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Abstract: Lithium-ion traction battery systems of hybrid and electric vehicles must have a high level
of durability and reliability like all other components and systems of a vehicle. Battery systems get
heated while in the application. To ensure the desired life span and performance, most systems are
equipped with a cooling system. The changing environmental condition in daily use may cause
water condensation in the housing of the battery system. In this study, three system designs were
investigated, to compare different solutions to deal with pressure differences and condensation:
(1) a sealed battery system, (2) an open system and (3) a battery system equipped with a pressure
compensation element (PCE). These three designs were tested under two conditions: (a) in normal
operation and (b) in a maximum humidity scenario. The amount of the condensation in the housing
was determined through a change in relative humidity of air inside the housing. Through PCE
and available spacing of the housing, moisture entered into the housing during the cooling process.
While applying the test scenarios, the gradient-based drift of the moisture into the housing contributed
maximum towards the condensation. Condensation occurred on the internal surface for all the three
design variants.

Keywords: traction battery system; condensation; durability test; pressure compensation element;
behavior of an enclosed system

1. Introduction

One of the biggest challenges while designing automotive traction batteries is the durability of
the battery system and its components [1,2]. The lifespan of the lithium-ion cell is expressed in terms
of a charge cycle. According to William et al. [3], the end life of a battery in electric vehicle (EV)
applications can be defined as when the battery capacity reduces to 80% of its initial capacity. Previous
studies have shown that the lifespan of batteries is between 5–15 years [4–10]. The life of the battery
depends on the cell material, operating conditions, and environmental conditions. The battery system
is exposed to fluctuating environmental conditions [11] in vehicle applications. To ensure the safe
operation of lithium-ion cells, and to prolong their lifespan, hybrid and electric vehicle battery systems
are equipped with cooling systems. Using a liquid or an evaporative cooling system can result in
the condensation of water inside the battery system. Condensation occurs if the temperature of the
cooling plate is below the dew point. It can damage the electrical components, cause corrosion inside
the system, reduce the insulation resistance, as well as it may accelerate the aging of the cells [12].
These effects will shorten the life of the battery system, especially of electrical devices and metallic
parts [12].

Energies 2019, 12, 1171; doi:10.3390/en12061171 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-8981-6409
http://www.mdpi.com/1996-1073/12/6/1171?type=check_update&version=1
http://dx.doi.org/10.3390/en12061171
http://www.mdpi.com/journal/energies


Energies 2019, 12, 1171 2 of 17

If the surface temperature of a component is below the dew point, water will condense [13,14].
Pressure compensation elements (PCE) are usually integrated into the battery housing to compensate
for the pressure difference between the interior and exterior of the battery system. The pressure
differences are caused by fluctuation of temperature and pressure. During the operation in severe
environmental conditions such as in Asia, there exists a risk that the ambient humidity enters through
the PCE and increases the amount of vapor in the housing, leading to the higher possibility of system
failure. Moreover, the risk of condensation is higher if liquid cooling is implemented in the battery
system [13].

To optimize the life span as well for the robust design of battery systems, knowledge of the
amount of water condensation is crucial. The knowledge of the external factors (e.g., operational
conditions, amount and design of PCEs, causes and influences of water condensation) can lead to the
better design of longer lasting battery systems.

2. Materials and Methods

To simulate the environmental conditions and to identify if vapor in the housing of the battery
condenses during the usage of the battery system, experiments were carried out using a physical
simulated battery system (PSBS). This simulator covers the attributes of the battery system which affect
the condensation phenomenon inside the housing. This PSBS mimics three battery system designs:
(1) a sealed battery system, (2) an open system and (3) a battery system equipped with a pressure
compensation element (PCE).

The most important environmental quantities that affect the condensation inside the battery
housing and performance of the battery system are the air temperature, humidity, and ambient
pressure. Therefore, the equipment installed within the simulator was set up to measure the internal air
pressure, relative humidity, temperature, and ambient pressure. The battery housing was additionally
monitored with the help of a dew sensor and a camera to determine when condensation appears.
Using the recorded data, the absolute humidity of air within the housing was calculated (refer to
Equation (1)). It was assumed that the amount of condensation was equivalent to the reduction of
absolute humidity of air in the housing. The experiments were carried out with two test profiles:
(a) normal operation and (b) abnormal operation. Normal operation means simulating the actual
operation of the battery and cooling system. The abnormal operation is considered as the worst case
scenario of the faulty battery system.

