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Abstract: During the last decade, research has brought forth a large amount of studies that
investigated driving automation from a human factor perspective. Due to the multitude of
possibilities for the study design with regard to the investigated constructs, data collection
methods, and evaluated parameters, at present, the pool of findings is heterogeneous and
nontransparent. This literature review applied a structured approach, where five reviewers
investigated n = 161 scientific papers of relevant journals and conferences focusing on driving
automation between 2010 and 2018. The aim was to present an overview of the status quo of
existing methodological approaches and investigated constructs to help scientists in conducting
research with established methods and advanced study setups. Results show that most studies
focused on safety aspects, followed by trust and acceptance, which were mainly collected through
self-report measures. Driving/Take-Over performance also marked a significant portion of the
published papers; however, a wide range of different parameters were investigated by researchers.
Based on our insights, we propose a set of recommendations for future studies. Amongst others,
this includes validation of existing results on real roads, studying long-term effects on trust and
acceptance (and of course other constructs), or triangulation of self-reported and behavioral data.
We furthermore emphasize the need to establish a standardized set of parameters for recurring use
cases to increase comparability. To assure a holistic contemplation of automated driving, we moreover
encourage researchers to investigate other constructs that go beyond safety.

Keywords: automated driving; literature review; human–automation interaction; method development

1. Introduction

The advent of automated driving (AD) systems and Human–Machine Interfaces (HMI) marks
one of the biggest game changers in transportation research and development of our time. In 2013,
the Society of Automotive Engineers [1] published the first version of their definition describing
different levels of driving automation, which addresses challenges, sets foundation for future
standardization, and establishes a common language. With SAE Level 2 (L2) driving automation
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already on the road, it is only a matter of time until SAE Level 3 (L3) AD systems (ADS), or even
higher levels, become commercially available. Thereby, the enormous potential of technological
progress has sparked enthusiasm among human factors and Human–Computer Interaction researchers
to develop user interfaces for this novel technology. Investigations of such interfaces through user
studies are then conducted to first determine feasibility, and, in the next step, to fine-tune conceptual
approaches. Here, basic research findings from engineering psychology, and human factors on one
side, as well as computer science on the other, have been applied by automotive industry and academia.
Furthermore, some lessons learned from prior automation development in the aviation sector [2–4]
could be transferred. However, automated driving systems imply different preconditions which makes
the situation much more complex. First, the driving environment is highly time-critical, and thus
interventions must happen in seconds or even fractions of a second, while, in airplanes, pilots usually
have more time to respond to critical events. Second, there exists greater variety among the targeted
user groups. Automated vehicles are consumer products, and driver–passengers will have different
levels of training and technology experience, acceptance of- and trust in automation, etc., and further
come with additional goals (such as “driving fun” or the desire to engage in non-driving related
activities) that are not that relevant, or not even present in classical operator settings. As a result,
there are a wide range of challenges that need to be overcome, and a multitude of papers addressing
these timely issues have been published over the last years. However, it is often hard to integrate
and/or compare the obtained findings, as topics are often investigated differently. Furthermore, due to
the sheer amount of results, it is hard for researchers to identify gaps where they could build upon.

Thus, we claim that the time has come to systematically review which topics in driving automation
received the most attention, and which methods have been applied to investigate these. Therefore,
the present work aims at combining these approaches, and provide researchers and practitioners with
an overview of current and past topics of AD. It also points towards improvements in the future,
and unveils directions that have yet to be investigated. Moreover, we plan to give an impetus towards
a standardization of methodology concerning self-report, behavioral, and physiological measures,
as well as appropriate triangulation approaches of them. The main contribution of this work is twofold,
concerning the status quo and derivation of future research directions:

• Providing an overview of emerging possibilities for study design in driving automation research
• Outlining which constructs have been investigated, which data collection methods have been

applied, and which specific parameters have been calculated and reported

To reach this aim, we developed and followed a structured approach for reviewing related
literature. First, we summarize important topics in driving automation that have been addressed in
the last years, followed by a precise description of inclusion/exclusion criteria for publications used in
this literature review. We then outline a procedure creating a database in which relevant contributions
can be stored. Eventually, descriptive results of queries on the database are presented. The results of
this literature review are expected to add to a better understanding of current trends and research
directions of AD. Hence, it holds a mirror to this community on what has been accomplished and
which future aspects need more attention (see Figure 1).

It is important to note here that the present paper does explicitly not target one specific area
of research in automated driving. On the contrary, it serves the purpose of getting an overview
of constructs on a higher level. From this overview, the work provides an in-depth summary of
methodological approaches and measures within each of the constructs. This combination of high
level comparison between research approaches (and their relative importance until now) as well
as the insights into methodological approaches within each marks the novel contribution of this
work. We acknowledge the fact that there is a large variety of research questions combined here.
However, this work marks a first step to unveil trends in research on automated driving research.
A more constrained work that focuses more specifically on one particular construct might be future
research but is deliberately not part of the present work. Such work can also take into account the
variety of research questions. Eventually, this work aims to come up with recommendations for
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empirical user studies on automated driving. From the reasoning above, we are already aware that
each recommendation might not be suitable for largely different research questions. However, the aim
is to derive recommendations in a general manner so that researchers can adapt these to the specific
research purpose. Moreover, these recommendations are not mandatory in a sense that we mean them
to be forced upon researchers. In our opinion, the recommendations from such a profound database
are meant for researchers to include these in their initial contemplation of study design.

Figure 1. Frequencies of studied constructs (upper row) and used data types (bottom row).

2. Research Status on Automated Vehicle HMIs

The HMI on the one hand shows information of the task (i.e., driving) to the user and on the other
hand offers a possibility to provide input from the user to the driving automation system. User studies
on automated vehicle (AV) HMIs have focused on different constructs, applied different collection
methods, and also evaluated different parameters. In addition, different study design approaches are
possible, which in turn depend on the respective construct and collection measure. However, there is no
common agreed-upon methodological framework for evaluating AVs (and potential in-vehicle HMIs).
Consortia reports are possible sources that researchers could consult [5–7]. Moreover, there have been
first efforts to give an overview of methodological approaches in human–computer interaction research
on user experience in general [8], the evaluation of in-vehicle information systems [9], on the evolution
from manual to automated driving [10], and also with a focus on AD [11], however, without reviewing
a broader set of categories.

2.1. Topics of Interest

Early research efforts in AD have often focused on Take-Over Request (TOR) scenarios, where the
system exceeds its operational design domain or encounters an emergency, and prompts the driver to
interrupt his/her non-driving related task (NDRT) to regain manual vehicle control. These transitions
are either due to sensor failures/malfunctions (imminent transition) or because the system issues
a planned indication to take over—in both cases, it is the user’s role to ensure a safe transition
to manual driving. These studies have revealed different issues such as controllability [12–14],
fatigue [15,16], mode awareness [17], or automation trust [18–22]. Other studies frequently applied
survey approaches to investigate public acceptance and readiness for the introduction of this technology
to the consumer market [23–25]. The downside of these acceptance-related studies is that, mostly,
no realistic AD system is provided to the users. At best, a description of such a system is given that
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requires a lot of imaginative power. A closely linked construct to acceptance is trust in automation.
Here, there have been driving simulator studies that supported realistic ADS representations and
HMIs [18,20,26–28]. Other topics that have recently emerged go beyond safety-related issues, such as
usability [29,30], and user experience (UX) [31–33] of AD systems and HMIs. In the usability
domain, research questions mainly focus on the measures and appropriate conditions under which
users effectively and efficiently interact with driving automation and in turn are satisfied with the
interface [34]. This also marks an additional factor in common acceptance frameworks [35,36].
User Experience [37] expands usability going beyond mere pragmatic aspects of using driving
automation by adding hedonic qualities. With drivers being relieved of driving themselves, there might
be a lack of fulfillment of needs [32,38–40], and, consequently, despite effectiveness and efficiency in
interaction, positive emotions, thus, positive attitudes towards driving automation are not guaranteed.
UX research therefore aims at investigating underlying mechanisms needed to substitute former
driving experiences with other, potentially meaningful activities, and appropriate user interfaces
which carve out advantages and balance negative effects of automation.

