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Information about room-level occupancy is crucial to many building-related
tasks, such as building automation or energy performance simulation. Cur-
rent occupancy detection literature focuses on data-driven methods, but is
mostly based on small case studies with few rooms. The necessity to collect
room-specific data for each room of interest impedes applicability of machine
learning, especially data-intensive deep learning approaches, in practice. To
derive accurate predictions from less data, we suggest knowledge transfer
from synthetic data. In this paper, we conduct an experiment with data from
a CO2 sensor in an office room, and additional synthetic data obtained from
a simulation. Our contribution includes (a) a simulation method for CO2
dynamics under randomized occupant behavior, (b) a proof of concept for
knowledge transfer from simulated CO2 data, and (c) an outline of future
research implications. From our results, we can conclude that the trans-
fer approach can effectively reduce the required amount of data for model
training.
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1 INTRODUCTION
Room-level occupancy in buildings provides crucial information to
numerous use cases regarding, amongst others, building automa-
tion or building energy performance simulation. We differentiate
between occupancy estimation, i.e. the determination of an exact
count of occupants in a room, and occupancy detection, the binary
discrimination between presence and absence. In both categories, a
large number of models has been proposed over the last years. These
include rule-based, stochastic and data-driven models. Recently, ma-
chine learning approaches have gained increasing interest. A recent
study [2] shows that 56% of the models published between 2004 and
2019 are data-driven, 15% use neural network techniques. In addi-
tion to different model types, diverse sensing technologies can be
found in literature. We classify sensing methods into intrusive and
non-intrusive. Intrusive methods include additional sensors, such
as light barriers or thermal cameras. Non-intrusive methods use
existing data to predict occupancy states. Environmental sensing of
carbon dioxide rates, temperature etc. is considered non-intrusive,
as climate sensors are already widely installed for the purpose of
automated climate control. Furthermore, climate sensors are more
privacy-preserving than cameras, and, in contrast to transition-
based measuring (e.g. with light barriers), they do not accumulate
errors during the day. Chen et al. (2017) propose a first deep learning
model for building occupancy estimation based on environmental
factors, outperforming several state-of-the-art models [4]. Deep
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learning allows the detection of occupancy at high precision with-
out manual feature engineering. The challenge is that deep learning
models require large quantities of room-specific labelled training
data, which is not applicable in practice. Due to the high effort for
collecting ground truth occupancy data for several days or weeks,
models that provide good performance in a few test rooms cannot
easily be applied to a variety of other rooms. We propose to use
transfer learning to address this impediment. In our work, transfer
learning is referred to in a transductive sense: Given equal learn-
ing tasks 𝑇𝑠 = 𝑇𝑡 for two domains (rooms) 𝑅𝑠 and 𝑅𝑡 with data
drawn from different distributions within the same feature space,
and given labeled data from the source domain 𝑅𝑠 and unlabeled
or partially labeled data from the target domain 𝑅𝑡 , transfer learn-
ing improves the training of 𝑇𝑡 using 𝑅𝑠 and 𝑇𝑠 . Some publications
have already reported benefits of a knowledge transfer between
different rooms. Arief-Ang et al. (2017) extended a previously pub-
lished seasonal decomposition model with a transfer approach, and
used data recorded from a university office to effectively improve a
model trained for a cinema hall [1]. In a later approach [10], transfer
learning was successfully applied with a recurrent neural network
(RNN), which is favorable in terms of generalizability. To the best
of our knowledge, no deep transfer learning approach for environ-
mental sensing-based detection of occupancy has been investigated
to date. Moreover, synthetic data has not yet been considered for
transfer, although physical simulation is common practice in the
field of building technology. Tools such as EnergyPlus, TRNSYS and
IDA ICE provide simulations for various environmental variables
with high accuracy [5]. Regarding synthetic occupancy data, Chen
et al. (2018) proposed an agent-based occupancy simulator [3] to
generate stochastic occupancy data in office buildings.