2.1. Design of the Physical Simulator

The PSBS was designed as a scaled model to mimic the thermal behavior of a real traction battery
system of hybrid or electric vehicles. Instead of real lithium-ion cells, simulated cells were used to
ensure safe operation. The PSBS mimics the following factors and parameters of battery systems:

• Thermal simulation of lithium-ion pouch cells with a capacity of 20 Ah, similar to the cells of
an EV;

• Equivalent heat capacity and heat conductivity as real lithium-ion cells;
• Active cooling with liquid coolant by means of a cold plate in the bottom of the housing;
• Cells in direct contact with the cold plate;
• Housing classified as waterproof with leak rate below 1 Pa·dm3/s (leak rate according to DIN

EN1330-8 [15]);
• A free volume ratio of about 20%.

Housing: The housing of dimension of 236.0 mm × 216.0 mm × 166.0 mm (length × width
× height) having an accuracy of ±0.5 mm was constructed out of four 8.0 mm aluminum 7020
(AlZn4.5Mg1) plates. The thickness of the aluminum plate was selected according to the insulation
requirement of the housing and the availability of the material. To avoid bending caused by
pressure changes, a thick stainless-steel plate (1.4301 type, 20.0 mm ± 0.5 mm) was used as a
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top plate. The 18.0 mm ± 0.5 mm thick base plate made up of stainless steel, manufactured by
Austerlitz electronic GmbH (Nuremberg, Germany) had served as a cold plate. Six copper tubes
of 10.5 mm ± 0.5 mm diameter were incorporated in the cold plate providing the path to the cooling
liquid. The cooling liquid was prepared by using a mixture of water and 50 vol. % Glysantin G30
(BASF SE, Ludwigshafen, Germany). The temperature of the coolant was controlled by CC-405
refrigeration bath circulator (Peter Huber Kältemaschinenbau AG, Offenburg, Germany). According to
the datasheet, the bath circulator was capable of controlling the temperature of the coolant in the range
of −40–200 ◦C with temperature stability of 0.02 K at −10 ◦C [16]. It had a heating capacity of 1.5 kW
and a cooling capacity of 0.7 kW in the range of 0–100 ◦C [16]. The simulated cells were placed on a
cold plate for direct contact cooling to allow the efficient heat transfer between the cells and coolant.
The top of the housing was enclosed by the stainless steel plate with a rubber seal and held fixed with
four C-clamps.

The battery system designed with PCE, had the breather drain castellated locknut type M20
PCE (Klippon BDX by Weidmueller GmbH, Detmold, Germany) [17] mounted on the right plate
of the housing with the help of an O-ring seal. In the case of the sealed system, a bolt of diameter
M20 was used instead of the PCE to close the housing. A ball valve was additionally attached to
enable simulating an open system. On the open end of the valve, a nozzle with an inner diameter
of 7 mm ± 0.5 mm, outside diameter 9 mm ± 0.5 mm and a length 107 mm ± 0.5 mm was attached.
The complete experimental setup is represented in Figure 1.
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Figure 1. Housing of the physical simulated battery system (PSBS) (A: Ball valve, B: Nozzle, C: PCE,
D: U profile on the cold plate, E: housing, F: thermocouple, G: dew sensor, H: 17 mimicked cells, I:
pressure sensor, J: cables for humidity sensor, K: outlet of the coolant, L: inlet of the coolant).

Cell mimic: Using mimicked cells provides a high degree of freedom in generating heat profiles
without the need for safety precautions. In addition, there was no influence of any cell aging
effects. The main goal of designing such cell mimic was to simulate the thermal behavior of a
real lithium-ion cell.

In real battery systems, heat is generated in all the cells. To avoid significant temperature gradients
in the PSBS, which would affect the condensation of vapor on the surfaces, resistive heating foils were
used to emulate power losses in all of the mimicked cells (see Figure 2). This allows uniform, constant
and reproducible heat generation without adhering to real thermal and voltage limits of a cell.
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Figure 2. Geometric representation of the mimicked cell (1) Heating foil (2) Aluminum sheet
(3) polymethyl methacrylate (PMMA).

