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Abstract 

Smart meter technology implementation in the last decade had initiated many data 

collection processes, which have provided a strong foundation for the development of 

Artificial Intelligence (AI) based load monitoring systems. It is easier to identify the 

energy-saving potential with the help of advanced load monitoring systems. Since 2015, 

deep-learning-based Nonintrusive load monitoring (NILM) is being focused in the 

research community. It requires minimal hardware, which can justify its development and 

maintenance cost. Several AI-based models and tools are available for load monitoring, 

but it is challenging to identify a suitable model for the specific application. There is still 

a domain-specific transformation, and considerations are usually required. The 

residential sector has been the focus area due to the market size, but the industrial sector 

still has massive potential for research and development. 

Thus, in the presented thesis, dairy farms in Germany are targeted for developing a 

power disaggregation algorithm based on deep learning, which can identify the on/off 

state of individual appliances in the farm from the aggregated load profile data. Mainly 

four appliances named milk cooling (MK), milk pump (MP), vacuum pump (VP), and 

cleaning automatic machine (SA) are targeted for disaggregation. NILM is a promising 

approach to identify individual operating times of appliances. Thus, deep neural network-

based algorithms are developed, focusing mainly on one-dimensional convolution neural 

network (1D-CNN) and recurrent neural network (RNN). 

Literature research was carried out to determine the state-of-the-art of deep-learning-

based NILM and understand AI technology. Data acquisition for model development and 

testing was made from four dairy farms based out of Bavaria, Germany. The presented 

work provides a detailed discussion about data pre-processing and development of 

models. The result shows that deep-learning-based disaggregation algorithms 

outperform for this application area, and the proposed model successfully identifies the 

states of individual appliances. The presented work provides a foundation for modifying 

the proposed algorithm or developing a new algorithm for real-time power 

disaggregation. 
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1. Introduction 

This chapter outlines the relevance of this thesis, summarises related work, and closes 

by describing the organizational framework of subsequent chapters. 

1.1 Background and Motivation  

Globally, governments are facing four common energy issues: increasing renewable 

energy share in the electric grid, decrement of fossil fuel reserves, the effects of changing 

climate, and obtaining a sustainable energy supply (MacKay, 2010, pp. 2–11). Moreover, 

with global population growth, the energy demand will rise with negative implications on 

the environment (e.g., CO2 emissions) (Zoha et al., 2012, p. 16839). Substantial energy 

waste can be prevented through fine-grained monitoring of energy consumption and 

passing that information back to the relevant consumers (Vine et al., 2013, pp. 7–15). 

Renewable energy is a clean solution, but it is variable and depends on exogenous 

weather conditions. Germany is often considered a front runner in using various sources 

of renewable energy. According to the Federal Ministry for Economic Affairs and Energy, 

in the year 2018, the government intended to expand the increase renewable energy 

share in gross electricity consumption to 45% by the year 2025 and at least 80% by the 

year 2050, compared to its share of 36% in the year 2017 and only 3% in the early 1990s 

(Zerrahn et al., 2018, pp. 259–279; Federal Ministry for Economic Affairs and Energy, 

2016). The progressive transformation of the German energy system from conventional 

and centralised power plants to decentralised renewable power plants introducing 

considerable challenges in the nationwide electricity grid. To ensure the electric grid 

stability and security under such circumstances, the implementation of the smart grid 

represents a promising approach. It demands a digital and transparent infrastructure for 

interaction among grid operators, energy suppliers, and consumers to have an eye on 

precise energy generation and consumption, which can help design optimization 

techniques. 

The Smart grids are usually supported with smart metering systems, which allows the 

utility companies to monitor the grid more truthfully, which will enable them to detect the 

failures rapidly, to regulate the generation more dynamically, to adapt the pricing more 

smartly, and to predict the demand more accurately (Zhang et al., 2019, pp. 23–48). In 

2016, with the introduction of an act ‘Digitization of the Energy Turnaround Act’ (Federal 

Ministry for Economic Affairs and Energy, 2016; Kelly, 2018), a green signal was given 

for the use of smart meter, and that also boosted the funding for the research and 

development in the field of the smart meter, which came up as the central component for 

the communication infrastructure (BUNDESMINISTERIUM FÜR WIRTSCHAFT UND 

ENERGIE, 2019; Scully, 2019). According to a detailed review based on around 60 

feedback studies suggest that direct feedback mechanisms can help to achieve 
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maximum energy saving (i.e., real-time appliance level energy consumption information) 

as compared to indirect feedback mechanisms (i.e., regular monthly advice along with 

the energy usage bill). Traditional smart meters have limitations to measure energy 

consumption up to house level. Thus, to achieve it, research efforts lead to the 

development of several power disaggregation techniques of load monitoring (Ehrhardt-

Martinez et al., 2010, pp. 14–29). The disaggregation technique of load monitoring was 

initially targeted to residential consumers, but it proved beneficial for industries equally 

with the features like fault detection. The concept of load monitoring is decades old but 

recently gained renewed attention in the research area with the parallel development of 

sensing technology, data communication and networks, artificial intelligence, and 

machine learning. Among the several techniques, the NILM approach got its popularity 

due to the least requirement of measuring devices(Zoha et al., 2012, pp. 16838–16866). 

Non-Intrusive Appliance Load Monitoring, also known as Non-Intrusive Load Monitoring, 

was first introduced in 1985 by an American geometer named George W. Hart at 

Massachusetts Institute of Technology (MIT) (Hart, 1985, p. 2). Another milestone was 

achieved in 1998 when Cole and Albicki proposed their theory to take into account power 

spikes (Cole and Albicki, 2000, pp. 1–6), which typically occurs in load profile at the time 

of switch on or off. They suggested to use it as a ‘signature’ to identify appliance. Such 

events are commonly known as transients (Fiol, 2016, p. 7). In the early 2000s, the new 

era of algorithms came when the meter technology improved. With the new features like 

harmonics and signal waveform, the signal processing technology changed, such as, 

now using Fourier transform, ‘power signature’ could be detected. A boom in machine 

learning approaches has been seen in recent years. In 2010, an algorithm named DDSC 

was introduced by J. Zico Kolter (Kolter et al., 2010, 1153–1161). Jack Kelly and William 

Knottenbelt introduced another very popular and recent algorithm for disaggregation 

using neural networks. They targeted the residential sector based on mainly United 

Kingdom (UK) based datasets (Kelly and Knottenbelt, 2015, pp. 55–64). Figure 1 shows 

that the period of the year 2007-2011 was booming for NILM development. Both the 

small and large-scale companies (4home, PlotWatt, Enetics, Navetas, Belkin, GE, IBM, 

Intel) jumped in the development of NILM (Zeifman and Roth, 2012, p. 3). Though, the 

energy sector is still waiting for a rigorous, reliable, and robust algorithm for energy 

disaggregation. 

There is a growing appeal for the power disaggregation for industrial buildings (Kelly, 

2017, pp. 1–4). In this thesis, the dairy farm industry is targeted for the development of 

a power disaggregation algorithm. The agricultural sector has not yet gained 

considerable attention for research in this field. Since the rural areas in Germany are 

characterised by highly heterogeneous renewable power producers, and they are 

predominantly affected by the issue of power grid overload, smart energy management 

solutions in agriculture. 
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Figure 1 Significant growth in U.S. granted patents (Zeifman and Roth, 2012, p. 3) 

They can play a significant role in a comprehensive promotion of sustainable energy 

supply. In this context, dairy farms as an energy-intensive category of agriculture show 

high potential for power grid-oriented demand-side management in addition to benefits 

such as comprehensive energy monitoring and the identification of energy savings 

potentials. The primary consumer in dairy farming with an average share of 60% in total 

electricity consumption, the milking production appliances are focused in the thesis as 

shown in Figure 2. 

 

Figure 2 Composition of electricity consumption in dairy farming (Neser et al., 2014, p. 14) 

Besides the monitoring and benchmarking, energy disaggregation provides different 

application fields in the context of demand-side management and load shifting, which 
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represent a base for promising technological innovations and business models in the 

agricultural sector. Use of NILM based algorithm and a comprehensive On-farm energy 

management system, significant energy-saving improvements, and additional revenue 

streams for local farmers can be provided. Furthermore, the intelligent system allows 

sufficient load management for future developments such as increased demand for 

electrical capacities for e-mobility. In addition to that, there is an additional benefit of 

NILM. It also allows the appliance manufacturing companies to better understand the 

machines and their operational pattern on the ground level, improving the performance 

and better maintenance plans (Zoha et al., 2012, pp. 16838–16866). 

1.2 Goal of the thesis 

This main objective of the present thesis is a comparative analysis of existing deep 

learning based NILM-methods and the development of a Python-based algorithm, mainly 

using Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). 

This project is a composite of: 

 Discussion of the overview of the load monitoring techniques.  

 Literature research on deep neural network with an overview of Machine 

Learning. 

