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ABSTRACT Environment perception using camera, radar, and/or lidar sensors has significantly improved
in the last few years because of deep learning-based methods. However, a large group of these methods
fall into the category of supervised learning, which requires a considerable amount of annotated data. Due
to uncertainties in multi-sensor data, automating the data labeling process is extremely challenging; hence,
it is performed manually to a large extent. Even though full automation of such a process is difficult, semi-
automation can be a significant step to ease this process. However, the available work in this regard is still
very limited; hence, in this paper, a novel semi-automatic annotation methodology is developed for labeling
RGB camera images and 3D automotive radar point cloud data using a smart infrastructure-based sensor
setup. This paper also describes a new method for 3D radar background subtraction to remove clutter and
a new object category, GROUP, for radar-based object detection for closely located vulnerable road users.
To validate the work, a dataset named INFRA-3DRC is created using this methodology, where 75% of the
labels are automatically generated. In addition, a radar cluster classifier and an image classifier are developed,
trained, and tested on this dataset, achieving accuracy of 98.26% and 94.86%, respectively. The dataset and
Python scripts are available at https:/fraunhoferivi.github.io/INFRA-3DRC-Dataset/.

INDEX TERMS 3D radar, camera, deep learning, INFRA-3DRC dataset, intelligent roadside infrastructure,
labeling, lidar, semi-automatic annotations, smart infrastructure.

I. INTRODUCTION

In recent years, the quality and robustness of environmental
perception in terms of road user detection, recognition, and
motion prediction using cameras, radar, and lidar sensors
have significantly improved. The major contributor to this
rapid improvement is the extensive use of deep learning
methods [1], [2], [3], which are a subset of artificial
intelligence. However, a considerable part of such algorithms
fall under the category of supervised learning [4], where the
training of algorithms (also known as deep learning models)
requires a large amount of annotated data from one or more
Sensors.
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Because of the high uncertainty and unknown patterns in
the sensor data, the annotation process becomes challenging.
In addition, when two or more sensors’ data are annotated,
associating information from them leads to additional
challenges. As a result, still a large part of the annotations
are generated manually which needs huge effort, cost, and
human resources. With the increased use of supervised
deep learning algorithms, the need to automate the process
of sensor data annotation has become crucial. Although
fully automating this process of multi-sensor annotations
is difficult, partial automation (or semi-automation) is
still a way to move forward in this regard to reduce
cost and human efforts. There is some work available in
the literature dealing with automating the data labeling
process [5], [6], [7], [8], [9], [10] but they have limitations,
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FIGURE 1. Results of proposed semi-automatic annotation methodology. Annotated RGB images are shown on top with a bounding box and object
category, and the corresponding annotated 3D radar point cloud (in bird-eye-view) is shown at the bottom. Each point in the radar point cloud is
colored according to the category, and black points belong to the background. Please note that the labels on the radar point cloud are only for

visualization.

as described later in section II-B. Hence, the work described
in this paper focuses on solving this specific issue by
proposing a new semi-automatic annotation methodology
that specifically focuses on annotating RGB (red, green,
blue) camera images and 3D (3-dimension) radar point cloud
data.

In a 3D radar sensor, each detection (or point) is associated
with range, azimuth angle, elevation angle, doppler speed,
and radar cross-section, whereas in 2D (2-dimension) radar,
the elevation angle is not available [11]. Hence, 3D radar
provides an extra dimension in measurement that consider-
ably increases the spatial resolution and thus the overall point
cloud density. Due to this distinct advantage, 3D radar sensors
have received acceptance and popularity in many advanced
driver assistance systems, autonomous vehicle development,
and certain newly published public datasets [10], [12], [13],
[14], [15]. However, all these public datasets focus only on
vehicle-based sensor setups.

To enhance road safety, along with autonomous vehicles,
smart infrastructure-based sensor perception also plays a
vital role. In such setups, multiple sensors are mounted
at a considerable height along the side of the road to
perceive the environment in real-time and to send critical
information and warnings to passing road users through a
communication channel. Such sensor setups have an elevated
view angle, which reduces on-road occlusion to a large
extent compared with vehicle-based perception [16], [17].
However, in presently available infrastructure-based setups,
as described in Table 3 of [18], projects like [19], [20],
and [21] (only some are cited for reference) have used
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2D radar sensors along with cameras and/or lidar, but 3D
radar sensor that can provide enhanced perception has not yet
been explored. To close this gap, the proposed work uses a
smart infrastructure-based setup, as described in [17] for the
proposed semi-automatic annotation methodology.

In addition, two other challenges in object detection using
radar sensors are discussed and novel solutions are proposed.
The first challenge is the limited spatial resolution of the
3D radar sensor. Even though the resolution of 3D radar
sensors has improved compared to its predecessor, it is still
far from the camera and lidar sensors. Hence, when two or
more vulnerable road users (VRUs) are either moving or
standing very close to each other, the separation of VRUs is
very challenging using a radar sensor. To solve this ambiguity
in object detection, a new object category - GROUP is
proposed which considers such close VRUs as one object in
sensor space. More details on this new object category are
provided in section V of this paper. The second challenge
is the inability of the radar sensor to differentiate between
background clutter and static but valid road users, especially
when deployed at pedestrian crossings and traffic light
junctions as part of smart infrastructure-based units. Hence,
a 3D radar background subtraction method is proposed in
this work that filters out background clutter in a static setup
to a large extent. This method is inspired by the roadside
3D lidar-based background subtraction technique described
in [22]. These two solutions are also part of the proposed
semi-automatic annotation methodology.

Fig. 1 shows the results of the proposed methodology,
where each camera frame is annotated with a bounding
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box and object category for valid road users, and the
corresponding 3D radar point cloud frame (calibrated and
time-synchronized) is annotated point-wise. This means that
each point in the radar point cloud is assigned an object
category that can be either a valid road user or background,
and each road user is identified as a separate instance. The
6 object categories or class labels used in this work are
adult (pedestrian), group (described in section V), bicycle,
motorcycle, car, and bus. Two more object categories named
child and truck to be added in future work.