To simulate, a pouch or a prismatic cell design was selected as these types are widely used
in hybrid and electric vehicle battery systems like A3 etron (AUDI AG, Ingolstadt, Germany) [18],
Volt 2016 (Chevrolet, Detroit, MI, USA) [19], and Leaf (Nissan, Yokohama, Japan) [20]. The specific
heat capacity and heat generation should be equivalent to real lithium-ion cells. According to
the literature [21–24], lithium-ion pouch cells have a specific heat capacity of about 1 kJ/(kg·K).
Hence, a composite was made by alternate stacking of four aluminum EN-AW 1050 (Al 99.5%)
sheets with specific heat capacity 0.897 kJ/(kg·K) [25] and four polymethyl methacrylate 99532GT
(Evonik Performance Materials GmbH, Darmstadt, Germany) sheets (PMMA sheets) with specific heat
capacity 1.47 kJ/(kg·K) [26] and gluing them together with Pattex PCL6C (Henkel AG, Düsseldorf,
Germany). Both aluminum and polymethyl methacrylate (PMMA) sheets were of the thickness of
1.00 mm ± 0.05 mm. In the middle of the stack, a heating film made by Thermo Technologies GmbH
(Rohrbach, Germany) was embedded (Figure 2). At a nominal voltage of 24 V, this film dissipates 20 W
± 2 W [27]. With an overall weight of 311.2 g, this setup has a heat capacity of 0.334 kJ/K, if the heat
capacity of the heating film and adhesive are neglected. The specific heat capacity of 1.07 kJ/(kg·K)
was achieved for the mimicked cells. The 17 simulated cells of dimension as per Table 1 were connected
in parallel in the battery system and were supplied with electric energy by the HCS3302 power supply
(Manson Engineering Industrial Ltd., wai Chung, Hong Kong).

Table 1. Geometric size of a mimicked cell.

a (mm) b (mm) c (mm)

200.0 ± 0.5 100.0 ± 0.5 83 ± 1

2.2. Experimental Setup

The experimental setup and the position of sensors are shown in Figures 3 and 4. The PSBS was
tested in the ATT TCC 4025 climatic chamber (made by Angelantoni Test Technologies Srl, Massa
Martana, Italy). It has an operating temperature range of −40.0–180.0 ◦C with an accuracy of 0.3 ◦C.
The relative humidity (RH) range of the climatic chamber is 10–98% with an accuracy of ±3% in the
temperature range of 5–95 ◦C [28].

The following sensors were installed in the PSBS and the climatic chamber for measuring the data
such as temperature, humidity, condensation and pressure (Figure 3):

• T1 to T6: RS Pro 479-1788—Type K thermocouples (RS Components GmbH, Mörfelden-Walldorf,
Germany);

# Temperature measuring range of −100–250 ◦C,
# T1 to T5 was installed in the housing and T6 on the outside front wall of the housing.

• H1 to H3: SHT75—Humidity and temperature sensors (Sensirion AG, Staefa ZH, Switzerland) [29];
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# Humidity measuring range of 0–100% with an accuracy of ±3%,
# Temperature measuring range of −40.0–123.0 ◦C with an accuracy of ±0.4 ◦C,
# H1 was installed at the cold plate, H2 at the simulated cells and H3 in the climatic chamber.

• D1 and D2: SHS A5—Dew sensors (B + B Thermo-Technik GmbH, Donaueschingen,
Baden-Württemberg, Germany) [30];

# Detect condensation at surfaces,
# D1 was mounted on the outside of the front wall and D2 was on the cold plate at the inlet

in the housing.

• P1 and P2: HP03S—Pressure sensors (Pollin Electronic GmbH, Pfoerring, Germany) [31];

# Uses piezo-resistive effect and provides the absolute pressure,
# Range from 300.0–1100.0 hPa with accuracy ±1.5 hPa in the operating temperature range

of −20–60 ◦C,
# P1 was mounted in the climatic chamber and P2 was in the housing.

The USB-4718 module (Advantech Co., Ltd., Taipei, Taiwan) was used for the data acquisition
and controlling a ball valve:

• 1
2 inch motorized ball valve;

# Mounted on the coolant pipe,
# Simulates the worst case of extreme temperature change in a short time,
# Driven by 12 V supply,
# Duration of opening and closing was 4 s ± 1 s.