 Measurement of the load profiles of individual appliances from several dairy 

farms. 

 Development of an algorithm, using multiple features to identify the ‘on-off’ state 

of selected appliance from the aggregated load profile of a dairy farm. 

1.3 Research Questions 

1. How can Deep Learning be used to provide useful solution for load monitoring? 

2. Which method is suitable for the NILM? 

3. How does the accuracy change with one and multiple features? 
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2. Theoretical Background  

This chapter presents an overview of the concepts of load monitoring approaches and 

technologies, machine learning, and deep learning methods, which are essential to 

understand the methodology, implementation, and evaluation results presented in the 

thesis work. 

2.1 Load Monitoring 

2.1.1 Event and Event-less Load Monitoring Approach  

Early days studies made on NILM were focused on an event-based approach. In this 

approach, studies performed by disaggregating the total power consumption profile by 

detecting and labelling every single appliance linked to it. A typical example of event-

based energy disaggregation is presented in Figure 3. The main idea is to classify 

switching events of appliances (e.g., a Refrigerator turning on or off) from the load profile. 

Such features can be detected based on the changes in the power demands at the time 

of switching on-off of the device. For this, it is crucial to have high-frequency data 

measurements, which should be 1Hz or above. For low-frequency data, it becomes 

difficult to discriminate among the switching behaviour of different appliances (Parson, 

2014, pp. 1–31; Parson et al., 2014, pp. 1–19). Furthermore, this approach shows a 

performance limitation. The measurements being used for this project are in the low 

frequency range. Therefore, this approach will not be considered for this work. 

 

Figure 3 An example of event-based energy disaggregation. (Copyright 1992 IEEE) (Pereira and Nunes, 2018, p. 2)  

In contrast to the event-based approach, event-less approaches do not require a 

separate event detection and classification process. In this approach, every sample of 

power consumption of a specific appliance attempts to match with the aggregated power 

sample measured in the same time frame employing machine-learning. A classic 

example is presented in Figure 4. The fundamental advantage of this approach is that 

training dataset does not require any labelling. Only the aggregated and specific power 

consumption data of the appliances are required, which turns this approach more 

economical and straightforward compared to an event-based approach (Pereira and 
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Nunes, 2018, pp. 1–17). 

 

Figure 4 Example of event-less energy disaggregation. Copyright 1992 IEEE) (Pereira and Nunes, 2018, p. 2) 

2.1.2 Intrusive and Non-intrusive Load Monitoring 

Intrusive load monitoring is a decentralised method of measurement. It requires 

several sensors, power measuring devices, communication devices, and other 

equipment based on the number of appliances connected to ensure the precise 

measurements and to transmit the information for monitoring. Hence, it is a cost intensive 

and impractical option of load monitoring. Intrusive load monitoring can be categorised 

as direct and indirect monitoring (Parson, 2014, pp. 1–31; Parson et al., 2014, pp. 1–19). 

In the direct intrusive load monitoring, every individual appliance needs to be 

connected to a power measuring device or a sensor to measure the electric 

characteristics of that appliance. There are mainly three methods to accomplish direct 

load monitoring. The first method can be named as Electrical Sub-metering. In this 

method, individual appliances are monitored by one meter per appliance. Such meters 

are mostly of two categories, i.e., either Plug-in meter or Clamp-on meter. They have the 

capability to monitor appliances as well as control the flow of electricity. The upgraded 

version of this method is known as the Smart Appliances method. In which the smart 

appliances can self-report the specific power consumption to a central hub. These 

devices can be connected with wired or wireless technology, although old appliances 

might not be suitable for this operation and hence need to be replaced or modified, which 

entails significant initial investment. Thus, for a large user base, these approaches are 

not economic. The third method of intrusive load monitoring is known as Electrical 

Probing. In this method, the appliances are designed to send an additional signal into 

the electric circuit to determine the mode of operation on-off to a central hub, which is 

further used for feature extraction. This technology has a drawback that the power quality 

delivered to the appliance gets considerably affected due to this injected signal in the 

electric circuit. All of the mentioned technologies are expensive because of the 

involvement of enormous numbers of measuring and communication devices and their 

installations (Parson, 2014, pp. 1–31).   
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Indirect intrusive load monitoring is not limited to the measurement of the appliance 

power. With this method, other parameters, which are influencing power consumption 

are also being measured. Likewise, direct load monitoring, indirect load monitoring can 

also be accomplished by mainly three methods. The first method is known as Appliance 

Tagging. Every individual appliance needs to be modified in such a way that it can emit 

a unique signal in the main circuit, which indicates the central hub about the turning on-

off of that appliance. Thus, the central hub estimates the power consumption of each 

appliance with time. The second method is called Ambient Sensors. Multiple wireless 

sensors are required to monitor several measures, including audio signals, ambient 

temperature, device temperature, light sensors, and others, which have an impact on the 

appliance usage. The main idea is to identify the relations among them and disaggregate 

the consumption of the appliances as well as identify human behaviour. The third method 

in this category is the Conditional Demand Analysis. Unlink previous mentioned 

methods, this approach needs only electricity consumption bills of a household. Although 

it demands a massive database of multiple houses and along with that, it also requires 

a detailed questionnaire from each household. These questionnaires include the details 

of the consumers, weather, the usage behaviour of appliances like the number of times 

per day and the number of hours. Based on the collected database, a multivariate 

regression technique is performed to predict and analyse the appliances. Due to the lack 

of sensors and measurement devices requirement, this method can get confused with 

the non-intrusive load monitoring technology. However, the requirement of parameters 

other than the electricity consumption makes it fall under the category of intrusive load 

monitoring (Parson, 2014, pp. 1–31). Being ruled out intrusive load monitoring methods 

as appropriate solutions for the problem of smart meter energy disaggregation, the 

industry is turning to the non-intrusive load monitoring method. 

Non-intrusive load monitoring is the method, which requires only aggregated power 

consumption data. For training purposes of a program or a machine, it needs a massive 

database of the aggregated and individual appliance electrical power consumption for 

the same time frame from various but similar kinds of facilities (Nascimento, 2016, pp. 

4–7) . It is essential to measure various electrical parameters, e.g., the voltage, the 

current, power factor for the practical training of the machine. These are known as 

‘features’ in machine learning terminology. More and more features enhance the 

accuracy of the predictions. Thus, unlike intrusive load monitoring, NILM does not require 

a high number of measurement devices, that is the advantage of this method as it 

enhances the reliability and precision of measurement. Only for the training of the 

machine, it needs several meters based on the number of appliances. Although studies 

performed with low-frequency data also delivered quite promising results (Nascimento, 

2016, pp. 4–7). 
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2.2 Machine Learning  

Machine learning (ML) is a subfield of AI introduced in the late 1950s. ML is the study of 

computer algorithms that automatically improve computer programs through experience 

as defined by Tom Mitchell. In the past few years, ML techniques(Graville, 2017) have 

provided solutions to problems such as classification, regression, density estimation, and 

forecasting (Palma, 2016, p. 2). The approach has gained relevance in various 

application domains such as bioinformatics, speech recognition, Spam and fraud 

detection, and social networks. Machine learning can be categorised into as supervised 

and unsupervised learning. 

Supervised learning for training the model is when individual appliance consumption 

required along with aggregated power consumption data. Thus, the intrusive load 

monitoring method is performed to collect the data at the appliance level. Most popular 

supervised learning techniques are: 

 Inferring Rules 

 Statistical Modelling 

 Support Vector Machines 

 Decision Trees 

 Liner Models-Logistic Regression 

 Neural Networks  

 Instance-based Learning  

For the present thesis, a Neural Networks technique is adopted, which is comparatively 

newer but showed good results in research. 

Unsupervised learning does not require the appliance level data. The model is trained 

only with the aggregated data sets. It is much more challenging to achieve a good result 

with unsupervised learning in comparison to supervised learning. However, it is a very 

desirable method due to the requirement of less hardware such as measuring devices. 

Semi-supervised learning is a combination of both. The model is trained based on 

labelled and unlabelled data set, which reduces the requirement of measurements up-to 

a considerable amount. For the solutions of NILM, this is one of the most suitable 

methods. They are different in terms of training and validating the model (Bernard, 2018, 

pp. 18–19; Nascimento, 2016, p. 6; Figueiredo, 2013, pp. 38–55). 

In the next sub-topic of this section, a class of probabilistic graphical models addressing 

the short-comings of the event-based approaches is discussed. They have been applied 

to several real-world applications, speech recognition (Rabiner, 1989), which share a 

number of similarities with energy disaggregation. The aim is to identify the most likely 

sequence of discrete states(words) corresponding to a time series of continuous 
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measurements (audio recordings). There are some methods proposed for 

disaggregation using the Machine Learning technique. An overview of these models is 

given below. 