Additionally, to facilitate research on perception algo-
rithm development with 3D radar sensors in smart
infrastructure-based sensor setups, a new dataset, named
the INFRA-3DRC dataset, is generated and published
using the proposed semi-automatic annotation methodology.
This dataset contains annotations of calibrated and time-
synchronized 3D radar and RGB mono camera data frames.
It also consists of calibrated and synchronized 3D lidar
sensor frames. However, the main focus of this work is to
annotate 3D radar point cloud data together with camera
images; hence, the lidar frames provided in the dataset are
not annotated.

This paper is structured as follows: Section II pro-
vides the literature review of available datasets in the
autonomous driving and smart infrastructure domain. It also
includes a review of the available annotation approaches
and highlights their limitations. Section III describes the
smart infrastructure-based measurement setup used to collect
data for this study. It also briefly explains the process of
multi-sensor calibration and time synchronization, which are
indispensable parts of the complete pipeline. Section IV
describes the proposed 3D radar background subtraction
method, and section V discusses the importance and def-
inition of the newly introduced object category GROUP,
along with some examples selected from the collected
data. Section VI describes the semi-automatic annotation
methodology proposed in this work for labeling the camera
RGB images and the 3D radar point cloud data. Section VII
provides statistics of the published INFRA-3DRC dataset
and describes the experimental results of the developed
and trained image and radar cluster classifiers. Finally,
a discussion and conclusion are provided.

A. CONTRIBUTIONS
The main contributions are:

« A novel semi-automatic annotation methodology is
developed for RGB mono camera and 3D automotive
radar data labeling

o The INFRA-3DRC dataset - an infrastructure-based
sensors dataset of RGB camera and 3D automotive radar
sensor is published for the research community

e A new 3D automotive radar background subtraction
algorithm is developed for static sensor setup to remove
clutter.

e A new object category - GROUP is defined for
radar-based object detection
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o Custom image classifier and radar cluster classifier are
developed, trained, and tested on the INFRA-3DRC
dataset

Il. RELATED WORK

A. AVAILABLE DATASETS

The list of public datasets available in the autonomous vehicle
domain is long; hence, in Table 1, only those datasets that
include either 2D or 3D radar sensor(s) are listed. In addition,
datasets generated using smart infrastructure-based setups are
also included in Table 1 but regardless of the availability of
the radar sensor.

It is evident from Table 1 that none of the static
infrastructure-based datasets available previously in the
literature include any 2D or 3D radar sensor for perception.
Hence, in this work, a new dataset, named the INFRA-3DRC
dataset, is also generated and published. This dataset includes
annotated data of 3D automotive radar along with annotated
camera RGB images using a smart and static infrastructure-
based setup. This is also highlighted in the last row of Table 1.

B. STATE-OF-THE-ART DATA ANNOTATION METHODS
This section highlights the state-of-the-art sensor data
annotation methods available in the literature.

The work described in [5] annotates the 3D lidar point
cloud by applying foreground and background separation,
followed by DBSCAN-based (density based spatial clus-
tering of applications with noise-based) clustering and
PCA (principal component analysis). The class labels are
transferred using the corresponding camera-based object
detection. However, this work does not consider radar sensor
data labeling. Work of [6] describes a process to estimate 3D
bounding boxes on object proposals generated by tracking the
sequence of lidar data. However, it is not clear from the paper
how the class labels are generated for the estimated bounding
boxes in their automatic annotation framework. In addition,
the authors have mentioned the use of proprietary software
aiNotate on their dataset website to generate annotations for
their work, which is not openly available for other research
projects.

The work described in [7] uses neural networks to perform
semantic segmentation on camera and lidar images. Then, the
method assigns each radar detection to two different labels,
one based on the camera and another based on lidar. The best
label is determined using the uncertainty-based fusion of both
labels. In [8], authors replaced the neural networks of [7]
with traditional pipelines, including tracking, to generate
labels for radar points. However, the use of two extra sensors
to annotate radar points is both computationally and cost-
wise expensive. The work proposed in [9] requires instructed
traffic participants to wear GNSS (global navigation satellite
system) sensors to label the radar points for pedestrians, and
cyclists. However, this method is not feasible to annotate
different road users in real traffic situations because it
requires every traffic participant to be mounted with a GNSS
Sensor.
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TABLE 1. Available datasets.

Dataset Year Sensors Annotation Annotated Classes Weather and Setup Traffic Labeling
Type Frames light Height (m) Method
Autonomous driving datasets with 2D radar point cloud.
nuScenes [23] 2020 LCR 3D 40k 23 SRC/DN - USH M
PixSet [24] 2021 LCR 3D 29k 20 SR/DN — Usp M
Pointillism [25] 2020 LCR 3D 54k — SF/DN - U M
Dense [26] 2020 LC,R 3D 13.5k 14 SRFS,/DN — USHT M
Autonomous driving datasets with 3D radar point cloud.

RadarScenes [12] 2021 CR point-wise 832k 11 SR/D — USHT M
Astyx [10] 2019 LCR 3D 0.5k 7 D - SH S
View-of-Delft [13] 2022 LC,R 3D 8.6k 13 - - U M
RADIal [14] 2021 LCR 2D, seg. 8.2k — — - USH

aiMotive [6] 2023 LCR 3D, 2D 26.5k 14 R/DN — UH S
TJ4DRadSet [15] 2022 LCR 3D 7.7k 8 S/DN — U M

Smart infrastructure datasets.