• 6 thermocouples

The valve, thermostat, sensors, and power supply to drive the heating films were controlled
through a LabVIEW program. The connection between the sensors and equipment is shown below
in Figure 4. The program’s control cycle, as well as the measurement and data recording cycle, were
synchronized to a 3.58 s time interval. The recording of values was based on the computer’s real-time
clock, which was synchronized to international standards all the time. Thus, all time data and durations
in the present research can, therefore, be interpreted as accurate to this interval.
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H2: humidity sensor at the simulated cells, H3: humidity sensor on the climatic chamber, P1: pressure
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2.3. Quantification of the Condensed Water

The quantity of the condensed water in the battery housing was determined by the change in
absolute humidity of the air inside the housing. Absolute humidity (H) is the mass of water vapor
present in a certain volume of air and is usually expressed as the grams of moisture/water vapor per
cubic meter of air (g/m3). It was assumed that, with the sealed housing, the amount of water vapor
inside the housing remains constant. If water vapor condenses, the absolute humidity of the air would
be reduced, because a portion of the water vapor in the air condenses onto the surfaces and with the
evaporation of the condensed water, the absolute humidity inside the housing increases.

The absolute humidity of the air is dependent upon the vapor pressure pD (measured in hPa) and
temperature θ (in ◦C) [14,32] and the pressure and temperature θ are interrelated. With the assumption
of ideal gas behavior, H was calculated by Equation (1) [33],

H(θ) = C·
pD(θ)

(273.15 + θ)
(1)

where C = 2.167 g·K/J [33].
The vapor pressure pD was calculated by Equation (2) using the measured relative humidity and

the saturation vapor pressure pDS,

pD(θ) =
RH·pDS(θ)

100%
(2)

Saturation vapor pressure was determined using the empirical Magnus equation
(Equation (3)) [34],

pDS(θ) = A· exp( m·θ
Tn+θ ) (3)

where

A = 6.112 hPa,
m = 17.62,
Tn = 243.12 ◦C (the value is valid when the temperature is in range of −45–50 ◦C).

The dew point θD is the temperature at which the air is saturated with water vapor, and the partial
vapor pressure is equal to the saturation vapor pressure. Cooling below the dew point temperature
leads to the condensation of vapor to dew/water droplets. Vapor pressure at dew point temperature
was calculated using Equations (4) and (5).

pD(θD) =
RH·pDS(θ)

100%
(4)

θD =
B·Tn

m − B
(5)
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where B = ln ( RH
100% ) + m·θ

Tn+θ .

2.4. Test Profiles Used to Investigate Condensation in Harsh Environmental Conditions

2.4.1. Test Profile 1 (Normal Operation)

The test was performed to study the behavior of the battery system and to understand the process
of condensation in the housing for the normal operation of the battery during field application. Battery
operation and the cooling of the battery system was simulated for this experiment. An experiment
replicated the actual normal operation of the battery and cooling of the battery system. The flow
diagram of this experiment is shown in Figure 5. Initially, the climatic chamber temperature and
relative humidity were adjusted to 40 ◦C and 95% respectively, simulating hot and humid ambient
conditions. In order to ensure the similar initial condition of the battery system for all the experiments,
a temperature of 30 ◦C and relative humidity of 50% for the battery system was used as an initial
condition. Once it was met, the heating films inside the simulated cells were switched on, radiating
100 W of heat (equivalent to a 3 C current), which is considered as a worst case in HEV/BEV (e.g., fast
DC charging for 20 min for 500 V battery system). Simultaneously, the cooling system was pumping
cooling liquid with 0.7 × 103 hPa pressure at a temperature of 10 ◦C with a rate of 25 dm3/min through
the battery. This was carried out for 3 h (h) followed by the 3 h rest period where the heating films and
cooling system were turned off. After the rest phase, again heating and cooling of the battery system
were turned on and the whole cycle was repeated three times resulting in a total experiment duration
of 18 h.
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Set resistive heating films to 100 W 
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rel. humidity = 95 %

Deactivate heating and 
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3 cycle
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Wait 3 h

