of the dynamic floor field in some cases. Then the term
Pt(x) in Equation 2.3 incorporates the global contributions by the target and the
global penalty due to obstacles but no global effects caused by accumulated agents.
Therefore, Pt(x) must be calculated only once.

Agent l seeks after the lowest potential Pl within its reach. Therefore, utility
Pl is optimized within a circle with radius rl, which represents the maximum step
length. rl follows a truncated normal distribution Ntr around the agent’s mean step
length sl with variance σ2

r . The distribution ranges in [−σrM, σrM ]:

sl = β0 + β1 · υl = 0.462 m + 0.235 s · υl (2.4)
rl ∼ Ntr(sl, σ2

r ; −σrM, σrM) (2.5)

Constants β0, β1, σr andM are determined empirically in [25] for walking behaviour.
Hence, the maximum step length rl is correlated with each agent’s desired velocity
υl, which is termed free-flow speed in the context of the OSM:

υl ∼ Ntr(µυ, σ2
υ; υmin, υmax) (2.6)

The free-flow speed of all agents follows a truncated normal distribution with mean
µυ and variance σ2

υ of all agents’ velocities. The random variable is bounded from
below by υmin and from above by υmax to avoid unnaturally low or high speeds [25].
These values must be calibrated and they depend on the situation the user wants
to simulate.

In the best case, empirical data that matches the model is available to determine
parameters µl, σl, υmin and υmax. Only a few such experiments have been conducted,
though. For example, Zhang et al. perform experiments in [45] to analyse pedestrian
flow through corridors, bottlenecks and T junctions. For many other scenarios one
has to rely on more general measurements, such as field studies. Weidmann gives an
overview of previously performed observations in [40]. Based on that, he describes
pedestrians’ desired velocity by means of a Gaussian distribution. Depending on
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the case under consideration, for example, if the modelled group is homogeneous or
heterogeneous, the values for mean and standard deviation can vary. Therefore, this
and other studies can be generalised to different scenarios only to some extent. As a
last resort, if no data is available, one must estimate the parameters. Nevertheless,
this will introduce uncertainties that have to be dealt with.

2.2 Uncertainty Quantification Methods
Before introducing the purpose of uncertainty quantification methods, I want to
define the term uncertainty. There are several ways to specify uncertainty. I use
the following definition, which is a widely adopted distinction and differentiates into
two types [18]:

a) Aleatory uncertainty, also known as variability, comprises uncertainty that
is caused by the randomness of the system. As such, it is a property of the
system, and it could be reduced theoretically, but only by changing the sys-
tem itself [18]. For example, let a crowd of pedestrians be the subject to a
modelling problem. Reducing aleatory uncertainty could imply that all pedes-
trians are forced to move at the same speed in a defined direction instead of
allowing them to promenade around as each individual desires. To capture this
systemic randomness, aleatory uncertainty is often expressed by a probability
distribution (e.g. see Eq. 2.6).

b) Epistemic uncertainty results from lack of knowledge. Hence it is a property
of the observer and can be reduced, for example, by collecting more data [18].
Instead of estimating the value for a certain model parameter based on common
sense, the modeller chooses in accordance with experimental data. However,
because even the experimental information is usually incomplete, uncertainty
will remain to some extent. The modeller should account for that, since any
uncertainty might affect the predictive capabilities of the model.

There are several techniques to measure epistemic uncertainties, i.e. uncertainty
quantification (UQ) methods. One class of methods aims at propagating uncertain-
ties through the model and evaluating the likelihood of a specific outcome, known
as uncertainty analysis. The interplay of input and output is determined by means
of sensitivity analyses [12]. Some of these techniques for uncertainty and sensitivity
analysis are explained in the following sections.

2.2.1 Uncertainty Analysis

Uncertainty analyses can help to evaluate the predictive capability of models and
in this manner support decision-making processes. The question is: What is the
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likelihood of a certain model output Y if input parameter X is not fixed but varies
to some extent? The answer to this question is found by propagating uncertainties
in the input parameters through the model f , expressed as

Y = f(X), (2.7)

to determine prediction intervals, mean and higher statistical moments, or even
the full probability density function of model response Y , also termed quantity of
interest (QoI) [32].

Obviously, this requires that the researcher knows the uncertainty of input pa-
rameter X. A common approach to model uncertainty is to treat X as random
variable with a certain distribution and move from the deterministic model to a
stochastic one [42]. Depending on the application, the probability density func-
tion of X is obtained either experimentally, or, if that is not possible, Bayesian
approaches are employed to find the input distribution by means of inverse UQ
methods [32].

If the probability density function of the input is known, one can use intrusive or
non-intrusive approaches to propagate the uncertainty through the model. Intrusive
methods require access to the underlying forward model to determine the statistics
of Y , whereas non-intrusive methods consider f as black box. That is, non-intrusive
methods require only input X to the model and its response Y but no information
about f [3, 11, 35].

Since the terminology and categorisation of techniques to propagate uncertainties
through a model differs among research communities, I distinguish the approaches
according to [32] as follows:

• Direct evaluation: For linearly parametrised models the uncertainty of the
output is computed explicitly [32]. Xiu uses the term “moment equations” [43,
p. 4]. This implies that statistical moments are calculated directly from the
stochastic equations of the model. Unfortunately, one often has to deal with
the closure problem because deriving statistical moments usually necessitates
knowledge about properties of higher moments [43].

• Perturbation methods: These techniques build on Taylor expansions for f .
The uncertainty is derived from truncated Taylor expansions and character-
ized by mean, variance, or covariance. However, these measures provide no
information about the shape of the probability density function of the output.
First-order Taylor expansions lead to exact results for linear models, whereas
the accuracy is limited for highly non-linear problems. Though higher-order
terms could be included in the Taylor expansion at considerable cost, this is
reasonable only if the accuracy is required [32, 42]. Besides, the input and
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output uncertainties should not be greater than 10% [43].
• Sampling based methods such as Monte Carlo (MC) techniques: Sampling

methods evaluate a model several times for different sets of input values. The
results are collected and then described statistically. The advantage of sam-
pling methods is that they are intuitive to the researcher and independent of
the dimension of the parameter space. Moreover, the solution converges to the
exact solution for sufficiently large samples [12]. But they converge slowly, e.g.
mean value obtained with MC and N realisations converges at rate O( 1√

N
).

As a consequence, many realisations are required to reach sufficiently accurate
results. So, these methods are feasible as long as the computational effort for
evaluating the model is moderate [32].

• Spectral representations: These methods are based on spectral expansions.
Usually, a series of orthogonal polynomials represents the random process.
Therefore, they are often referred to as (generalised) polynomial chaos expan-
sions. The spectral representations are used to calculate the uncertainties or
statistics for the model response. The advantage is that, compared to MC,
these approaches converge much faster and thus necessitate fewer model eval-
uations. They merely require a smooth relation between the random input
parameters and the solution [32, 42].

For the purpose of this thesis, direct evaluation and perturbation methods are not
applicable because of their aforementioned limitations: Neither can I access or alter
the code of the non-linear model, nor can I employ too large samples. But the
polynomial chaos expansion shows a lot of promise, since it seems to be effective and
to have no severe drawbacks that would constrain the application to the optimal
steps model. Besides, Monte Carlo techniques with small sample sizes might be
useful as well. Therefore, I explain these two approaches in detail.

Monte Carlo Method

Uncertainty quantification with Monte Carlo methods consists of the following steps:

1. Generate a sample for input parameter X that has a normal or uniform distri-
bution. If the input parameter follows a different distribution, one can create
(pseudo-)random numbers on [0, 1] and then apply the Rosenblatt transfor-
mation to map them into the domain of X.

2. Evaluate the model for each sample point. This trivial task, also called an
embarrassingly parallel problem, can be executed simultaneously to exploit
the full computing capacity and to speed up the process.

3. Collect the model output and visualise its distribution with histograms or use
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metrics mean, standard deviation and higher moments to describe the output
uncertainty.

In principle, this procedure utilizes the Law of Large Numbers: As the sample size
increases, the average of Y converges to the expected value [36]. The same applies
to higher-order moments but the convergence rate is smaller so more realisations are
needed [12]. For a sufficiently large sample size mean and variance can be expressed
as follows:

E[Y ] ≈ 1
N

N∑
i=1

Yi = µ (2.8)

V [Y ] = E[(Y − E[Y ])2]
= E[Y 2 − 2Y E[Y ] + E[Y ]2]
= E[Y 2] − 2E[Y ]E[Y ] + E[Y ]2

= E[Y 2] − E[Y ]2

≈ 1
N

N∑
i=1

Y 2
i −

(
1
N

N∑
i=1

Yi

)2

(2.9)

The efficiency of the MC method can be improved by employing Quasi Monte Carlo
schemes, e.g. the Sobol sequence, or other sampling techniques such as Latin Hy-
percube Sampling [3]. In the following, MC with randomly drawn samples is termed
MC method.

If more than one input parameter is treated as random variable, one can extend
the problem to dimension d by using multivariate distributions. Then X is a random
vector with mutually independent variables X = [X1, . . . , Xd]. For example, let

f(X1, X2) = X1

2 + 5X2 (2.10)

represent any arbitrary model, where input parameters X1 and X2 are tainted with
uncertainties and thus expressed as independent random variables. Figure 2.2 shows
the sample for joint distribution of X1 and X2 and the output uncertainty in the
shape of a histogram. Alternatively, one could also calculate statistical moments
from response vector Y .
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Figure 2.2: Monte Carlo method with different sampling techniques: N = 1000
sample points for random variables X1 ∼ N (0, 1) and X2 ∼ U(0, 1) generated with
(pseudo-)random numbers and Sobol low-discrepancy sequence. The histogram shows
the distribution of model response Y for both samples.

Otherwise, in case of correlated non-Gaussian, or non-uniform parameters, these
variables are converted into independent normally distributed random variables with
the aid of the Nataf transformation and Cholesky decomposition. However, this is
beyond the scope of this thesis which is why I refer to [32] for further information.

Generalised Polynomial Chaos

Xiu [43] describes the development of the generalised polynomial chaos to explain its
naming: The generalised polynomial chaos evolves from the Wiener-Hermite poly-
nomial chaos. Norbert Wiener used Hermite polynomials to decompose Gaussian
stochastic processes, but Hermite polynomials are not suited as basis to approxi-
mate non-Gaussian distributions. This problem has been solved by developing the
generalised polynomial chaos expansion, which is independent of the type of poly-
nomials [43]. The labelling can be misleading, since there is nothing chaotic about
the spectral representation in the context of UQ [32]. Moreover, there are different
terms and abbreviations in the literature that refer to the same idea. I use the term
polynomial chaos expansion (PCE) for the spectral representation of Gaussian and
non-Gaussian distributions by globally smooth orthogonal polynomials.

The PCE works similarly to Fourier series: A function is approximated but
with polynomials instead of sinusoids. Let X be a vector of parameters and Y the
response of model f . The problem might depend on time t and space x. For the
sake of simplicity, I set aside the spatial component. Hence I rewrite Equation 2.7
as

Y = f(t, X), (2.11)

where X has a known joint probability density function ρ(X) and thus introduces
uncertainties into the problem. A series of polynomials, truncated after N terms,
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approximates function f(t, X):

f(t, X) =
∞∑
n=0

f̂n(t)φn(X)

≈
N−1∑
n=0

f̂n(t)φn(X) (2.12)

f̂n(t) are coefficients and yet unknown. Polynomials φn are of degree n and their type
depends on the distribution of the parameters ρ(X). If Equation 2.12 approximates
f(t, X) well, one can calculate statistical properties by performing three steps [3]:

1. Construction of basis functions φn

2. Computation of coefficients f̂n(t)

3. Computation of statistical properties based on f̂n(t)

While the approximation is applicable to problems with multiple random variables
if multidimensional basis functions are employed [32, 43], I refer to the univariate
case for the following explanations to keep it simple.

Step 1: Construction of Basis Functions φn
According to [11], one can use different basis functions depending on the input
parameter distribution as listed in Table 2.1. The choice of the type of polynomials
might affect the convergence of the method [11].

Table 2.1: Relation between common distributions of random variables and type of
polynomials to be chosen for PCE; An exhaustive list can be found in [43].

Distribution Type of polynomials

Gaussian Hermite
Gamma Laguerre
Beta Jacobi
Uniform Legendre

Moreover, the polynomials φn are orthogonal. This property can be expressed
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mathematically with the L2 inner product 〈· , ·〉ρ and weight ρ(X):

〈φi(X), φj(X)〉ρ =
∫
φi(X)φj(X) ρ(X)dX = γi δij (2.13)

with Kronecker delta δij =

0, if i 6= j

1, if i = j

〈φi(X), φi(X)〉ρ = γi (2.14)

γi are normalisation constants [32, 43]. A numerically stable approach to deter-
mine the orthogonal polynomials is the three-terms recurrence relation with initial
conditions φ−1(X) = 0 and φ0(X) = 1 [3]:

φn+1(X) = (AnX + Bn)φn(X) − Cn φn−1(X) n ≥ 0 (2.15)

An, Bn and Cn are constants and computed on the basis of weight ρ. For example, let
X be a random variable with uniform distribution U(−1, 1) and weight ρ(X) = 1

2 .
According to Table 2.1, Legendre polynomials are optimal to solve this problem.
Hence ∫ 1

−1
φi(X)φj(X)ρ(X)dX = 2

2 i + 1 δij

and Equation 2.15 yields

φ−1 = 0 φ1 = X φ3 = 1
2 (5X3 − 3X)

φ0 = 1 φ2 = 1
2 (3X2 − 1) . . .

This and additional examples can be found in [36].
Note that the three-term recursion relation requires independent random vari-

ables in case of a multivariate problem. Bertran’s recursion, Cholesky decompo-
sition and modified Gram-Schmidt orthogonalization resolve this issue, since these
approaches generate orthogonal polynomials also for statistically dependent random
variables. More details can be found in [3].