2.2.1 Markov Chains  

Markov Chains are a stochastic and memory-less process, which can be performed on 

a database having a finite number of states. This method is quite useful for time series 

databased problem. To perform this, a set of variables is required, and these variables 

must be indexed. The most common case is a timely indexed set of variables that form 

a series, which represents the overall evolution of the process. ‘A stochastic process is 

characterised by random state changes. The memory-less property, which is known as 

Markov Property, states that the state of a system at any time ‘t’ is only dependent on 

the state of its previous time step ‘t-1’ (Fiol, 2016, pp. 8–12)’. During the transitions from 

one state to another state follow a certain probability distribution. 

‘A graphical representation of a Markov Chain with a directed graph having a set S= 

{1,2,3} and the transitions represented with edge label is presented in Figure 5 (Fiol, 

2016, pp. 8–12).’  

 

Figure 5 Basic Markov chain represented in graph form (Fiol, 2016, pp. 9–10). 

In this case the transition matrix is the following: 

� �  �0.25 0 ⋅ 25 0.50 0 10.4 0 ⋅ 25 0 ⋅ 35"       (eq. 1) 

If the initial state is considered x1 = (0:5; 0:5; 0), It can be seen that the distribution over 

the states at time t = 1 will be x1*p = (0:125; 0:125; 0:75). Thus, the probability distribution 

over the states of the system at any time t can also be calculated (Fiol, 2016, pp. 8–12). 

‘Markov Chains was widespread for being used in several different applications such as 

ranking websites in search-engines or generating sequences of numbers that follow the 

desired distribution. However, in numerous cases the true state of the model cannot be 

measured, and Markov chains got fall short- for such cases, a more robust model was 
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created known as hidden Markov model (Fiol, 2016, pp. 8–12). 

2.2.2 Hidden Markov Model  

This model is known as Hidden Markova Model (HMM) as its states are not visible to an 

observer, but the output associated to them are evident in the form of data, which is also 

known as a token. These tokens give information about the states. An example of HMM 

is shown in Figure 6. 

 

Figure 6 Example of HMM showing the states and observations (Raiker et al., 2018 - 2018, pp. 381–385) 

HMM is a well-established method for solving evaluation problem, decoding problem, 

and learning problem. Therefore, a model for NILM is capable of calculating the 

probability of a particular observation sequence, which extract information if there is a 

pattern in on-off switching. An HMM-based model can also find the most likely sequence 

of states which further generates an associated sequence of observations for prediction 

purposes. Thus, HMM is an efficient method in extracting the features, which is useful 

for NILM (Raiker et al., 2018 - 2018, pp. 381–386). 

2.3 Deep Learning 

Deep learning is a subset of ML, while ML algorithms build their learning process around 

the input data structure; deep learning-based algorithms use layers of Artificial Neural 

Networks (ANN) for the learning process. In this work, ANN are used in analogous to AI. 

Frank Rosenblatt introduced the first artificial neural network called perceptron in 1958 

(ROSENBLATT, 1958, pp. 386–408). The idea of ANN is derived from the human 

biological neurons, which helps us gain various skills by performing the tasks and 

learning from it. Deep Learning in neural networks denotes the network with many layers 

(Arnold et al., 2011, pp. 2–13). “Deep Learning allows computational models that are 

composed of multiple processing layers to learn representations of data with multiple 

levels of abstraction” (LeCun et al., 2015, pp. 436–444). The main objective is to learn 

the hierarchy of features by discovering the convoluted structure in the training dataset 

with the help of a backpropagation algorithm to identify how a machine should update its 

internal parameters, which are further used to compute the output for the upcoming layer 

from the previous layer (LeCun et al., 2015, pp. 436–444; Arnold et al., 2011, pp. 2–13). 

2.3.1 Basic Concept and Brief History 

Deep Learning models have proven the capabilities of end-to-end learning. They are 
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flexible, which allows a model working in several applications with a slight modification 

based on the type of training data sets. These models are capable of extracting feature 

representations and learn them automatically. 

Deep Architectures have been in research for several years but could not get any big 

breakthrough until the 20th Century. More specifically, in 2006 and 2007 significant 

research began to be capable of training deeper network (Hinton et al., 2006, pp. 1527–

1554), the exception it was the CNN used by LeCun (Lecun et al., 1998, pp. 2278–2324; 

Nascimento, 2016, pp. 10–11). The new success came with the recent development of 

several platforms and libraries, which included new optimization techniques and 

architectures. Also, the large amount of training data is essential for the deep neural 

network, which improved significantly in the last decades. The computational power of 

the recent graphical processing units (GPUs) has become the backbone of this new 

era of Artificial intelligence development. Training of a model is only useful when it is 

provided a large set of data frames. It could extract and learn enough features, but it 

takes hours by a central processing unit (CPUs) for processing such huge amount of 

data even though its configuration is very high and mighty. GPUs have resolved this 

issue and cut down the processing time from days to few hours (Nascimento, 2016, pp. 

10–12). 

The latest approaches in NILM are based on deep learning. Firstly in 2015, Jack Kelly 

and William Knottenbelt introduced the deep-learning based approach (Kelly and 

Knottenbelt, 2015, pp. 55–58). They proposed a few models, including Convolutional 

Neural Networks, Recurrent Neural Networks, and Denoising Autoencoder. Another 

development was from Anders Huss in the same year; he proposed a hybrid algorithm 

based on CNNs and a hidden semi-Markov model (Huss, 2015, pp. 1–3). Since then, 

several developments took place in the last couple of years. In 2019, Zang et al. 

proposed sequence-to-point learning also based on majorly CNN (Zhang et al., 2019, 

pp. 23–26), they proposed a model using five hidden convolutional layers, and numerous 

other attempts have been made in solving NILM using deep learning (Kim et al., 2017, 

pp. 1–5; Valenti et al., 2018 - 2018, pp. 1–8; Rafiq et al., 2018 - 2018, pp. 234–239). 

2.3.2 Deep Learning Libraries 

Deep learning libraries are the pre-made set of functions or modules which can be called 

through any program. There are several open-source libraries that are maintained by 

major industrial stakeholders. On the commercial level, there are some libraries like 

Caffe developed by the University of California, Berkeley. It is written in C++, with a 

python interface (Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, 

Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, 

Trevor, 2014). Another library is Deepleaning4j, which is written in JAVA Virtual Machine 

(JVM),which was released under Apache license 2.0 (Nicholson and Kokorin, 2013). The 
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Torch is another machine learning library based on Lua programming language. The 

development of Torch has been stopped; however, PyTorch, which is Torch based, is 

actively developed as of June 2020. PyTorch is a Python package, and it provides two 

high-level features, i.e., Tensor Computation and Deep neural networks built on tape-

based ‘autograd system’(Chanan et al., 2020). Theano is one of the most established 

Python-based libraries. It was developed by Montreal Institute for Learning Algorithms 

(MILA) at ‘Université de Montréal’. It was developed in 2007, and the latest version was 

introduced in 2017. Theano is mostly popular among the university students for research 

and project purposes. Its application programming interfaces (APIs) are easy to call, 

which makes it very simplified to use for programming. The accuracy of the algorithms 

has made it so much popular (Montreal Institute for Learning Algorithms, 2007). 

The deep learning library used for the present work is called TensorFlow. It is also a 

free and open-source software library for machine learning, which is developed and 

continuously maintained by Google Brain Team. It was first released under the Apache 

License 2.0 in 2015. This library is very versatile and written in Python, C++, and CUDA. 

It can be run on CPUs or GPUs, and even on mobile operating systems (Agarwal et al., 

2015). 

2.3.3 Artificial Neural Network 

The ANN consists of fundamental adaptive blocks called artificial neurons or nodes 

densely connected. They are capable of processing information and have the 

characteristics of handling data with non-linearity, fault and noise tolerance, and 

generalization capabilities in the learning process (Basheer and Hajmeer, 2000, pp. 3–

31). Generally, a group of nodes arranged together forms a layer, and the connection 

between the layers defines the architecture of the neural network and its capabilities or 

characteristics as shown in Figure 7. 

 

Figure 7 A simple feed-forward neural network where nodes in each layer are connected to all the nodes in the 

corresponding layer (Dertat, 2017) 
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If the ANN consists of more than one layer, it is called a multi-layer feed-forward neural 

network. When all the nodes of one layer are connected to all the nodes of the 

corresponding layer without any loop, it forms a fully connected feed-forward neural 

network. It is a simple form of neural network and consists of an input layer, a hidden 

layer, and an output layer (Basheer and Hajmeer, 2000, pp. 3–31). 

2.3.4 Deep Neural Network Libraries  

KERAS is an open-source Neural Network Library written in Python programming 

language. It is a high-level API and runs on top of Libraries like Theano or TensorFlow. 

It was developed Francois Chollet and released in 2015. The stable release came in 

June 2020 as version 2.4.0. Its APIs are easy to use and have proved themselves with 

high-quality performances. It contains plentiful implementations of frequently used 

neural-network building blocks such as layers, activation functions, optimizers, which are 

going to be discussed in detail (Chollet 2015).  