Figure 5. Test Profile 1 (for examination of the condensation during the normal operation of battery in
hot and humid conditions).
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2.4.2. Test Profile 2 (Abnormal Operation)

To investigate the condensation in harsh environmental conditions under an improperly working
cooling system, an experiment was conducted simulating the following conditions: Phase (a) fully
functional battery system without cooling (simulating a defective cooling system), followed by phase
(b) where the cooling system was configured incorrectly and a temperature of the cooling fluid was
set to −10 ◦C ± 0.02 ◦C. The profile was designed to reproduce the worst case scenario of a faulty
battery cooling system. Phase (a) is an example of charging the battery without activating the cooling
system. In phase (b), pre-tempered fluid at temperature −10.00 ◦C ± 0.02 ◦C was circulated through
the cooling plate to reach the maximum cooling speed. This temperature was selected because it is
possible that the battery system gets exposed to such lower temperature in daily life usage (e.g., during
parking) and as per the United States Department of Energy the vehicle test at cold temperature shall
be carried out at −7 ◦C [35]. It was expected that the temperature drop would lead to a noticeable
pressure change in the system and a large amount of condensation in the housing.

The experiment was conducted as shown in Figure 6. For pre-conditioning of the climatic
chamber, the temperature and the relative humidity were set to 60 ◦C and 95% respectively. When the
temperature and relative humidity of the battery system reached 30 ◦C and 50%, the 3-way valve was
closed to prevent the pre-tempered coolant from entering the cold plate. The maximum opening and
closing time of the valve was 4 s. Then the heating films of the mimicked cells were switched on for
30 min radiating 100 W heat. Entering the phase (b), heating was turned off and the valve was opened
to allow precooled fluid to flow through the cold plate for 30 min. Afterwards, the valve was closed
and the mimicked cells were heated again. The entire test took 40 h with 40 cycles repetition.
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Start

Set cooling fluid = 10 °C

Wait for system sensor value
temperature = 30 °C
rel. humidity = 50 %

Switch off heating films 
Open 3-way valve to flow cooling fluid 

into cooling plate

Wait 30 min
Set cooling fluid = - 10 °C

End

40 cycle

Set environmental condition  
temperature = 60 °C
rel. humidity = 95%

Set resistive heating films to 100 W 
Set 3-way valve to no -cooling position

Wait 30 min

Figure 6. Test profile 2 (for examination of the condensation with a faulty cooling system in harsh
environmental conditions).
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3. Results

Both the test profiles, the normal operation, and abnormal operation were carried out with all
three housing design variants to understand the process of condensation and its effect:

• Design Variant 1: Sealed battery system, tightness according to DIN EN1330-8 [15].
• Design Variant 2: Open battery system, opened using the ball valve next to the PCE.
• Design Variant 3: Battery system equipped with a PCE [13];

# Tested additionally for 120 h to understand the response of PCE and behavior of absolute
humidity when tested for a longer period of time.

The parameters that were analyzed are:

• Pressure inside the battery housing (Pin),
• Pressure outside the battery housing—Climatic chamber pressure (Pout),
• Absolute humidity on the cold plate at the input in the housing (H1),
• Absolute humidity at the simulated cells (H2),
• Condensation detected (C)/No condensation detected (N.C).

3.1. Design Variant 1: Sealed Battery System

3.1.1. Test Profile 1 (Normal Operation Profile with Sealed System)

Figure 7 represents the pressure and the calculated absolute humidity of the air present in the
battery housing as a function of time for the sealed system. The following outcomes were observed:

• The pressure difference between inside and outside of the battery system was 3 hPa at the starting
of the first cycle and increased to 10 hPa in the subsequent cycles.

• At the starting of the test, both the heating films and fluid cooling were activated simultaneously
and the drop in absolute humidity of air was observed. It reduced from 15.0 g/m3 ± 0.8 g/m3 to
12.4 g/m3 ± 0.6 g/m3.

• Condensation was observed on the cold plate due to change in temperature and pressure. In the
case of the first cycle, condensation was detected for 43 min, and in the subsequent cycles for
102 min and 106 min.

• Evaporation of the condensed vapor (water) was observed when the simulated cells were heated
using the heating films of the cells. The cycle of condensation and evaporation was noticed
multiple times in the entire process.