2.2. Possibilities for Study Design

Besides different topics of interest in AD HCI research, and thus constructs, collection methods,
and parameters, which are all closely tied to dependent measures, there is also a variety of study design
possibilities when conducting user studies on AD. One important aspect is the study environment
which is a driving simulator in many instances. Here, the degree of immersion varies from low
to medium fidelity simulation [41] to high fidelity driving simulation with [28,42] or without a
moving-based platforms [13,43]. Moreover, depending on the availability of (real or simulated)
automation function, studies on test tracks and real roads are possible [44,45]. Other types of studies
use an interview or survey setting to gain insights into AD because the users have used such a system
before [46,47], or they instead target the readiness of the consumer population [25,31]. Another aspect
providing researchers with possibilities for study design is the representation of the automation.
At the moment, most user studies in the AD context are set up in a simulation environment, since the
maturity of this technology is not yet given. A vast majority of studies has been conducted in driving
simulators, where AV functions and HMIs can be implemented without much effort, and tests in a
risk-free and standardized environment are possible. However, first on-road tests have been conducted
in Wizard-of-Oz [48,49], or even real settings [50,51]. As mentioned before, there are studies that
are not placed in a lab environment, but rather take a survey approach and represent the driving
automation by means of static descriptions [25], or sketches [31]. Studies also differ in the type of
research or main focus and contribution they bear. Some studies target conceptual development
with a subsequent proof-of-concept user study [52–54]. Other approaches more generically cover
basic research topics, and focus on fundamentals of human perception and action in the AD context.
Such research is rather independent from specific HMI concepts, but implications hold true for the
variety of conceptual approaches [55,56]. A similar independence from certain HMI concepts is a
characteristic of methodological work. Such studies aim at providing instruments and tools for proper
study conduction when evaluating HMIs [29,30,57].

The heterogeneity of constructs, use cases, and AD operationalization has recently led to
first efforts in methodological standardization. For example, various taxonomies [58–60] have
been proposed to describe TOR scenarios and related use cases [61]. In addition, regarding
TOR, many research groups follow their own measurement procedures and evaluation methods,
which highlights the need for commonly accepted standards.

3. Method

With the considerations about the current research status, topics of interest in AD HCI research,
study possibilities, and the authors’ experience in AD research in mind, we defined the reviewing
process for this literature review.
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3.1. Venue Selection Process

We conducted a pilot study to identify journals and conferences in the Human Factors community
that have published relevant and representative work on driving automation. An online survey
was distributed via social media (e.g., Twitter, LinkedIn, etc.) and to peers of the authors. In the
survey, participants could indicate (1) both the top 3 journals and conferences where they have
already published as well as (2) both the top 3 journals and conferences where they consider
submitting an article (favored). Moreover, the survey included questions on whether the authors have
already published original research on automated driving (yes vs. no) and the year of the author’s
first publication. Eventually, demographic data (i.e., age, gender, academic degree, and academic
background) were collected.

Demographics showed that mean age of the n = 21 participants (n = 5 female) was 32.81 years
(SD = 5.65, MIN = 24, MAX = 49). Most participants (n = 10) held a Master’s degree, n = 9 a PhD,
and n = 2 were professors. The Academic Background showed that the majority were psychologists
(n = 8), followed by engineers (n = 5), computer scientists (n = 5). n = 2 participants had a Human
Factors or Media Informatics background (multiple choice was allowed). Out of the 21 participants,
n = 19 have already published whereas n = 2 have not yet published their research. The earliest
publication dates back to 1999 and the latest to 2016.

For the identification of relevant venues, we counted the overall number of instances
independently from its position (i.e., 1st vs. 2nd vs. 3rd rank). The results regarding journals
showed that Transportation Research Part F (n = 7 publications, n = 11 favored), the Journal of Human
Factors (n = 7 publications, n = 11 favored) and Accident Analysis and Prevention (n = 7 publications,
n = 6 favored) were the most frequently indicated venues. Regarding conferences, the AutomotiveUI
(n = 6 publications, n = 13 favored), the Human Factors and Ergonomics Society Annual Meeting
(n = 2 publications, n = 11 favored), and the Conference on Human Factors in Computing Systems
(CHI; n = 2 publications, n = 6 favored) were mentioned most frequently. Based on this expert survey,
we selected these three journals and conferences to be included in our structured literature review.

3.2. Paper Selection Process

The basis for the selection of papers for the present literature analysis were all research papers
that were published in the respective venues between 2010 and up to 2018 (inclusive). We developed a
decision tree to decide in a standardized and step-wise manner, whether or not to include each paper.
This decision tree is depicted in Figure 2. It features four steps represented through binary decisions,
where each has to be answered with “yes” for a paper to be included into our analysis. To pass the first
step of the decision tree, the paper had to contain at least one of a set of keywords related to driving
automation in the full text (see below). These keywords were selected to initially reduce the amount of
papers in a reasonable way, while at the same time ensuring that no potentially relevant paper would
be excluded. The first step of the decision tree was carried out by querying the respective online data
bases using the following search terms:

“automated driving” OR “autonomous driving” OR “self-driving” OR “self driving” OR “autonomous
vehicle” OR “automated vehicle”

Papers that did not feature AD represented by at least one of the keywords, as well as short
papers, posters, and adjunct proceedings [62], were excluded in this step. For the remaining papers,
the next step in the selection process consisted of examining whether the papers’ objective was an
empirical study to discard other literature reviews, as well as juridical, theoretical, or ethical papers
[11,63,64]. The subsequent step of the decision tree aimed at the actual primary focus of the empirical
papers. If this was not research and development of AD, the respective paper was excluded from
further analysis. This step was incorporated to rule out work on concepts that, in principle, could be
used for the development of AD, but was not originally investigated with that purpose [65]. In the
last step of the selection process, we took a closer look at the levels of automation [1] that were
investigated. The level of mere driver assistance (Level 1) as well as concepts which do not count as
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driving automation according to SAE definition [66,67] were out of scope for this literature analysis.
Thus, only papers examining L2 and/or higher levels of automation (i.e., simultaneous lateral and
longitudinal vehicle control) were included.

Figure 2. Decision tree for paper selection.

Overall, n = 161 research papers passed all steps of the decision tree and were included in the
present work. To ensure inter-rater reliability, a random selection of 10 papers were compared by means
of intra-class correlations (ICC). ICC estimates were calculated based on a single-rating regarding the
inclusion criteria (outcome of the decision tree to find out whether a paper should be included for
further analysis), using a two-way random-effects model. Results revealed a high inter-rater reliability
with a correlation of r = 0.809 (F(9,36) = 22.170, p < 0.001).
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3.3. Paper Reviewing Strategy

After selecting the papers, we developed a reviewing strategy for literature analysis in two
expert workshops. The first workshop lasted six hours and aimed at developing a standardized
reviewing procedure. After the workshop, the resulting categories/dimensions as well as their
emerging relations were translated into a database. For a detailed description of the categories and
the database, see Database Structure. Subsequently, five reviewers classified the selected 161 research
papers by sorting them into the categories of the database. In case a new category occurred in the
papers that had not been considered before, it was added to the database. After reviewing a subset
of the 161 papers, we conducted another expert workshop which lasted approximately four hours.
During this workshop, lessons learned from a first subset of publications (n = 42) were derived and
each reviewer could put unclear classification up for discussion. This ensures potentially high reviewer
agreement in classification of the remaining papers (ambiguities in the subset have been resolved
during the workshop).

3.4. Database Structure

We set up a MS Access Database to capture the relevant information needed for our investigations.
The schema consists of the five main tables Paper, Conference, Construct, CollectionMethod, and Parameter.
In the following, we introduce the most relevant properties:

• Paper: For each paper, we collected descriptive information (title, abstract, year, authors,
conference), as well as the levels of automation addressed in the study. The following additional
information was collected: The type of user (driver, passenger, external), road type (urban,
highway, rural, not relevant), study type (lab, test track, real road, survey), the representation of
the AV (static text description, sketch, driving simulator, Wizard-of-Oz, real vehicle), study period
(single session, short-term, long-term), type of research (basic research, concept evaluation,
method development, model development), as well as participant information, such as the
number of subjects, their mean age, as well as if they were internally (students, employees, etc.)
or externally recruited.

• Construct: Represents the topics of investigation. To avoid subjective interpretation by the
reviewers, we only collected constructs which were explicitly mentioned by authors in the papers,
(such as Safety, Trust, Acceptance, etc.). All constructs which were only investigated by one single
paper are summarized within another construct. Generic investigations on participants’ opinion
and general perception without directly mentioning specific constructs are summarized with a
General Attitude construct.