BAAI-VANIEE [27] 2021 LC 3D, 2D 2.5k 12 SRC/DN 4.5 U M
IPS300+ [28] 2022 LC 3D, 2D 14k 7 DN 5.5 U M
DAIR-V2X_1[29] 2022 LC 3D, 2D 10k 10 SRF/DN - UH M
A9-Dataset [30] 2022 LC 3D 1k 9 D 7 H M
A9-Intersection [31] 2023 LC 3D 4.8k 10 SRC/DN 7 HI M
LUMPI [5] 2022 LC 3D, 2D 90k 6 SCH 7 U S
Ko-PER [32] 2014 LC 3D 4.8k - - 5 0] M
Rope3D [33] 2022 C 3D, 2D 50k 13 - — U M
INFRA-3DRC [ours] 2023 LCR-3D 2D, point-wise 2.7k 6 S/DN 3.5 uIp S

Sensors: L, C, R, Cy stand for lidar, camera, radar, and stereo camera; Annotation Type: 3D, 2D stand for 3D bounding box, and 2D bounding box; Weather
and light: S, R, C, F, H, S,,, D, N stand for sunny, rainy, cloudy, foggy, hazy, snow, day, and night; Traffic: U, S, H, I, P, T stand for urban, suburban, highway,
intersection, parking lot, and tunnel. Labeling Method: M and S denote manual and semi-automatic, respectively. In all columns, "—" indicates that there is

no information available.

The Astyx dataset [10] is one of the vehicle-based datasets
containing 3D automotive radar point cloud data. The authors
used an active learning-based semi-automatic annotation
approach in combination with uncertainty-based manual fine-
tuning to label the 3D radar point cloud data. However,
this approach requires that the initial frames be completely
manually labeled to train a deep learning model. In [34],
the authors use an image-based YOLO (you only look once)
object detector to generate bounding box annotations on the
input camera image and a DBSCAN clustering algorithm to
generate clusters from 2D radar point cloud. The clusters and
image bounding boxes are associated using the Hungarian
algorithm after projecting the cluster centroids onto the
image plane. However, this method is limited to only 2D
radar sensors, and no information is provided regarding the
handling of static but valid road users.

Some other works [35], [36], [37], [38], [39], [40] have
focused on radar raw data available in the form of RA
(range azimuth), RD (range doppler), and/or RAD (range
azimuth doppler) cube. Because the proposed work focuses
on the processed radar point cloud data, these cases are not
within the scope of this work and hence are not explained in
detail.
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The proposed semi-automatic annotation methodology in
this work has clear advantages over the available related work
because it tackles the challenges of annotating 3D radar point
cloud without relying on any deep learning-based training
(that requires heavy computation) or a lidar sensor (in many
setup with radar sensor, lidar is not available). Furthermore,
it handles the cases of static road user annotation in an
infrastructure-based setup, which is a challenging task.

Ill. MEASUREMENT SETUP AND DATA COLLECTION

This section describes the smart infrastructure setup used
for data collection and data generation. It also describes the
sensor calibration process and the time synchronization of
data frames between sensors.

A. MEASUREMENT SETUP

The measurement setup comprised an RGB mono camera,
3D automotive radar, and 360° automotive lidar sensor. The
details of each sensor, mechanical mountings, and electrical
connections are described in section I'V of [17]. For reference,
the same setup is also shown on the left side of Fig. 2 where a
tripod is extended to a considerable height on one side of the
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FIGURE 2. Smart infrastructure setup used for measurement (updated
from [17].).

road for data collection. The right side of Fig. 2 highlights the
coordinate system of each sensor for reference.

B. DATA COLLECTION

Data is collected at different locations including straight
roads and crossing junctions with curve roads, in daylight,
twilight, and night. During each measurement campaign, the
measurement setup is mounted firmly at the side of the road,
and the sensors are aligned to adjust the view angle using a
height-adjustable tripod, as shown in Fig. 2.

After fixing the setup, on-field calibration is performed
using the method described in [41]. This calibration method
calculates extrinsic calibration for radar-to-camera, lidar-to-
camera, and radar-to-lidar. The ground coordinates for the
setup are defined similarly to the lidar coordinates with the
origin shifted to the ground (road). The intrinsic calibration
of the camera is performed using the checkerboard pattern
method of [42] in the laboratory before the measurement
campaign. The complete sensor setup is developed using
a robot operating system (ROS). During the measurement
campaign, data is collected manually in the form of rosbags
for a duration of 10 — 15 seconds each. A graphical user
interface (GUI) tool is developed and used to ease the manual
collection and sensor data monitoring process.

In the setup, the camera has a frame rate of 30 Hz, and
the radar and lidar have a frame rate of 20 Hz each. During
post-processing, data from each rosbag is extracted. Camera
images are saved as portable network graphics (PNG) files,
and radar and lidar point clouds are saved as point cloud
data (PCD) files along with their Unix-based timestamps.
Using these timestamps, the data frames of radar and camera
are synchronized with each other within a delta time of a
maximum of 10 milliseconds, and then lidar frames using
synchronized camera frames are selected within a delta
time of a maximum of 40 milliseconds. All remaining
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non-synchronized data frames are then discarded. With this
approach, approximately 10 Hz of synchronized frames from
all three sensors are achieved. All rosbags are post-processed
in the same manner and then used for data labeling.

IV. 3D RADAR BACKGROUND SUBTRACTION

In a smart infrastructure setup, radar sensors are mounted at
a static position and oriented in a fixed direction. In such
conditions, the static environmental view of the sensor
remains constant over time; hence, many radar points have the
same spatial position (within the given variance due to sensor
inherent noise). The majority of these points are generated
from static surroundings such as trees, roads, buildings, traffic
lights, metal poles, etc. which are not necessary for road
user detection. All such points are jointly referred to here as
background. Background subtraction of static-mounted radar
sensor aims to remove maximum possible background points
using appropriate algorithm so that detections from valid road
users can be processed optimally. In addition, background
subtraction helps to efficiently detect static but valid traffic
users, which would have been very difficult without removing
background points.

