• search hit 29 of 31
Back to Result List

Modelling and simulation of the hardness profile and its effect on the stress‐strain behaviour of punched electrical steel sheets

Modellierung und Simulation des Härteprofils und dessen Einfluss auf das Spannungs-Dehnungs-Verhalten gestanzter Elektrobleche

  • The shear cutting of electrical steel sheets has a significant influence on the magnetic and mechanical material properties. Due to plastic deformation and strain hardening in the area of the punched edge, the electrical steel sheets exhibit a characteristic hardness profile. This study deals with the modelling of the resulting hardness profile by means of finite-element simulations. Elastic-plastic material properties are obtained from spherical nanoindentation testing as a function of the local hardness. In particular, representative stress-strain values are determined by applying Tabor's concept of indentation stress-strain curves. The choice of the appropriate stress- and strain-constraint factors is discussed with respect to the nanoindentation test setup used. Following this, the representative stress-strain values are analytically described to determine true stress-strain curves for the local assignment of different material models depending on the hardness. The implementation of the modelling approach in a finite-elementThe shear cutting of electrical steel sheets has a significant influence on the magnetic and mechanical material properties. Due to plastic deformation and strain hardening in the area of the punched edge, the electrical steel sheets exhibit a characteristic hardness profile. This study deals with the modelling of the resulting hardness profile by means of finite-element simulations. Elastic-plastic material properties are obtained from spherical nanoindentation testing as a function of the local hardness. In particular, representative stress-strain values are determined by applying Tabor's concept of indentation stress-strain curves. The choice of the appropriate stress- and strain-constraint factors is discussed with respect to the nanoindentation test setup used. Following this, the representative stress-strain values are analytically described to determine true stress-strain curves for the local assignment of different material models depending on the hardness. The implementation of the modelling approach in a finite-element simulation is presented for a punched electrical steel sheet specimen under monotonic loading. The simulation results are basically in good agreement with experimental data and confirm the expected influence on the mechanical material behaviour due to the shear cutting process.show moreshow less
  • Scherschneiden hat einen wesentlichen Einfluss auf die magnetischen und mechanischen Werkstoffeigenschaften von Elektroblech. Aufgrund plastischer Verformung und Kaltverfestigung im Bereich der Stanzkante weisen Elektroblechschnitte ein charakteristisches Härteprofil auf. Dieses wird in der vorliegenden Arbeit im Rahmen von Finite-Elemente-Simulationen modelliert. Elastisch-plastische Materialeigenschaften werden durch Nanoindentierung mit kugelförmigem Prüfkörper als Funktion der lokalen Härte ermittelt. Dabei handelt es sich um repräsentative Spannungs-Dehnungs- Werte, die sich mithilfe Tabors Konzept aus dem Eindruckversuch bestimmen lassen. Die Wahl geeigneter Spannungs- und Dehnungsproportionalitätsfaktoren wird unter Berücksichtigung des verwendeten Prüfaufbaus diskutiert. Im Anschluss daran erfolgt die analytische Beschreibung der repräsentativen Spannungs-Dehnungs-Werte zur Bestimmung wahrer Spannungs-Dehnungs-Kurven, die basierend auf dem zugehörigen Härtewert zur Zuweisung lokal unterschiedlicher Materialmodelle herangezogenScherschneiden hat einen wesentlichen Einfluss auf die magnetischen und mechanischen Werkstoffeigenschaften von Elektroblech. Aufgrund plastischer Verformung und Kaltverfestigung im Bereich der Stanzkante weisen Elektroblechschnitte ein charakteristisches Härteprofil auf. Dieses wird in der vorliegenden Arbeit im Rahmen von Finite-Elemente-Simulationen modelliert. Elastisch-plastische Materialeigenschaften werden durch Nanoindentierung mit kugelförmigem Prüfkörper als Funktion der lokalen Härte ermittelt. Dabei handelt es sich um repräsentative Spannungs-Dehnungs- Werte, die sich mithilfe Tabors Konzept aus dem Eindruckversuch bestimmen lassen. Die Wahl geeigneter Spannungs- und Dehnungsproportionalitätsfaktoren wird unter Berücksichtigung des verwendeten Prüfaufbaus diskutiert. Im Anschluss daran erfolgt die analytische Beschreibung der repräsentativen Spannungs-Dehnungs-Werte zur Bestimmung wahrer Spannungs-Dehnungs-Kurven, die basierend auf dem zugehörigen Härtewert zur Zuweisung lokal unterschiedlicher Materialmodelle herangezogen werden. Die Umsetzung des Modellierungsansatzes geschieht für eine gestanzte Elektroblechprobe unter monotoner Beanspruchung. Der Vergleich der Simulationsergebnisse mit experimentellen Daten zeigt grundsätzlich eine gute Übereinstimmung und bestätigt den erwarteten Einfluss des Scherschneidens auf das mechanische Werkstoffverhalten.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Paul KubaschinskiORCiD, Albin GottwaltORCiD, Ulrich TetzlaffORCiD, Holm Altenbach, Manuela Waltz
Language:English
Document Type:Article
Year of first Publication:2023
published in (English):Materials Science & Engineering Technology
Publisher:Wiley
Place of publication:Weinheim
ISSN:0933-5137
Volume:54
Issue:4
First Page:512
Last Page:526
Review:peer-review
Open Access:ja
Version:published
Tag:Elektroblech; Härteverteilung; Materialmodellierung; Nanoindentierung; Stanzkante
electrical steel; hardness distribution; material modelling; nanoindentation; punched edge
URN:urn:nbn:de:bvb:573-38333
Related Identifier:https://doi.org/10.1002/mawe.202200283
Faculties / Institutes / Organizations:Fakultät Maschinenbau
Licence (German):License Logo Creative Commons BY-NC-ND 4.0
Release Date:2023/08/09