Step 2: Computation of Expansion Coefficients f̂n(t)
Now that the base polynomials in Equation 2.12 are defined, one must determine
the coefficients f̂n(t) by means of stochastic collocation, integration schemes or the
Galerkin method [3]. The latter belongs to the intrusive methods, hence it is not ap-
plicable in the context of this thesis, whereas collocation and integration might prove
successful. Again, the denotation of these approaches is not standardised (compare
[3, 11, 12, 32, 36, 43]): Point collocation is equivalent to stochastic collocation,
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while the pseudo-spectral projection or discrete projection method is an integration
scheme. I follow the notation of [3, 11] and use the terms point collocation method
and pseudo-spectral approach.

Both approaches utilise of the orthogonal basis functions defined in Equation
2.13. So the truncated series of polynomials (see Equation 2.12) for the univariate
case yields [43]:

〈f(t, X), φm(X)〉ρ = 〈
N−1∑
n=0

f̂n(t)φn(X), φm(X)〉ρ

=
N−1∑
n=0

f̂n(t) 〈φn(X), φm(X)〉ρ

=
N−1∑
n=0

f̂n(t) δnm

(2.16)

This can be simplified once again because the Kronecker delta δnm = 0 if n 6= m.
While for m = n the indices can be exchanged and δnm = 1. Hence

〈f(t, X), φn(X)〉ρ = f̂n(t), (2.17)

where f(t, X) might not be available if the model is considered as a black box or
evaluated at great computational expense. This issue is addressed by point colloca-
tion or the pseudo-spectral projection method.

Point Collocation Method
The point collocation (PC) method replaces Equation 2.17 by a system of equations
[11]: 

φ0(x0) . . . φN(x1)
... . . .

φ0(xM) φN(xM)



f̂0(t)
...

f̂N(t)

 =


f(t, x0)

...
f(t, xM)

 (2.18)

The M nodes xm at which the model is evaluated can be chosen arbitrarily. That
is, they can be defined for example as (pseudo-)random MC samples [3]. If M = N ,
one could use an interpolation approach to solve the system. But this is not recom-
mended because interpolation is not robust in particular for multivariate problems
[44]. Generally, regression methods provide better results. In case of an over-
determined system, i.e. M > N , the method of least squares is the usual choice
to minimize the error difference of approximation and exact solution [44]. Hosder,
Walters, and Balch [11] define a ratio αPC of actual sample size M ′ to minimum
required number of sample points M + 1. The latter depends on the dimension of
the parameter space d and the order of the polynomial chaos p, i.e. the expansion
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in Equation 2.12 is truncated after p+ 1 terms:

M + 1 = (d + p)!
d! p! (2.19)

αPC = M ′

M + 1 (2.20)

In other words, αPC expresses the degree to which the system of Equations 2.18 is
over-determined. It is suggested that using M ′ = 2 (M + 1) collocation points leads
to better results [11].

Pseudo-Spectral Projection Method
Alternatively to collocation methods, the pseudo-spectral (PS) approach employs
quadrature rules such as Gaussian quadrature: M nodes xm and weights wm are
defined with respect to the input density ρ. Then the model must be evaluated only
at the nodes to obtain the coefficients f̂n(t) [32]:

f̂n(t) =
M−1∑
m=0

f(t, xm)φn(xm)wm (2.21)

Note that f̂n(t) are merely approximations of the exact solution [43]. The univariate
problem can be generalised to a multivariate one by employing tensor products, but
integration in higher dimensions becomes costly [3].

Step 3: Computation of Statistical Moments Based on Expansion Coefficients f̂n(t)

Recall that the actual objective is to calculate the statistics, e.g. mean and vari-
ance, of model response Y = f(t, X). The expected value results from truncated
expansion defined by Equation 2.12 and initial condition for the three-term recursion
relation φ0(X) = 1 [32]:

E[f(t, X)] ≈ E
[
N−1∑
n=0

f̂n(t)φn(X)
]

=
N−1∑
n=0

f̂n(t)E[1 · φn(X)]

=
N−1∑
n=0

f̂n(t)E[φ0(X) · φn(X)]

=
N−1∑
n=0

f̂n(t) δ0n = f̂0(t) (2.22)
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The variance exploits Equation 2.14 in the slightly different form

〈φn(X), φn(X)〉ρ = γn = E[φ2
n(X)] (2.23)

so that it can be simplified as

V [f(t, X)] = E
[
(f(t, X) − E[(f(t, X)])2

]
≈ E

(N−1∑
n=0

f̂n(t)φn(X) − f̂n(t)
)2

= E

(N−1∑
n=1

f̂n(t)φn(X)
)2

=
N−1∑
n=1

f̂ 2
n(t)E

[
φ2
n(X)

]
+ E

N−1∑
n=1

N−1∑
m=1
m 6=n

f̂n(t) f̂m(t) φn(X)φm(X)︸ ︷︷ ︸
0


=

N−1∑
n=1

f̂ 2
n(t) γn. (2.24)

Higher statistical moments can be obtained in a similar manner [32].

2.2.2 Sensitivity Analysis

Sensitivity analysis is perceived as the “study of how uncertainty in the output of a
model (numerical or otherwise) can be apportioned to different sources of uncertainty
in the model input” [20, p. 45]. It often helps to identify crucial parameters and
to prioritise them. Accordingly, important parameters are chosen with great care
to improve the simulation, whereas non-influential ones could be fixed in order to
simplify the model [21].

Commonly, the practices developed for this purpose are categorised as local or
global. Local methods vary the uncertain parameter around a nominal value, hence
the information about the sensitivity of the model is valid only for a restricted range
of the parameter. On the contrary, global methods take into account the uncertainty
of several parameters over the total parameter space at once. This allows to analyse
the sensitivity on the whole interval of the uncertain parameters. Besides, global
methods provide information about interaction effects among the parameters on the
output [21]. The concept of global sensitivity analysis serves better for the intent of
this thesis because the model under consideration has many input parameters that
might interact and the Vadere users are interested in identifying these interactions.

To narrow down the broad field of global sensitivity analysis techniques, one can
distinguish between regression-based and variance-based methods. Linear regression
methods are useful for linear models, but they cannot analyse the sensitivity of non-
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linear non-monotonic models [35]. Variance-based methods evaluate the effect of
the variance in the input to a model on the variance of the output [21].

One common metric are so-called Sobol’ indices [10, 33]. A slightly modified ver-
sion of the Sobol’ indices usually calculated from MC samples is based on spectral
representations, just like uncertainty analysis with PCE. This is advantageous be-
cause information about the sensitivity can be obtained almost as by-product when
conducting uncertainty analyses. Generally, sensitivity indices are a normalised mea-
sure for the sensitivity of the QoI. They quantify the influence of each input param-
eter that is considered uncertain on the model output. Time dependent quantities
can be evaluated just as well as scalar ones by calculating the sensitivity indices for
each time step [32]. This allows for tracking the importance of a certain parameter
over time, which can prove beneficial if changes in the ranking of parameters are to
be expected. Because of all these advantages, the Sobol’ indices seem a useful tool
for the analysis of crowd simulations. I introduce both PCE and MC based Sobol’
indices in the next section.

Sobol’ Decomposition of the PCE

The model f (see Eq. 2.7) is considered once again, now for the multivariate case:

Y = f(X) (2.25)

For simplicity any dependencies of space or time are neglected. Input vector X =
[X1, . . . , Xd] contains independent and on [0, 1] uniformly distributed variables.
The Sobol’ decomposition works as well for other densities than uniform distri-
butions, but the method still relies on the premise that the random variables are
mutually independent. Otherwise, Nataf or Rosenblatt transformation can be ap-
plied to convert them into independent variables [32]. This is beyond the scope
of the present work. Equation 2.25 can be expressed as high-dimensional model
representation or Sobol’ representation [32]:

f = f0 +
d∑
i=1

fi +
∑
i

∑
i<j

fij + · · · + f1, ..., d, (2.26)

where fi = fi(Xi), fij = fij(Xi, Xj). f0 represents the mean of the model re-
sponse, and fi are effects caused by each single parameter, whereas terms with
multiple indices denote contributions that originate from interactions between the
input variables [32]. The variance of model response Y can be estimated as follows:

V [Y ] = V [f ] =
d∑
i=1

V [fi] +
∑
i

∑
i<j

V [fij] + · · · + V [fi, ..., d] (2.27)
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And division by the total variance V [f ] yields

1 =
d∑
i=1

V [fi]
V [f ] +

∑
i

∑
i<j

V [fij]
V [f ] + · · · + V [fi, ..., d]

V [f ] (2.28)

1 =
d∑
i=1

Si +
∑
i

∑
i<j

Sij + · · · + S1, ..., d. (2.29)

Equation 2.29 defines sensitivity indices as ratio of partial variances to the total vari-
ance. First order sensitivity indices Si quantify the variance of the model response if
input parameter Xi varies. One can denote this more detailed than in the equation
above as V [E[Y |Xi]]. Higher order sensitivity indices can be calculated as well,
but usually their contribution is negligible. Total sensitivity indices ST i characterise
the output variance if all input parameters vary except for parameter Xi. A concise
expression of this is V [E[Y |X∼i]]. Normalisation by the total variance V [Y ] yields

Si = V [E[Y |Xi]]
V [Y ] , (2.30)

ST i = 1 − V [E[Y |X∼i]]
V [Y ] = E [V [Y |X∼i]]

V [Y ] . (2.31)

In other words, ST i evaluates the influence of parameter Xi and the interactions
between Xi and all other parameters on the model response [32]. Therefore, it can
be expressed as

ST i = Si +
∑
i

∑
i<j

Sij + · · · + S1, ..., d. (2.32)

Both Si and ST i range between [0, 1] due to normalisation by the total variance.
Value 0 indicates that the parameter under consideration has no influence, whereas
1 denotes a significant influence.

The coefficients needed for the sensitivity indices have been calculated already in
the scope of the uncertainty analysis in Section 2.2.1. Note that one must consider
the multivariate case now. The expansion coefficients are selected in agreement with
the dependency of the basis functions. The squares of these coefficients are summed
and normalised by the total variance to obtain the sensitivity indices. Once the first,
second and higher order sensitivity indices are known, the total sensitivity can be
approximated by Equation 2.32, which is the sum of the sensitivity indices [35].

Monte Carlo Based Sensitivity Indices

The MC based sensitivity indices follow the same approach as the ones computed
from the PCE coefficients. They only differ in the approximation of the partial and
total variances in Equation 2.31 and 2.30, respectively. Several researchers have
developed different estimators among which the following suggestions lead to the
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most accurate results [22].
Let A and B be N × d matrices of independent random variables. N is the

sample size and d is the number of input variables that follow a certain distribution.
Matrices Ci are equal to matrix A except for column i, which is replaced by column
i from B:

A =


xA11 · · · xA1d

· · · · · · · · ·
xAN1 · · · xANd

 B =


xB11 · · · xB1d

· · · · · · · · ·
xBN1 · · · xBNd



Ci =


xA11 · · · xB1i · · · xA1d

· · · · · · · · · · · · · · ·
xAN1 · · · xBNi · · · xANd


(2.33)

Jansen [14] determines the partial variances with

V [E[Y |Xi]] = V [Y ] − 1
2N

N∑
j=1

[f(B)j − f(Ci)j]2 , (2.34)

V [E[Y |X∼i]] = 1
2N

N∑
j=1

[f(A)j − f(Ci)j]2 . (2.35)

Saltelli et al. [22] suggest to calculate the first order sensitivities based on

V [E[Y |Xi]] = 1
N

N∑
j=1

f(B)j [f(Ci)j − f(A)j] . (2.36)

The estimator for the total variance is given in [21] as

V [Y ] = 1
N

N∑
j=1

[f(A)j]2 −
 N∑
j=1

f(A)j

2

, (2.37)

but the result is more accurate if all independent samples, i.e. A and B, instead of
A are taken into account [19].

In both cases, following Jansen or Saltelli et al., the model must be evaluated
for a total number of (2 + d)N sample points. Since N usually ranges between a
few hundred to a few thousand, the MC based sensitivity indices becomes infeasible
for computationally heavy models [21].

This section briefly introduced a selection of UQ methods. Their aim is to
quantify uncertainty and sensitivity of multidimensional stochastic problems. In
particular non-intrusive point collocation or integration schemes based on PCE show
promise in the context of pedestrian dynamics. Compared to MC, they are usually
less computationally expensive. In the next section, I give an overview of studies in
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which microscopic crowd simulations have been analysed by means of UQ methods.

2.3 Uncertainty Quantification in Microscopic Crowd Simula-
tion

The introduction of simulators for microscopic crowd behaviour in Section 2.1 em-
phasised that the OSM suffers from uncertainties in the input parameters. Section
2.2 about UQ methods stresses that uncertainties should be considered to improve
the performance of the model and to assess the reliability of the model before draw-
ing conclusion from simulations. In the context of pedestrian dynamics, it is crucial
to assure reliable results when planning mass events or escape routes inside build-
ings. Safety concepts based on putative confidential assumptions can be dangerous
for the people who should be guided through critical passages.

The OSM is one of the available models in the framework Vadere to describe the
movement of crowds. And the question arises how its uncertainty and sensitivity
can be investigated properly. So far, employing forward and inverse uncertainty
quantification methods to pedestrian locomotion models is rather uncommon up to
now [5]. There are a few studies where Bayesian inversion helps to infer distributions
of input parameters from given output data. For example, Gödel, Fischer, and
Köster [5] apply Markov chain Monte Carlo to a simple scenario modelled with the
OSM in Vadere. They show that the inversion can improve the quality of input
parameters and thereby provide a basis for further development of a framework for
UQ methods in microscopic crowd simulation. However, Bayesian inversion methods
pursue a different objective than forward propagation. As mentioned in Section
2.2.1, applying inverse methods are usually preliminary proceedings to determine
input uncertainties that are required for forward uncertainty quantification.

Forward propagation methods are applied in [1, 17, 30]. Dietrich et al. [1] build
a data-driven surrogate model for a relatively small scenario, the entry and exit of
passengers at a train station. The main goal is to speed up the process of generating
the QoI, since surrogate models usually provide a computationally less expensive ap-
proximation than direct model evaluations. Nevertheless, this approach introduces
errors and it remains unclear to which extent these inaccuracies affect the subse-
quently performed uncertainty quantification. This final step comprises stochastic
collocation whose outcomes are compared to MC simulations. I do not go into depth
about constructing surrogate models because this is another field of research, but
the comparison of UQ results obtained with the point collocation method and MC
simulations seems interesting.