To the best of the author’s knowledge, no work has been
found regarding 3D radar point cloud-based background
subtraction in the literature, and only [22] has described it,
but for roadside 3D lidar sensor. The work proposed here is
partially inspired by [22] to develop a suitable algorithm for
3D radar-based background subtraction.

3D radar sensor provides data in polar coordinates defined
by range, azimuth angle, and elevation angle. Furthermore,
each detection is associated with doppler speed and radar
cross-section. Background points have near zero doppler
speed (but not exactly zero due to noise in radar sensor
measurement), and hence, only these points are used for
background subtraction. Points with doppler speed (abs(v) >
0.1 m/sec) are filtered out. In Fig. 3, radar point cloud (in
bird-eye-view) from the one-time frame is shown, where
green points are dynamic points (abs(v) > 0.1 m/sec), and
white points are static points. Dynamic points are shown
only for visualization and are not included in the background
subtraction, as previously stated. Furthermore, the static point
cloud shown in Fig. 3 includes data from the background and
static (but valid) road users.

The complete process of background subtraction is
divided into two parts: background detection and background
removal. During background detection, a 3D weighted
occupancy polar grid is generated that contains weighted
information on the occupancy of background points in the
sensor field of view. This step is performed only once for
a given fixed view of the sensor setup. If the sensor view
changes, this step must be repeated to generate an updated
polar grid.

In the second step, the generated 3D weighted occupancy
polar grid is used to perform background removal on each
radar frame for complete data collected with the same sensor
alignment at the same location. Fig. 4, describes a complete
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FIGURE 3. Bird-eye-view of 3D automotive radar point cloud before
background subtraction. Static points are shown in white and dynamic
points are shown in green. Cartesian coordinates are used for
visualization.

| - "
i 3D radar point 3D radar point i
E cloud data cloud data i
' (with road users) !
E 3D Doppler filter Doppler filter i
E occupancy H
i| polar grid l l i
'| (with zero '
| weights) [ Background Background '
' detection removal i
E Save to 3D weighted Static Static i
! disk  [«—| occupancy foreground background '
E (optional) polar grid points points i

FIGURE 4. Overview of 3D radar background subtraction. Background
detection (on the left side) and background removal (on the right side).

process in the form of a block diagram, and the details of each
are given later in this section.

A. BACKGROUND DETECTION

For a given location, after setting up the sensors, a small
scene is recorded only with radar data for a few seconds. The
duration of these data depends on the frame rate of the sensor
and the required minimum frames for optimum background
detection. This depends on multiple factors such as sensor
type, location, environment, etc. For this work, data with a
minimum of 600 consecutive radar frames is selected after
some experiments. If any valid static road user is present
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during this data collection, those locations might get detected
wrongly as background. Hence, the ideal choice during data
collection for background detection is that no valid road user
should be available in the environment; however, if this is
difficult, then collecting data with only dynamic road users is
recommended because dynamic points are filtered out before
performing background subtraction.

For background detection, the complete field of view
(or required field of view) of the sensor is divided into a
3D polar mesh grid. The dimension of a grid cell is taken as
per the resolution of the sensor in each dimension, i.e., range
resolution R, azimuth angle resolution A,.s, and elevation
angle resolution E,.. For the radar sensor used in this work,
this information is available in [43]. Furthermore, the total
grid cells in each dimension are calculated as per equation (1),
where Ry, A;, and E;. are the total grid cells in range,
azimuth, and elevation.

Rmax - Rmin

Rje = — +1
1 Ryes *
Amax - Amin
App = —— +1
1 Apes *
Emax - Emin
Efe=———+1 1
e . + (D

In equation (1), Ryax, Amax, and E,,,, are the maximum
values, and R,,;in, Amin, and E,,;, are the minimum values of
range, azimuth, and elevation angles, respectively that can be
measured by the radar sensor. The total grid cells formed in
the sensor field of view are calculated using equation (2),
where FoV, is the total grid cells in the sensor FoV. These
total grid cells also indicate the total possible locations that
can be associated with either background or foreground.

FoVic = RicArcEre )

Once the 3D polar grid is created, each grid cell is assigned
zero weight, which means that there is no background
occupancy. The first radar frame is taken, and all detection
values are assigned to grid cells according to their range,
azimuth, and elevation angle. Then, for all grid cells where
detection is associated, the weights are incremented by 1, and
the weights of all non-associated cells remain unchanged. The
same process is performed on all radar frames consecutively,
and for every frame, the weights of the associated grid cells
are increased by 1 with respect to the previous value. For
example, if for a particular grid cell, a point is associated in
200 frames, that grid cell will weigh 200. The final 3D polar
grid with each cell associated with a certain weight is referred
to as a 3D weighted occupancy polar grid, which is the result
of the background detection algorithm. It can be optionally
saved to disk for later use

B. BACKGROUND REMOVAL

The pre-calculated 3D weighted occupancy polar grid is
loaded from the disk or the file, and a weight threshold
value (one hyper-parameter) is selected that decides whether
a particular cell in the 3D polar grid is considered as
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FIGURE 5. Bird-eye-view of 3D automotive radar point cloud after
background subtraction. From the static points, red points are associated
with background points, and white points are associated with foreground
points. Dynamic points are shown in green. Cartesian coordinates are
used for visualization.

background or foreground. In this work, a value of 10
(no unit) is selected after the experiments. This means that
for all 3D polar grid cells if the weight of the cell is greater
than 10, it is considered the background point, and if it is
less than 10, it is considered the foreground point. Using this
value, the 3D weighted occupancy polar grid is converted to
a 3D binary occupancy polar grid.