• Collection Method: Relevant data collection methods, such as driving performance,
TOR performance, secondary task performance, ECG, EEG, standardized questionnaire, interview, etc.
Secondary task performance in particular refers to a participant’s performance in a task not
related to driving (e.g., number of missed target stimuli on a tablet). Again, we came up with
initial suggestions that were expanded in case a new item emerged during the reviewing process.

• Parameter: Parameters that were used in the different data collection methods, for example
standard deviation of lateral position (SDLP) [68], response time (could be used to measure
driving performance), gaze-off-road time, gaze standard deviation (eye-tracking), technology
acceptance model [35], NASA-TLX [69] (examples for standardized questionnaires), etc.

• Relationships: To structure our data, we created a relationship table to represent (n:m) relations
of papers, collection methods, parameters, and constructs. Thus, each paper can investigate
different constructs, where each construct can be assessed by one (or multiple) data collection
methods, and each data collection method by one (or multiple) parameters. For each relation,
we categorized whether the combination represents behavioral, self-reported, or physiological
data. Furthermore, we assessed if the parameter was measured before/during/after a trial
in the experiment. This data model allowed us to store all information without duplicates
(each combination of paper/construct/collection method/parameter was stored only once using
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database key constraints), while the relations allow for performing powerful queries on the data
(in comparison to pure list/sheet based representations). For example, we can ask the database
which papers investigated a certain construct using physiological sensors, how many papers
utilized a certain standardized scale, or how constructs changed over the years.

4. Results

In the following, we report the obtained results from of the final selection of 161 papers.
All selected conferences and journals (see above) are represented in the final analysis: Human
Factors and Ergonomics Society Annual Meeting (n = 34), AutomotiveUI (n = 42), CHI (n = 10),
Accident Analysis (n = 18), Human Factors (n = 20), and Transportation Research Part F (n = 37).
All results were obtained using the built-in structured query language (SQL) of MS-Access.

4.1. General Study Details

Regarding AD research, we found that SAE L3 is the most frequently studied level of automation
with 58.39% (n = 94) followed by Level 2 (36.65%, n = 59) and Level 4 (22.36%, n = 36). Level 5
was investigated in 19.88% (n = 32) of the studies. Thereby, the number of publications gradually
increased up to 2018 regardless of a specific level of automation. The one that stands out is SAE L3,
which attracted earlier attention than the other levels (see Figure 3); however, the steepest increase in
AD research was observed between 2015 and 2016.
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Figure 3. Frequencies (n) of ADS papers regarding the investigated SAE level of automation as evolved
over time since 2010. SAE L0 and L1 are excluded as they are not part of this literature review.

Overall, 73.29% (n = 118) of all studies were conducted in a lab environment, 13.66% (n = 22) as
a survey, and 11.80% (n = 19) on real road, while only 2.48% (n = 4) reported results obtained on a
test track. This is in accordance with the utilized AV representation. In addition, 71.43% (n = 115) of
the papers reported to have used a driving simulator, 12.42% (n = 20) a real vehicle, 11.18% (n = 18) a
textual description, 7.45% (n = 12) a Wizard-of-Oz setup, and 3.11% (n = 5) a visualization. We observed
thereby a clear tendency towards single session evaluation (94.41%, n = 152), and only nine papers
called in participants multiple times, where 3.11% (n = 5) investigated automated driving use over a
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short time period (e.g., up to one week) [70] and three studies (1.86%) long-term effects in longitudinal
studies (e.g., by following a survey approach [47]).

While 60.25% (n = 97) of the papers conducted basic research such as observing pedestrian
interaction behavior with AVs on real roads [71], 34.78% (n = 56) papers evaluated a specific concept
in their study (e.g., a haptic seat to prepare driver for TORs) [72]. Smaller percentages of studies
conducted empirical research about AD with the aim to create a method (8.07%, n = 13) or a model
(1.86%, n = 3). The center of empirical research on AD is clearly the driver, who was investigated
in 78.26% (n = 126) of all studies. Passengers (9.32%, n = 15) and other road users (6.83%, n = 11,
e.g., pedestrians) are still a side topic in AD HCI research. The environmental driving context is
varying, while 47.83% (n = 77) investigated a highway setting, 19.88% (n = 32) addressed urban, and
19.25% (n = 31) rural road conditions. For the remaining studies (13.04%, n = 21), the road type was
either not relevant or not described.

Study participants’ mean age in the most papers is below 40 years (n = 98), and only a few papers
report higher mean ages such as Frison et al. [73], who in particular invited participants older than
65 to investigate acceptance of AVs in comparison with participants of younger age (see Figure 4).
In 12.42% (n = 20), participants’ age is not reported.

In total, 57.76% (n = 93) of the papers selected their participants randomly, while only 29.81%
(n = 48) used targeted sampling. The rest (n = 20) did not provide any indication about participant
sampling. Thereby, 34.40% (n = 57) of papers recruited participants internally (e.g., students or
employees of their institution), and 44.10% (n = 71) invited external participants. The remaining
publications (20.5%) did not provide this information.
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Figure 4. Frequencies (n) of age groups as used in the analyzed automated driving studies.

4.2. Methodological Approaches

Regarding methodological approaches, we observed that 74.91% (n = 119) of all papers involve
self-reported data collection, 64.60% (n = 104) behavioral, and 10.56% (n = 17) psycho-physiological data.

Over half of the papers triangulated different types of data (55.28%, n = 89). Thereby, 44.72%
(n = 72) of the papers triangulated behavioral and self-reported data. Less common is the triangulation
of self-reported, behavioral and psycho-physiological data (6.21%, n = 10). The combination of
behavioral and psycho-physiological data (n = 5), or self-reported and psycho-physiological data
(n = 2) is even more rarely applied. A large portion of the papers (44.72%, n = 72) is working with only
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one type of data. These papers use mainly self-report measures (27.95%, n = 45), while 16.77% (n = 27)
of the papers report exclusively behavioral data.

Overall, we identified n = 22 different collection methods. The self-defined questionnaire is the
most frequently used method (51.85%, n = 84) in AD research papers. This is in accordance with
the large number of self-reported data collection. Standardized questionnaires (44.44%, n = 72) and
TOR performance (37.65%, n = 61) are frequently used as well. Eye tracking/gaze behavior (24.07%,
n = 39), driving performance measures (22.22%, n = 36), interviews (16.05%, n = 26) and secondary
task/NDRT performance (8.64%, n = 14) are used more seldomly. Furthermore, rarely applied
collection methods are special techniques such as heart rate variability (3.70%, n = 6), think aloud
(2.47%, n = 4), probing, electroencephalography (EEG) and detection tasks (each 1.85%, n = 3), UX curve,
sorting, electromyography (EMG), and galvanic skin response (GSR; each 1.23%, n = 2). Methods
only used once are near infrared spectroscopy (NIRS), focus group, facial expression detection, and
matching tasks. Details of the applied methods are described in the following section.

4.3. Constructs and Methodological Approaches

To specify empirical research on AD in more detail, we took a closer look at the constructs,
which were investigated in the individual studies. The most frequently investigated construct is safety,
followed by trust, acceptance, and workload, see Table 1 for all constructs, respective number of papers
and exemplary references. We observed that there was a broad range of 36 distinct constructs that was
addressed only once. We summarized it here as other.