2.3.5 Back Propagation 

Gradient descent is the most established first-order optimization algorithm. 

Backpropagation aims to update the output weight and hidden weights in the neural 

network during an iterative process so that the new weights cause the output to be closer 

to the target. A weight can be defined as a parameter which transforms the input data 

to hidden layers within a neural network. The updates of weights are based on the partial 

derivative of the total error with respect to hidden weights and output weights, which can 

be express with the equation below. The algorithm starts with a random guess at the 

parameters and tries to configure the parameters in the direction in which the loss 

function steeps downward the most. This process is repeated until the lowest point in the 

loss function is found (Biansoongnern and Plangklang, 2016 - 2016, pp. 1–4). 

� =  � −  � ∙ % �(�)        (eq. 2) 

Where,  

�  : Learning rate 

∇ �(�)  : Gradient of loss-function 

�(�)  : Gradient function with respect to parameters � 

The process of learning in neural networks, using gradient descent and backpropagation 

can be summarised as follows. A neural network is trained by using backpropagation in 

which, it first propagates forward, calculating the dot products of the input and their 

corresponding weights. An activation algorithm is applied to this weighted sum, which 

transforms the input signals to the output signal. It also introduces non-linearity into the 

model, which allows the present model to learn the complex relationship between the 

inputs and outputs. After this, it propagates backwards in the network carrying the error 
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terms. While moving backwards in our network, it updates the weight values using 

gradient descent. The iterative update of weights is performed by calculating the gradient 

error function with respect to the weights or the parameters. Afterwards, it updates the 

parameters in the opposite direction of the gradient of the loss function. This process 

repeats until the local minima are determined. 

2.3.6 Recurrent Neural Network (RNN) 

Recurrent neural networks are another branch from the traditional feed-forward 

networks, which, as the name suggests, is recurrent or has loops in its architecture. 

Figure 8 shows the general schema of an RNN unit. The loop provides added 

advantages to this architecture over the simple feed-forward neural networks. This 

looping enabled RNNs to have self-sustained temporal activation dynamics in the 

absence of input and recurrent connection networks. 

 

Figure 8  Recurrent neural network (dprogrammer, 2019) 

When the input data is provided to the RNN, it preserves this data in an internal state, 

which means that RNNs have a dynamic memory (Lukoševičius and Jaeger, 2009, pp. 

127–149). These make the RNN stand out for applications where long sequences of data 

should be memorised. Hence, RNNs are used in NILM. The approach is also used in the 

present thesis work. The following equations represent in case of feed-forward: 

ℎ� =  �(&�) �  �('��� +  )�ℎ�*+ + ��)     (eq. 3) 

,� �  �(
�) �  �(��ℎ� +  ��)      (eq. 4) 

where, 

��  : input vector (m x 1) 

ℎ�  : hidden layer vector (n x 1) 


�  : output vector (n x 1) 

��  : bias vector (n x 1) 
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u, v : parameter matrices (n x m) 

v : parameter matrix (n x n) 

�, �  : activation functions  

Figure 9 shows the unrolled RNN, where the green colour box is the neural network, and 

the arrow indicates the feed-forward. The current time step and previous time step are 

feed to the next input, as shown. 

 

Figure 9  An unrolled recurrent neural network (oinkina et al., 2015) 

2.3.7 Long Short-Term Memory (LSTM) 

Long short-term memory (LSTM) network is a category of RNN, which can solve 

sequence prediction problems with learning order dependence capability. Standard 

RNNs suffer from vanishing and exploding gradient problems. LSTM provides solutions 

to these problems by introducing new gates such as input and forget gates. It consists 

of four layers interacting in an especial manner. The architecture shown in Figure 10 

enables an LSTM network to remember information for a long time (Hochreiter and 

Schmidhuber, 1997, pp. 1735–1780). The working principle and the mathematical 

formulation of an LSTM network are explained below. 

The state update ℎ�, and the output 
� is calculated as follows: 

ℎ� , 
� � -(�� , ℎ�*+)        (eq. 5) 

It consists of a forget gate -�, which decides what information not to remember. This gate 

contains a sigmoid activation function, and if the value of it is zero, then the value is 

thrown away. 

-� �  (�� ∗ /ℎ�*+, ��0 +  ��)       (eq. 6) 

where, 

   : sigmoid activation function 

��   : weight vector of the forgot gate 

��   : bias vector of the forgot gate 
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Figure 10 The LSTM network consists of four interacting layers: input gate, output (oinkina et al., 2015) 

The next layer is the update gate layer in which the sigmoid layer decides what 

information to store in the cell state. The layer ‘tanh’ creates a vector of new candidate 

values 12� that could be added to the state. 

3� �  (�4 ∗ /ℎ�*+, ��0 + �4)       (eq. 7) 

12� � 567ℎ(�8  9 /ℎ�*+, ��0  +  �8)       (eq. 8) 

where,  

tanh   : hyperbolic tangent activation function 

 �  : learned weight vectors 

�  : learned bias vectors 

After this, the cell states are updated, 

1� �  -� ∗  1�*+ + &� ∗  12�        (eq. 9) 

The output layer 
� , is a filtered version of the gate state. First, the sigmoid layer is used 

to decide what part of the cell state to output. Then the cell state passes through a ‘tanh’ 

activation function and multiplies with the output of the sigmoid layer. 


� � (�:/ℎ�*+, ��0 +  �:)       (eq. 10) 

ℎ� �  
� ∗ 567ℎ(1�)        (eq. 11) 

2.3.8 Gated Recurrent Unit (GRU) 

Gated Recurrent Unit (GRU) is a featured and efficient variant of LSTM. It maintains the 

effect of LSTM while making the structure simpler (Macal and North, 2010, pp. 151–162). 

GRU combines the input and forget gate of LSTM into an update gate, and the output 

gate in LSTM is named as reset gate in GRU. Update gate determines how to combine 

the new input with the previous memory and reset gate determines how much of the 
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previous memory can pass through. GRU model structure is shown in Figure 11. 

 

Figure 11 Gated recurrent units (oinkina et al., 2015) 

Below mentioned equations represent the mathematics during feed forward: 

;� �  (�< ∗ /ℎ�*+, ��0 +  �<)       (eq. 12) 

=� �  (�> ∗ /ℎ�*+, ��0 +  �>)       (eq. 13) 

ℎ?� � 567ℎ(��   ∙ /=� ⊙ ℎ�, ��  +  ��)      (eq. 14) 

ℎ� � (1 − A�) ⨀ ℎ�*+ + A�⨀ℎ�
C        (eq. 15) 

where, 

ℎ�   : hidden layer vectors 

��  : input vector 

�<, �>, �� : bias vector 

�<, �> , ��  : parameter matrices 

, 567ℎ  : activation functions 

2.3.9 Bidirectional Recurrent Neural Network 

Bidirectional recurrent neural networks (BDRNN) have the capability to connect the two 

hidden layers of opposite directions, i.e. from past(backward) and future(forward) to the 

one output, as shown in Figure 12. Thus, the output layer can get information from both 

past and future states simultaneously, which enhances the learning of the model.  
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Figure 12 General structure of Bidirectional recurrent neural networks (oinkina et al., 2015) 

2.3.10 Convolutional Neural Network 

The convolution layer is the primary and first building block of a convolution neural 

network (CNN). Convolution is a linear operation between an array, called kernel or 

filler having a set of weights and the input. The filters are much smaller in size than the 

input data size. In general practice, it is in the range of 1*1 to 7*7 blocks. The 

multiplication between the filter and the same size input data is a dot product, as shown 

in Figure 15b, which occurs element-wise. The sum of this dot product value generates 

a single value. The filter moves over the input dataset in the left to right and then in the 

top to bottom direction, as shown in Figure 13, Figure 14, and Figure 16. This filter gets 

multiply with different patches of input data, which are same in size (Brownlee, 2020a). 

This process is considered one step, and the output of this step is an extracted feature, 

which helps in training the model. This output gets transfer into the next fully-connected 

hidden layer in the model, as shown in Figure 13 (Brownlee, 2020a). 

 

Figure 13 Example of a filter applied to a two-dimensional input to create a feature map (Brownlee, 2020a) 
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CNN can be categorised as 2D (two dimensional) and 1D (one dimensional) network. 

The main function of a convolutional layer is to extract the features from the raw data. 

2D CNN is named because the kernel is two-dimensional, which slides in the third 

dimension, as shown in Figure 14 (Verma, 2019). Initially, 2D-CNN was designed to 

deliver state-of-the-art accuracy in tasks such as image recognition, speech recognition, 

object detection, and language translation (Krizhevsky et al., 2012, pp. 1–9; 

Srinivasamurthy, 2018, pp. 6–15). 