Sivers et al. [30] examine the behaviour of a model for a train evacuation scenario,
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which suffers from uncertain parameters, by means of the pseudo-spectral approach
with Gauss integration based on the PCE. The polynomials have degree 6, which
leads to 9126 model evaluations for a three dimensional parameter space, just to
give an impression of the magnitude. The results prove the predictive capability of
the simulation, even though it incorporates a highly uncertain parameter because
this parameter has a minor effect on the model response.

Kurtc [17] investigates the sensitivity and uncertainty of two scenarios: A bot-
tleneck scenario, commonly rather termed corridor scenario (compare [45]), and a
first attempt to simulate a protest march through a city centre. She studies the cor-
ridor scenario as a modification of the experiment in [45] with respect to the three
uncertain input parameters mean of free-flow speed, standard deviation of free-flow
speed and number of agents. The QoI are the evacuation time, in other words the
time between ingress and egress, and the density time series in a certain area. The
uncertain input parameters for the simulation of the protest march are standard
deviation of free-flow speed and number of agents. The UQ is based on spectral
representations where the polynomial coefficients are obtained with the stochastic
collocation method. This is applied in different schemes to the model response.
Since the employed OSM is not deterministic, Kurtc tries to reduce the stochastic
effects in the output by considering an average of repeated model evaluations for
the same sample or an average of repeated UQ applications. Thus, the reliability
of the UQ results increases to some extent. A comparison between the stochastic
collocation results and a reference solution obtained with MC shows that the point
collocation method seems useful to determine the uncertainty and sensitivity of the
OSM. The study leaves the question open in which sense one can translate the UQ
results for both scenarios into reality. In particular the simulation of the protest
march is only a first trial. The input parameters need to be adapted to match real
situations. For example, the number of agents ranges between 10 and 20, which
represents a very small group of demonstrators.

In summary, there are a few studies that address forward propagation of uncer-
tainties in microscopic crowd simulation. Among these, it is common practice to
employ polynomial chaos expansions and to compare the results to a MC simulation,
which serves as the ideal expected result. The polynomial coefficients are computed
either with point collocation method or pseudo-spectral approach so the question
which method is efficient remains unanswered. Furthermore, it is unclear which
polynomial degree is appropriate. Therefore, I target the unsettled issue regarding
the choice of the method and its configuration. Especially the scenarios addressed in
[17] have promise which is why I seize Kurtc’s suggestion to elaborate her principle
ideas. I improve the set-up of the analysed scenarios and complement the missing
interpretations with respect to reality.
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3 Application of Uncertainty Quantification
Methods

Inspired by the previously presented works, this thesis aims at quantifying the un-
certainty of different microscopic crowd scenarios modelled with the optimal steps
model (OSM). The idea is to perform forward propagation based on polynomial
expansions. Since the model is considered as black box, I can only use non-intrusive
methods such as point collocation and integration schemes. In contrast to MC sim-
ulations, increasing the number of sample points does not necessarily lead to better
results. There are several settings, with the polynomial order being an example,
that must be chosen carefully. Therefore, this chapter is dedicated to the adjust-
ment of crucial settings for both point collocation and integration methods. The
best configuration can then be used to analyse the uncertainty and sensitivity of
different scenarios throughout the rest of this work.

The uncertainty and the sensitivity analysis is implemented in Python 3 for which
UQ toolboxes are already available. Feinberg and Langtangen give an overview of
some available toolboxes in [3]. Chaospy [2] is one option and a good choice espe-
cially because of its functionality: For example, the toolbox allows to control the
generation of random variables for input distributions. It provides different sam-
pling techniques and, most importantly, point collocation and integration schemes
are both implemented. Subsequent UQ studies with Vadere can build on the imple-
mentation, which is introduced in the second part of this chapter.

3.1 Adaptation of Uncertainty Quantification Methods to the
Model

There are many different options to perform UQ, as shown in Chapter 2.2, but only
a few of these approaches are relevant when studying models such as the OSM. I use
polynomial chaos expansions whose settings can be changed in many ways. Different
set-ups thereof can lead to different results. Therefore, the task is to find an appro-
priate configuration. On the one hand, appropriate implies accurate outcomes. On
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the other hand, the selected method should not be too computationally demanding.
In the following sections,

• the point collocation method and
• the pseudo-spectral approach

are applied to a simple corridor scenario, which is introduced in Section 3.1.1. The
results are evaluated with respect to computing time and accuracy. The accuracy is
measured qualitatively by qualitatively comparing the output densities to a Monte
Carlo (MC) reference solution. Complementary, the metrics root mean square error
(RMSE) and mean absolute percentage error (MAPE) are used to obtain a quanti-
tative assessment. Finally, I select one method with the most efficient configuration
for the evaluation of the sandbox scenario. In the subsequent chapter, this method
serves to analyse further scenarios.

3.1.1 Object of Investigation: The Corridor Scenario

The above-mentioned methods are applied to a corridor scenario as defined within
the framework of an experiment in [45]. I choose this scenario because it is not too
computationally demanding and, since it has been analysed many times in other
works, it is a familiar example. In the experiment in [45], the researchers varied
the width of the entrance bentr, corridor bcor and exit bexit. Figure 3.1 shows the
version with equal widths of 180 cm, hereinafter referred to as C-180-180-180. The
computer model differs marginally from the experimental setting because the sce-
nario is adapted in such a way that it compensates unnatural behaviour introduced
by artificial components, such as the source. The important parts conform with
the original topography. The locomotion of the agents is described by the OSM.
The model has been calibrated to the corridor experiment in [45]. This leads to
adaptations of parameters which describe the speed distribution of all agents. The
changes to the default values are listed in Table A.1.
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bentr bcor bexit

10 m 4 m

1 m

3 m

8 m

10 m

Figure 3.1: Corridor scenario modelling the experiment [45] in large part: Agents (blue)
move from source to target and thereby pass the corridor. The width of the entrance,
corridor and exit is defined by bentr, bcor and bexit, respectively. The area in light red
marks an auxiliary area Aaux for the measurement area AD in dark red.

The calibrated values are still subject to uncertainties. This is why the parame-
ters mean of free-flow speed µυ, standard deviation of free-flow speed συ and number
of agents n are considered uncertain within a defined range and it is assumed that
each of them follows a uniform distribution (see Table 3.1). One should bear in mind
that, theoretically, the multivariate PCE requires stochastically independent random
variables. Actually, mean and standard deviation of free-flow speed are linked be-
cause the normal distribution is truncated. But I treat them as independent, acting
on the assumption that their dependency is weak. Otherwise, performing UQ on
models with dependent variables would become considerably complicated.

Table 3.1: Corridor scenario: The uncertainty in the input parameters is described by
uniform distributions.

Parameter Symbol Distribution Unit

Mean of free-flow speed µυ U(1.37, 1.73) m s−1

SD of free-flow speed συ U(0.10, 0.20) m s−1

Number of agents n U(100, 200)

Now that the input uncertainty is specified, I can propagate it through the
model by applying different methods as introduced in 3.1.2. The aim is to obtain
the uncertainty of the following simulation outcomes:

a) Density time series within measurement area AD

b) Mean over density time series within measurement area AD

c) Time between ingress and egress of all agents (evacuation time)
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The density for both QoI a) and b) is based on Voronoi diagrams (see Figure 3.2)
calculated by means of measurement areas AD and Aaux. Agent l is enclosed by a
Voronoi cell with area Al. The boundary of the cell is defined by all points that
are equidistant from the center of agent l and its closest neighbours [23]. Vadere
calculates the density Dυ inside measurement area AD at time step t as follows [25]:

Dυ(t) = N∑N
l=1 |Al|

(3.1)

N is the number of agents whose center is located inside measurement area AD, and
|Al| the size of the corresponding Voronoi cell.

Figure 3.2: The Voronoi cells are defined by black lines that enclose each agent. In this
example, the Voronoi cells are shown only inside auxiliary area Aaux.

3.1.2 Definition of Configurations for the Methods

The aim of this section is to define different configurations for the polynomial chaos
expansion in combination with the point collocation method and the pseudo-spectral
approach. Each of those methods can be adapted to the problem, for example, by
defining a certain sample size or by choosing a reasonable polynomial order. The
results of the adapted PCE methods are compared to a MC reference solution, which
is introduced as well.

Monte Carlo Reference Solution
The reference solution is obtained by applying a Monte Carlo simulation with ran-
dom sampling. It yields a good approximation if enough sample points are taken
into account. An indicator for the right sample size is the convergence of the UQ
output. Figure 3.3 shows the uncertainty and sensitivity for evacuation time as QoI
over an increasing number of sample points. The other two quantities for mean
and time series of the Voronoi density lead to qualitatively similar curves. Note
that the sample size ns for the statistical moments and the sensitivity indices differ
(see Section 2.2.2). The curves for mean and standard deviation are nearly constant,
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whereas some sensitivity indices change significantly if 50, 500 or 5000 sample points
are used. The difference between the results for 5000 and 25000 sample points seems
negligible. Therefore, the sensitivity indices calculated from 5000 sample points (or
uncertainty obtained from 2000 sample points) is considered as converged and can
be employed as ground truth. Now that a reliable reference solution is available, I
can focus on the UQ methods that are actually of interest.

101 102 103 104 105

sample size ns

0

25

50

75

100

m
ea

n
o
f

Q
o
I

in
s

101 102 103 104 105

sample size ns

0

5

10

15

S
D

o
f

Q
o
I

in
s

101 102 103 104 105

sample size ns

−0.5

0.0

0.5

1.0

S
i

of
Q

oI S1

S2

S3

101 102 103 104 105

sample size ns

0.0

0.5

1.0

1.5

S
T
i

of
Q

oI ST1

ST2

ST3

Figure 3.3: Convergence of the Monte Carlo method: Upper graphs show the UQ results
for mean and standard deviation of evacuation time calculated from different sample sizes.
The bottom graphs show first order (Si) and total (ST i) sensitivity indices accordingly.

Definition of Different Sample Sizes for the PCE
I relinquish the MC simulation and return to the point collocation (PC) and pseudo-
spectral (PS) approach based on the PCE. How large should the sample size be for
these methods? In this paragraph, I define two key figures, αPC and αPS, which are
used to vary the sample size systematically for the PC and PS method, respectively.

The sample size for the PC method can be chosen arbitrarily as long as the
order of magnitude is correct. I want to recapitulate that the PC method leads
to a system of equations (see Eq. 2.18). This system of equations can be solved
by means of the least squares method to obtain the polynomial coefficients for the
PCE. Let the polynomials of the PCE have degree 2 and the number of uncertain
parameters is 3. Then the system of equations requires at least 10 sample points
so that it can be solved with least squares (compare Eq. 2.19). However, one can
also use more sample points than that, which leads to an over-determined system of
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equations. The degree of how over- or under-determined the system of equations is
can be specified by αPC (see Eq. 2.20). For example, if 20 sample points are used
instead of 10, the system is αPC = 20

10 = 2 times over-determined. In this manner,
αPC can be used to vary the sample size in a systematic scheme. Hosder, Walters,
and Balch [11] suggest that, independent of sampling technique and polynomial
degree, αPC = 2 leads to better approximations. However, it is not clear how
distinct the qualitative improvements would be if this recommendation were applied
to the case under consideration. Increasing αPC might lead only to small differences
in the result just as well as it could yield far better results, even at lower cost than
it were the case for raising the polynomial order. For this reason, the PC method is
analysed for αPC = 1, 2, 3. Note that this study does not entail the under-sampled
case αPC < 1.

In contrast to the PC method, the sampling for the PS approach works differently.
The required sample size depends on the order q of the underlying quadrature rule
and number of uncertain parameters d:

ns = (q + 1)d (3.2)

Similarly to the systematically varied factor αPC , I introduce factor αPS = 1, 2, 3
and change the sample size according to the following scheme:

q = p αPS (3.3)

where p is the polynomial degree of the PCE. For example, a problem with 3 un-
certain parameters and second order polynomials requires 27, 125 and 343 sample
points, respectively. The considered sample sizes for both PC and PS approach are
summarised in Table 3.2.

Definition of Different Polynomial Orders for the PCE
Another setting that can affect the accuracy of the approximated distributions is
the polynomial degree. It might be computationally more efficient either to enlarge
the sample (via factor αPC for PC or αPS for PS as described above), or to increase
the polynomial degree p [11]. The efficiency depends on the computational effort,
which can be estimated coarsely by the number of model evaluations.

The number of sample points ns for PC and PS approach is defined by Equation
2.19 and 3.2, respectively. Figure 3.4 visualizes the relation between α, p and ns. The
plot makes clear that the choice of p is more crucial for the PS approach, since the
sample becomes large rapidly as the polynomial degree increases. As a consequence,
the PS approach should be used with a low polynomial degree to avoid many model
evaluations. In contrast, for the PC method the effects of p and αPC are similar. So
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one could think that the PC method with relatively high values for both αPC and p
should be acceptable in terms of computing time.
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Figure 3.4: Computational effort for point collocation method and pseudo-spectral ap-
proach estimated by the number of sample points: Factors for systematic variation of the
sample size αPC and αPS (left) are compared to the polynomial degree p of the PCE
(right).

However, computations with the aid of Chaospy reveal that it takes considerably
longer to compute statistics and, in particular, sensitivity indices for higher poly-
nomial orders p. The Chaospy algorithm that calculates mean, standard deviation,
first order and total sensitivity indices for a time dependent QoI sometimes runs up
to 10 times longer than the code that evaluates the model. That is, the computa-
tional effort cannot be equated with the sample size. Instead, one has to record the
total computing time. Moreover, a low polynomial degree is desirable to keep the
runtime low.

Bearing that in mind, the following combinations for p and α seem reasonable to
analyse the effect on the accuracy of the approximated distributions: The polynomial
order ranges between 1 and 5. At the same time, α takes the values 1, 2, 3 but
only for at maximum third order polynomials. Polynomials of degree 4 and 5 are
not combined with α = 2, 3 to avoid too heavy computations. These settings are
summarised in Table 3.2.