Table 1. Constructs investigated by papers, with a non-exhaustive list of example papers for
each category.

n in % Examples

Safety 82 50.93 Gold et al. [13], Merat et al. [14], Wintersberger et al. [21]

Trust 37 22.98 Hergeth et al. [19], Forster et al. [74]

Acceptance 34 21.12 Nordhoff et al. [23], Kyriakidis et al. [25]

Workload 32 19.88 Bashiri and Mann [75], Biondi et al. [76]

General Attitude 20 12.42 Maurer et al. [77]

Situation Awareness 18 11.18 Clark et al. [78], Karjanto et al. [79]

Stress 15 9.32 Wintersberger et al. [21]

Interaction Behavior 11 6.83 Currano et al. [71]

Drowsiness/Fatigue 11 6.83 Neubauer et al. [16], Naujoks et al. [80]

User Experience 10 6.21 Frison et al. [32,73], Oliveira et al. [81]

Productivity 9 5.59 Chang et al. [54], Reimer et al. [82]

Comfort 9 5.59 Bellem et al. [83]

Emotions 8 4.97 Wintersberger et al. [26], Terken et al. [84]

Usability 7 4.35 Forster et al. [41]

Cognitive Processes 7 4.35 Glatz et al. [85]

Motion Sickness 5 3.11 Karjanto et al. [79]

Cooperation 3 1.86 Guo et al. [86], Walch et al. [87]

Wellbeing 3 1.86 Telpaz et al. [72]

Mental Model 3 1.86 Beggiato et al. [88]

Ethics 2 1.24 Sikkenk and Terken [56]

Other, e.g., Personalization 36 22.36 -

In the following paragraphs, individual constructs, summarized in the subsection according
their occurrence of investigation, are described by elaborating on the applied collection methods (n ,
number of distinct papers) and collected parameters (np , total number of parameters). One distinct
paper can investigate more than one parameter.
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4.3.1. Safety

Parameters (p) selected for the AD studies on safety mainly include behavioral data (only np = 22
collected self-reported data; np represents the number of parameters). The most applied collection
method for safety is the measurement of participants’ TOR performance, which is applied by n = 58
distinct papers. Thereby, the most collected parameter is participants’ reaction time, which includes
the time to first driving action like braking or accelerating, to system deactivation, button press or
hands on the steering wheel. Furthermore, the lateral position is another frequently utilized parameter,
including maximal lateral position, standard deviation of lateral position, or Daimler Lane Change
Performance [89]. Furthermore, Time to Collision (TTC), speed TOR timings and acceleration and
braking parameters were also repeatedly collected. Driving performance (which is in contrast to
TOR performance that assesses the immediate response, calculated based on longer phases of manual
driving) is also often used (n = 24) by e.g., collecting data on participants lateral position, speed and
reaction times. Eye-tracking (n = 12) by regarding gaze percentage, duration and number on areas
of interests like mirrors or road, etc., observation (n = 12) of participants crossing behavior, NDRT
engagement parameters, etc., and a self-defined questionnaire (n = 11) are further important collection
methods for safety. Standardized questionnaires like the scale for criticality assessment of driving
and traffic scenarios [90], secondary task performance and interviews are more seldom used (n <= 3),
see Table 2 for more details.

In total, np = 89 different parameters were collected across all papers investigating safety—83%
of the studies were conducted in a driving simulator, 11% in a real vehicle, 5% used static text, 4% a
Wizard-of-Oz setup, and 2% a sketch.

Table 2. Safety Collection methods and parameters.

Collection Method for Safety (n) Parameter np

TOR Performance (58)

Reaction Time 70

Lateral Position 18

Time to Collision 15

Speed Parameters 10

TOR Timing 10

Acceleration 9

Braking 7

Steering Wheel Angle 5

Distance Front 4

First, Driving Action 4

Number of Collisions 4

Disengagements 3

Lane Change Parameters 3

Steering 3

Accuracy 2

NDRT Engagement 2

Accident Avoidance Ranking (AAR) 1

Number of Interactions 1

N/D 7
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Table 2. Cont.

Collection Method for Safety (n) Parameter np

Driving Performance (24)

Lateral Position 13

Speed Parameters 9

Reaction Time 7

Time to Collision 5

Acceleration 3

Steering Wheel Angle 3

Braking 2

Lane Departure Parameters 2

Number of Collisions 2

Automation Enabled/Disabled 1

Distance Front 1

Overtakings per Km 1

Steering 1

N/D 1

Eye Tracking/Gaze Behavior (12)

Gaze Percentage 9

Gaze Duration 6

Gaze Number 3

Glancing Behavior 3

Reaction Time 3

Pathways 1

Saccade 1

Observation (12)

Crossing Behavior 2

NDRT Engagement 2

Reaction Time 2

Accuracy 1

Automation Enabled/Disabled 1

Braking 1

Crossing Time 1

Gaze Number 1

Number of Collisions 1

Situation Criticality 1

Steering 1

Time to Collision 1

N/D 2

Self-Defined Questionnaire (11)
N/D 10

Accuracy 1
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Table 2. Cont.

Collection Method for Safety (n) Parameter np

Standardized Questionnaire (6)

Scale for Criticality Assessment of
Driving and Traffic Scenarios

2

Cooper–Harper Scale 2

Auditory Urgency Scale 1

Secondary Task Performance (3)

NDRT Engagement 1

Reaction Time 1

N/D 1

Interviews (2) Semi-structured Interview 2

Matching (1) Accuracy 1

4.3.2. Trust, Acceptance, and Workload

Trust in AD is investigated as the second most used construct, see Table 1. Here, in contrast to
safety, more self-reported (np = 42) data are reported. Most common is the usage of a self-defined
questionnaire (n = 19), or a standardized questionnaire, especially the Automation Trust Scale
(ATS) [91] (n = 12) is popular. The interpersonal trust scale (ITS) [92], trust in technology scale [93],
Van der Laan scale [94], the Trust Perception Scale-HRI [95] and the Propensity to Trust Scale [96] are
each used only once. Interviews, structured and semi-structured, are more rarely used (n = 4). However,
behavioral parameters (np = 19) are also collected, by observing (n = 5) body pose and movements,
acceleration and braking behavior, gaze duration on an area of interest, etc. In addition, eye-tracking
(n = 4) is conducted. Only one paper [97] used driving performance (braking and steering behavior)
and TOR (reaction time) performance measures. This paper additionally collected participants’ hands
on wheel and eyes on road time using observation, see Table 3. In total, np = 28 different parameters
were collected across all papers investigating trust—78% of the studies were conducted in a driving
simulator, 16% in a real vehicle, 11% used a textual description and 5% a Wizard-of-Oz setup to
represent the AV.

Acceptance is investigated by self-reported parameters as intensively as trust (np = 41). Researchers
mostly apply standardized questionnaires (n = 18). Thereby, the Van der Laan acceptance scale [94] is
the most frequently used questionnaire. Furthermore, the technology acceptance model (TAM) [35],
the Unified Theory of Acceptance and Use of Technology (UTAUT) [36] or the Car Technology
Acceptance Model (CTAM) [24] are frequently used approaches. The self-defined questionnaire
is also a popular collection method here (n = 13). Behavioral data (np = 3) on acceptance is collected by
observing (n = 3) the time to system activation, and the number/share of times the automation was
enabled/disabled by study participants. Driving performance, or qualitative methods like interviews
or focus groups, are applied less frequently (n< = 2), see Table 4.

In total, np = 15 different parameters were collected across all papers investigating acceptance.
In total, 53% of the studies were conducted in a driving simulator, 29% used only static text, and 15%
used a real vehicle, respectively 3% used either a sketch or a Wizard-of-Oz setup.
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Table 3. Trust collection methods and parameters.

Collection Method for Trust (n) Parameter np

Self-Defined Questionnaire (19) N/D 19

Standardized Questionnaire (17)

Automation Trust Scale (ATS) 12

Interpersonal Trust Scale (ITS) 1

Van der Laan Acceptance Scale 1

Trust in Technology Scale 1

Trust Perception Scale-HRI 1

Propensity to Trust Scale 1

N/D 1

Observation (5)

Body Pose/Movements 4

Acceleration 1

Brake 1

Driving Action 1

Gaze Duration 1

Reaction Time 1

Steering 1

Waiting Time 1

Interviews (4)
Semi-structured Interview 3

Structured Interview 1

Eye Tracking/Gaze Behavior (4)

Gaze Duration 2

Gaze Percentage 1

Glancing Behavior 1

Gaze Number 1

Driving Performance (1)
Brake 1

Steering 1

Decision Game (1) N/D 1

TOR Performance (1) Reaction Time 1

Workload is also investigated mainly by using self-reported measures (np = 26), usually by
implementing standardized questionnaires. The NASA Task Load Index (NASA-TLX, n = 17) [69]
is the most popular, other questionnaires like Driver Activity Load Index (DALI) [98], Rating Scale
Mental Effort (RSME) [99], scale for subjectively experienced effort (SEA) [100], or the global mental
workload measurement by Wierwille and Casali [101] are more rarely applied, as well as self-defined
questionnaires (n = 4) and semi-structured interviews (n = 1). As behavioral data (np = 7), the secondary
task performance collecting data on NDRT performance (i.e., number solved tasks), using the Surrogate
Reference Task, or Twenty Question Task, observation, eye-tracking and driving performance measures
were conducted, see Table 5.