2 APPROACH
We propose to leverage synthetic data generated from simulations
to lower the need for costly real world data in context of occupancy
detection. We conduct two simulations:
(1.) Occupancy Simulation: For occupant presence and possibly

additional, relevant actions, such as window opening actions
(2.) Physical Simulation: For environmental factors, such as CO2

A simulation of occupants, and possibly of their actions (1.), provides
the ground truth data that also serves as an input to a simulation
of the physical environment (2.). In this work, we focus on CO2
dynamics. Also other environmental factors such as temperature
or humidity may be considered. A physical simulation requires
metadata about the room, such as its volume and infiltration rate.
Occupant simulations need to take into account the type of room,
e.g. 2-person office or lecture room. Otherwise, occupant behavior
may not be comparable.
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Fig. 1. Simulation-aided approach to occupancy detection

When building a model for a concrete room of interest, we distin-
guish two approaches:

(a) run a preceding simulation based on metadata of the room of
interest

(b) use a general base model built from simulations on a variety
of virtual rooms of the same room type

In this work, we use alternative (a) for a first proof of concept. It is il-
lustrated in Fig. 1. The two consecutive simulations (occupancy and
CO2) generate a large-scale synthetic dataset. This dataset is used to
pre-train a base model that is able to fit the general behavior of CO2
dynamics under human presence or absence. Room-specific behav-
ior due to certain conditions such as sensor placement, infiltration,
window size etc. is then learned in a transfer step.

3 METHODS
This section describes the simulationmethodswe applied to simulate
occupancy as well as CO2 rates. In Subsec. 3.3 we then introduce
the model architecture used to detect occupancy.

3.1 Occupancy Simulation
We simulate human occupancy in a naturally ventilated single office
space of the size of a selected real world office. Occupancy behavior
in offices can be subdivided into status transition events (e.g. arrival
or final departure from work), random moving events (e.g. going
to the bathroom) and meeting events [3]. As in [3], we combine
the LIGHTSWITCH-2002 approach [8] for status transitions and
Wang’s (2011) Markov chain approach [9] for random moving.
1. Status transition: For each day of simulation, we place an ar-
rival at 8:00, a lunch break of 1h at 12:00, a departure at 18:00 and
two 15-minute breaks at 10:00 respectively 15:00, with a random
shift of ±15min for each event [8]. The timespans determine basic
occupancy. Within these timespans, random moving events are sim-
ulated.
2. Random moving: Throughout all discrete time steps at basic
occupancy, we use a Markov chain to successively determine the
state of occupancy 𝑜𝑐𝑐 [𝑡] ∈ {0, 1} at time t, depending on the pre-
vious state 𝑜𝑐𝑐 [𝑡 − 1] and a transition probability [9]. Transition

probabilities are picked from the transition matrix 𝑃 depicted in
Eq. 1. To consider a variety of different occupant types, we update
𝑃 for each simulated day. The used sojourn times, 𝑠0 for transitions
from absence (0) to presence (1), and 𝑠1 vice versa, are randomly
selected within the following bounds.

𝑃 =

[
1 − ( 1

𝑠0
) 1

𝑠01
𝑠1

1 − ( 1
𝑠1
)

]
10𝑚𝑖𝑛 ≤ 𝑠0 ≤ 60𝑚𝑖𝑛

30𝑚𝑖𝑛 ≤ 𝑠1 ≤ 180𝑚𝑖𝑛
(1)

3.Windowopening behavior:Wedecided to use a similarMarkov
chain to determine the window state w[t]∈{0, 1} where 0 denotes
that all windows or openings are closed, and 1 represents a state of
ventilation. We set the time bounds to reflect different ventilation
behavior to 60𝑚𝑖𝑛 ≤ 𝑠𝑤0 ≤ 8ℎ and 5𝑚𝑖𝑛 ≤ 𝑠𝑤1 ≤ 30𝑚𝑖𝑛. Windows
can be open also in case of absence due to random moving.