Reducing Stochastic Behaviour of the Model Response
The third interesting aspect concerns primarily the model response but is also related
to the UQ method. The OSM is not fully deterministic because it incorporates
stochastic processes to improve the simulation. For example, random numbers are
used to define the starting seed or to prevent agents from getting stuck while they
navigate around obstacles and other agents. Therefore, simulations with identical
settings of input parameters lead to slightly different results. This has an impact on
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the outcome of the UQ method and its accuracy. There are two options to reduce
this effect:

a) Reduce the stochastic behaviour of the model by fixing the seed. In practice,
this means that agents are spawned by the same pseudo random process for
each simulation. If different UQ methods are applied to realisations that are
obtained in this manner, the UQ output should be comparable. However, the
results might be representative for only one specific initial condition but not
for others. A different seed might yield a different response and therefore,
different output uncertainties and sensitivities.

b) Reduce the stochastic behaviour of the model response by taking the average of
repeated model evaluations (in the following referred to as number of scenario
runs nr) for the same sample. Each repetition uses a different seed.

Since the computational effort increases by factor nr, I fixed the seed and applied
the UQ methods to the model response of a single run (a)) to pre-select the best
three or four methods. The pre-selection is then run with the averaging (b)) to get
a more general solution and to find the most suitable method based on this final
evaluation. Note that, unless stated explicitly, the following sections refer to fixed
initial conditions (a)).

Summary of the Parameters to be Adapted
I briefly summarise the previous paragraphs. From the considerations regarding
sample size and polynomial degree arise the configurations for the point collocation
method and the pseudo-spectral approach as listed in Table 3.2.
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Table 3.2: Parameter set-up for the point collocation (PC) method and the pseudo-
spectral (PS) approach

Method Polynomial
degree p

αPC or αPS Sample size ns

Po
in
t
co
llo

ca
tio

n
2 1 10
2 2 20
2 3 30
3 1 20
3 2 40
3 3 60
4 1 35
4 2 70
5 1 112

Ps
eu

do
-s
pe

ct
ra
l

2 1 27
2 2 125
2 3 343
3 1 64
3 2 343
4 1 125
5 1 216

Each configuration is applied to the model response obtained by one single run.
I pre-select the best configurations by comparing the UQ results to a Monte Carlo
(MC) reference solution. The MC simulation uses 2000 sample points for the uncer-
tainty analysis and 5000 for the sensitivity analysis. The pre-selected methods are
then applied to the average of 10 repeated model evaluations with different initial
conditions. The outcomes are evaluated in the next section.

3.1.3 Verification of Methods

This section comprises a visual comparison of the probability density functions of
the model response. In doing so, one gets a first impression of the performance of
the PCE. Additionally, the metrics mean absolute percentage error (MAPE) and
root mean square error (RMSE) are used to evaluate the UQ results quantitatively.

Qualitative comparisons of the PC method with the MC reference solution lead to
the conclusion that polynomial expansions obtained with 10 sample points (αPC = 1)
are poor approximations, while in terms of accuracy 20 (αPC = 2) or 30 (αPC = 3)
sample points yield equally good results. The approximations for PS with a sample
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size of 27 or 125 (αPS = 1 or 2) are acceptable. As an example, Figure 3.5 shows
approximated distributions for the mean Voronoi density compared to a histogram of
the MC reference simulation. The graphs for the evacuation time look qualitatively
similar (see Figure A.1), so I consider only the mean Voronoi density. Independent
of the number of samples used, most approximations in this plot are good. Since the
actual UQ results are derived from these curves, one can expect the mean, standard
deviation and sensitivity indices to be in accordance with the MC based measures.
PC with 10 sample points is the sole exception because it approximates the actual
probability density function poorly.
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Figure 3.5: Qualitative comparison of output distributions approximated by PCE with
a varying sample size: The polynomial degree is p = 2 for both point collocation (PC)
and pseudo-spectral (PS) approach. The reference solution is obtained with Monte Carlo
(MC) from 2000 sample points and represented by a histogram. The model response is
the mean Voronoi density.

The influence of the polynomial degree on the accuracy of the PCE for the
mean Voronoi density is shown in Figure 3.6. Again, the graphs for the evacuation
time look qualitatively similar (see Figure A.2). Generally, the plot reveals that
the PC method results in more stable approximations than the PS approach. As
the polynomial degree is increased, the curves obtained with PC are equally good,
whereas the PS approach leads to oscillating curves. The results for PC with sample
sizes in accordance with αPC = 1 are not included in the graph because this approach
yields unsatisfactory approximations.

34



0.4 0.6 0.8 1.0 1.2

mean Voronoi density in m−2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
ro

b
ab

il
it

y
d

en
si

ty
fu

n
ct

io
n

PC, p = 2, ns = 20

PC, p = 3, ns = 40

PC, p = 4, ns = 70

PC, p = 5, ns = 112

PS, p = 2, ns = 27

PS, p = 3, ns = 64

PS, p = 4, ns = 125

PS, p = 5, ns = 216

MC, ns = 2000

Figure 3.6: Qualitative comparison of output distributions for QoI mean Voronoi density
approximated by polynomial chaos expansions with varying polynomial order p: The
sample sizes ns are in accordance with αPC = 2 in case of point collocation (PC) method
and αPS = 1 for the pseudo-spectral (PS) approach. Thick lines indicate configurations
of the PC method (p = 3 and p = 4) that will prove useful in the quantitative assessment.
The reference solution is obtained with Monte Carlo (MC) from 2000 sample points and
represented by a histogram.

Visual comparisons are useful to get a better understanding, but they cover only
a part of the evaluation. Measures, such as MAPE and RMSE, capture the accuracy
quantitatively and allow for reliable assessment. They are defined as follows:

RMSE(y) =

√√√√ 1
N

N∑
i=1

(yref,i − yi)2, (3.4)

MAPE(y) = 1
N

N∑
i=1

∣∣∣∣∣yref,i − yi
yref,i

∣∣∣∣∣ (3.5)

where yref is the MC reference solution and y the outcome of the PC and PS
method, respectively. MAPE(y) is calculated for the outcome of the uncertainty
analysis, while RSME(y) is taken for the sensitivity analysis. That is, Equation 3.4
replaces yref and y by mean or standard deviation, while Equation 3.5 refers to first
order or total sensitivity index for each parameter. If the QoI is a scalar quantity
(e.g. evacuation time), N = 1, otherwise yref and y are time series with time steps
i = 1, . . . , N .

I employ these two different metrics for the following reasons. The error of the
uncertainty is calculated with MAPE to normalise the statistical moments of the

35



QoI, which have different units. Furthermore, mean and standard deviation reach
values of different magnitudes. For example, the mean evacuation time might be
80 s, whereas the mean of mean Voronoi density is around 2 m−2. Albeit the Voronoi
density time series also reaches a few values around 0, I use the MAPE. Those few
time steps where mean and standard deviation are less than a defined threshold
(0.05 m−2) are neglected. The sensitivity indices are dimensionless already, and
they range from 0 to 1. Therefore, the RMSE is better suited.

Figure 3.7 compares the errors of the UQ results for all QoI obtained with the
methods as listed in Table 3.2. Just the errors arising from the PC method with
αPC = 1 are not included in the plot because their error is multiple times greater.
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Figure 3.7: Quantitative comparison of different configurations of the UQ methods based
on their errors: The UQ results for different QoI are calculated by point collocation (PC)
and pseudo-spectral (PS) approach applied to the model response of a single run (nr = 1).
MAPE(y) quantifies the error of mean (a.1) and standard deviation (a.2). RMSE(y)
quantifies the error of first order sensitivity indices (b.1) and total sensitivity indices
(b.2). The reference values yref are derived from Monte Carlo (MC) simulations with
ns = 2000 sample points for the uncertainty analysis (a) and ns = 5000 sample points for
the sensitivity analysis (b). The estimation of the error for QoI Voronoi density time series
neglects 3% of the data due to different thresholds for (a)† and (b)‡.
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Obviously, the uncertainty estimation for the time dependent QoI density is much
more imprecise than for scalar QoI. This can be partly explained by the shape of the
probability distribution for the Voronoi density time series. For a few frames at the
beginning and at the end of the simulation, the PCE is not capable of approximating
the actual distribution. These poor approximations adversely affect the estimates
for uncertainty and sensitivity. More importantly, one must admit that the UQ
results for scalar QoI are surprisingly good. Even though the PCE does not fit the
exact output probability density, the UQ results derived from the polynomials are
close to their true values. Figure 3.6 reveals that high order polynomials tend to
oscillate around the true value. However, these deviations compensate each other
by chance when mean, standard deviation and sensitivity indices are derived from
the PCE. Therefore, mean, standard deviation and the sensitivity indices are close
to the MC reference solution and the error is small.

In accordance with the visual comparison of PC (regression, i.e. αPC > 1)
and PS approximations, none of the two approaches seem superior to one another.
The influence of greater sample sizes turns out to be irrelevant in both cases. As
the polynomial degree increases, the PC method yields slightly better results. The
errors of different configurations for the PS approach are less distinct in relation to
higher order polynomials. However, as explained above, one cannot trust only the
quantitative evaluation.

Based on these considerations, I pre-select the following methods. They seem to
be accurate and not too expensive in terms of computing time:

• PC: p = 3, ns = 30
• PC: p = 4, ns = 70
• PS: p = 3, ns = 64
• PS: p = 4, ns = 125

MAPE and RSME are calculated once more for these configurations. This time,
the UQ methods are applied to the average model response of nr = 10 repetitions
in order to obtain a more reliable assessment (see Figure A.3). Compared to the
previous evaluation based on one single run, the errors decline significantly. This
concerns all four pre-selected configurations to the same degree so that their errors
do not differ much from one another. Therefore, the best method is the most
economical one. The efficiency is evaluated in the next section.

3.1.4 Rating of Methods

The final rating of the different configurations of the methods takes into account
accuracy of the UQ results and computational effort. The analysis in the previous
section leads to the conclusion that the error of the four pre-selected methods is
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comparable. The computational effort, in other words the runtime, is primarily
dominated by two factors:

Mainly, the polynomial degree p and, secondarily, the sample size ns deter-
mines the computing time for the PCE. This is unexpected but can be explained
as follows. The Chaospy algorithm requires some time to decompose the out-
put variance sensitivity indices. Second and higher order sensitivity indices would
take even longer because more coefficients must be calculated to satisfy Equa-
tion 2.29. This becomes noticeable in case of a time dependent QoI because the
statistics and sensitivities are calculated for each time step. For example, PC
(p = 3, ns = 40, αPC = 2) requires less than 1 min to generate the samples and eval-
uate the model (preprocessing) and 21 min to calculate the PCE (post-processing),
whereas PC (p = 4, ns = 70, αPC = 2) runs 3 min and 25 min, respectively. These
time measurements refer to simulations where all three QoI are considered, but the
scalar ones contribute only little. One can expect the model evaluation to be more
time consuming than the post-processing in case of large scenarios. In either case,
these numbers suggest the user to choose low polynomial orders. In this manner,
the number of sample points is kept low as well.

The PC method typically requires less sample points than the PS approach. Be-
sides, the PC method yields more stable approximations of the probability density
function of the model response. However, the user should bear in mind that the
accuracy may differ, depending on the model response under consideration. For ex-
ample, the time dependent Voronoi density exhibits some complicated distributions
during a few time steps. Then the PCE in general is not capable of capturing their
shape, no matter if one employs the PC method or the PS approach. In conclusion,
the point collocation (PC) method with third order polynomials (p = 3) applied to
a model response with 40 samples (αPC = 2) is an appropriate choice for further
analyses. Its computational effort is justifiable and the method yields sufficiently
accurate results. Moreover, the performance improves significantly if the method is
applied to an average of repeated model evaluations.

3.2 Overview of the Implemented Program Code
The code for forward uncertainty quantification with Vadere consists of two parts:
The evaluation of the model for all sample points and the uncertainty and sensitivity
analysis. The flow chart in Figure 3.8 summarizes both scripts for pre- and post-
processing.

At first, one has to define the scenario, its uncertainties and some other settings,
such as sampling technique, number of sample points, etc. Chaospy provides an
algorithm for generating the samples. The number of runs nr specifies how many
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start preprocessing & solver

scenario file, uncertain param-
eters, QoI, UQ method, nr

chaospy: generate sample

suqc: evaluate model for run
i = 1, ..., nr

model response, logfile (sim-
ulation settings, sample, etc.)

end preprocessing & solver

start postprocessing

sample, QoI, model re-
sponse, set i = 1

average runs average model re-
sponse; set nr = 1

extract model response of run i

PCE?
chaospy: PCE,

calculate uncertainty
and sensitivity

calculate MC based uncertainty
and sensitivity

i < nri = i + 1

uncertainty (mean and SD of
QoI), sensitivity (Sj , STj), logfile

stop postprocessing

no

yes

no

yes

no

yes

Figure 3.8: Simplified flowchart of the code: The first step after starting each process
(tick outline) is important because the user must define key variables. nr represents the
number of scenario runs.
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times the model is evaluated for the same sample. This can be used to reduce the
effect of the stochastic behaviour of the OSM as explained above. Finally the SUQ
(surrogate model and uncertainty quantification) controller [37], a tool designed for
Vadere, triggers the model evaluations for each run.

The model response is processed in a second script. It converts the output data
so that the results of all runs are averaged or only one single run is considered. In
either case, UQ methods from the Chaospy library or a Monte Carlo based sensitivity
analysis are applied to the response vector.

3.2.1 Embedding the Chaospy Library

Chaospy offers various options for PCE and Monte Carlo simulation. The most
important commands and their embedding in the code are briefly explained in this
section. More details can be found in [3].

This example is adapted to the corridor scenario I have discussed so far. At first,
I define the distributions of the three uncertain parameters, mean and standard
deviation of free-flow speed and number of agents, with continuous and discrete
uniform distributions in a certain range, respectively:

import chaospy as cp
dist_mean_v = cp . Uniform ( l owe r =1.37 , upper =1.73)
d i s t_s igma_v = cp . Uniform ( l owe r =0.10 , upper =0.20)
d i s t_n = cp . D i s c r e t eUn i f o rm ( l owe r =100 , upper=200)

The distributions are joined by

mdis t = cp . J ( dist_mean_v , d ist_s igma_v , d i s t_n )

and one obtains a multivariate probability distribution.
The sampling depends on whether the user wants to apply MC, the PC or PS

approach. In case of MC and PC method, the sample is generated by drawing 1000
pseudo-random numbers:

sample = mdis t . sample ( s i z e =1000 , r u l e="R" )

The sampling technique is defined by the function argument rule . Even though the
algorithm also provides different techniques, such as Latin Hypercube Sampling or
the Hammersley sequence, one should be aware that the sampling technique must
accord with the matrices that are constructed for the MC based Sobol’ sensitivity
indices (see Section 2.2.2).