In total, np = 12 different parameters were collected across all papers investigating workload—88%
investigated it in a driving simulator, only 13% in a real vehicle, and 6% used a Wizard-of-Oz setup.
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Table 4. Acceptance collection methods and parameters.

Collection Method for Acceptance Parameter np

Standardized Questionnaire (18)

Van der Laan Acceptance Scale 10

Unified Theory of Acceptance and
Use of Technology (UTAUT)

4

Technology Acceptance Model
(TAM)

3

Car Technology Acceptance (CTAM) 2

Willingness to Ride 1

Perceived Behavioral Control (PCB) 1

System Usability Scale 1

Personal Innovativeness Scale 1

Self-Defined Questionnaire (13) N/D 13

Observation (3)

Automation Enabled/Disabled 1

Reaction Time 1

N/D 1

Driving Performance (1) Proportion of Manually Driven
Scenarios

1

Interviews (1) Unstructured Interview 1

Focus Group (1) N/D 1

Secondary Task Performance (1) NDRT engagement 1

Table 5. Workload collection methods and parameters.

Collection Method for Workload (n) Parameter np

Standardized Questionnaire (22)

NASA-TLX 17

Driver Activity Load Index (DALI) 2

Rating Scale Mental Effort (RSME) 1

Scale for Subjectively Experienced
Effort (SEA)

1

Global Mental Workload
Measurement

1

Self-Defined Questionnaire (4) N/D 4

Secondary Task Performance (4)

NDRT Performance 2

Twenty Question Task (TQT) 1

Surrogate Reference Task (SURT) 1

Observation (1) N/D 1

Interviews (1) Semi-Structured Interview 1

Eye Tracking/Gaze Behavior (1) Glancing Behavior 1

Driving Performance (1) Steering Wheel Angle 1

4.3.3. General Attitude, Situation Awareness, and Stress

Participants’ general attitude towards AD is investigated by the majority of the papers by
self-reported data (np = 22), by a self-developed questionnaire (n = 15) or interviews (n = 5). One paper
derived insight based on observation (see Table 6).
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In total, np = 3 different parameters were collected across all papers investigating general
attitude—40% used a driving simulator, 30% static text, 15% a real vehicle, and 15% a
Wizard-of-Oz setup.

Table 6. General Attitude collection methods and parameters.

Collection Method for General Attitude (n) Parameter np

Self-Defined Questionnaire (15) N/D 15

Interviews (5)
Semi-Structured Interview 4

Unstructured Interview 1

Standardized Questionnaire (2) BIG 5 2

Observation (1) N/D 1

Situation Awareness in contrast is examined more by behavioral (np = 26) than self-reported data
(np = 14). However, almost the same share of papers apply a self-developed questionnaire (n = 6) as
eye-tracking is used (n = 7). Thereby, gaze duration, number, and percentage is collected, as well as
glancing and blinking behavior. In addition, TOR performance (n = 2) measures were collected like
lateral position, reaction time, acceleration, and time to collision parameters. A popular standardized
questionnaire is the situational awareness rating technique (SART), or the situation awareness global
assessment technique (SAGAT) [102]. See Table 7. In total, np = 25 different parameters were collected
across all papers investigating situation awareness—67% of the studies were conducted used a driving
simulator, 28% a real vehicle, and 17% a Wizard-of-Oz setup was used.

Table 7. Situation Awareness collection methods and parameters.

Collection Method for Situation Awareness (n) Parameter np

Eye Tracking/Gaze Behavior (7)

Gaze Duration 5

Gaze Number 4

Gaze Percentages 3

Glancing Behavior 2

Blink Behavior 1

Reaction Time 1

Self-Defined Questionnaire (6) N/D 6

Standardized Questionnaire (3) Situational Awareness Rating Technique
(SART)

3

Probing (2) Situation Awareness Global Assessment
Technique (SAGAT)

3

TOR Performance (2)

Lateral Position 2

Reaction Time 2

Acceleration 1

Time to Collision 1

Interviews (2) Semi-structured Interview 2

Observation (1)
Accuracy 1

Reaction Time 1

Secondary Task Performance (1) NDRT Performance 1



Appl. Sci. 2020, 10, 8914 17 of 36

Stress is investigated by psycho-physiological (np = 11) and self-rated data (np = 8). Hence,
standardized questionnaires like the Short Stress State Questionnaire (SSSQ) [103], Dundee Stress State
Questionnaire (DSSQ) [104], or the Driver Stress Inventory (DSI) [105] are used, but also heart rate
variability, GSR and EMG. Observation, interviews and driving performance measures were only used
by single papers. See Table 8. In total, np = 17 different parameters were collected across all papers
investigating stress—80% of all studies regarding stress were performed in a driving simulator and
20% in a real vehicle—respectively, 7% used either static text or a Wizard-of-Oz setup.

Table 8. Stress collection methods and parameters.

Collection Method for Stress (n) Parameter np

Standardized Questionnaire (6)

Short Stress State Questionnaire (SSSQ) 3

Dundee Stress State Questionnaire (DSSQ) 2

Driver Stress Inventory (DSI) 1

Heart Rate Variability (4)

HR (BPM) 2

Physical Position 1

Root Mean Square of Successive Differences (RMSSD) 1

GSR (2)

AmpSum 1

ISCR 1

nSCR 1

SCR 1

PhasicMax 1

N/D 1

Eye Tracking/Gaze Behavior (1)
Gaze Duration 1

Gaze Number 1

Self-Defined Questionnaire (1) Other 1

Observation (1) Body Pose/m Movements 1

Interviews (1) Semi-structured Interview 1

EMG (1) N/D 1

Driving Performance (1) Automation Enabled/Disabled 1

4.3.4. Interaction Behavior, Drowsiness/Fatigue, and User Experience

Participants’ interaction behavior with AV/ADS was mainly investigated by behavioral data
(np = 11), observing (n = 6) such as pedestrians’ walking behavior, number/share of times the
automation was activated/deactivated, or eye-tracking analysis (percentage of the gaze on different
AOIs). However, standardized questionnaires (n = 3) like the Pedestrian Behavior Questionnaire
(PBQ) [106], Brief Sensation Seeking Scale (BSSS-8) [107] or the theory of planned behavior (TPB) [108]
were also used. Two papers developed an own questionnaire, and one paper applied eye-tracking,
conducted an interview or collected data on secondary task performance, see Table 9. In total, np = 13
different parameters were collected across all papers investigating interaction behavior—45% studies
regarding interaction behavior were investigated in a driving simulator, 36% used a Wizard-of-Oz
setup, and 27% a real vehicle.
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Table 9. Interaction Behavior collection methods and parameters.

Collection Method for Interaction Behavior (n) Parameter np

Observation (6)

Walking Behavior 2

Automation Enabled/Disabled 2

Glancing Behavior 1

Pathways 1

Reaction Time 1

NDRT Engagement 1

N/D 2

Standardized Questionnaire (3)

Brief Sensation Seeking Scale (BSSS-8) 1

Pedestrian Behavior Questionnaire (PBQ) 1

Theory of Planned Behavior (TPB) 1

Self-Defined Questionnaire (2) N/D 2

Eye Tracking/Gaze Behavior (1) Gaze Percentages 1

Interviews (1) Semi-structured Interview 1

Secondary Task Performance (1) Single-choice Quiz 1

Drowsiness/Fatigue was investigated by self-reported (np = 11) and behavioral data (np = 7). Hence,
standardized questionnaires (n = 7) like Karolinska Sleepiness Scale (KSS) [109], Driver Stress Inventory
(DSI) [110], Multidimensional Fatigue Inventory (MFI) [111] are mainly used as well as self-developed
questionnaires (n = 2). However, researchers also collected (n = 2) blinking behavior or yawing, as well
as eye-tracking, driving performance or adapted the method of UX Curve [112]. See Table 10. In total,
np = 12 different parameters were collected across all papers investigating drowsiness/fatigue—91%
of the studies collecting drowsiness were conducted in a driving simulator, 9% used a real vehicle,
and a further 9% used static text as AV representation.

Table 10. Drowsiness/Fatigue collection methods and parameters.