 

Figure 14 Kernel sliding over the Image (Verma, 2019) 

1D Convolutional Neural Network was recently developed to handle the data in a 1D 

sequence of data, such as in signal processing, ECG classification, Cardiac Arrhythmias 

(Kiranyaz et al., 2016, pp. 664–675; Kiranyaz et al., 2015, pp. 2608–2611). There are 

several advantages of 1D-CNNs due to the following reasons (Brownlee, 2020b):  

 1D CNNs require simple array operations, which make the computational 

complexity lower. Such models run faster over GPUs but can also be trained on 

CPUs. 

 Recent studies showed that the 1D CNNs have shallow architectures, which 

means that based on the quality of the database available for training, these 

networks need comparatively less hidden-layer (e.g., <2) and neurons (e.g., <50) 

for accurate results. 

 Due to the low computational power requirements, it is more suitable for real-time 

operations, and it is also cost-effective. 

The input datasets obtained for NILM algorithm are in 1D and CNNs have been an 
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outstanding method in dealing with 1D dataset. Thus, the presented algorithms in this 

thesis primarily created using CNNs. The following hyper-parameters determine the 

configuration of a 1D-CNN model (Kiranyaz et al., 2015, pp. 2608–2611): 

 The number of hidden layers and neurons. 

 Filter (kernel) size in each convolutional layer. 

 Subsampling factor in each convolutional layer. 

 The choice of pooling and activation operators 

A typical 1D CNN model (see Figure 15a) has a hidden convolutional layer followed by 

an input layer that operates over 1D sequence data. Based on the length or the 

complexity of input data, sometimes the first hidden convolutional layer is connected to 

another hidden convolutional layer, and the next layer could be a pooling layer, e.g., 

‘Max-pooling layer’ whose job is to distil the output of the previous layer to the most 

salient elements. Afterward, a dense layer, which interprets the extracted features by 

convolutional layers. A flatten layer can also be used between the dense and 

convolutional layers to reduce the features maps to a single 1D vector (Brownlee, 

2020b).  

Pooling Layer This layer is used to down-sample the data from one layer to the next 

layer. In general, two types of pooling are used, i.e., Maximum number pooling and 

average pooling. When the target is to down-sample a ten numbers array to half of it 

(i.e., 5). The first step is to choose a size of the window. In this case, it is two, which 

means if Max-pooling layer is applied, one out of two number having higher weightage 

will be chosen for the next layer. The main advantage is to speed up the process by 

reducing the amount of data (Nascimento, 2016, p. 17).  

Dropout Layer is an important layer and often used to handle the problem of overfitting. 

Due to handling a massive set of data, deep neural networks are prone to overfit. Main 

function is to randomly drop out some units with some probability at the time of training. 

There is not any fixed rule to choose the percentage but mostly chosen 50%. It works 

because it is doing an ensemble of several “destroyed” versions of the main network. 

Thus, it also improves the capabilities of network by reducing the dependence of specific 

weights in the layer (Nascimento, 2016, pp. 17–18).   
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Figure 15 A typical convolutional neural network 

Dense Layer is a fully connected layer, which performs the dot product with the previous 
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layer and the number of neurons or unit specified in the dense layer. A densely 

connected layer delivers the learning features from all the combinations of the previous 

layer features, whereas a convolutional layer relies on consistent features with a small 

repetitive field. For example, if the input shape to dense layer is (batch size,8) and the 

number of neurons or units in the dense layer is chosen 16, the output shape will be 

(batch size,16) (Nascimento, 2016, pp. 17–18).  

One of the crucial parts of such a model is the shape of input. Each sample input should 

be in terms of the number of time steps, which is calculated based on the steps or time 

required to complete one full cycle by the appliance, i.e., on, operation, and off. It is not 

a rule to choose it like that, but this way gives better request and the number of 

features, which are considered one or two in this thesis, i.e., Active power and Reactive 

power. In 1D CNN, the input to the first hidden layer shall be in the shape of (samples, 

time-steps, features) (Brownlee, 2020b). Reshaping and its techniques will be 

discussed in detail in the next chapter of data pre-processing. The important fact to 

understand is that CNN does not view the data as human, but the data is treated as a 

sequence over which the convolutional layer performs read operation, like a 1D image, 

which is very similar to the 2D CNN model in case of image processing. The kernel slides 

in one-dimension in 1D CNNs, as shown in Figure 16 (Verma, 2019). Figure shows an 

example of measurement from an accelerometer, where the first dimension is time-steps, 

and others are the different measurements by the meter, which can also be referred to 

as number of features (Brownlee, 2020b).   

 

Figure 16 Kernel sliding over 1 D data (Verma, 2019) 

2.4 Deep Learning Fundamentals 

Deep learning has dramatically impacted image classification, speech recognition, 

sequence prediction, sentiment classification, image classification, and cybersecurity.  

Primary hyper-parameters used in deep learning methods play a crucial role, which will 

be discussed in this section. 

2.4.1 Activation Function 

An artificial neuron calculates the weighted sum of its input and adds a bias to it. Consider 

the following equation,  

D �  ∑(FG&Hℎ5 ∗ &7�'5) + �&6I      (eq. 16) 
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The output Y can be any value ranging from - ∞ to + ∞. The neuron does not know the 

bounds of the output value and cannot decide on its own if it should or should not fire. It 

is where activation functions come into the picture. An activation function decides 

whether a neuron should be activated or not by calculating the weighted sum and adding 

bias to it. There are two classes of activation functions, namely: 

1. Linear Activation function: A linear activation function happens to be a straight-line 

function where the activation is proportional to the input. Linear activation function 

has limitation with inability to capture complex relationships. It can be represented 

as: 

-(�) = �         (eq. 17) 

2. Non-Linear Activation functions: These are the most utilised activation function as 

they enhance the neural network capability to learn complex and complicated data 

and generate non-linear mappings from input to output. 

(a) Sigmoid: Also known as the logistic Activation Function. It is an S-shaped curve 

with an output value lies in the range between zero and one. It deals with a 

problem of vanishing gradient, i.e., there is almost no change in output for a very 

large and a small values of the input, which leads to no update in weights and 

thus no further learning of network (Chollet, 2018, pp. 178–233).  

(b) Hyperbolic tangent (JKL M): Tanh function is also a sigmoidal or S-shaped in 

nature; it outputs the value in the Range (-1,1). It strongly maps the negative 

inputs to the negative outputs and maps only zero-valued inputs to near-zero 

outputs, which improves the training of networks. However, it still has a significant 

problem with vanishing gradient (Chollet, 2018, pp. 178–233).  

(c) Rectified Linear Units (ReLU): It is a simple activation function that returns the 

value provided as input directly or the value zero if the input is zero or negative, 

as mentioned in Figure 17(c). ReLU has an advantage over the above-discussed 

functions that It is faster to compute and converge the network quickly. It also 

reduces the vanishing gradient problem compared to sigmoid, and tanh function 

due to the constant derivative (Nascimento, 2016, p. 17). The disadvantage is 

that when the inputs come to near zero or negative in value, the function gradient 

becomes zero. Thus, the network cannot perform backpropagation and stop 

learning, which is identified as the Dying ReLU problem (Chollet, 2018, pp. 178–

233).  

(d) Leaky ReLU: Leaky ReLU solves the “dying ReLU” problem by allowing the 

negative slope to be learned. This function provides the slope in negative values 

part; therefore, the backpropagation is possible. The functionality of Leaky ReLU 

is not standardized, and it depends on case to case base, which makes it 
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complicated (Chollet, 2018, pp. 178–233).  

 

Figure 17 Commonly used activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU,(d) LReLU (Feng et al., 2019, p. 3) 

2.4.2 Loss Functions 

A deep neural network leans to map a set of inputs to a set of outputs from the training 

data available to it. These networks are trained using one of the optimizers, whose 

application is to update the weights. The aim is to move down the slope of an error where 

the error is a measure of how far the results are from the desired output. This error is 

calculated using the loss function. 

The loss function should act as a metric to evaluate the performance of the model. It 

should represent all the aspects of the model in a single number such that it can reflect 

any performance degradation or improvement made by the model (Goodfellow et al., 

2016, pp. 271–311). A cost function is an associated term to the loss function, which is 

the average loss over the entire training set. In contrast, the loss function evaluates the 

metrics for a single training set. Regression and classification make use of different loss 

functions. Some of the commonly used loss functions are listed below (Mahendru, 2019).  

(a) Squared Error Loss: It is the square of the difference between the actual values 

and the predicted values from the model. It can be expressed with the equation 

(Mahendru, 2019),  

N =  (, − -(�))O        (eq. 18) 

where, 

L is the loss, 

y is the actual values,  

f(x) is the predicted values. 
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The corresponding cost function is the Mean of these squared Errors (MSE). It can be 

express as the below-mentioned equation, where the first part is the mean of the 

variables n with the square error of the predicted and observed values.  