• The maximum absolute humidity of the air for all the cycles during the entire test was always
within 23 g/m3 ± 1 g/m3, indicating that the system was sealed properly.

The difference between the maximum and minimum value of absolute humidity at the end of the
last cycle was 10 g/m3 ± 2 g/m3. Hence, based on these value of absolute humidity, the amount of
condensation within the battery system having 1.5 × 10−3 m3 ± 4% of the free volume was calculated,
which resulted in 16 mg ± 3 mg.
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Figure 7. Pressure, absolute humidity and condensation measurements for the sealed battery system
(without a PCE) during normal operation: (a) Pressure in the housing (Pout: external pressure the
system, PIn: internal pressure the system) (b) Calculated absolute humidity of the air and condensation
inside the housing (H1 absolute humidity on the cold plate at input in the housing, H2: absolute
humidity on the inner wall in the housing, black line: the detection of the condensation by the dew
sensor, C: condensation detected, N.C: no condensation detected).

3.1.2. Test Profile 2 (Abnormal Operation Profile with Sealed System)

The test with abnormal operation profile was carried out and the pressure difference between
the housing and the chamber was recorded (Figure 8). When the heating films were active, the
pressure inside the battery housing (Pin) increased from the initial value of 980.0 hPa ± 1.5 hPa
to 1016.0 hPa ± 1.5 hPa during the first cycle and a subsequent increase in pressure was noticed
throughout the test, reaching till 1034.0 hPa ± 1.5 hPa in the last cycle. As the heating was turned off and
the coolant (−10 ◦C) flowed into the cold plate, the overall temperature of the system was decreased
and hence, the Pin initially decreased to 930.0 hPa ± 1.5 hPa (max) during the starting cycles of the test.
A subsequent decrease of this value was noticed throughout the test until 917.0 hPa ± 1.5 hPa in the
last cycle).
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Figure 8. Pressure variation in the battery housing and climatic chamber in case of the sealed battery
system during abnormal operation.

Caused by the heating of the mimicked cells, the condensed water was evaporated and the
absolute humidity in the air inside the housing increased. The peak absolute humidity tended to
increase in the further cycles. Due to the large temperature difference between the heated cells and the
cooling fluid at −10.00 ◦C ± 0.02 ◦C, the water vapor in the housing condensed on the surface of the
cold plate. It had been noticed that the maximum peak of the absolute humidity had kept on increasing
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during the entire test. For the first cycle, absolute humidity had reached till 63 g/m3 ± 3 g/m3 while
for the last cycle the value was 77 g/m3 ± 4 g/m3 (Figure 9). This indicates that the system had
partly lost its seal and was leaking. Thus, the water vapor exchange was observed. As it was not
completely open, pressure differences were noticed. From the recorded parameters, the condensation
of 98 mg ± 10 mg was calculated in the last cycle.
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3.2. Design Variant 2: Open Battery System

3.2.1. Test Profile 1 (Normal Operation Profile with Open System)

Condensation was observed on the cold plate during the operation of the heating films and the
cooling system simulating the normal application of the battery system. The maximum and minimum
absolute humidity of the air inside the battery housing was 29 g/m3 ± 1 g/m3 and 13 g/m3 ± 1 g/m3

respectively (Figure 10). The minimum condensation within the open system was 26 mg ± 4 mg.

Energies 2019, X, x FOR PEER REVIEW  12 of 18 

 

 
Figure 9. Absolute humidity of the air and condensation inside the housing during abnormal opera-
tion in case of a sealed battery system. 

3.2. Design Variant 2: Open Battery System 

3.2.1. Test Profile 1 (Normal Operation Profile with Open System) 

Condensation was observed on the cold plate during the operation of the heating films and the 
cooling system simulating the normal application of the battery system. The maximum and minimum 
absolute humidity of the air inside the battery housing was 29 g/m3 ± 1 g/m3 and 13 g/m3 ± 1 g/m3 
respectively (Figure 10). The minimum condensation within the open system was 26 mg ± 4 mg. 

 

Figure 10. Absolute humidity and condensation measurements for the open battery system during 
normal operation. 