Collection Method for Drowsiness/Fatigue (n) Parameter np

Standardized Questionnaire (7)

Karolinska Sleepiness Scale (KSS) 4

Driver Stress Inventory (DSI) 1

Multidimensional Fatigue Inventory (MFI) 1

Self-Assessment Manikin (SAM) Scale 1

Dundee Stress State Questionnaire (DSSQ) 1

Self-Defined Questionnaire (2) Other 2

Observation (2)

Yawning 1

Blink Behavior 1

N/D 1

Driving Performance (1)
Reaction Time 2

Lateral Position 1

Eye Tracking/Gaze Behavior (1) Glancing Behavior 1

UX-Curve (1) N/D 1
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User Experience is mainly investigated by self-reported measurements np = 16, np = 5 collect
behavioral data, only once psycho-physiological measures by capturing Heart Rate Variability is
utilized. Various standardized questionnaires (n = 4) like AttrakDiff [113], UEQ [114], etc. are applied,
or interviews (n = 4), and other qualitative methods like UX curve [112], think aloud, and sorting
have been conducted. Behavioral data are collected by one paper regarding participants’ driving
performance, e.g., acceleration, braking, speed, and lane changes. See Table 11. In total, np = 13
different parameters were collected across all papers investigating UX.

Table 11. UX collection methods and parameters.

Collection Method for UX Parameter np

Standardized Questionnaire (4)

AttrakDiff 2

User Experience Questionnaire (UEQ) 1

Van der Laan Acceptance Scale 1

Hedonia and Eudaimonia (HEMA) Scale 1

Sheldon’s Need Scale 1

Interviews (4) Semi-structured interview 4

Self-Defined Questionnaire (2) N/D 2

Driving Performance (1)

Acceleration 1

Brake 1

Speed Parameters 1

Number of Lane Changes 1

Observation (1) N/D 3

Heart Rate Variability (1) HR (BPM) 1

UX-Curve (1) N/D 1

Think Aloud (1) N/D 1

Sorting (1) N/D 1

4.3.5. Productivity, Comfort, Emotions, Usability, Cognitive Processes, and Motion Sickness

Researchers interested in productivity collect behavioral data np = 20, primarily about participants’
secondary task performance (n = 6), including performance (e.g., characters per second, number of
answered questions, etc.) but also engagement and accuracy (e.g., error rate) parameters (NDRT
duration, frequency, or percentage). Single papers also observed participants, used eye-tracking
or collected driving performance measures. In addition, only one semi-structured interview was
conducted, see Table 12. In total, np = 18 different parameters were collected across all papers
investigating productivity.
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Table 12. Productivity collection methods and parameters.

Collection Method for Productivity (n) Parameter n

Secondary Task Performance (6)

NDRT Performance 8

NDRT Engagement 3

Accuracy 3

Body Pose/Movements 1

N/D 1

Driving Performance (1) Accuracy 1

Reaction Time 1

Observation (1) Accuracy 1

Interviews (1) Semi-structured Interview 1

Eye Tracking/Gaze Behavior (1) Gaze Percentages 1

On the contrary, comfort was investigated instead by self-reported data (np = 11), mainly by
self-defined (n = 7) or standardized questionnaires (n = 2), Driving Style Questionnaire (MDSI), UEQ,
TAM, and UTAUT. One paper reported behavioral data about participants’ acceleration, see Table 13.
In total, np = 6 different parameters were collected across all papers investigating comfort.

Table 13. Comfort collection methods and parameters.

Collection Method for Comfort (n) Parameter np

Self-Defined Questionnaire (7) N/D 7

Standardized Questionnaire (2)

Driving Style Questionnaire (MDSI) 1

Technology Acceptance Model
(TAM)

1

Unified Theory of Acceptance and
Use of Technology (UTAUT)

1

User Experience Questionnaire
(UEQ)

1

Driving Performance (1) Acceleration 1

In addition, emotions are investigated by self-reported data (np = 12) using self-defined (n = 4)
and standardized questionnaires (n = 4) like PANAS, Affect Grid, Multi-Modal Stress Questionnaire
(MMSQ), Affect Scale [115], etc. Furthermore, emotions are investigated by observing facial expressions,
think aloud technique or an interview (each n = 1). See Table 14. In total, np = 9 different parameters
were collected across all papers investigating emotions.

Moreover, usability is investigated as well mainly by self-developed (n = 4) and standardized
questionnaires (n = 3), e.g., SUS is a popular method. Furthermore, semi-structured interviews (n = 2)
and the think aloud technique are also applied. Hence, solely self-reported data are collected (np = 11),
see Table 15. In total, np = 4 different parameters were collected across all papers investigating usability.
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Table 14. Emotions collection methods and parameters.

Collection Method for Emotions (n) Parameter np

Standardized Questionnaire (4)

Positive and Negative Affect Scale (PANAS) 2

PANAS-X 1

Affect Grid 1

Multi-Modal Stress Questionnaire (MMSQ) 1

Affect Scale 1

Self-Defined Questionnaire (4)
N/D 3

Russel’s Circumplex Model 1

Observation (1) Percentage of Detected Emotions 1

Facial Expressions 1

Interviews (1) Semi-structured Interview 1

Think Aloud (1) N/D 1

Table 15. Usability collection methods and parameters.

Collection Method for Usability (n) Parameter np

Self-Defined Questionnaire (4) N/D 4

Standardized Questionnaire (3)
System Usability Scale (SUS) 3

Input-Output Questionnaire 1

Interviews (2) Semi-structured Interview 2

Think Aloud (1) N/D 1

Cognitive processes, in contrast, are analyzed by self-reported (np = 4), behavioral (np = 4),
and psycho-physiological data (np = 2). Thereby, most developed their own questionnaires (n = 3)
and one paper used a standardized questionnaire, the Driver Stress Inventory (DSI). EEG is utilized
twice, while respectively one paper applied driving performance measures (e.g., lateral position) or a
detection task method collecting reaction time and accuracy. See Table 16. In total, np = 6 different
parameters were collected across all papers investigating cognitive processes.

Table 16. Cognitive Processes collection methods and parameters.

Collection Method for Cognitive Processes Parameter np

Self-Defined Questionnaire (3) N/D 3

EEG (2) N/D 2

Detection Task (1)
Accuracy 1

Reaction Time 1

Driving Performance (1)
Lateral Position 1

Time Headway 1

Standardized Questionnaire (1) Driver Stress Inventory (DSI) 1

Motion Sickness is mainly investigated by the standardized questionnaires (n = 4), the Simulator
Sickness Questionnaire (SSQ) [116], and the Motion Sickness Assessment Questionnaire (MSAQ) [117].
One paper developed an own questionnaire. However, Heart Rate Variability as well as the measure
of Motion Sickness Dose Value were collected, see Table 17. In total, np = 5 different parameters were
collected across all papers investigating motion sickness.
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Table 17. Motion Sickness collection methods and parameters.

Collection Method for Motion Sickness (n) Parameter np

Standardized Questionnaire (4)
Sickness Questionnaire (SSQ) 3

Motion Sickness Assessment
Questionnaire (MSAQ) 1

Self-Defined Questionnaire (1) Other 1

Heart Rate Variability (1) HR (BPM) 1

Driving Performance (1) Motion Sickness Dose Value
(MSDV) 1

4.3.6. Other Constructs

A wide range of additional more special constructs were investigated, including cooperation,
well-being, mental models and ethics in which only a few papers were interested in (n< = 3), and we
identified many special constructs only single papers were interested in (n = 1), e.g., personalizing,
intuitiveness, immersion, helpfulness, annoyance, motivation, etc. While cooperation was investigated
mainly by driving performance measures like reaction time, duration of vehicle interaction, etc.,
and self-defined questionnaires and well-being by self-defined and standardized questionnaires and
observation, researchers interested in mental models and ethics solely applied self-defined questionnaires.
The more special constructs were summarized here as others were investigated in most cases by
self-defined questionnaires (n = 15) or specific standardized questionnaires (n = 12).