3.2 Carbon Dioxide Simulation
The change in CO2 rate per time step within a room of volume V is
calculated using Eq. 2. The formula is adopted from [6].

𝑑𝑐 (𝑡)
𝑑𝑡

=
¤𝑚(𝑡)
𝑉

(𝑐𝑜𝑢𝑡 − 𝑐 (𝑡)) + 𝐺 (𝑡)
𝑉

(2)

𝑐 (𝑡) is the indoor CO2 concentration at time t, c𝑜𝑢𝑡 is the outdoor
CO2 concentration, ¤𝑚(𝑡) is the current mass flow rate, and 𝐺 (𝑡) is
the amount of CO2 generated by human occupants present at the
moment. Applying Eq. 2, we successively calculate CO2 level values
for time steps of one second, which can be later aggregated to the ad-
equate granularity. For simplification purposes, air pressure and out-
door CO2 are considered constant. The infiltration rate ¤𝑚(𝑡) consists
of a steady infiltration ¤𝑚𝑖𝑛𝑓 (𝑡) independent from human occupancy,
and a ventilation rate ¤𝑚𝑣𝑒𝑛𝑡 (𝑡) determined by occupants’ actions,
especially window opening events: ¤𝑚(𝑡) = ¤𝑚𝑖𝑛𝑓 (𝑡) + ¤𝑚𝑣𝑒𝑛𝑡 (𝑡). To
simplify, we use a constant value ¤𝑚𝑖𝑛𝑓 (𝑡) = ¤𝑚𝑖𝑛𝑓 . Also, we consider
a detailed calculation of ¤𝑚𝑣𝑒𝑛𝑡 (𝑡) under consideration of varying
window counts, -types and -sizes, as well as opening angles and
air pressure differences, as unnecessary complex in a first proof of
concept. Hence, whenever the window state is 1, we use a multiple
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of ¤𝑚𝑖𝑛𝑓 instead: ¤𝑚(𝑡) = ¤𝑚𝑖𝑛𝑓 · 𝑣𝑚. A multiplier 𝑣𝑚 is randomly cho-
sen from the range [10, 100] at each window opening event, and set
to 1 if windows are closed. ¤𝑚𝑖𝑛𝑓 is calculated from the volumetric
air flow rate ¤𝑉𝑖𝑛𝑓 by multiplication with the mass of air: ¤𝑚𝑖𝑛𝑓 =
¤𝑉𝑖𝑛𝑓 ·𝑚𝑎𝑖𝑟 . The value of m𝑎𝑖𝑟 is set to 1.2754 g/l according to the
IUPAC standard for the mass of dry air at standard temperature and
pressure. ¤𝑉𝑖𝑛𝑓 can be estimated by using CO2 as a tracer gas, fitting
a theoretical decay curve to the actual decay in CO2 during a period
of non-occupancy [6]. G(t), defined in Eq. 3, is the product of the
number of present occupants n(t) (in our case 0 or 1), an average
CO2 generation rate of a single occupant 𝑔𝑜𝑐𝑐 , the mass of CO2𝑚𝑐𝑜2
and a unit translation term. For simulating intervals of one second,
the term is divided by 60.

𝐺 (𝑡) = 𝑛(𝑡) · 𝑔𝑜𝑐𝑐 ·𝑚𝑐𝑜2 ·
1000
60 , 𝑛(𝑡) ∈ {0, 1} (3)