Background removal is applied to each radar frame used
for object detection. For this purpose, the radar frame is
first filtered to separate dynamic and static points. Then, all
the static points are assigned to the 3D binary occupancy
polar grid. If the point is associated with the cell with
the value true (or 1), it is considered a background point,
and if the point is associated with the cell with the value
false (or 0), it is considered a foreground point. Hence, the
background removal algorithm outputs static points separated
as either background or foreground points. The same process
is applied to other radar frames.

Fig. 5, shows the results of background subtraction applied
to the radar frame highlighted in Fig. 3. The dynamic points
(shown in green) remain unchanged, whereas all the static
points are categorized either as background points (shown in
red) or as foreground points (shown in white).

Fig. 6 shows the camera image calibrated and time
synchronized to the radar frame given in Fig. 3, and Fig. 5.
From Fig. 6, it is evident that only three cars are available in
the sensor field of view, which are marked with yellow boxes.
The same is also marked with yellow boxes in the radar point
cloud in Fig. 5. From the radar point cloud, it is confirmed
that only one car is moving (having points in green), while
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FIGURE 6. RGB camera image for reference with radar point cloud of
Fig. 3, and Fig. 5.

the other two cars are standing (having points in white) near
the traffic light junction. After background subtraction, valid
traffic users are successfully assigned as foreground points,
and maximum clutter is assigned to the background.

As radar sensor data is noisy in nature, one cannot remove
all the clutter using background subtraction. However,
as shown in Fig. 5, the large number of background points
are successfully removed by this algorithm.

In this background subtraction, RCS (radar cross-section)
is not used to differentiate between static background
and static traffic users, because from the collected data,
the distribution of RCS does not show a clear difference
between these point clouds. However, further analysis will be
conducted using the collected data in the future. Moreover,
this algorithm will be studied and adapted for different
weather conditions, such as rain, snow, and fog, and for corner
cases, such as when a person is sitting or lying down on the
road, as part of the future work.

V. NEW OBJECT CATEGORY-GROUP

The low spatial resolution of the 2D automotive radar sensor
is improved considerably in the 3D version [10], but still,
it is not comparable with camera and lidar sensors. Hence,
in many situations, specifically with VRUs (vulnerable road
users) that include bicycles, adults, and children, it is very
difficult for radar sensors to differentiate each road user
separately when they are moving or standing very close
to each other. This leads to ambiguity in VRU detection
with radar sensors. The proposed new category - GROUP
in this work aims to solve this problem wisely for object
detection. Please note that this object category is not for
other road users such as cars or buses. These are detected
as separate entities by the sensor. Moreover, the GROUP
category is defined here because the 3D radar sensor used
in this work does not provide micro-doppler measurements.
With the help of micro-doppler data, closely moving VRUs
can be differentiated to a certain extent, but closely standing
VRUs are still very challenging to detect separately.
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FIGURE 7. Different sample images highlighting the various conditions of
new category - group.

The main aim of any real-world object detector (in 2D or
3D) is to either know where the object is located or to feed it to
the tracking algorithm to obtain the trajectory of the road user.
When two or more VRUs are moving or standing very close
to each other, they can be considered as one virtual physical
entity from the sensor’s perspective, even though they are
different physical bodies in the real world. In infrastructure-
based and vehicle-based perception, the main aim of object
detection and motion prediction is to determine the drivable
area for the vehicle during path planning.

As an example, when two people are walking side by
side with negligible gap between them (normal and frequent
situation on the road), detecting them as two different road
users provides no performance improvement compared to
when both are considered as one object. As there is no
drivable area between them, from detection as well as from a
tracking point of view, it is efficient to consider them as one
object.

In the literature, [12], a category called the pedestrian
group is defined, but it is limited to only pedestrians.
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Situations with multiple bicycles and pedestrians with
bicycles are not considered and not defined. Hence, the
category - “GROUP” is proposed in this work that also
considers situations including pedestrians and bicycles. It is
defined as when two or more persons (adult/child) and/or two
or more bicycles are either moving or standing close to each
other such that there is not sufficient drivable space for any
other road user to pass through them.

Fig. 7 highlights some examples taken from real data
collected using an infrastructure-based setup. Please note
that here examples with images are shown because for
the annotation work, camera images are initially manually
labeled for category group and then the radar point cloud
is annotated point-wise using the semi-automatic annotation
methodology described later in this work. There are many
other combinations on the road that fall under this category,
but it is not realistic to show all of them here.

VI. METHODOLOGY

The proposed semi-automatic annotation methodology labels
the camera images with 2D bounding boxes and object
categories (also known as class labels) and performs instance
point-wise segmentation of the 3D radar point cloud. This
means that each detection or point of the radar point cloud
is classified as one of the required object categories or
background. Furthermore, each instance of the same object
is separately identified. A high-level block diagram of this
methodology is shown in Fig. 8.

The input comprised an RGB camera image and a 3D
automotive radar point cloud of a calibrated and synchronized
time frame. The camera image is fed into the image
pre-processing module that generates detections in the form
of bounding boxes (including class and score) and object
masks. Similarly, the radar point cloud is fed into the
radar pre-processing module that generates clusters for both
dynamic and static road users. The detections from both
sensor frames are provided to the auto-labeling module. Once
the frames are processed by the labeling algorithm, each
frame is manually validated, and the required frames are then
classified into correct frames, frames for label change, and
frames to manually label. Frames selected for label change
are those frames in which the image processing module
detected the object correctly but classified it incorrectly. The
frames selected for manual labeling are frames with corner
cases and objects with special classes, as described later in
this section.

Frames selected as correct frames are directly used to
create annotations in JSON (javascript object notation) file
format for each sensor. The camera annotation JSON file
contains the object bounding box locations and the object
class or category. The radar annotation JSON file contains
point-wise class and instance information for a complete
radar cloud. Please note that the object mask generated during
image pre-processing is used internally for the labeling
process, but it is not part of the final annotations. The
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FIGURE 9. Image Pre-processing Pipeline.

frames selected for the label change and manual labeling are
processed separately before generating annotations.