The PS approach requires nodes (sample points) and their corresponding weights.
The argument order defines the number of nodes. Chaospy offers various integration
rules. Here, I apply Gauss-Legendre with q points because the input distribution is
uniform:
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sample , we i gh t s = cp . g ene r a t e_quad ra tu r e ( o r d e r=q , d i s t=mdist ,
r u l e=" Gaus s i an " )

Chaospy applies the three terms recursion relation to get a numerical stable PCE
where mdist is assumed to be stochastically independent [2]. In the example, I use
polynomials of third order. The least squares method or spectral projection yield an
approximation of the polynomial coefficients for PC and PS approach, respectively:

po l y nom i a l s = cp . o r t h_ t t r ( o r d e r =3, d i s t=mdis t )
a d i s t = cp . f i t _ r e g r e s s i o n ( po l ynom ia l s , sample , y )
a d i s t = cp . f i t _ q u a d r a t u r e ( po l ynom ia l s , sample , we ights , y )

y contains the response of the model.
The statistics, mean and standard deviation, and sensitivity indices are computed

as follows:

mean = cp . E( ad i s t , md i s t )
sd = cp . Std ( ad i s t , md i s t )
s1 = cp . Sens_m( ad i s t , md i s t )
s t = cp . Sens_t ( a d i s t , md i s t )

s1 contains first order sensitivity indices and st the total sensitivity indices for pa-
rameter mean and standard deviation of free-flow speed and number of agents.

For MC simulations, I simply use the NumPy library to calculate mean and
standard deviation of y. However, the MC based sensitivity indices are not computed
by means of Chaospy or any other open-source library. This is why in particular
these manually written functions must be checked for errors. The verification is
addressed in the next section.

3.2.2 Verification of the Program Code

Code verification aims at finding and debugging errors in the program code to make
sure that the software is correctly implemented. The OSM and Vadere have been
verified and validated already [15]. Besides, Chaospy has been checked for proper
operation and compared to other toolboxes by the developer so that one can call it
state-of-the-art software [3]. I show that this external procured software is embedded
and used in the right way. However, the MC based sensitivity analysis is coded
manually and thus has to be tested comprehensively.

Verification of Simulations with the SUQ Controller
The main task of the SUQ controller is to call Vadere, execute the simulation for
each sample point and return the model output. It does not visualize the simulation
itself, so the user cannot be sure if the simulation was successful or if any artefacts

42



occurred. Checking a few dozens or even hundreds results of visually would be far
too time-consuming. Therefore, I pursued the following remaining options:

�4 Check a few results, for example, the ones where parameter combinations are
close to the parameter bounds, by means of the postvisualisation-tool (vadere-
postvis.jar), a tool which allows to show the trajectories of the agents. This
helps to identify agents that pass through walls, stuck agents, unnatural or
odd trajectories.

�4 Compare the result of a manually started simulation in the Vadere graphical
user interface (vadere-gui.jar) and the results of the SUQ controller. Both
ways must lead to the same results.

�4 Check the scenario files that are created by the SUQ controller. The values
for uncertain parameters in the original file should be replaced by the values
that are given by the sample points.

�4 Introduce an auxiliary QoI. For example, one can easily check the simulation
even for a few thousand sample points by recording the time between ingress
and egress. The QoI is clearly arranged as vector. An evacuation time that is
equal to −1 indicates that at least one agent did not reach the target in time
either due to a too short simulation time or because the agent got stuck. Both
cases should not occur.

�4 Likewise, the same principle applies to any other QoI. Screening the model
response for implausible values can help to find errors in the code.

Indeed, some errors can be detected in the scenario files, but none of them concerns
the application of the SUQ controller. For example, the thickness of some obstacles
must be increased up to 1 m to prevent agents from walking through those walls.
Unnatural trajectories are avoided by introducing intermediate targets as described
in detail in Section 4.3.2. These issues are solved and one can use the SUQ controller
without further ado.

Verification of MC Based Sensitivity Analysis
Since I implemented the MC based sensitivity analysis by myself, it is necessary to
check the related lines of code for errors. For this purpose, I apply the Ishigami test
function,

f(x1, x2, x3) = sin(x1) + A sin2(x2) + B x4
3 sin(x1), (3.6)

where the independent random variables x1, x2 and x3 are uniformly distributed in
]− π, π[ and the sensitivity indices are known [13]. I follow the example in [34] and
derive the sensitivity indices for A = 7 and B = 0.05 as listed in Table 3.3. These
are the exact values which should be reached by the algorithm.
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Table 3.3: First order and total sensitivity indices for the Ishigami model function:
D1 = 1.9485, D2 = 6.125, D13 = 0.8434, D = 8.9169, Si = Di/D, S12 = S23 = S123 = 0

i Fist order sensitivity index Si Total sensitivity index ST i

1 0.2185 S1 + S12 + S13 + S123 = 0.3131
2 0.6869 S2 + S12 + S23 + S123 = 0.6869
3 0 S3 + S13 + S23 + S123 = 0.0946

Naturally, the MC simulation requires a large sample size to reach convergence.
Moreover, since the process is random, each sample returns a different result which is
why a singe run might not be representative. Supposed that 10 samples (nr = 10) of
size ns are sufficient, one obtains curves as in Figure 3.9 by performing the sensitiv-
ity analysis and taking the average of the 10 results. The plot shows the sensitivity
indices according to [14]. They converge to the true values if the number of sam-
ple points is increased. One can conclude from this that the code is implemented
correctly.
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Figure 3.9: Convergence of sensitivity indices obtained with Jansen’s approach [14] for
the Ishigami function: Dashed lines show the true values. Solid lines represent the mean
and shaded areas represent the range between the minimum and maximum output of 10
repetitions. Each repetition uses ns sample points.

The other approaches that are presented in Section 2.2.2 ([19, 21, 22]) approxi-
mate the sensitivity indices differently. They are implemented and tested as well by
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means of the Ishigami function. A comparison of the results reveals that Jansen’s
approach [14] converges faster than the other methods. Furthermore, if the sample
size is small, the interval of the minimum and maximum output, represented by
shaded areas in Figure 3.9, is narrower than the interval resulting from the other
approaches. For that reason, I use Jansen’s formulas (see Eq. 2.34 and Eq. 2.35) to
analyse the sensitivity of the OSM.
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4 Results and Discussion

In this chapter, UQ results for two different scenarios are examined. Firstly, I
discuss corridor scenarios to get acquainted with the applied method. Secondly, the
method is transferred to a real world scenario, a parade through a city centre. The
sections are structured similarly, as they start with an introduction of the scenario,
then follow uncertainty and sensitivity analysis. For the large scale scenario, I
dedicate one section to plausibility checks of the UQ results because there are no
reference solutions or experimental data available to which simulation results could
be compared. Each section concludes with a discussion of the UQ results.

4.1 Narrow Corridor Scenario
The narrow corridor scenario C-180-180-180 has already been introduced in Section
3.1 to adapt the UQ method to the problem. Now, I reconsider the UQ results
obtained by applying the PC approach with third order polynomials and 40 sample
points. Additionally, the MC solution is available with 2000 sample points for the
uncertainty analysis and 5000 sample points for the sensitivity analysis. The input
uncertainties (see Table 3.1) as well as the quantities mean density, density time
series and evacuation time are defined in Section 3.1.1.

To give a first impression, Figure 4.1 shows the simulation for different time
steps. Virtual pedestrians are represented by blue dots, which move from the source
towards the target. Compare Figure 3.1 for a more detailed description of the
topography. The pedestrian flow through the topography can be classified into the
following five phases:

1. Time from start of the simulation until the first agent reaches the corridor;

2. Short phase in which the pedestrians can enter the corridor without hindrance
and pass it with a relatively high distance between each other; this implicates
a low density.

3. Agents accumulate in the waiting area in front of the entrance (area I) and
4-meter passage between entrance and corridor (area II), which implies a sig-
nificant reduction in walking speed and a high density.
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4. The number of accumulated agents in area II and the density inside the corridor
has declined to such an extent that the agents can move relatively free again.

5. Time between the last agent has passed the measurement area AD (dark red)
and the end of the simulation;

(a) Phase 1 to 2 (b) Phase 2 to 3

(c) Phase 3 to 4 (d) Phase 4 to 5

Figure 4.1: The pedestrian flow through the corridor scenario C-180-180-180 can be
characterised by five phases. Figures (a) to (d) show approximately the time step during
which the transitions between the phases take place.

The highest density occurs in front of a narrow passage such as the entry or the
corridor during phase 3. However, the Voronoi density refers to measurement area
AD within the corridor. This definition follows the corridor experiment conducted
by Zhang [45]. The five phases are now analysed with quantitative measures.

4.1.1 Uncertainty Analysis

Scalar Quantities of Interest
The quantities of interest evacuation time and mean Voronoi density are scalar and
their uncertainty, quantified by mean and standard deviation, are summarized in
Table 4.1. In agreement with the evaluation of the UQ method in Section 3.1, the
values obtained with PC are close to the MC reference solution.
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Table 4.1: The uncertainties of scalar QoI are obtained with Monte Carlo (MC) simula-
tions and point collocation (PC) method for the corridor scenario.

Method

MC (ns = 2000) PC (p = 3, ns = 40)

Mean Voronoi density
Mean 0.68 m−2 0.68 m−2

SD 0.17 m−2 0.16 m−2

Evacuation time
Mean 81.94 s 81.91 s
SD 10.75 s 10.90 s

The UQ results can be understood as follows. The uncertainty is characterized
by the standard deviation, which should be considered in relation to the mean
value, since each QoI reaches different magnitudes. A larger standard deviation in
the output states that at least one of the uncertain input parameters has a greater
influence on the output. But the result does not state which parameter or which
interaction between two or more parameters causes the uncertainty in the output.
One can only guess that probably the number of agents contributes significantly to
the uncertainty of the evacuation time.

The relatively great variation in the mean Voronoi density is probably more a
matter of how the QoI is measured than how pedestrians pass a corridor in reality.
The main reason for a seemingly high uncertain mean density might be that all
time steps are taken into account when calculating the mean density. This also
includes frames where all agents have reached the target already while the simulation
is still running. That is, the density for those time steps is zero. These frames
cannot simply be ignored because the exact duration of the simulation is unknown
beforehand, and it is not possible to adapt this parameter for each sample point
individually when applying UQ methods to the model. Therefore, one has to be
careful when interpreting the mean and standard deviation of the mean Voronoi
density. To overcome this issue, I decided to analyse the Voronoi density time series
instead of its mean value.

Time Dependent Quantity of Interest
Time series can be analysed by applying the UQ method to the model output for
each time step. The results for the Voronoi density are plotted in Figure 4.2. The
standard deviation can be interpreted as a measure of uncertainty, whereas the mean
value puts it into perspective. The plot shows both the reference solution obtained
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with MC and the solution for the PC. The similarity of both curves confirms once
again that PC yields good results also for time dependent quantities.
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Figure 4.2: Uncertainty of QoI Voronoi density in measurement area AD obtained by
applying MC and PC method to the model response y: y is the average of nr = 10 scenario
runs. 〈ya〉 and 〈yb〉 is the averaged model response (nr = 10) for parameter combination
a (µυ = 1.73ms , συ = 0.15ms , n = 100) and b (µυ = 1.37ms , συ = 0.15ms , n = 200),
respectively. Vertical dotted lines indicate the start of a new phase.

The mean of the density is zero as long as no agent has reached measurement
area AD. From that moment on, the mean density goes up within only a few frames
(phase 2), and it continues to increase at a reduced rate during phase 3 until it
reaches its maximum at around 2 agents per square meter after around 100 frames
(40 s). As the accumulation in front of the corridor disbands more and more, the
density declines (phase 4).

Depending on the input parameters, i.e. depending on the evaluated sample
point, the density time curve and particularly the part of phase 3 lasts longer. It
takes more time to let a large crowd (represented by 〈yb〉) pass a narrow corridor
than a small group of people (〈ya〉) for a given flow rate. This also explains why
the standard deviation increases until frame 170 where some simulations show a
decreasing density already while the slope of other curves is still positive. The
density approaches zero while the agents leave the corridor, and so does the variance
of all density time series.

Besides the spawn number, there are other parameters that affect the behaviour
of the QoI to some extent. For example, the small peak of the standard deviation at
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approximately frame 30 (12 s), shortly after the first agent has passed the measure-
ment area, can be traced back mainly to the input parameter mean free-flow speed
and partly to standard deviation of free-flow speed. Since in every simulation the
agents have a different mean free-flow speed, the first ones reach the measurement
area after a different time. If one considers only a single time step near the peak,
simulations with a faster mean free-flow speed yield higher density values while the
ones with a slower free-flow speed have lower densities. Hence, the standard devia-
tion of all simulations results in a local maximum. Next, I will study the strength of
the individual impact of each uncertain parameter by means of sensitivity indices.

4.1.2 Sensitivity Analysis

Scalar Quantities of Interest
The sensitivity of the QoI to the input parameters is quantified by means of sensi-
tivity indices summarized in Table 4.2. First order sensitivity indices represent the
influence of a single parameter on the output, whereas the total sensitivity indices
take into account the influence of a certain parameter and all interactions between
this parameter and others. Again, the indices derived from the approximation (PCE)
are in agreement with the ground truth (MC). This confirms the capability of the
PC method. Values less than 0 and greater than 1 should not occur, and therefore
indicate numerical instabilities or limitations of the method.
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Table 4.2: Corridor scenario: First order sensitivity indices (Si) and total sensitivity
indices (ST i) quantify the of influence of parameters mean of free-flow speed (i = 1), SD
of free-flow speed (i = 2) and number of agents (i = 3) on the QoI mean Voronoi density
and evacuation time

Method

MC (ns = 2000) PC (p = 3, ns = 40)

Mean Voronoi density
S1 0.00 0.01
S2 0.00 0.00
S3 0.99 0.99
ST1 0.01 0.01
ST2 0.00 0.00
ST3 1.00 0.99

Evacuation time
S1 0.02 0.03
S2 0.00 0.00
S3 0.97 0.97
ST1 0.03 0.03
ST2 0.00 0.00
ST3 0.98 0.97

The sensitivity indices show that the number of agents is the most important
parameter for both QoI, whereas the speed distribution parameters are insignificant.
This is because most of the time the area of interest is packed and the agents
are hindered, so they cannot reach their desired walking speed. Figure 4.1, which
visualises the different phases, and Figure 4.2, which represents the uncertainty by
curves for mean and standard deviation, illustrate this situation. The length of
phase 3 and thus the simulation time is dominated by the number of agents.