PQR �  
+

S
∑ (,� − ,�T )OS

�U+        (eq. 19) 

(b) Binary Cross Entropy Loss: Binary classification is defined as a predictive 

algorithm where the output is either one of the two items, indicated by zero or one. 

For example, if the prediction output is 0.58, which is greater than the halfway mark 

then the output is one. Else, if the prediction output is 0.45, then the output is zero. 

This is the most commonly used loss function is the binary classification (Mahendru, 

2019).  

In the presented thesis work, the primary task of the algorithm is to detect the on-off 

state of appliances. This loss function is implemented in such a that if the power 

consumption is below certain pre-defined value, then the output will be zero or else 

one. The binary cross-entropy error aims to reduce the entropy of the predicted 

probability as output from the model (Mahendru, 2019).  

2.4.3 Learning Rate 

Learning rate defines how much alterations of the weights are necessary with respect to 

the loss gradient. Selection of the learning rate is quite flexible. It can be set as either a 

fixed value or modified in each epoch while training a model. Epoch defines the number 

of iterations of the entire training dataset. The number of epochs is selected so that the 

difference of the losses from one epoch to the next epoch gets minimal or zero, which 

means that there is no more weight update process occurring and no learning happening 

in the model. Learning rate regulates the speed of convergence to global minima. If the 

learning rate is chosen very low (in order of 10-3 - 10-4), the convergence to global minima 

will take longer time, but if the learning rate value is chosen very high (in order of 100 - 

101), there are possibilities of no convergence, as shown in Figure 18. Also, weights get 

updated slightly in one epoch, when the learning rate is low, which leads to an increase 

in the required number of epochs for training.  

 

Figure 18 Learning rate (Donges, 2020) 
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‘Global minima’ is the minimum point of the entire domain, and ‘local minima’ is a sub 

optimal point, as shown in Figure 19. Local minima offer the comparatively minimum 

point where the losses are minimal but not the least (Khandelwal, 2018). The goal of a 

model is to train until it reaches the global minima. Optimizers are designed to focus on 

global minima while weights update in any layer (Khandelwal, 2018). 

 

Figure 19 Local minima and Global minima (Khandelwal, 2018) 

2.4.4 Optimization  

Selection of the optimization algorithm plays a critical role in the convergence of a deep 

learning algorithm. An optimizer can reduce the losses by changing network attributes 

such as weights and learning rate. Advantages of the most used optimizers are 

discussed as follows. 

(a) Adagrad: The Adaptive Gradient Algorithm has an adaptive learning rate capability, 

which allows a network to regulate the learning rate for individual features. Adagrad 

is a very efficient method if the input dataset has lots of missing values. This method 

has a drawback that the learning rate keeps reducing after every iteration. This 

problem was taken care of by some optimizers discussed below (Algorithmia, 2018). 

(b) RMSprop: It stands for the Root Mean Square Propagation, which is an updated 

version of Adagrad. It only accumulates gradients in a fixed size window, unlike 

Adagrad, and deals with the radically diminishing problem of Adagrad. 

(c) Adam: Adam is derived from adaptive moment estimation, and it is based on the 

concept of momentum. The adaptive learning rate of each parameter is calculated 

from the estimate of the first and the second moments of the gradient. Adam deals 
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with the radically diminishing problem of the Adagrad and performs efficiently with 

faster computational power(Algorithmia, 2018).  

2.4.5 Parameter Initialization 

Weights initialization plays an essential role in the training of a neural network. If all the 

weights are assigned as zero initially, there will be no learning in the network. Because, 

even after the gradient update, all the values will be zero. Wrong initialization of weights 

may lead the network to take more time and computational power to reach global minima. 

There are some ways for parameter initialization, which are discussed as follows: 

(a) Xavier Initialization: It is always good to have the same variance while moving from 

one layer to another. It supports to keep the signal from exploding to a considerable 

big value or zero at the end. It is based on Gaussian distribution and represented for 

a fully-connected layer having m inputs as (Stewart, 2019): 

�4V~X(0,
+

Y
)        (eq. 20) 

where, 

W is the weights 

N is the neuron in the layer 

The value of m is known as fan-in, i.e., the number of incoming neurons or units 

(Stewart, 2019). 

(b) He Normal Initialization: It is a modified Xavier method with a multiplication factor 

of 2, as shown in the equation below.  

�4V~X(0,
O

Y
)        (eq. 21) 

The initial weights are assigned, keeping in mind the size of the previous layer. It 

helps to attain the global minimum faster and more efficiently. This method is 

recommended to use with ReLU layer. 

(c) Pre-initialization: It is designed to import the weights of the already-trained network. 

A model can be saved along with the weights in a particular file format known as 

h5py. Keras provides a feature to load the stored model with predefined weights for 

further actions. The only limitation is that the datasets used while saving the model 

must have the same properties as the new dataset required for testing or additional 

training(Stewart, 2019).   

2.5 Evaluation Matrix 

F-Measure, also known as F1-score, is a single measurement that contains both recall 

and precision. A perfect F-measure score would be one; thus, the closer the model score, 

the better the performance (Brownlee, 2020d). It can be determined as,  
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Z − PG6I'=G �  
O∗[>\84]4:S∗^\8_``

[>\84]4:Sa^\8_``
      (eq. 22) 

The confusion matrix is one of the most recognised techniques for evaluating results. 

It is not enough to calculate only classification accuracy of results when a vast dataset 

is utilised for training a model for several appliances. The confusion matrix calculation 

provides more inside of the outcomes (Brownlee, 2020d). 

1b6II&-&c65&
7 6cc'=6, (%) �  
�:�_` 8:>>\8� e>\f48�4:S]

�:�_` e>\f48�4:S] Y_f\
∗ 100    (eq. 23) 

whereas, the confusion matrix has more parameters and can be encapsulated as,  

Table 1 Confusion matrix (Bernard, 2018, p. 119) 

 Positive Prediction Negative Prediction 

Positive Class True Positive (TP) False Positive (FP) 

Negative Class False Negative (FN) True Negative (TN) 

where (Brownlee, 2020d), 

true positive: correctly predicted event values. 

false positive: incorrectly predicted event values. 

true negative: correctly predicted no-event values. 

false negative: incorrectly predicted no-event values. 

Precision for Binary Classification is one of the metrics required to calculate the F1-

score. It can be computed as, 

g=Gc&I&
7 �  
h[

h[ai[
         (eq. 24) 

Recall for Binary Classification is another metric that quantifies the number of correct 

positives made out of all positive predictions and it can be estimated as, 

jGc6bb �  
h[

h[aik
        (eq. 25)  

2.6 Save and load model  

One of the advantages of a neural network, which is a necessity as well, is that it must 

train and validate the model only once. It is a tedious procedure that takes a lot of time, 

computational power, and datasets. TensorFlow provides a feature that once the model 

starts giving the desired outcomes, it is feasible to save the weights. 

This process also helps to create checkpoints during the training. If the availability of 

computational power is not adequate to execute the training with entire dataset at once, 

it is possible to breakdown training into several chunks. Once a model is saved, its initial 

weights assigned will not be random when loading it; rather, the weights will presume 

their properties. The saving points of a model are known as checkpoints. A model is 
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saved in HDF5 format, which only contains the trained weights. It is essential to call all 

the libraries again, used while training the model, before loading it(Agarwal et al., 2015).  

2.7 Development Tools 

The primary programming language used for model development in this research is 

Python, which is the most commonly used programming language in Data science 

research communities. Python is a high-level, interpreted programming language with 

a strong focus on readability and understandability. Its broad selection of libraries and 

features that could help streamline the development process and heavily machine 

learning-oriented toolkit resulted in Python being the primary choice for this task. 

Recent advances in the AI field have eased the learning curve significantly, and 

especially, deep learning has historically been a rather tricky subject to break. Google 

released its Python-based software library TensorFlow to the public (Agarwal et al., 

2015). TensorFlow has several uses, but its primary domain is machine learning by 

simplifying the development process. Besides, this research employs the usage of 

Keras, a neural network library that is implemented on top of TensorFlow, streamlining 

the process even further.  

Additional Python packages used in this project are Stats-models, SciKit Learn, Numpy, 

Pandas, and Matplotlib. SciKit Learn includes several tools for statistical modelling and 

analysis in machine learning, while others simplify the development. 

 Table 2 Software information 

Software Version 

Python 3.7.0 

Microsoft 365 365 ProPlus 

Adobe 20.13.20064.405839 

Pandas 0.23.4 

Numpy 1.16.2 

TensorFlow 2.3.0 

Keras 2.4.3 

Scikit-learn 0.24 

matplotlib 2.2.3 

Statsmodels 0.12.0 
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3. Data Collection and Pre-processing 

This thesis work is based on real load profile data, not on the simulated database. This 

chapter provides the details of the project partner, data collection process, and data pre-

processing techniques. The typical structure of the whole process is shown in Figure 20. 