We choose 𝑔𝑜𝑐𝑐 = 0.24 l/min, which is the mean value measured by
[7] for a person of an age between 21 an 28 standing at a desk. 0.18,
the other value from [7], achieves lower results in our experiment.
3.3 Occupancy Detection
To detect occupancy, we apply the model architecture from [4], see
Fig. 2. It combines a convolutional network with a deep bidirectional
long short-term memory (DBLSTM). We downsample the data to
a 1-min-granularity aggregating by the mean, and then use a slid-
ing 15min-window on the input data stream. A one-dimensional
convolutional layer (1D-Conv) and a max-pooling layer perform an
automated feature extraction. As in [4], we use a filter size of 3, and
a pooling factor of 2. We reduce the number of filters to 10, as we
use CO2 as a single input factor. The number of neurons in the fol-
lowing bidirectional long short-term memory (BLSTM) layers (200,
150 and 100 neurons) and the fully connected (FC) layers (300 and
200 neurons) are selected as proposed in [4], as well as the masking
probabilities (0.5 and 0.3) for the dropout applied before the first and
second FC layer for regulation purposes. A final softmax activation
layer discriminates between presence (1) and abscence (0).
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Fig. 2. Deep learning model architecture based on [4]

4 EXPERIMENTAL SETUP

4.1 Datasets
Real world dataset: For a preliminary study, we measured the CO2
rate in a 2-person office of a German university building located in
Munich throughout 7 complete working days. A Sensirion SCD30
non-dispersive infrared (NDIR) sensor was placed in the center of
the room, and a measured CO2 value was stored every 5 seconds.

According to the datasheet, the sensor provides a resolution of 1 ppm
with an accuracy of ±30 ppm +3%. The CO2 data was collected
between 10 and 19 March 2020. Occupancy ground truth data was
manually recorded by the occupants over the observation period.
Simulated dataset: In addition to this, we conducted a CO2 time
series simulation according to the methods previously described
in Sec. 3.1 and 3.2 for a total of 500 artificial working days in a
room with the same volume as the real world office (𝑉 = 77.5 m3).
A natural infiltration rate and outdoor CO2 concentration were
estimated fitting Eq. 2 to observed CO2 values from one unoccupied
night not used for the dataset by minimizing the mean squared
error (MSE). Consequently, they were set to realistic values of ¤𝑉𝑖𝑛𝑓
= 0.0046 m3/s and c𝑜𝑢𝑡 = 360 ppm. Table 1 summarizes the properties
of the two datasets. Note that two occupants share the office, and
guests may visit. Our simulation is only intended to provide basic
information for a single-person scenario.

Table 1. Dataset Overview

Real World Dataset Simulated Dataset
Dataset Size 7 working days 500 working days

Time Granularity 5 sec 1 sec
Occupancy Values [0, 3], mostly [0, 2] [0, 1]
Presence Rate 29.28% 25.73%

CO2 Value Range [338, 1749] ppm [360, 1483] ppm

4.2 Experiments
We conducted a first study to show the positive effects of transfer
learning from synthetic CO2 data. First, 400 days of our simulated
dataset were used to train a synthetic base model. The remaining
100 days were used to report the performance of the base model
on simulated data. Using only small amounts of real world training
data, we then trained two models: (1) a conventional deep learning
model as described in Sec. 3.3, and (2) a transfer model with equal
architecture and hyperparameters, using the same real world data,
but based on the synthetic base model. The conventional model
was trained using a uniform random initializer for model weights.
Transfer learning was carried out by using the model weights of
the base model for initialization instead, and retraining all layers.
We evaluated with amounts of 1, 2, 3 and 4 days of training data. A
cross validation was applied, using each of the 7 days in our dataset
(and accordingly each 2, 3 or 4 consecutive days) for training in one
iteration, and the remaining days as test data. Each iteration was
repeated 10 times with a new seed value for randomization in initial
weight generation and shuffling of input sequences. All experiments
were carried out on an Nvidia GeForce Tesla V100 SXM2 GPU, using
the TensorFlow framework with Keras. For optimizer, learning rate,
batch size and validation split, we chose RMSprop, 0.001, 70 and 0.2.
Early stopping was applied after 20 epochs of no improvement in
validation loss. To compare the results, we calculate the detection
accuracy, which is defined as the number of correctly predicted
occupancy states divided by the total number of predictions. As a
second metric, we use the F1 score.
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Table 2. Comparison of transfer model, non-transferred model and LR baseline for different training data extents*