In this methodology, most frames are auto-labeled, and
only corner cases need to be handled manually. Hence, it is
called a semi-automatic annotation methodology.

A. INPUT

Input to the semi-automatic annotation pipeline is a camera
RGB image with a resolution of 1920 x 1216 pixels and a
3D Radar point cloud comprised of multiple radar detections
(also known as points). Each radar point is associated with
range (in meters), azimuth angle or horizontal angle (in
radians), elevation angle or vertical angle (in radians), doppler
velocity (in meters/second), and RCS (in decibel/square
meter).

B. IMAGE PRE-PROCESSING PIPELINE
The image pre-processing pipeline is shown in Fig. 9. In this
pipeline, the camera image is fed into the pre-trained mask
R-CNN (region-based convolutional neural network) [44]
which generates bounding boxes, masks, object categories,
and the confidence of detection for each object defined as
per the pre-defined categories of the COCO (common objects
in context) dataset. The COCO-based categories are mapped
to custom categories to remove unwanted categories and add
required object categories.

In many instances, when a person is riding a bicycle, the
pre-trained mask R-CNN generates two bounding boxes, one
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FIGURE 10. Examples of instance merging in camera images. The images
on the left are the original annotations from the pre-trained network, and
the corresponding images on the right are after instance merging.

for the person and one for the bicycle. Similarly, when a
person is driving a motorbike or motorcycle, two separate
bounding boxes are generated for the person and motorcycle.
Hence, IOU (intersection over union) based instance merging
is used to combine such cases into one bounding box for both
a person and a bicycle or motorcycle. Some sample images of
instance merging from the collected data are shown in Fig. 10.
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FIGURE 11. Radar pre-processing pipeline.

A separate child detector model, as described in [45] is
pre-trained using transfer learning with mask R-CNN to
detect adults and children separately. This is also used in
parallel to the original mask R-CNN model, and the instances
of the person from the original model are replaced by adult or
child categories generated by this model. Then the final list of
detections associated with 2D bounding boxes, masks, object
categories, and detection scores is fed into the auto-labeling
process.

C. RADAR PRE-PROCESSING PIPELINE
The radar pre-processing pipeline is shown in Fig. 11. The
3D radar point cloud data of one frame comprised multiple
detections measured in polar coordinates. It is then converted
into cartesian coordinates and then transformed into the
ground plane of the smart infrastructure setup using the
transformation matrix Trg as shown in Fig. 11. The values
of the transformed and original radar point cloud data are
combined for further processing.

By working principle, it is difficult to differentiate between
a static road user (say a car or person) and background
clutter points. This makes the annotation of static but valid
traffic users challenging for radar data. Hence, at first, the
complete point cloud is separated into dynamic and static
point clouds using a doppler speed filter with an absolute
value of 0.1 m/sec. Separate processing pipelines are then
used to process the detections of each type. To generate
dynamic road user clusters, a field-of-view filter is applied
to remove unwanted detections from the far field, and
then DBSCAN-based clustering is applied with parameters
(eps = 3, minimum points = 2). For static points, after
performing a similar field-of-view filter, background subtrac-
tion is applied to remove the maximum possible clutter. The
process of background subtraction of 3D radar point cloud is
described in section IV. After background subtraction, only
the foreground points are fed into DBSCAN clustering with
the same parameters as those used for dynamic clustering to
generate static clusters. Both dynamic and static clusters are
then added to the auto-labeling process.

34334

D. AUTOMATIC LABELING AND ANNOTATION
GENERATION

The algorithm for the automatic labeling of the camera RGB
images and 3D radar point cloud is shown in Fig. 12. The
complete process is divided into a total of six stages that
are executed one after another. Before starting with stage
one, a list of radar clusters (dynamic and static) and a
list of image detections (objects with mask, bounding box,
class, and score) are generated by executing a 3D radar
pre-processing pipeline and a camera image pre-processing
pipeline on the synchronized sensor frames of the radar
and camera, respectively, as shown in the top part of
Fig. 12. This generated output is used as input to stage
one of the auto-labeling algorithm, which provides separate
lists of non-associated and associated radar clusters and
image detections. The associated data is stored and used
for annotation generation, while non-associated data is given
further to stage two. This is repeated in the next stages.

In Fig. 12, only stage one is described because stages
two to six follow almost the same logic as stage one, and
only blocks highlighted with circular numbers as 1, 2, and
3 changes. In stage one, to find the clusters associated with
image detections, only dynamic clusters are used, and for
association, image masks are used. The rest of the algorithm
is self-explanatory in the given flow chart. The type of input
used in each of the three blocks in all stages is given in Table 2

TABLE 2. Data input used in different stages of labeling algorithm
described in Fig. 12.

stages block 1 block 2 and 3
1 dynamic cluster id < Ny binary mask
2 dynamic cluster id < Ny bounding box
3 dynamic cluster id < N;  expanded bounding box
4 static cluster id < Ny binary mask
5 static cluster id < Ny bounding box
6 static cluster id < Ny expanded bounding box
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where Ny and Ny are the number of dynamic and static radar
clusters, respectively, fed into each stage of the algorithm.

In stages one, two, and three, only dynamic radar clusters
are used as input and static clusters are processed in stages
four, five, and six. To associate clusters with image detection,
three different inputs are used sequentially. At first, image
masks are used, then bounding boxes, and then expanded
bounding boxes are used. The expanded bounding boxes
are generated by uniformly expanding the original bounding
boxes by 25%. Due to calibration and time synchronization
errors, the radar centroid is sometimes unable to associate
with the image mask and bounding box, especially for small-
sized image-space objects. Therefore, using an expanded
bounding box in such cases increases the association and
overall quality of the labeling algorithm.

It is not necessary that for every frame, all six stages are
performed. It depends on the type of radar clusters available
and the list of non-associated objects left after each stage. If at
a certain stage, all objects are associated, further processing
is not required. Similarly, if only dynamic radar clusters are
available in a frame, only the first three stages are performed.