 

Figure 20 Typical structure of data pre-processing 

3.1 Data Collection Process 

3.1.1 Background Information of Project Partners 

The load profile measurement and data collection process from four dairy farms based 

in the Bayern state of Germany are executed by the team of Technische Hochschule 

Ingolstadt (THI), Ingolstadt, Germany, along with their project partner company named 

Maschinenringe Germany GmbH (MR), Neuburg an-der Donau, Germany. Those four 

farms are named as Farm1, Farm2, Farm3, and Farm4 in this document. The individual 

measurements of four electrical appliances (having significant power consumption in a 

dairy farm) were taken care of by THI. These four appliances are MK, VP, MP, and SA. 

The milking process in all the selected farms occurs twice every day. MK is used for 

maintaining the temperature of the milk. SA is used for cleaning the udder of cow and 

pipelines, mainly used twice a day. MP is used to pump the milk to storage. VP is used 

for the milk suction process. MR provided the aggregated load profiles of the respective 

farms. MR performed these measurements incorporation with Lackmann 

Metergesellschaft mbH & Co. KG, Münster, Germany.   

3.1.2 Measurement Devices  

All the measurements performed by THI are measured with a 3-Phase Power Logger 

named EMONIO P3, as shown in Figure 21, manufactured by Berliner Energieinstitut 

GmbH, Berlin, Germany. EMONIO is ISO 500001 and DIN EN 601010-1 certified class 

1 (i.e., accuracy ±1) power logger and capable of measuring phase-wise current, voltage, 

power factor, active power, and apparent power with time index. The uncertainty for 

reactive power is less than three percent. The input voltage range is 400 Volts (U) phase-
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phase and 240 V Neutral; also, it can withstand up to 80 Ampere (A) alternative current 

(AC), which are in accordance with the dairy farm appliances.  

 

Figure 21 EMONIO P3 (Berliner Energieinstitut GmbH, 2019) 

EMONIO has a measurement category of CAT III, which means this device is safe to be 

used in a control panel or switchboard, as shown in Figure 22.  

 

Figure 22 EMONIO Installation in switchboard (Berliner Energieinstitut GmbH, 2019) 
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EMONIO has communication interfaces as an intern and extern WLAN, MQTT, and 

Bluetooth, which provided the option to control and monitor it from a remote location 

(Berliner Energieinstitut GmbH, 2019). 

On the other hand, the aggregated load profile provided by MR was measured using a 

smart meter from Lackmann, as shown in Figure 23. The smart meter from Lackmann is 

designed for industrial applications and can measure various electric parameters. It also 

has vast communication support (Lackmann GmbH & Co. KG, 2020). For the presented 

work, only the aggregated active and reactive power with the time index was acquired. 

 

Figure 23 Lackmann smart meter (Lackmann GmbH & Co. KG, 2020) 

3.1.3 Overview of the Data 

For the development of NILM algorithm, one or more features were required. 

Two features i.e., active, and reactive power are considered for the developed 

algorithm. Studies say that the performance of model become better if trained with more 

features (Li et al., 2019, p. 27). The measurements from EMONIO were captured one’s 

every second and from Lackmann meter, one’s every two second. The frequency of 

measurement plays an important role in neural network training. It is essential not to miss 

any load profile variations as input to the model to train it accurately. When the time 

frame is short (in seconds), the load profile has more probability of capturing all the 

variations. Measurement frequency also depends on measuring device capability. The 

measurements from both the devices are delivered in ‘.csv’ file format, as shown in 
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Figure 24 (b). Figure 24 (a) shows a sample of available raw data.  

 

Figure 24 Exported files from measurement devices 

Figure 25 shows a selection of load profiles for aggregated load in blue and individual 

appliances in red, orange, and green. The y-axis shows the power in kilowatt (kW), and 

the x-axis is the time axis. 

 

Figure 25 Load profiles (Raw Data Sample) 

Initially, it was planned to collect the individual appliance power consumption load profile 

data from all four farms for a minimum period of seven to ten days, and the aggregated 

load profile data for the respective farm in same time frame supposed to be received 

from MR. There were some challenges faced at the time of extracting the data from the 

measuring devices, which will be discussed in this section. The availability of the overall 

datasets is listed in Table 3, which concludes that reactive power is only available for the 

Farm1. A total of three farms can contribute to modelling. Variations in MP and SA 

datasets are limited to only one farm, and VP datasets are available from two farms. MK 

has the maximum data availability from three farms for training and testing. 

 



34 

 

Table 3 Data availability from farms 

Farm 
Name 

Date No. Of 
Days 

VP MP MK SA Aggregated 

From To P Q P Q P Q P Q P Q 

FARM1 24.06.2020 21.07.2020 28                     

FARM2 23.11.2019 03.12.2019 11                     

 

FARM3 

29.05.2019 30.05.2019 2                     
04.06.2019 07.06.2019 4                     
08.06.2019 13.06.2019 6                     

 

 FARM4 

21.07.2019 23.07.2019 3                     
26.07.2019 26.07.2019 1                     
28.07.2019 03.08.2019 7                     
05.08.2019 13.08.2019 9                     

where,  

P : Active power  

Q : Reactive power  

 : Available  

 : Not available 

3.2 Data Munging 

The process of transforming data from a raw data form to another format to make it more 

appropriate and valuable for the downstream processes is called data munging. 

3.2.1 Handling Missing Values 

The first error was observed with a large percentage of missing values in the raw 

dataset. The timespan of the missing values was in a wide range, i.e., from a few seconds 

to several hours, as shown in Figure 26.  

 

Figure 26 Sample of missing values dataset. (a) Farm1-VP; (b) Farm4-VP 

EMONIO delivers data in both on and off condition of the appliance; thus, a possible 
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reason for the missing values could be power cut to the particular appliance in that 

timespan. This error was rectified by creating a fresh data-time data-frame for a required 

number of days and time. Using an API of pandas-library in Python, called merge, the 

new data-frame and raw values data-farm were merged on the basis of the date-time 

index of the freshly created data-frame. The column with missing values gets filled with 

nan, which were replaced with an average of nan and the next value using a Python 

function called fill.na. This process is known as forward filling. The second method is 

to replace the value with a zero value. 

The second error was observed in the time index, which was not the same for the 

dataset measured by THI and MR in some cases, as shown in Figure 27.  

 

Figure 27 Sample of date-time column shift for both the devices 

It is required to give input data of aggregated and individual appliances in the same 

index. Otherwise, the learning and prediction might also shift by the same time index 

difference. This error was handled by initially plotting several graphs and extracting the 

days with this error. Later the adjustments were performed on the time indexes using the 

‘pandas’ and ‘NumPy’ libraries in python. Also, the EMONIO device was reset before the 

installation in the next farm. 

The third error was determined in the dataset measured with EMONIO. Datasets had 

negative power values for one or more phases. EMONIO is a polarity-sensitive device, 

and thus, the reason was quite apparent that at the time of installation, the current coil 

was connected in reverse polarity. This challenge was remedied by multiplying the 

measured value with a factor of minus one. 

The fourth error was also detected in the dataset measured with EMONIO. As shown 

in Table 4, some of the power measurement values were negative, which was identified 

as the reverse polarity issue of the current coil. Current measurement at the same time 

found zero. It is also not the self-consumption of the device, which is only 9 W. Thus, the 

exact reason could not be identified, but the possible cause could be a measurement 

error. All the values below zero were transformed to zero using the ‘pandas’ library in 

python to handle this error.  
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Table 4 Sample of error in polarity and accuracy 

 

3.2.2 Data Transforms 

Data transformation from raw data to a model readable data format plays a significant 

role in any deep neural network modelling. All the techniques, processes, and steps 

taken will be discussed briefly. 

Scaling of numerical inputs to a standard range enhances the performance of algorithms. 

Two most popular techniques for scaling numerical data prior to modelling 

are Standardization and Normalization (Brownlee, 2020c).  

Data Normalization scales every input variable into a range of zero to one. Neural 

networks training are data sensitive, and their outcomes improve when trained over small 

weights. If a model is trained over large value datasets, model weights in hidden layers 

become large, which make the learning complicated (Brownlee, 2020c). Thus, the 

‘MinMaxScaler’ operator of python based ‘sklearn’ library was applied to the aggregated 

load profile and individual appliances load profiles for normalization. This operator 

divides the whole dataset by its maximum value and transforms the dataset into a range 

of zero to one. 

Transformation of datasets, from normalised power values to the State of appliance 

(i.e.,0/1 for on/off, respectively). The transformation parameters are defined in Table 5. 

Table 5 Parameters for transformation to state values  

Name of device Chosen parameter for on/off 

VP if VP_ normalised power <0.02 then '0' else '1' 

MP if MP_ normalised power <0.5 then '0' else '1' 

MK if MK_ normalised power <0.07 then '0' else '1' 

SA if SA_ normalised power <0.02 then '0' else '1' 

Train-Test Split is a procedure to estimate the performance of a deep learning 

algorithm. A neural network needs data in train and test datasets. This procedure is 

appropriate when dealing with a very large dataset. It helps to evaluate the performance 

of a model in a short period. 