The difference between total sensitivity indices ST i and first order sensitivity
indices Si expresses the contribution of interaction effects between the parameters
to the output variance. The differences are small, so there is almost no interaction
that plays a role.

The sensitivity indices are consistent for both scalar quantities of interest. Since
the information one can gain especially from the mean Voronoi density is limited, I
now perform the sensitivity analysis for the Voronoi density time series.
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Time Dependent Quantity of Interest
Firstly, I focus on the first order sensitivity indices of the Voronoi density time series,
which express the importance of a singe parameter. These are shown in Figure 4.3a.
The graph reveals that the third parameter, number of agents, is the dominant
one. After the first few agents have passed the measurement area, the sensitivity
grows almost linearly to reach its maximum of around 0.95 for about 20 s. Then, the
sensitivity decreases again because none of the parameters can influence the quantity
of interest after all agents have passed the measurement area. The more agents want
to pass the corridor, the longer it takes until all have reached the target. Therefore,
a large spawn number causes a higher density over a longer period. Accordingly,
the model and its output uncertainty stay sensitive to this parameter. The mean
free-flow speed has a small impact. This variable is only important if all agents can
move without being hindered considerably by other agents, which means there are
no queues or accumulated agents (compare phase 2 and, to a certain degree, phase
4). The standard deviation of free-flow speed has no significant influence on the
variance of the density.
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Figure 4.3: Sensitivity indices obtained with MC and PC method (nr = 10) quantify the
influence of parameter mean free-flow speed (top, i = 1), SD of free-flow speed (middle,
i = 2), number of agents (bottom, , i = 3) on the QoI Voronoi density in measurement
area AD. Vertical dotted lines indicate approximately the start of a new phase. All curves
are smoothed by taking the average of two frames.
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The total sensitivity indices in Figure 4.3b, which account for all contributions
to the variance of the response due to first order effects and interactions between
the parameters, show slightly different curves. The total sensitivity of parameters
mean and standard deviation of free-flow speed follow almost the same course as
the regarding first order sensitivity indices. The only difference is that the standard
deviation of free-flow speed is a little less relevant, especially during phase 2 and 4.
However, throughout phase 2 to 4, the number of agents makes a major contribution
to the output variance which leads to a total sensitivity index of almost 1 (if MC
simulation is considered) for all time steps.

Note that during phase 1 and 5 the model response is 0. For this reason, the sen-
sitivity indices are not considered. Moreover, the PC method tends to underestimate
the total influence of parameter mean free-flow speed.
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Figure 4.4: Interactions between the parameters (Sij , Sijk, 1 ≤ i < j < k) affect the
Voronoi density time series. The sensitivity indices are calculated from MC simulations
with 5000 sample points (nr = 10). Vertical dotted lines indicate the start of a new phase.
All curves are smoothed by taking the average of two frames.

If ST i is subtracted from Si, the interaction among the input parameters on
the output variance is isolated. As one can derive from Figure 4.4, interactions
are significant within phase 2, at the beginning of phase 3 and in phase 4. Higher
order interactions could be calculated with greater computational effort. Because
the agents accumulate in phase 3, there are little to none interaction effects because
the free-flow speed parameters do not come into play. The fact that interactions
occur, underlines the necessity to perform a global sensitivity analysis, for example,
with Sobol’ sensitivity indices. Local methods could not capture these effects so
easily.

4.1.3 Discussion

Major results found in the uncertainty and sensitivity analysis are:
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• The Voronoi density time series is superior to its mean value because it cap-
tures more information and is not biased.

• The simulation can be classified into five phases. The longest phase 3 is char-
acterised by an accumulation of agents in front of and inside the corridor.
Therefore, the agents cannot walk at free-flow speed.

• As a consequence, the free-flow parameters in the model have only minor
effects.

• Independent of the QoI, the number of agents is the most important parameter
because it is responsible for the accumulation in phase 3.

Analysing uncertainty and sensitivity in theory leaves the following question
unanswered: What do the UQ results mean to practitioners, e.g. a civil engineer who
is involved in planning the exit routes of a building? Of course, these findings cannot
simply be transferred to cases of emergency because pedestrians would probably
behave different in such a situation. Nevertheless, the scenario matches for example
the daily rush hour in a railway building.

As expected, the main statement is that for reaching a fast evacuation of the
waiting area in front of a relatively narrow corridor one has to make sure that only
few persons want to pass it. This can be reached by planning more exit doors, so
that the crowd can spread out and use different ones. An interesting example is the
Colosseum in Rome, Italy. Although it could hold several ten thousand spectators,
five minutes were enough to evacuate the building due to its efficient architecture [8].
However, the planners’ hands are tied sometimes. Not always do they have influence
on the amount of people who must pass the corridor or the number of exits to be
built. The only option left might be to change the design of the corridor itself to
some extent. The next section sheds light on the influence of the topography so
as to find out whether the uncertainty and the sensitivity of the model response is
different if the corridor is wider. Moreover, I study what happens if there is some
narrow passage like a bottleneck at the end of the corridor.

4.2 Corridor Scenarios with Similar Topographies
In this section, I further analyse the corridor scenario but with modified topogra-
phies. QoI are evacuation time and Voronoi density time series as in the previous
section (definitions can be found in Section 3.1.1). The uncertainty in the input
parameters stay the same (see Table 3.1). So far, the PC method has returned reli-
able results which is why I now apply only the PC approach and save a many hours
of computing time by leaving MC simulations behind. This method is applied to
the average of 10 scenario runs. The topography is varied as shown in Figure 4.5.
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The notation follows [45], that is hyphenated numbers denote the width of entrance
bentr, corridor bcorr and exit bexit in centimetres, respectively (C-bentr-bcorr-bexit, see
Section 3.1.1 for more details). Corridor is used as an umbrella term for the corridor
with a narrow exit, also referred to as bottleneck, and corridors with a straight exit
alike.

(a) Narrow corridor: C-180-180-180 (b) Narrow bottleneck: C-180-180-120

(c) Wide corridor: C-300-300-300 (d) Wide bottleneck: C-300-300-200

Figure 4.5: Corridor scenario with different topographies

4.2.1 Outline of Uncertainty and Sensitivity Analysis

The uncertainty and sensitivity analysis of a corridor scenario with different to-
pographies can be summed up as follows. Mainly the parameter number of agents
affects both uncertainties in the evacuation time and Voronoi density, regardless
of the topography under consideration. However, this might change if the corridor
were wide enough to let pass all agents at a time or at least in such a way that phase
2 and 4 were significantly longer than phase 3. As a result, the agents would not
accumulate and the speed distribution parameters could become more important.
This goes hand in hand with the previous analysis of the single corridor scenario
in Section 4.1. Nevertheless, the uncertainty and sensitivity of the model does not
change much as the topography is varied. A more detailed analysis is appended (see
Section A.3).

4.2.2 Discussion

What can a practitioner infer from these uncertainty and sensitivity studies? As
expected, a wider passage allows faster evacuations and lower densities inside the
corridor at the same time. But it might be interesting that if the width of the
exit is reduced, the evacuation time and the density increase not as much as if
the whole passage were narrowed by the same ratio. Therefore, if I only take into
account the evacuation time, a bottleneck is to be favoured marginally over a corridor
that is as wide as the narrowest part of the bottleneck. But, depending on each

57



individual’s perception, it might be better to avoid higher densities as they occur in
the bottleneck. To state more about this aspect one should analyse the area where
the density reaches the highest values.

4.3 Real World Scenario: Parade Through a City Centre
So far, I have considered rather academic examples. The aim is now to transfer
the methods I got acquainted with in the previous sections to real world problems.
Various models are being developed to simulate mass events. One aim is to take the
right measures in advance based on these simulations. However, the application of
UQ methods is relatively new in this field of study. Therefore, it suggests itself to
analyse the uncertainty and sensitivity of a parade or protest march, for instance.
The following example of a parade through a city centre is rather small, but it
provides a basis for further studies of organized pedestrian movement in public
spaces (OPMoPS) simulated with Vadere.

4.3.1 Adaptations to the Method

Both uncertainty and sensitivity analysis are performed by means of the PC method
in accordance with the evaluation of the configurations of the UQ methods in Section
3.1.3. Therefore, the following analysis acts on the assumption that the PC method
leads to correct results, although the object of investigation and quantities of interest
are different now. It is not feasible to compare the UQ results to MC simulations,
since this parade scenario is computationally too demanding to be evaluated several
hundred or thousand times. This is why I supplement sanity checks for the UQ
results.

The parameter space is only two dimensional, as will be explained in Section
4.3.2. The polynomial coefficients are determined on the basis of ns = 20 sample
points (αPC = 2). Because of the relatively high computational effort, the model is
evaluated only three instead of ten times for each sample point (nr = 3). The PC
method is applied to the average of the output y to reduce the stochastic behaviour
of the model. Moreover, a dynamic floor field is no longer feasible which is why a
static floor field is used (see Table A.1).

4.3.2 Object of Investigation

Topography
Objective of the uncertainty and sensitivity analysis is a fictitious, but analogue to
a typical, parade through Richard Wagner Straße in Kaiserslautern, Germany. The
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topography, which extends over an area of 228 m × 559 m, is shown in Figure 4.6a.
I modify the original map as follows to improve the performance of the simulation:

• Four intermediate targets are introduced so that the agents follow realistic tra-
jectories. Otherwise, they would not use the whole width of the street but try
to take the shortest path as soon as entering the bend. This is a consequence
of using a static instead of a dynamic floor field. However, intermediate targets
in combination with a static floor field are functional and more efficient than
the dynamic floor field.

• On closer inspection, it appears that the final target is a polygon. The slightly
bent finish line makes sure that the agents approach it along realistic trajec-
tories.

• The side streets are blocked by connecting the buildings with thin walls (grey
lines). This is needed to calculate the length of the parade lp as QoI by means
of each pedestrian’s potential towards the final target. Without those road
blocks, the potential defined by the geodesic distance between agent and target
might be biased due to short cuts the agents could possibly take. Besides, the
blocked roads prevent agents from taking unrealistic routes. This is necessary
because up to now, the simulator does not distinguish between the main road
and side streets.
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(a) Computer model

(b) Satellite image1

Figure 4.6: The topography for the OPMoPS scenario is the northern part of Richard
Wagner Straße (rotated 90◦ ccw.). The computerised version (a) of the real map (b) is
slightly simplified. Agents start from the source (green rectangle), pass four intermediate
targets (orange lines) before they reach the final target (orange polygon).

Quantities of Interest
As mentioned above, the QoI is the length of the parade lp defined by the geodesic
distance between agents in the rear and in the front of the parade. It is important to
use the geodesic distance instead of the euclidean distance to assure that the length
is measured correctly even for curved paths. The simulator provides the potential
for each agent, which can be translated into the geodesic distance between agent and
the final target. Thus the difference between the minimum and maximum potential
of all agents

lp = fc ∆φ = fc (φmax − φmin) (4.1)
1Richard Wagner Straße, Kaiserslautern, 49◦26′35′′N and 7◦45′56′′S. GeoBasis-DE/BKG and

Google Earth. 2009. Retrieved 24 June 2020.
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approximates the length of the parade lp in m with conversion factor fc = 1. The
solution becomes more representative by taking the average of the 10 greatest and
10 smallest values of potential φ instead of φmax and φmin, respectively. This is
reasonable because in particular the front of the parade is not so dense due to
different free-flow speeds. Thus, one would scarcely consider the first agent to be
part of a parade.

Since the QoI length of the parade is rather unfamiliar, a second QoI is introduced
for checking purposes: The duration of the parade tp. This is equivalent to the
evacuation time for the previously analysed scenarios, so it has been used in a
different context already. Moreover, it is more intuitive than the length of the
parade which makes it easier to estimate its minimum, mean and maximum so that
one can use it for sanity checks.

Uncertain Parameters
Uncertain input parameters are standard deviation of free-flow speed and the number
of agents as summarized in Table 4.3. In accordance with previous analyses and
calibrations of the OPMoPS scenario (compare demo files in [39]), mean free-flow
speed is fixed to µυ = 0.6 m s−1 and not considered uncertain because its influence
on the output variance is negligible.

Table 4.3: OPMoPS scenario: The uncertainty in the input parameters is described by
uniform distributions.

Parameter Symbol Distribution Unit

SD of free-flow speed συ U(0.05, 0.10) m s−1

Number of agents n U(400, 1200)

The interval for parameter standard deviation of free-flow speed follows the vari-
ation given in [40]: συ = 0.19 · µυ ≈ 0.1 m s−1. Compared to other scenarios,
this value appears to be quite low, but it is reasonable because the speed among
participants of a parade is more homogeneous than among pedestrians observed
under ordinary conditions. Furthermore, the standard deviation of free-flow speed
is assumed to reach only 0.05 m s−1 (compare demo files in [39]). That is why an
uncertainty in the range of [0.05, 0.15] m s−1 seems adequate. However, this choice
is misleading because effectively it does not result in a sufficiently large variation of
the speed distribution but in an almost constant effective standard deviation of the
agents’ free-flow velocity συ,i ≈ 0.3 m s−1.
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Figure 4.7: Normal distributions for boundary values of the uncertain parameter stan-
dard deviation of free-flow speed συ = [σl, σu]: Distributions are truncated at υmin and
υmax, which leads to a different effective συ when generating speed distributions from 20
equidistant sample points in Vadere. µυ = 0.6ms for both cases A (left) and B (right). σ,
υmin, and υmax are given in m

s .