E. MANUAL VALIDATION OF ANNOTATED FRAMES

Manual validation of annotated frames is a relatively simple
process. For every annotated frame, it is checked whether the
frame has valid annotations or not. For this purpose, each
camera frame is visualized with object bounding boxes, and
then radar points are projected on the camera image with their
clusters and instances. During the process of validation, each
frame (camera + radar) is classified as a correct frame, a label
change frame, or a manual label frame.

Correct frame implies that the automatic labeling frame-
work output is satisfactory for that frame and can be used
directly. Label change frame occurs when one or more
object categories of the correctly detected bounding box from
camera pre-processing module are wrong. In this case, it is
comparatively simple to change the category in JSON files in
apost-processing step. A manual label frame is a frame where
automatic labeling has failed for one or more objects. This
can be due to one or more reasons, such as when the camera
image is not visible enough to detect an object(s), any new
object category is defined that is not part of pre-trained mask
R-CNN output, like a new category - GROUP, defined in this
work or when only one radar point is reflected from the object
that is not clustered and hence didn’t associate during auto-
labeling algorithm. Such frames are then manually labeled
in camera images and passed again through the auto-labeling
pipeline to generate radar annotations.

F. PROCESSING OF LABEL CHANGE FRAMES

In this process, the frames are manually checked to determine
the correct object category (or label) and then updated during
the creation of annotation JSON files for camera and radar
data. For example, in some images, a bicycle is incorrectly
labeled as an adult (pedestrian) by a state-of-the-art object
detector. In this step, such labels are changed to correct
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labels such as a bicycle. Similarly, in some images, a van is
classified as a truck, but for this work, it is then changed to a
car.

G. PROCESSING OF MANUAL LABELING FRAMES

In manual labeling, bounding boxes are hand-crafted from
camera images by humans. To simplify the process, radar
clusters from dynamic and static road users generated from
the radar pre-processing pipeline are projected onto the
corresponding camera image using the projection matrix Tgc
as shown in Fig. 13. This image with projected radar clusters
acts as areference image for manual labeling. Then, the actual
camera image is loaded into the open source python-based
labeling tool, Labelimg [46]. Bounding boxes are manually
created on the valid road users in the image, and a reference
image is used to identify the valid road users. Once the
bounding boxes are created, the annotated camera image
and corresponding radar clusters are fed back into the auto-
labeling module, which generates the annotations for the
camera and radar data.

3D radar Camera
~ point cloud RGB
clusters image
i |
TRC Manual
labeling of

Projection

camera image
(bbox, class)

Reference
image
Auto
labeling
Manual
validation

-

FIGURE 13. Processing pipeline of manual labeling in corner cases.

VII. EXPERIMENTS AND DISCUSSIONS
To validate the described semi-automatic annotation method-
ology, a large amount of data (RGB mono camera images
and 3D radar point cloud frames) is annotated for sensor
data fusion development, which will be separately published
later. However, a considerable subset of these annotated data
is published in the public domain as part of this work and
is referred to as the INFRA-3DRC dataset. Details of this
dataset including all relevant statistics are provided later in
this section.

In addition, to prove that the given dataset generated
using the proposed methodology is suitable for the research
and development of different perception algorithms using
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deep learning methods, a deep learning-based radar cluster
classification model and an image classification model are
developed, trained, and tested using this dataset.

A. INFRA-3DRC DATASET

The dataset comprised 25 scenes recorded using the smart
infrastructure setup described in section III. These scenes are
recorded at three different locations. The first location is a
pedestrian crossing junction with traffic lights and a curved
road, the second location is a multi-lane bidirectional straight
road, and the third location is an open parking space. Apart
from different locations, data is collected during daylight,
twilight (in the evening time), and night.
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FIGURE 14. Instance-wise distribution of object categories in camera and
radar.
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FIGURE 15. Distribution of total radar points labeled in each object
category.

The dataset contains a total of 2, 768 annotated frames,
each of the RGB camera and the 3D radar, and the same
number of non-annotated lidar frames. Instances of six object
categories are provided: adult, group, bicycle, motorcycle,
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FIGURE 16. Distribution of the average number of radar points available
in one instance of each object category.

car, and bus. To generate annotations, camera, and radar
frames are input to the semi-automatic annotation framework
described in this work, and annotations are stored in JSON
files. Furthermore, to comply with the European general data
protection regulation (GDPR) [47] of data privacy, clearly
visible human faces and vehicle number plates in camera
images are anonymized using state-of-the-art algorithms
known to the best of the author’s knowledge. In each
scene, a unique track ID is also associated with every valid
traffic user using a separate visual 2D multi-object tracking
algorithm that is not part of the described work. This is
added in order to facilitate the multi-object tracking algorithm
development along with object classification, detection, and
segmentation algorithms using this dataset.

Fig. 14 shows the total number of instances of each object
category of the camera and radar in the complete dataset.
In some object categories, the number of instances in radar is
less than that in camera instances because, in a few instances,
the radar sensor has no points reflected from the object. This
is inherent to radar sensors because in certain cases, either due
to high noise in the reflected signal or due to inappropriate
angle formation between the object and the sensor, some
radar reflections do not qualify as valid detections. Therefore,
in such cases, only camera instances are included in the
annotation file. The camera data has a total of 4172 instances,
and the radar data has a total of 4074 instances of all object
categories. Hence, in the complete dataset, 98 instances
(2.34% instances) have only camera annotations.

Fig. 15 shows the distribution of the total number of
radar points labeled in each object category. In the complete
dataset, 22, 966 radar points are labeled for valid traffic users.
Fig. 16 shows the distribution of the average number of radar
points available in one instance of each object category. The
actual number of points in different instances of the same
object category can have a large deviation from the average
points. For example, in the category of cars, even though
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FIGURE 17. Distribution of the auto-labeled and manually labeled frames in each scene of the dataset.

the average radar point is 4.82 (approximately 5 points per
instance) but when the car is seen by the radar sensor from
the side, the number of points is 10 or more.