3.2.2. Test Profile 2 (Abnormal Operation Profile with Open System) 

During the test on the open battery system with an abnormal operation profile, no pressure dif-
ference between the inside and the outside of the housing was detected. The maximum absolute hu-
midity increased rapidly until 97 g/m3 ± 4 g/m3 measured at the 20th h. After that, the maximum 
absolute humidity in the housing was constant in further cycles (Figure 11). Furthermore, no evapo-
ration was observed during the heating phase. The maximum absolute humidity in the last cycle was 
107 g/m3 ± 4 g/m3 and the amount of condensation was minimum 140 mg ± 10 mg. 

Figure 10. Absolute humidity and condensation measurements for the open battery system during
normal operation.



Energies 2019, 12, 1171 12 of 17

3.2.2. Test Profile 2 (Abnormal Operation Profile with Open System)

During the test on the open battery system with an abnormal operation profile, no pressure
difference between the inside and the outside of the housing was detected. The maximum absolute
humidity increased rapidly until 97 g/m3 ± 4 g/m3 measured at the 20th h. After that, the
maximum absolute humidity in the housing was constant in further cycles (Figure 11). Furthermore,
no evaporation was observed during the heating phase. The maximum absolute humidity in the last
cycle was 107 g/m3 ± 4 g/m3 and the amount of condensation was minimum 140 mg ± 10 mg.Energies 2019, X, x FOR PEER REVIEW  13 of 18 
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Figure 11. Absolute humidity of the air and condensation inside the housing during abnormal
operation in case of the open battery system.

The condensation duration on the cold plate per cycle increased in accordance with the number
of cycles. This can be explained by moisture entering from the outside into the battery through the
opened valve.

3.3. Design Variant 3: Battery System Equipped with A Pressure Compensation Element (PCE)

3.3.1. Test Profile 1 (Normal Operation Profile with PCE)

For the battery system equipped with PCE, no pressure difference between inside and outside of
housing was observed, as the PCE compensated the pressure difference at all the times. In the first
cycle, when the cells were heated and coolant was flowing, no condensation was detected even though
the absolute humidity in the housing dropped from 14.6 g/m3 ± 0.8 g/m3 to 12.3 g/m3 ± 0.6 g/m3

(Figure 12). The maximum humidity level of the third cycle was 25 g/m3 ± 1 g/m3 which was almost
similar to the first cycle, indicating that virtually no moisture was entering the battery.

While continuing the measurement for 120 h with identical conditions, the absolute humidity
increased to 27 g/m3 ± 1 g/m3. The condensation duration on the cold plate increased in accordance
with the number of cycles (Figure 13). The condensation during the shorter test was minimum 19 mg
± 3 mg and increased to minimum 21 mg ± 4 mg for the 120 h test. It implies that during the tests,
moisture had entered the battery system.
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in case of the battery system equipped with PCE (test of 120 h).

3.3.2. Test Profile 2 (Abnormal Operation Profile with PCE)

Condensation was detected on the cold plate over the entire cooling process. The maximum
absolute humidity increased from 66 g/m3 ± 3 g/m3 in the first cycle to 83 g/m3 ± 4 g/m3 in the
last cycle (Figure 14). The amount of condensation was minimum 100 mg ± 10 mg in the last cycle,
calculated from minimal and maximal relative humidity.

While the battery system was cooled with −10.00 ◦C ± 0.02 ◦C fluid, the condensation was
detected on the cold plate by the dew sensors all the time. Once the heating films of the cells
were active, no condensation was observed and the maximum absolute humidity increased slightly
during measurement.
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4. Conclusions

Three reasons for the condensation of water inside a battery housing were identified. Not all of
them lead to long-term accumulation of humidity in the housing.

Firstly, water vapor already present in the air inside the battery before starting the test will
condense on the surface of cold parts while cooling down. This effect is reversible and will not lead to
further accumulation of water inside the housing while operating the battery.

Secondly, water, in the form of humidity (water vapor present in the air) is passing into the
housing of the battery. This can be explained by air being sucked in through the openings of the
housing when the internal pressure decreases (e.g., caused by temperature decrease). Approximately
the same amount of water will leave the housing when the temperature (and pressure) increases again.
Large temperature differences, e.g., caused by the low temperature of the cooling liquid at high current
loads of the battery, lead to greater pressure changes.