Training Data 1 Day 2 Days 3 Days 4 Days
Transfer Model Accuracy 0.875 (±0.057) 0.915 (±0.020) 0.929 (±0.014) 0.933 (±0.015)

F1 Score 0.764 (±0.171) 0.863 (±0.035) 0.888 (±0.027) 0.898 (±0.028)
Epochs 27.2 (±16.6) 26.1 (±14.4) 22.6 (±14.1) 19.9 (±11.9)

Non-Transferred Model Accuracy 0.715 (±0.086) 0.874 (±0.040) 0.895 (±0.035) 0.914 (±0.029)
F1 Score 0.565 (±0.162) 0.791 (±0.065) 0.821 (±0.071) 0.859 (±0.053)
Epochs 91.3 (±54) 123 (±50.2) 100.8 (±46) 105.2 (±34.4)

Logistic Regression (LR) Accuracy 0.860 (±0.073) 0.879 (±0.058) 0.900 (±0.035) 0.920 (±0.016)
F1 Score 0.767 (±0.112) 0.803 (±0.080) 0.829 (±0.056) 0.866 (±0.038)

*mean values (± standard deviations), best scores are highlighted in bold

5 RESULTS
Table 2 reports the mean and standard deviation values of accuracies,
F1 scores and training epochs under different extents of training
data, in both the transfer and non-transfer setting. Additionally,
results are compared to a logistic regression (LR) baseline. The pre-
trained transfer model clearly outperformed the non-transferred
model, with a higher impact the less training data was used. Vice
versa, only half of the training data was required to achieve a similar
accuracy as in the non-transfer setting: 0.87 was reached with one
instead of two days, and 0.91 with two instead of four days of
training data. Besides a substantial improve in accuracy and F1
score, also the standard deviation was reduced in most cases. Hence,
the transfer approach can also improve model robustness. As data
was scarce, the deep learning model was unable to reach its full
potential, and performed even slightly worse than an LR classifier.
The transfer model, in contrast, showed superior results in nearly
all cases. Regarding training times, the transfer model was able to
be trained in only a fraction of the training epochs. The number of
epochs reported in Table 2 indicate after how many training epochs
validation loss reached a minimum with respect to all previous and
20 subsequent epochs. By average, 91 epochs were trained for the
non-transferred model with one day of training data, and above
100 with multiple days of training data. In contrast to this, transfer
learning allowed a validation loss convergence after less than 30
epochs. However, this reduction of training times results from the
additional upfront effort for pre-training. The effect is only beneficial
if the base model is reused for multiple rooms. Pre-training required
30 epochs on data from 400 synthetic training days. The resulting
base model achieved an accuracy of 0.981 and an F1 score of 0.963
on 100 simulated days. Without the subsequent transfer step, the
base model by itself was not able to make accurate predictions on
the real world test dataset. Simulations do not replace but reduce
the need for data collection.

6 CONCLUSION & FUTURE RESEARCH
In our experiment, we have demonstrated that transfer from syn-
thetic data can effectively improve model performance and robust-
ness regarding occupancy detection. The results encourage the use
of simulations in this field of limited real world data to enable deep
learning in practice. We see future research in finding a concrete

method considering how to generate adequate synthetic data, and
how to accomplish transfer. It should also be investigated whether a
large, generalized base model, as it is common in the field of image
processing for instance, may be beneficial for a variety of different
rooms. We aim to prepare a broader base model and evaluate on
multiple room types. Furthermore, we are planning to investigate
other model architectures and their ability to transfer knowledge.
For the purpose of demonstration, in this work several constant
values and arbitrary boundaries were used in the simulation. We
want to overcome these limitations, and also consider predicting
the number of present occupants.
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