This becomes more clear by visualising the probability density functions for the
truncated speed distributions in Figure 4.7. Case A (left) shows that the speed
distributions within the range of uncertainty barely vary. Therefore, it would make
almost no difference if the parameter were fixed or not. Although Vadere draws a
speed distribution for each realisation, it does not matter which standard deviation
of free-flow speed is given initially. The resulting standard deviation of the speed
values assigned to each agent is the same for each sample point, as shown in the
bottom graph. From a sensitivity analysis based on parameter set A, one could
easily draw the false conclusion that input parameter standard deviation of free-flow
speed does not contribute to the variance of the output and thus is not important.
This can be prevented by changing the values υmin and υmax at which the speed
distribution is truncated. Instead of υmin = 0.55 m s−1 and υmax = 0.65 m s−1 (case
A), as proposed in [38], the speed distribution in case B is truncated at 0.4 m s−1 and
0.8 m s−1, respectively. Moreover, the uncertainty of input parameter συ is defined
in the range [0.05, 0.10] m s−1. From that follows an effective variation of the free-
flow speed between 0.05 m s−1 and approximately 0.09 m s−1 as shown in the bottom
right graph.

The second uncertain input parameter is the number of agents, which ranges
between 400 and 1200 pedestrians. This represents a rather small parade, since the
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number of participants of a parade can also shoot up to 1 million people or more
[8]. If large crowds are considered, also the topography, and therefore, the distance
between source and target, has to extend over a greater area. Otherwise, it might
happen that some agents are still being spawned while others have reached the
target already. As a consequence, the length of the parade is given by the constant
distance between source and target. Obviously, such simulations are meaningless.

4.3.3 Uncertainty Analysis

The uncertainty of the length of the parade is quantified by mean and standard
deviation in Figure 4.8. The curves are only relevant in between the vertical dotted
lines, i.e. between frame 100 and 1200. I neglect all frames before frame 100 to
avoid artefacts from the source. Figure 4.9a and 4.9b show the difference between
the unrealistic starting position in the first frame and a more realistic one after 100
frames. Analogously, frame 1200 to 1400 are omitted because in some simulations
the agents are still about to reach the target, whereas in others the first few agents
have reached it already. In the latter case, the model response is meaningless and
thus distort the statistics.
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Figure 4.8: Uncertainty of QoI length of the parade: The PC method with third order
polynomials (p = 3) is applied to the model response y for ns = 20 samples. y is the
average of nr = 3 scenario runs. 〈ya〉 and 〈yb〉 is the averaged model response (nr = 3)
for parameter combination a (συ = 0.05ms , n = 400) and b (συ = 0.10ms , n = 1200),
respectively. The combinations a and b represent two boundaries (vertices) of the input
parameter space. The results are only valid between the two vertical dotted lines.
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(a) frame 0 (b) frame 100 (c) frame 400

Figure 4.9: First few hundred frames after start of the simulation of the OPMoPS
scenario with n = 1200 agents.

For now, I focus only on the curves for mean and standard deviation obtained
with PC in Figure 4.8. I get back to 〈ya〉, 〈yb〉 and standard deviation of U(〈ya〉, 〈yb〉)
in Section 4.3.5 for checking purposes. In the beginning, approximately between
frame 100 and 300, the slope of the mean curve is slightly greater than in the
subsequent period. The reason is that initially the crowd is spread over the area of
the T junction, but the street where the parade starts is narrower. Agents at the
rear have to wait while the ones in the front start marching down Richard Wagner
Straße already. Due to this difference in speed, the parade stretches faster. This
phase is shorter for simulations with fewer agents, and for simulations with many
agents this phase is longer. Frame 200 and 400 mark the time step at which all agents
at the rear start walking in simulations with few and many agents, respectively (see
Figure 4.9c). For this reason the uncertainty, represented by the standard deviation
of lp, slightly decreases until frame 200. From that moment on, it follows a steep
upward trajectory until frame 400. As soon as all agents move approximately at
mean free-flow speed, both mean and standard deviation of the QoI rise steadily
until frame 1200. One could guess that the length of the parade is less determined
by the number of agents but more and more by the variation of the pedestrians’
desired walking speed, i.e. by parameter standard deviation of free-flow speed.
The sensitivity analysis in the next section will break down the influence of each
parameter.

4.3.4 Sensitivity Analysis

The sensitivity analysis determines how parameters standard deviation of free-flow
speed and number of agents influence the length of the parade lp. Figure 4.10 shows
the first order and total sensitivity indices. As explained in the previous section,
only the period between the vertical dotted lines is relevant.
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Because the curves of first order and total sensitivity indices are very similar,
there is little interaction between the parameters that would affect the variance of
the output. Furthermore, the comparison of both plots can be regarded as sanity
check. The sum of all indices for two dimensional problems must equal 1 (see Eq.
2.29):

S1 + S2 + S12 = 1 (4.2)
S2 + S12 = ST2 (4.3)

S1 and ST2 are known, so the left hand side of Equation 4.2 can be calculated with
the aid of Equation 4.3. The condition holds true for all time steps, as plotted in
the top graph of Figure 4.10. This also becomes clear by comparing the mirrored
shape of S1 and ST2 or S2 and ST1.
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Figure 4.10: Sensitivity of the OPMoPS scenario: First order sensitivity in-
dices (top) and total sensitivity indices (bottom) are obtained with PC method
(p = 3, ns = 20, nr = 3). They quantify the influence of uncertain input parameters stan-
dard deviation of free-flow speed (i = 1) and number of agents (i = 2) on the QoI length
of the parade lp with respect to time. The results are only valid between the two vertical
dotted lines.

Right after the agents have been spawned and start marching down the street,
solely the number of agents affects the QoI. As soon as they are set in motion, also the
speed parameter contributes increasingly to the output variance. However, the effect
of parameter standard deviation of free-flow speed diminishes again between frame
200 and circa 350. This is linked to the topography and confirms the hypothesis
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stated within the scope of the uncertainty analysis in Section 4.3.3: The time until
all agents move at similar speed, which has a major effect on the output uncertainty,
depends on how many agents are about to enter the relatively narrow street.

As time passes, the influence of parameter standard deviation of free-flow speed
S1 rises, whereas the importance of the number of agents S2 declines steadily. The
intersection point marks the time step where both input parameters have the same
impact on the variance of the output. Generally, this interchange of the sensitivity
indices would occur also in similar scenarios, but the moment when the relation
turns is rather specific. Also Kurtc [17] showed this change in the importance of the
two uncertain parameters in her report. Since she analysed a quite small group of
agents, the intersection point is at the very beginning of the simulation.

In case of an infinitely long route, the time between ingress and egress tp would
increase because each agent has a different speed. In contrast, the number of agents
would not affect the output variance for t → ∞. How fast S1 converges to 1 and
S2 to 0 depends mainly on how different the minimum and maximum speed among
the agents is. This becomes obvious if the equation that describes the length of
the parade (see Eq. 4.1) is rewritten, acting on the assumption that the first (last)
agent is the fastest (slowest). QoI length of the parade lp is now expressed by the
difference between the minimum and maximum potential with respect to time:

∆φ(t) = φn(t) − φ1(t)

=
(
φn, t0 −

∫
vn(t) dt

)
−
(
φ1, t0 −

∫
v1(t) dt

)
= ∆φt0 +

∫
v1(t) − vn(t) dt,

(4.4)

where φt0 is the initial potential and v the agents’ speed. Index 1 and n denote the
first and last agent, respectively. The term

∫
v1(t) − vn(t) dt depends on parameter

standard deviation of free-flow speed and on the boundaries at which the speed
distribution is truncated. This term becomes more important over time, while the
influence of ∆φt0, which equals the initial length of the parade lp, t0, vanishes because
it is not time dependent. ∆φt0 is determined by the width of the parade, density
and number of agents. Hence, if the magnitude of parameter number of agents were
greater, the intersection point in Figure 4.10 would be shifted towards the right. It
remains unanswered whether the corresponding time step would range within the
bounds of the considered time interval or not.

4.3.5 Plausibility Checks

The time between ingress and egress tp as QoI is used for sanity checks because it can
easily be compared to manually computed quantities. The route is approximately
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400 m long, thus an average agent needs 400 m
0.6 m s−1 ≈ 670 s. In fact, mean of QoI is

tp = 1011 s. Obviously, there is a substantial difference, but one has to keep in
mind that the last agent does not start walking before frame 300 (120 s) on average.
Additionally, it cannot move at desired speed due to slower agents ahead which
is why a value between minimum speed 0.4 m s−1 and mean speed 0.6 m s−1, e.g.
0.45 m s−1, is more realistic. If these considerations are taken into account, the UQ
results bear comparison with the manually estimated duration of the parade:

400 m
0.45 m s−1 ≈ 1011 s− 120 s ≈ 890 s (4.5)

Similarly to this approach, also the length of the parade can be calculated man-
ually. The maximum length should not be greater than

lp = ∆t1
v1
− ∆tn

vn

= (1200 − 100) · 0.4 s
0.8 m s−1 − (1200 − 300) · 0.4 s

0.4 m s−1 = 224 m,
(4.6)

where ∆t is the period during which the agent moves at free-flow speed v. Index 1
and n denote the first and last agent, respectively. The mean of the length of the
parade lp in Figure 4.8 is about 160 m and therefore meets the condition. However,
this is a coarse estimate and represents only the worst case.

A second way to test the UQ results for plausibility is to compare them to the
model response resulting from certain sample points. Figure 4.8 shows the response
for combinations of the input parameters that are expected to yield the shortest and
longest parade. The mean value is in the range of both model responses at any time
step. Therefore, the PC method presumably returns correct mean values. Assumed
that the model responses for different sample points follow a uniform distribution
within the bounds of 〈ya〉 and 〈yb〉, which errs on the side of conservatism, the
standard deviation should lead to greater values than the ones obtained with the
PC method. Thus, the comparison of both curves in the bottom graph in Figure
4.8 reveals that the UQ method returns reasonable results.

Probably the best method to validate the simulation is to compare the output
to experimental data. However, this kind of data is not available. At least, I take a
look at the real topography in the next section to better estimate the relevance of
the simulation to reality.

4.3.6 Discussion and Relevance to Reality

In contrast to the computer model, there are many obstacles such as trees, parking
lanes, etc. in Richard Wagner Straße (compare Figure 4.6b). Depending on the
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pedestrian’s constitution, even road kerbs might have an effect on some individuals
and their movement. If the parade targets a certain group that is affected by such
barriers, it might be that not only a few but the whole crowd behaves differently.
Many other influencing factors are imaginable. So even though the model seems
quite specific, it rather represents an average scenario. Generally, the insights gained
in the previous sections can be transferred to other situations and help to evaluate
or develop new crowd-management strategies.

The topography can influence the length of the parade significantly. For instance,
the T junction where the source is placed and the parade starts, or more in general a
bottleneck, can result in both stretching and compressing the parade. Both extreme
cases and, with respect to the pedestrians’ safety, in particular high densities should
be avoided. With this in mind, it makes sense to guide a parade by means of physical
barriers. This can allow for better flow, and, as a side effect, confrontations with
spectators are reduced. Such physical barriers could be included in the model to find
out whether fencing is necessary or not. Additionally, spectators could be placed
either inside or outside designated viewing areas, but this raises the question how
the spectators’ behaviour should be modelled.

Secondly, the variation of the desired speed among the participants of a parade
determines the length of the parade in the long run. To keep the parade compact,
one has to make sure that the standard deviation of the pedestrians’ speed is as small
as possible. Usually, this is achieved by floats which limit or control the speed. Also
broad banners have a similar effect because they reduce permeability in the direction
of motion. They can be placed in front, in the middle, or behind the pedestrians.
Which position is best depends on the speed distribution. In the present case, it
would be more efficient to place a float in front of the parade because the density
is lower in the front part and some fast agents outrun the others. Another option
that might support a steady pace is playing music at a certain tempo. This idea is
inspired by military parades or music play lists for runners created by commercial
streaming services. If the stride length is constant and equal among the participants,
and if the listeners are in strict time, it is easier to move forward at constant speed.

If these measures are successful, the remaining important parameter is the num-
ber of pedestrians. This is not always easy to control, although event managers
typically have to apply for a permit, which defines a maximum number of partici-
pants. In combination with this parameter, there are other aspects that could also
affect the length of a parade. Recently, as the concept of social distancing becomes
more important, participants in any mass event are obliged to keep a certain dis-
tance to each other. This leads to lower densities and the crowd covers a lager area.
Further studies could examine how the extension of the personal space influences
the variance of the length of the parade.
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5 Conclusions and Outlook

This thesis aimed to quantify the uncertainty and sensitivity of microscopic crowd
simulations performed with the optimal steps model in Vadere [15, 39]. The optimal
steps model suffers from uncertain input parameters, which affect the output. To
quantify the influence of some parameters, these were treated as random variables
with defined density functions and thus propagated through the model. The result-
ing distribution of the output can be approximated by polynomial chaos expansions
from which I calculated the statistical measures mean and standard deviation to
characterise the uncertainty in the model response. The sensitivity of the output
was defined by sensitivity indices derived from the Sobol’ decomposition of the poly-
nomial chaos expansion. These analyses were carried out with the Chaospy toolbox
[3], a state-of-the-art Python library for uncertainty quantification.

I chose a specific set-up of the uncertainty quantification method based on a
precedent comparison of polynomial chaos expansions computed with the point col-
location method and the pseudo-spectral approach. Those were varied in terms
of sample size and polynomial degree to apply different configurations to a small
example scenario in which agents have to pass a corridor.

A quantitative comparison to a reference solution obtained with Monte Carlo
showed that both the point collocation method and pseudo-spectral approach with
third or fourth order polynomials yield similarly good results. Independent of the
method and its configuration, the uncertainty quantification results are more reliable
when calculated from an averaged model response. That is, the model is evaluated
repeatedly for exactly the same sample and the output is averaged.