A constant value of maximum absolute humidity was observed for the sealed battery system
with test profile 1. This indicates impermeability of the PSBS housing for the other designs. PCEs are
specially made to allow a balanced pressure inside and outside of the sealed housing while blocking
liquids, dust, and bigger particles. Thus, they negligibly influence the penetration of vapor inside the
housing. The used PCE successfully compensated the internal pressure for all tests (see Figures 12
and 13).

Thirdly, there are gradient based drifts of water (e.g., diffusion caused by partial pressure gradients
and convection caused by temperature gradients), even when pressure is equal inside and outside of
the housing. The direction of diffusion (inside to outside or vice versa) is governed by the gradient
of the partial pressure. When the vapor condenses on the cold plate, the amount of water vapor
reduces in the air and hence, the partial pressure of water vapor reduces locally. To stabilize the
difference of partial pressure between inside and outside of the battery, moisture enters the housing.
The size/resistance of all openings of the housing resists and controls the flow of moisture. Thus,
the usage of a PCE limits the gradient based drift in both the directions (inside to outside or vice versa)
which controls the amount of condensation within the housing.

Tests for all the three design variants were conducted using two different profiles. When the test
was conducted with the normal operation profile, condensation was observed on the cold plate for all
the designs during the cooling process. Under the assumption that the amount of condensation within
the housing corresponds to the reduction of absolute humidity, the maximum condensation for the
sealed system was 16 mg ± 3 mg, for the battery system with PCE it was minimum 19 mg ± 3 mg rising
till 21 mg ± 4 mg for 120 h test and for the open system, condensation was minimum 26 mg ± 4 mg.
No significant difference in the amount of condensation was found between the sealed system and



Energies 2019, 12, 1171 15 of 17

the system equipped with a PCE. Therefore it can be assumed that the PCE limits diffusion. In the
case of an open system, diffusion was the major cause of water vapor transport into the system.
By comparing the results of the open system with the system with PCE, it can also be assumed that the
PCE considerably reduces moisture transport into the system.

As expected, with test profile 2, which was the worst-case scenario (faulty battery cooling system,
charging without cooling followed by maximum cooling speed), generally more moisture was observed
inside the battery. In all the cases, higher condensation was observed and more humidity entered
the housing in comparison to normal operation. With the sealed system, the maximum absolute
humidity increased linearly which indicates air, and therefore water entering from outside. The
maximum amount of condensed water was 98 mg ± 10 mg for the sealed system and minimum
100 mg ± 10 mg for the system equipped with a PCE. Hence, both the sealed system and the system
with PCE were behaving similarly. In the case of an open system, the maximum condensed water
was at least 140 mg ± 10 mg. In comparison to the sealed system and to the system with PCE, more
humidity was transported into the battery in case of the open system and hence, higher condensation
was detected. It was also observed, that the PCE was able to compensate internal pressure fluctuations
caused by the higher temperature variation with the worst-case profile. As a result of these two
observations, it is validated that water vapor is being transported by gradient driven diffusion into the
battery. These results also justify that a PCE reduced the water vapor diffusion into the system.

While equipped in the vehicle and in the field life, the pressure difference in the system may not
only be caused by the cooling system but also, by a change in the height of the vehicle. This may lead to
a bigger influence on the humidity penetration inside the battery. The use of a PCE is recommended, to
avoid differential pressures on the system and it is possible to protect the components against harmful
substances like dirt and dust. The usage of an open housing to compensate the pressure differences
is a bad alternative to a system with PCE, as it was found that the amount of condensed water for
the abnormal operation inside the open system was 40% more compared to a system with PCE in
the worst case scenario. Hence, using the battery system with PCE is one of the best alternatives to
reduce the condensation inside the battery as well as to maintain similar pressure in and out of the
battery system.

Further investigation is required to study the long-time effects regarding the flow rate and effective
diffusion barrier of the PCE membrane for field applications. To avoid condensation of vapor in the
system, the cooling plate surface temperature should be kept above the dew point. To achieve a robust
battery system design, the optimal temperature of the coolant should be selected to prevent damage
from condensation. Also, algorithms in the battery management system might be implemented to
detect, reduce and avoid condensation. This might be achieved by heating up the battery above the
dew point for short periods. A drainage system to handle the liquid might be the other option, but the
drawback of an open system must be kept in mind.
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