5. Discussion of Findings and Recommendations for Future AD Studies

The present literature review shows that self-report measures mark the most prominent measure in
HMI evaluation for AD. In comparison to that, there is further need to report accompanying behavioral
measures, such as driving/TOR performance, or gaze behavior. The reason for that is quite simple:
The users’ reported attitudes frequently do not match the behavior that one observes [118]. For example,
usability comprises effectiveness and efficiency (behavioral) as well as satisfaction (attitude) in order
to get a comprehensive product evaluation. Attitudes and behavior are often separate dimensions that
do not match in different various areas of research [11,119,120]. For a comprehensive evaluation of
HMIs and driving automation features from a Human Factors perspective, it might be necessary to
include both of these data sources. Of course, if a researcher is only interested in the user’s attitudes,
he/she can solely collect these, but, eventually, he/she will have to face the discussion of whether and
how valid the insights are. Moreover, concerning areas of research, safety aspects received the most
attention to date, followed by trust and acceptance. In the following, we discuss findings of (1) study
setup, (2) data collection methods, (3) reported parameters, and (4) investigated constructs and derive
recommendations (REC) for future research in the context of automated driving.

5.1. Study Setup

Concerning representation and study type, we found that most studies were conducted using
driving simulators. Hence, present research supports high internal validity making interpretations
of effects of differing conditions on dependent measures possible. On the downside, the obtained
results might lack external validity, and there is no guarantee that they generalize to real world settings,
since driving simulators may lack realism due to the insufficient field of view, or motion feedback.
Thus, by lacking a feeling of presence [121], the transfer of behavior found in the laboratory to real
world settings might be limited [122]. Conditions in realistic driving studies are not as controlled as in
a laboratory and might differ in terms of surrounding traffic, weather conditions or vehicle speeds.
Despite the restriction of high internal but limited external validity, we can assume that strong and
consistent effects such as the dependency of TOR response time on the driver state [13,15,21,123,124]
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will also be reflected in real world driving. Especially when it comes to safety and trust issues in real
driving, research should determine validity of the findings. While participants in driving simulator
studies might behave in a more liberal way due to the absence of realistic severe consequences,
it remains to be seen how these effects pertain to the real road. At this point, the question arises as
to whether the scenarios that are tested in driving simulator research and frequency within a study
are representative for human–automation interaction. Up to now, there is no valid statement on
the frequency of transitions from automated to manual possible. An indication might be available
from the California disengagement report [125], where developers of ADS have to report the number
of safety driver interventions. As the systems are still under development and have not reached
a maturity level for the commercial market, it is questionable whether these numbers resemble
future series products. Future research from FOT or NDS data might be valuable for putting the
importance of such scenarios into perspective. Relative validity of effects in driving simulator
studies can well be assumed [126], but there are still research efforts necessary for validating safety
relevant human–automation interaction scenarios. Despite this criticism, we acknowledge that driving
simulators are still immersive research tools providing a certain, and, in many cases sufficient, degree of
external validity [127,128]. Nevertheless, the present results point towards the need of conducting
studies in real vehicles equipped with driving automation technology [50,129,130], or Wizard-of-Oz
Settings [48,49,131].

⇒ REC 1: Existing study results obtained in driving simulators should be validated in realistic
on-road settings.

Review results also revealed that most studies targeted single sessions of interaction, and thus
provide only snapshots of first time use. While usability can already make reliable estimates about user
behavior within a single session experiment [29], UX, trust, and acceptance might take a longer period
of time until behavior and attitudes have reached a stable level [8,131,132]. Long-term studies tackling
exactly these issues are rather scarce since they require high efforts. One example of such a study comes
from Beggiato et al. [88] who observed users of L1 automation (i.e., Adaptive Cruise Control) over ten
repeated one-hour sessions (however, due to the restriction to SAE L1, this paper would not satisfy the
inclusion criteria for this review). Such studies can provide valuable insights into acceptance, trust,
and system understanding. The present database only includes a small number of publications that
investigated long-term use such as described in Dikmen and Burns [47]. This study example, however,
did not follow a longitudinal approach, but rather a cross-sectional approach by surveying Tesla
drivers. We expect important insights into behavioral adaptation over longer time periods, such as
the amount of actual use or NDRTs that users engage in. Similarly to field operational tests [133] or
naturalistic driving studies [134], there is still a blind spot in research on driving automation that could
open up with commercial availability. First, efforts in this direction with L2 automation are reported
in Gaspar and Carney [135], or planned in the L3-Pilot project [136]. Thus, there are open research
directions towards ongoing and long-lasting effects of AD on use and interaction between the human
operator and the ADS.

⇒ REC 2: In contrast to single session experiments, insights into the long-lasting effects of AD usage are
scarce and can benefit from longitudinal study designs.

The age distribution of all samples within the data base showed a bell shaped curve (see Figure 4).
This indicates that, across all identified studies, participants’ ages were balanced and, overall,
findings can be well generalized to the population. Both young and therefore novice, as well as
elderly, drivers are considered in these studies. To maintain but also increase validity, we invoke
authors of future studies to continue to regard users’ diversity regarding age and also point to further
consider gender, cultural, and other differences in their studies.

⇒ REC 3: To increase validity, the sample characteristics should be adapted to the addressed research
questions. In addition, researchers need to explain why the particular sample was chosen and considered as valid.
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5.2. Data Collection Methods

Concerning collection methods, the review results show that a vast majority of studies collected
self-report data. In comparison to that, behavioral data were only reported in every second publication.
From there, the question arises regarding what the reasons for this observation are. One obvious
reason is that survey approaches [31,137] might focus more on technology readiness and deliberately
collect attitudinal measures only. For these approaches, to date, there is no available behavioral
criterion, such as buy/usage rates. Studies operationalizing acceptance via the TAM [35] do not
provide the possibility to provide insights into behavioral measures. As soon as the functions are
available, however, research needs to investigate whether predictions made by these studies hold
true. With commercial availability of L2 automation, such a study could have already been conducted,
but, to our knowledge, this is still missing. One positive aspect of self-report measures is that
psychometrically validated scales have been applied frequently. This shows the professionalism of
research of the reviewed venues and deliberate preparation of study design.

Another factor for the imbalance might be that self-report measures are much easier to collect.
It does not take comparably much effort to hand out a questionnaire or interviewing participants.
In contrast, the collection of behavioral data is much more complex. For example, dynamic vehicle data
require extensive pre-processing before descriptive and inferential analyses can be run. The collection
of eye-tracking data requires even more resources due to the need for manual calibration to
ensure data quality, although such data provide the possibility to make direct inferences about
cognitive processes [138]. For example, prior research has suggested that the number of gaze
switches (i.e., monitoring behavior) can serve as an indicator for trust/reliance [18], or interface
understanding [29]. One solution to the difficulty and extensive effort of collecting behavioral
data might be experimenters’ single-item ratings of interaction performance [139–141]. However,
this approach requires well-trained raters and, ideally, ratings are given single-blind, so that the rater
is not aware of assigned experimental conditions for the participant. In addition, there should be
more than one rater to ensure inter-rater reliability. Despite requiring additional time and cost efforts,
researchers should consider the collection and analysis of behavioral data should in the planning of
a user study, since it can provide additional valuable insights about the tested interface or feature.
It is not for nothing that the usability ISO-9241 [34] includes effectiveness and efficiency as behavioral
components and satisfaction as an attitudinal component. These sources of data do not always align
well [11,118], which is not necessarily a bad study outcome. It rather supports the assumption that
both sources of data are necessary to derive a holistic impression of an interface. This has also been
emphasized by Pettersson et al. [8,142], who expressed the urgency of triangulation in user studies.
We appeal to researchers in the field of human–automation interaction to always consider additional
behavioral observations. The importance of collecting behavioral measures of course depends on
the respective research question. For example, there are instances where researchers are interested
specifically in the public opinion of a large sample of respondents [25]. As explicitly mentioned
in the Introduction of this work, we do not see the recommendations as mandatory but rather as
thought-provoking. Thus, it might guide exclusive attitude research towards future work on the
behavioral consequences.

⇒ REC 4: Researchers should consider the collection of more than a single source of data (i.e., triangulating
behavioral, psychophysiological, and self-reported data). Insights from self-report measures might be worthy of
future research for its effects on user behavior.

5.3. Parameters

The results of the literature review showed that research provides a heterogeneous pool of
parameters, for example considering driving or TOR performance measures in controllability studies
(see Tables 2–12). To better compare results between different laboratories, there is an urgent need
to come up with a standardization of procedures when evaluating human–automation interaction.
Efforts in this directions are reported in the works by Wintersberger et al. [59], which suggests TOR
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performance measures based on SAE J2944 or in Naujoks et al. [60] outlining a standardized set of use
cases for control transitions between levels of automation. Since there has been a lot of research on
TOR controllability, it is now time to combine this body of knowledge and standardize methodology
along the lines of driver distraction research [143,144]

⇒ REC 5: Consider existing or proposed standards for measurements to allow comparison of study results.