In the final rating of the two approaches with different set-ups, I opted for the
point collocation method with polynomials of degree 3 because the resulting approx-
imations to the output distribution are more stable than the ones generated with the
pseudo-spectral approach. Besides, the point collocation method with third order
polynomials is not as computationally demanding as the other configurations. This
is due to two reasons: Firstly, a lower polynomial order leads to a shorter runtime
when determining the coefficients of the polynomial chaos expansion. Secondly,
the point collocation method requires fewer sample points and hence fewer model
evaluations. However, one must define the sample size carefully. If the number of

69



sample points is at least two times greater than required, the series of polynomials
approximates the actual distribution of the model response considerably better. As
a consequence, also the uncertainty quantification results closely match the ground
truth obtained with Monte Carlo.

In general, the comparison to Monte Carlo simulations serves as proof of concept,
since it showed that the polynomial chaos expansion is capable of estimating the
uncertainty and sensitivity of the corridor scenario sufficiently accurate.

Therefore, these findings were transferred to a large scale scenario, a parade
through a city centre. I assumed the parameters standard deviation of free-flow
speed and number of agents to follow uniform distributions and analysed their effect
on the length of the parade over simulation time. Most interestingly, the sensitivity
indices revealed that the influence of the two uncertain input parameters interchange
with time. At the beginning, the number of agents determines the length of the
parade, while the standard deviation of free-flow speed is of little importance. As
the parade moves towards the target, the number of agents contributes barely to
the output variance, whereas the standard deviation of free-flow speed becomes the
dominating factor. The moment when the sensitivity of the model response is equal
for both input parameters depends on the input uncertainties. Smaller crowds or a
greater standard deviation of the free-flow speed shifts the intersection towards an
earlier point in time. More agents or less variation in the speed lead to the opposite
effect. The uncertainty of the length of the parade accumulates over simulation
time and therefore increases steadily unless the topography has a great impact,
for example due to bottlenecks. Although the scenario, input parameters and the
quantity of interest differs from the precedent analysis of the corridor scenario,
the point collocation method with polynomials of third order is still applicable and
yields reasonable results. I confirmed the reliability of the uncertainty quantification
results by various plausibility checks for lack of experimental data.

Finally, I discussed the significance of the uncertainty quantification results to
reality. According to expectations, any measure that reduces the variation of all
pedestrians’ velocities is effective to control the length of the parade, whereas the
number of participants is less important. To achieve that the participants of a
parade walk at the same speed, one could use physical barriers such as banners,
floats, or other pacemakers in front, in between or at the rear of the parade. Al-
ternatively, playing music aloud could have a positive, i.e. unifying, impact on the
pedestrians’ desired speed. These are rather general interpretations, which might
apply also to similar parades, even though the topography of the scenario is quite
specific. However, to draw more individual conclusions, the level of detail must be
increased. For example, this concerns the topography, which should include obsta-
cles and more individual properties of the participants of the parade as well. The
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important parameter standard deviation of free-flow speed might highly depend on
the participants’ characteristics.

Further studies could address this issue by performing inverse uncertainty quan-
tification to improve the quality of the input uncertainties before using forward tech-
niques. Alternatively, one could try to enhance the probability density functions of
the input parameters based on experimental data. Defining the input uncertainties
is a delicate task. They must be realistic, but they should also lead to a sufficiently
large variation in the simulation to obtain meaningful uncertainty quantification
results. Especially the speed distribution parameters are crucial because they are
processed in the optimal steps model in a manner that is not obvious to the common
user. Changing the speed distribution parameters requires some knowledge about
the internal algorithms.

As a next step, one could identify more parameters that potentially play a cru-
cial role. For example, as the concept of social distancing emerges, it would be
interesting to vary the extent of the pedestrians’ personal space. By analysing ad-
ditional parameters, one might detect interaction effects between parameters. Note
that the polynomial chaos expansion requires stochastically independent input pa-
rameters. Otherwise, one must use techniques to transform dependent variables into
independent ones.

From a methodological point of view, the application of the polynomial chaos
expansion and the Monte Carlo simulations could be improved by employing more
efficient sampling techniques, such as Latin Hyper Cube Sampling or Importance
Sampling. One can further reduce the computational effort when generating the
model response by the aid of surrogate models. Faster techniques would allow to
model more complicated scenarios, for example larger crowds and topographies.

Identifying other crucial and more realistic scenarios is surely among the next
tasks. Up to now, the optimal steps model in Vadere is not able to model mass events
such as the Love Parade in all its complexity. However, that sort of all-encompassing
simulation seems unlikely in order to derive the right crowd management strategies.
As demonstrated in this thesis, less complicated scenarios can be helpful to un-
derstand the importance of certain parameters already. Therefore, this thesis and
the developed code provide a foundation for further studies and the application of
uncertainty quantification methods to the optimal steps model.
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A.2 Complementary Figures for Evaluation of the Method
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Figure A.1: Qualitative comparison of output distributions approximated by PCE with
a varying sample size: The polynomial degree is p = 2 for both point collocation (PC)
method and pseudo-spectral (PS) approach. The reference solution is obtained with Monte
Carlo (MC) from 2000 sample points and represented by a histogram. The model response
is the evacuation time.
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Figure A.2: Qualitative comparison of output distributions approximated by polynomial
chaos expansions with varying polynomial order p: The sample sizes ns are in accordance
with αPC = 2 in case of point collocation (PC) method and αPS = 1 for the pseudo-
spectral (PS) approach. Thick lines indicate configurations of the PC method (p = 3
and p = 4) that will prove useful in the quantitative assessment. The reference solution is
obtained with Monte Carlo (MC) from 2000 sample points and represented by a histogram.
The model response is the evacuation time.
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Figure A.3: Quantitative comparison of of four pre-selected configurations of the UQ
methods based on their errors: The UQ results for different QoI are calculated by point
collocation (PC) and pseudo-spectral (PS) approach applied to the model response of 10
runs (nr = 10). MAPE(y) quantifies the error of mean (a.1) and standard deviation (a.2).
RMSE(y) quantifies the error of first order sensitivity indices (b.1) and total sensitivity
indices (b.2). The reference values yref are derived from Monte Carlo (MC) simulations
with ns = 2000 sample points for the uncertainty analysis (a) and ns = 5000 sample points
for the sensitivity analysis (b). The estimation of the error for QoI Voronoi density time
series neglects 3% of the data due to different thresholds for (a)† and (b)‡.
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A.3 Detailed Uncertainty Quantification for Corridor Scenario
with Similar Topographies

This section analyses the uncertainty and sensitivity for the corridor scenarios with
similar topographies more in detail. The scenarios are defined in Section 4.2.

A.3.1 Uncertainty Analysis

Scalar Quantity of Interest: Evacuation Time
The scalar values for mean and standard deviation of the evacuation time for all
scenarios are summarized in Table A.2. As expected, mean values of evacuation time
are greater if the corridor or bottleneck in total is narrowed by about one third. In
both cases, corridor and bottleneck, this leads to approximately 1.4 times longer
mean evacuation times. Whereas, if the bottleneck is compared to the corridor
scenario, mean evacuation time is only a little higher. Reducing only bexit by 1/3, i.e.
transforming the corridor into a bottleneck scenario, yields a 1.1 times longer mean
evacuation time.

The reason might be that, in case of a bottleneck, the average flow is reduced.
At the same time, many agents in front of a narrow passage lead to a higher den-
sities. This can be translated into the oppression that the agents feel in this area.
Videos generated with the post-visualisation tool in Vadere support this statement.
They show that the highest density occurs right in front of the bottleneck and the
agents pass faster through the constricted egress. Thus the average flux through the
narrowing is higher than through a straight exit.

Table A.2: The uncertainty of evacuation time for the corridor scenario with different
topographies is represented by mean and standard deviation. The values are given in
seconds.

Scenario Mean SD

C-180-180-180 (narrow corridor) 81.91 10.90
C-180-180-120 (narrow bottleneck) 90.07 11.94
C-300-300-300 (wide corridor) 60.33 7.00
C-300-300-200 (wide bottleneck) 65.82 7.53

The standard deviation of evacuation time is less for the wider corridor (C-300-
300-300) in comparison to the narrow one (C-180-180-180) because the accumulation
of agents in the waiting area is not as large. The standard deviation of evacuation
time is greater for the bottleneck scenario than for the corridor scenario. In this
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case, the accumulation in the waiting area is more significant, which mainly depends
on the number of agents. In general, any change in the topography that leads to
less accumulation of agents and thus to slowed down agents has an influence on the
uncertainty in the output: The evacuation time does not depend so much on the
uncertainty in the number of agents but more on speed distribution parameters.

Time dependent Quantity of Interest: Voronoi density
The Voronoi density time series for the four scenarios reveal that the five phases
that have been identified previously occur again for similar topographies because
the curves are similar. Figure A.4 shows mean and standard deviation of Voronoi
density for each scenario. As expected, the graphs for all four scenarios do not
differ much. Their course and the co-domain are similar, while only the maximum
density reaches about 1.3 higher values for C-300-300-300 versus C-180-180-180 and
C-300-300-200 versus C-180-180-120, respectively. Mainly, the curves vary in the
extension with regard to time.
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Figure A.4: Uncertainty of QoI Voronoi density in measurement area AD obtained by
applying PC method to the model response y: y is the average of nr = 10 scenario runs.

The standard deviation is greater for narrow scenario (C-180-180-180, C-180-
180-120) than for its wide complementary scenario (C-300-300-300, C-300-300-200).
Furthermore, the standard deviation tends to be greater if the exit is narrow instead
of straight. The causes for such curves for mean and standard deviation are the same
as for QoI evacuation time. Parameter number of agents is manly responsible for
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the output uncertainties. This can be demonstrated again by means of sensitivity
indices.

A.3.2 Sensitivity Analysis

Scalar Quantity of Interest: Evacuation Time
The influence of the input parameters on the QoI evacuation time is quantified by
the total sensitivity indices as shown in Table A.3. First order sensitivity indices are
not listed because they yield the same values. That means, there are no significant
interactions between the parameters.

Table A.3: Total sensitivity indices (ST i) quantify the influence of parameters mean of
free-flow speed (i = 1), SD of free-flow speed (i = 2) and number of agents (i = 3) on the
QoI evacuation time for the corridor scenario with different topographies.

Scenario ST1 ST2 ST3

C-180-180-180 (narrow corridor) 0.03 0.00 0.97
C-180-180-120 (narrow bottleneck) 0.03 0.00 0.97
C-300-300-300 (wide corridor) 0.04 0.00 0.96
C-300-300-200 (wide bottleneck) 0.04 0.00 0.96

As expected, the speed distribution parameters have no significant influence on
the output variance. The all-dominant parameter is the number of agents. The
minor difference between the narrow (C-180-180-180, C-180-180-120) and the wide
(C-300-300-300, C-300-300-200) scenarios might be traced back to the fact that the
agents pass the broader scenario faster and thus phase 3 is shorter. However, this
change is so faint that it could also result from stochastic behaviour of the model or
the limited precision of the UQ method.

Time dependent Quantity of Interest: Voronoi density
In principle, the same applies to the time series of both 1st order and total sensitivity
indices for the Voronoi density time series. Occasionally, interactions are more
relevant than for the evacuation time, though. The first order sensitivity indices have
been analysed for the single corridor scenario (see Section 4.1.2) and the conclusions
drawn apply also here: Parameter mean of free-flow speed has a minor effect as
long as the agents can move freely. Standard deviation of free-flow speed is of no
importance. And the number of agents is important especially during phase 3.
The modified topography does not change the results for the first order sensitivities
apart from a dilation along the time axis. The effect of modified topographies can
be explained better by considering the total sensitivity indices shown in Figure A.5.
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Figure A.5: Total sensitivity indices obtained with PC method applied to the average
of nr = 10 repeated model evaluations. They quantify the influence of parameter mean
free-flow speed (top, ST1), SD of free-flow speed (middle, ST2), number of agents (bottom,
ST3) and their interactions on the QoI Voronoi density in measurement area AD. All
curves are smoothed by taking the average of two frames.

As mentioned within the framework of the uncertainty analysis, the curves for
narrow scenarios and the ones with a narrow exit are stretched. The differences
between the four topographies are not so plain during phase 2 and 3, since the curves
fluctuate too much. A coarser smoothing function straightens things to some extent,
and yet, one cannot make out large deviations between the four curves. Besides,
interesting information about phase 4 gets lost if too many frames are averaged.
Nevertheless, it turns out that parameter mean and standard deviation of free-flow
speed are more relevant for bottlenecks than for straight corridors. As soon as the
waiting area is empty, there is no more pressure from behind that would force the
agents to move closer together. Hence, they can move more freely, and parameter
mean and standard deviation of free-flow speed become more important.

VIII



Statutory Declaration
I herewith declare that I have composed the present thesis myself and without use
of any other than the cited sources and aids. Sentences or parts of sentences quoted
literally are marked as such; other references with regard to the statement and scope
are indicated by full details of the publications concerned. The thesis in the same
or similar form has not been submitted to any examination body and has not been
published. This thesis was not yet, even in part, used in another examination or as
a course performance.

Munich, 29 July 2020

Simon Rahn

IX


	Introduction
	Theoretical Foundations and State of the Art
	Modelling Pedestrian Dynamics
	Microscopic Crowd Simulation
	Optimal Steps Model

	Uncertainty Quantification Methods
	Uncertainty Analysis
	Sensitivity Analysis

	Uncertainty Quantification in Microscopic Crowd Simulation

	Application of Uncertainty Quantification Methods
	Adaptation of Uncertainty Quantification Methods to the Model
	Object of Investigation: The Corridor Scenario
	Definition of Configurations for the Methods
	Verification of Methods
	Rating of Methods

	Overview of the Implemented Program Code
	Embedding the Chaospy Library
	Verification of the Program Code


	Results and Discussion
	Narrow Corridor Scenario
	Uncertainty Analysis
	Sensitivity Analysis
	Discussion

	Corridor Scenarios with Similar Topographies
	Outline of Uncertainty and Sensitivity Analysis
	Discussion

	Real World Scenario: Parade Through a City Centre
	Adaptations to the Method
	Object of Investigation
	Uncertainty Analysis
	Sensitivity Analysis
	Plausibility Checks
	Discussion and Relevance to Reality


	Conclusions and Outlook
	Bibliography
	Appendix
	Adapted Parameters in the Scenario Files
	Complementary Figures for Evaluation of the Method
	Detailed Uncertainty Quantification for Corridor Scenario with Similar Topographies
	Uncertainty Analysis
	Sensitivity Analysis