Fig. 17 highlights the results of the proposed semi-automatic

labeling methodology for the published dataset. For each
scene, the total number of auto-labeled and manually labeled
frames is given. From a total of 2, 768 frames of all 25 scenes,
2075 frames are auto-labeled and 693 frames are manually
labeled. It means 75% of the total frames are auto-labeled
using this methodology. Further, if the scenes 11, 12, and 13
of Fig. 17 are removed from the calculation because these
three scenes contain the newly proposed object category
GROUP, which requires complete manual labeling, then
the contribution of auto-labeling in the published dataset
reaches 85%.

B. IMAGE CLASSIFIER

A deep neural network-based image classifier is developed
and trained for 6 object categories using the annotated dataset
described in section VII-A. The architecture of the classifier
model is shown in Fig. 18. It has a total of 204k learning
parameters.

The distribution of object instances in annotated image
data is given in Fig. 14. From this distribution, 10% of the
instances from each object category are randomly selected
for validation and 15% for the test. Because the number
of instances of motorcycles is very low compared with
other categories, various augmentation techniques such as
horizontal flip, brightness, contrast, and rotation are used to
increase the number of instances of motorcycles.

Then, training is performed for 40 epochs using the
parameters highlighted in Table 3. The trained model is used
on a test set to generate predictions that provide an accuracy
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FIGURE 18. Neural network architecture of image classifier.

of 98.26%. Fig. 19 highlights the confusion matrix generated
using the test set.
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TABLE 3. Image classifier model parameters used during training.

Parameter Value
batch size 8

loss Cross entropy
optimizer Adam
learning rate 0.0001
input size (128,128,3)
output classes 6
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FIGURE 19. Confusion matrix of the trained image classifier.

TABLE 4. 3D Radar clusters classifier model parameters used during
training.

Parameter Value

input features X, y, Z, range_rate, rcs
batch size 4

loss Cross entropy
optimizer SGD

initial learning rate 0.1

end learning rate 0.001
learning rate scheduler linear

output classes 6

C. 3D RADAR CLASSIFIER

For the 3D radar cluster classification task, the entire dataset
is split such that 70%, 10%, and 20% of instances from each
class are randomly selected for training, validation, and test
sets, respectively. To mitigate the risk of inefficient training
caused by a class imbalance in the training dataset, a class
weighting scheme is used in the cross-entropy loss function.
In this way, the loss of samples that belong to the minority
class in the training dataset gets a higher weight, enabling
the network to focus more on learning the under-represented
classes using only a few training samples.

VOLUME 12, 2024

True Label

motorcycle  bicycle group adult

car

bus

0.00%
0)

0.20%
(1)

0.00%
0)

adult

Input 3D radar cluster

st

mip

v

output 2

=]

scores =
=

=
=

0.00%
0)

FIGURE 20. Neural network architecture of radar classifier.

1.0

2.08% 0.00%

(2) (0)
08
0.00% 0.00%
) )
0.00% 0.00% 0.6
0) (0)
0.00% 12.50% 0.00%

(2) (0) 04

0.60%
(3) (3)

98.21%
(494)

0.20%

0.00% 0.00% 5.17%
©) ) 3)
; ; ; 00
bicycle  motorcycle car bus

Predicted Label

FIGURE 21. Confusion matrix of the trained radar classifier.

Fig. 20 shows the architecture of the developed neural
network classifier. It contains 109k trainable parameters for
classifying the 3D radar point cloud clusters. The network
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is partly inspired by pointnet [48]. Because the number
of points N varies across clusters, shared MLPs (multi-
layered perceptrons) are used for local feature extraction.
Each MLP is followed by a relu activation function, except
for the final dense layer, which uses softmax activation to
generate class-wise object probabilities. At each stage, the
network also captures global features using a max pooling
operation and fuses them with local features generated using
shared MLP.

The network is trained for 50 epochs using the parameter
values highlighted in Table 4. The network takes a cluster of
3D radar points as an input and outputs class probabilities for
6 classes. Each feature of the input cluster is normalized using
statistics generated from the training dataset to ensure stable
training of the model. After training, the model performance
was evaluated on the test set for generating the confusion
matrix shown in Fig. 21. The accuracy of the model on the
test set is 94.86%.

In Fig. 19 and 21, the total percentage of true positives
(correct classification) of the category “GROUP”’ is slightly
less than other categories because INFRA-3DRC dataset
contains less number of instances in this category and
hence model misclassified some instances into adults or
bicycles. This can be well improved by feeding more
data.

VIil. CONCLUSION

A semi-automatic annotation methodology to annotate RGB
mono camera images and 3D automotive radar point cloud
frames in a smart infrastructure-based sensor setup is
presented in this work. To validate the work, a new dataset,
named the INFRA-3DRC dataset is generated within the
scope of the work and published using this methodology,
where 75% of the total frames were annotated automatically
without human intervention. Further, an image classifier
and a radar cluster classifier are developed, trained, and
tested on this dataset, resulting in an accuracy of 98.25%
and 94.86% respectively. This indicates that the described
methodology reduces human efforts, cost, and time required
for data labeling. Further, it is well suitable to generate
custom datasets for camera and radar sensors to develop
Al models for classification (presented in this work), object
detection, segmentation, multi-object tracking, etc. There
are some corner cases where manual labeling work is still
required, such as crowded traffic scenes where distant objects
overlap in the image plane, which results in association
ambiguity, radar frames where an object reflects only one
radar point, and extremely low visibility environments that
degrade the accuracy of image-based object detection. These
corner cases will be addressed in subsequent work to enhance
the performance of the presented methodology.
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