5.4. Constructs

First, it turned out that some studies included parameters whose focus of research was not
clearly defined. Despite setting up a large number of constructs during the expert workshop and
adding further options during the review process, there still remained a considerable number of
of parameters that could not be assigned free of doubt. This resulted in the two constructs general
attitude and interaction behavior (see Table 1). In these instances, information was rather scarce and
only high level indications about interface evaluation were provided by the authors. We therefore
encourage researchers to first clearly state objectives and classify these within a specific body of
research. This should allow both authors and readers to eventually compare the obtained results with
existing findings, and derive implications of the reported work.

⇒ REC 6: Clearly communicate which constructs are addressed by an experiment to foster transparency
The majority of parameters were well classifiable within our database. The safety construct

constituted the largest part of all measures (see Table 1).This shows the importance of safety
concerns when it comes to investigating driving automation technology. Investigations on TOR
performance during system failures have been the first scenarios in human–automation interaction
research [12–14,145]. Here, many issues such as trust [18,21,97], controllability [12], fatigue [15],
or mode awareness [17] have been discovered. Right now, it seems like a re-orientation of recent
research is taking place which is also reflected in the remaining constructs of the database. Trust
[146] and intention to use [35] constitute precursors of actual system use, and, due to the progress
in time, technology, and scientific evidence, research has more closely investigated these constructs.
Here, the aforementioned open research directions of long-term studies, absolute validity concerns in
realistic driving and agreeableness of attitudinal and behavioral measures apply.

Besides safety and acceptance, there remain other constructs that have rather been neglected until
now. The reason why research has given less attention to usability, UX, or productivity until now might
be that these are rather precursors of safety and acceptance. Another reason might be that the scenario
where automation fails and humans need to step into action was an important issue to determine
feasibility of driving automation in the first place. We argue that more emphasis should be paid to other
types of interaction such as ongoing automation, user-initiated or planned transfers of control, as most
likely, these use cases will occur more frequently than automation failures [59,147]. From that, the need
to investigate efficient and effective interaction arises [29]. Furthermore, it might not be sufficient to
develop interfaces that users are satisfied with [34], but which they have fun and enjoy interacting
with [32,148]. Moreover, safety critical issues of AD, like TORs in SAE L3, also impact users overall
driving experience [149]. Hence, an additional focus on UX and research on users’ emotions and need
fulfillment can pave the way to developing not only proper but great HMIs for AVs, which increase
individual but also societal acceptance of this emerging technology.

We also emphasize at this point that the respective research question largely impacts the
investigated constructs. The existing large number of findings on safety might benefit researchers in
the formulation of research questions since statements on future research and unanswered questions
are an inherent part of a researcher’s work. At the same time, this implies that there is a lot of room for
research questions beyond established construct.

⇒ REC 7: Depending on the particular research question, we suggest going beyond established constructs
like safety, trust, acceptance, or workload and regard topics from different perspectives.
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6. Limitations

The literature review presented here comes with some limitations. First, the restriction on the
most relevant six sources (three journals and and three conferences) limits the reach of included
works, and also other venues/journals publish cutting-edge research on driving automation matching
our inclusion criteria. However, comparing the obtained results with a prior review concentrating
only on one of the six included sources [150] shows that the results did not drastically change after
extension. Second, we (subjectively) felt a trend to experiments that are published multiple times
with slightly adapted focus (for example, a conference publication presenting first insights into an
experiment is followed by a more detailed journal submission). As our review focused on publications
rather than single experiments, we cannot guarantee that some studies in our database are duplicates,
which may have slightly impacted the results (for example regarding the distribution of participants’
age, study types, or the share of the levels of automation addressed). Third, the inter-rater reliability
is calculated based on the inclusion/exclusion criteria of papers, while the subsequent classification
process is not completely free from subjective assessment. Although we tried to keep the level of
subjective interpretation to a minimum (by defining a standardized reviewing procedure), not all
involved decisions were free from ambiguity. For example, some publications evaluated multiple
constructs but did not provide information on the mapping of investigated parameters to these
constructs. In such cases, the decision is burdened on the reviewer, and, to minimize such effects,
the authors discussed potential inconsistencies together and made adaptions (if necessary) before the
final database analyses. Moreover, the methodological insights presented here combine a large variety
of research questions spanning over many different areas of research. To derive specific insights for
one target of research (e.g., how do drivers take over from automated to manual control), a separate
consideration is necessary using relevant publications for such a category. Despite this limitation,
our results mark a first step into this direction by providing researchers with methods and parameters
that they most likely have to consider when setting up an experiment investigating a certain construct
with relevance to automated driving. Eventually, this work contains literature from six venues and one
needs to be aware that the recommendations apply to the literature that was included here. However,
the claim that these venues cover a representative share of driving automation studies strengthens
the argument that they might apply for venues beyond. The initially applied keywords to reduce the
amount of papers might be criticized as arbitrary and a different set of keywords could have led to a
different collection of publications. However, these keywords were chosen after extensive discussion
among the authors of this paper and thus are based on the best of our knowledge of human factors
research in driving automation.

7. Conclusions

In this article, we have reviewed the status quo of methods utilized in human factors research
in driving automation. We followed a structured approach to give an overview of the research
domain by selecting relevant papers, and reviewing them in a standardized manner using a relational
database. There is a good portion of research in different aspects of driving automation indicating
that researchers in the community work on the issue of developing and improving human–machine
interfaces for automated vehicles. When researchers plan to engage in research and development
of automated driving, the present work provides them with an overview of the current landscape.
Thus, one can derive information about main research areas and emerging trends that have not been
studied extensively yet. Additionally, this literature review provides researchers and practitioners
with suggestions about methodological tools (i.e., collection methods and specific parameters) that
they can use when assessing a certain construct of a driving automation system. To conclude, we list a
set of recommendations to be considered in future experiments addressing automated driving:
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• Existing study results obtained in driving simulators should be validated in realistic on-road
settings. As most experimental results were obtained in driving simulators (or used even lower
degree of realism/immersion), their main findings must urgently be validated in more realistic
settings, especially when addressing constructs that incorporate risk (such as trust in automation).

• In contrast to single session experiments, insights into the long-lasting effects of AD usage
are scarce and can benefit from longitudinal study designs. Another huge potential for future
work are longitudinal studies. Such studies cannot only validate results obtained in single-session
experiments: they might even reveal new issues which have not been addressed yet.

• Depending on the particular research question, we suggest going beyond established
constructs like safety, trust, acceptance, or workload. In addition, take constructs into account
that have not yet been intensively addressed (such as personalization, cooperation, wellbeing,
etc.). Cooperation in particular refers to different parties performing as a team together rather
than only one party at a time [87]. When designing HMIs for vehicles, consider the full spectrum
of user experience research and include user satisfaction (such as hedonic qualities) in HMI
evaluation also as these aspects will finally decide between success or defeat of the technology on
the market.

• To increase validity, the sample characteristics should be adapted to the addressed research
questions. In addition, researchers need to explain why the particular sample was chosen
and considered valid. Aim for a participant sample that allows for investigating the proposed
research question plausibly. Do not only list a more diverse sample as a limitation, but also
discuss how your results could be affected by biases in participant sampling.

• Researchers should consider the collection of more than a single source of data (i.e., triangulating
behavioral, psychophysiological, and self-reported data). Insights from self-report measures
might be worthy of future research for its effects on user behavior. Evaluation of different
types of data sometimes leads to contradicting results. Such conflicts should not be avoided, as in
the best case they contribute to a better understanding of established theory. Only comprehensive
evaluation of the involved factors allows for drawing meaningful conclusions.

• Consider existing or proposed standards for measurements to allow for comparison of study
results. The possibility to compare study results is a key element of scientific practices. Thus,
if possible, utilize standardized methods (regarding parameters, their measurement times, as well
as their calculation). In case there is no such standard or best practice, instead of inventing
additional measurements, build upon related work.

• Clearly communicate which constructs are addressed by an experiment to foster transparency.
Minimize the potential for ambiguity. Clearly state which constructs are investigated, and how
the selection of methods/parameters used for evaluation are related to them.
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