The percentage of split is not fixed, but the common split percentages include train: 80%, 

test: 20%, train: 67%, test: 33%, or train: 50%, test: 50%. The training dataset is a 

composition of ‘X_train’ and ‘Y_train’. X_train can be defined as the data which is input 

to a model (e.g., aggregated power), and Y_train can be defined as the desired output 

from a model (e.g., Individual appliance power, or on-off state of the appliance). Similarly, 
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the testing dataset is also a composition of ‘X_test’ and ‘Y_test’. X_test can be defined 

as the dataset, which is provided to a model as input for testing (e.g., aggregated power), 

and Y_test can be defined as the outcome of a model (e.g., on-off state of the appliance). 

Validation Dataset is a dataset that is used to describe the evaluation of any model 

when tuning hyper-parameters. Train dataset can be divided into train and validation 

dataset, or validation dataset can be prepared separately from raw data, which is not 

used for training or testing. Likewise, Train-Test Split, validation data set split percentage 

is also not fixed. The common split percentages include train: 85%, Validation: 15%, 

train: 75%, Validation: 25%. 

Reshaping is a very crucial procedure when dealing with 1D-dataset as discussed in 

2.3.10; the model expects the input to be 3D with [sample, timesteps, features]. 

For this thesis work, features are considered as either only active power or both active 

and reactive power; thus, features are either one or two, respectively. The next 

parameter is timesteps also known as window-size, which can be defined as the 

number of measurements performed for any particular dataset type. If aggregated power 

is measured one’s every two seconds for 24 hours. Then, there will be a total of 43,200 

data points. This number is the timesteps for this dataset. There is no rule for the 

selection of a number of time steps, but selection criteria should be in such a way that at 

least one complete cycle (i.e., on-off) of the appliance is covered. Timesteps were 

preferred differently for all four appliances based on their operation cycles. The last 

parameter in reshaping is a sample also known as batch-size, defined as the number 

of sets prepared from the 43,200 data points for training. Each sample will have a defined 

number of timesteps. For example, 10,000 samples can be prepared, each having 10 

timesteps. The variables of a sample are chosen in such a way that either they are 

‘unique’ in each sample or ‘partially repeats’ in each sample (Brownlee, 2020b). Table 6 

shows three cases of samples made from a univariant dataset 

[10,20,30,40,50,60,70,80,90] having one feature. The timesteps is considered as 3 for 

reshaping all the cases. Case 1 and Case 3 are partially repeating the values whereas 

Case 2 is having unique values.   

Table 6 Example of sample datasets 

Case1:  

[10,20,30] 

[20,30,40] 

[30,40,50] 

[40,50,60] 

[60,70,80] 

[70,80,90] 

Case2:  

[10,20,30] 

[40,50,60] 

[70,80,90] 

 

 

Case3:  

[10,20,30] 

[30,40,50] 

[50,60,70] 

[70,80,90] 
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4. Model Development   

This thesis demands to develop an algorithm for the classification of the on-off status of 

the selected appliances. Thus, the sequence-to-sequence approach was adopted for this 

work. The advantage of the sequence-to-sequence approach is that the size and shape 

of the outcome will remain the same as the input dataset. If the model is tested on one 

full day of operations, the classification results will be available for the whole day. Several 

models using CNN, LSTM, and their combinations were trained and tested over the same 

datasets. The architecture of models providing satisfactory results based on their F-1 

scores was examined. The availability of datasets is shown in Table 3. It was observed 

that training of a neural network mainly requires variations in data instead of the data of 

a similar type. Thus, complete datasets were not used for training the models to avoid 

overfitting issues. Due to the unavailability of reactive power for the appliance MP and 

MK, they were trained and tested with one-feature (i.e., active power). Nevertheless, SA 

and VP were trained and tested for both one-feature (i.e., active power) as well as two-

features (i.e., active and reactive power). 

The following datasets were chosen for training purpose as shown in Table 7.  

Table 7 Selection of datasets for training 

Appliance 
Name 

Farm1 Farm2 Farm4 

MK 24.06.20 to 28.06.20 23.11.19 and 27.11.19 21.07.19 to 22.07.19 

VP 24.06.20 to 28.06.20 - 21.07.19 to 22.07.19 

SA 24.06.20 to 28.06.20 - - 

MP - - 05.08.19 to 10.08.19 

The following datasets were selected for testing purpose as shown in Table 8. 

Table 8 Selection of datasets for testing 

Appliance 
Name 

Farm1 Farm2 Farm4 

MK 29.06.20 to 30.06.20 28.11.19 to 29.11.19 23.07.19 

VP 29.06.20 to 30.06.20 - 23.07.19 

SA 29.06.20 to 30.06.20 - - 

MP - - 11.08.19 to 12.08.19 

4.1 Model-1: 1D-CNN- BDRNN 

The first model is a one-dimensional convolutional bi-directional neural network with 

eleven layers, as shown in Figure 28. The first two hidden layers are the 1D convolutional 

layer having sixty-four neurons, each with a filter size of three and five, respectively. 
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Sixty-four neurons fitted well to handle the stated amount of data and eliminating the 

overfitting issues. A filter of 3*3 and 5*5, respectively, slides over the dataset to extract 

the unique characteristics in the first two layers. The third hidden layer is max-pooling 

with a filter size of two, which reduces the data-size to half by selecting one out of every 

two values, whichever delivers more significant weight. The fourth hidden layer is 

bidirectional GRU with thirty-two neurons, which supports the loss function by reducing 

the losses to get closer to the desired results, and the fifth hidden layer is the dropout-

layer with a 50% drop. The next two hidden layers are again bidirectional GRU and 

dropout. The second last hidden layer is a fully connected dense layer with one-hundred 

neurons, which collects all the information from the previously hidden layer and puts it 

into neurons. The last hidden layer is a dense layer with one node, which will give only 

one value at a time as required in the form of either zero or one. 

 

Figure 28 Architecture of Model-1 (1D-CNN-bidirectional RNN) 

The training parameters nominated for Model-1 are defined in Table 9 for all four 

appliances.  

Table 9 Training parameters of Model-1 

Appliance Name MK MP VP SA 

Feature Active power 

Data Frequency one’s in 30 s one’s in 2 s one’s in 60 s one’s in 60 s 

Trainable Parameters 64,841 

Samples 181 5,670 218 79 

Batch-size 128 32 32 32 

Window-Size 1,500 10 150 60 

Number of epochs 20 10 20 5 

Loss function Binary_crossentropy 

Optimizer Adam 

Activation function sigmoid 

Learning rate Initialized with 10-1 and reduced until 10-3 during epochs 

Active power was used for the training of the Model-1. The selection of data-frequency 
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was performed on the bases of the switching cycle of each appliance. This model creates 

a total of sixty-four thousand eight hundred forty-one trainable parameters based on the 

assortment of hidden layers. The window size chosen for each appliance is adequate for 

at least one full operation (on and off) cycle, respectively. The hyper-parameters play 

extremely critical roles, and the outcomes might get affected by slight changes. 

‘Binary_crossentropy’ loss function and ‘Adam’ optimizer provided pertinent results, and 

they are best suitable for classification problems. It is also recommended to implement 

the ‘sigmoid’ activation function in the last hidden layer if the ‘Binary_crossentropy’ loss 

function is applied. The learning rate was initialized with 0.1 for fast learning and later 

reduced until 10-3 during epochs to avoid overshoot the global minima. 

4.2 Model-2: 1D-CNN-LSTM 

Model-2 is a combination of 1D-CNN and RNN consisting of fourteen layers, as shown 

in Figure 29. The first two hidden layers are the 1D convolutional layer, each 

accommodating sixty-four neurons with a filter size of three and five, respectively. The 

third hidden layer is an LSTM layer consisting of sixty-four neurons, which is 

implemented here to understand the pattern of features extracted through the 

convolutional layers. The fourth hidden layer is the batch-normalization layer, which 

automatically standardises the inputs. The fifth hidden layer is ‘LeakyReLu’, which works 

as an activation function for the LSTM layer, followed by the sixth hidden layer as a 

dropout with a 50% drop. Another set of an LSTM, batch-normalization, ‘LeakyReLu’, 

and dropout layers, is applied. The second last hidden layer is a fully connected dense 

layer with one-thousand twenty-four neurons. A large number of neurons is chosen here 

to minimise the losses. The final hidden layer is a dense layer with one node, which will 

give only one value at a time as required in the form of either zero or one. 

 

Figure 29 Architecture of Model-2 (1D-CNN_LSTM) 

The training parameters selected for Model-2 are defined in Table 10. 
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Table 10 Training parameters of Model-2 

Appliance Name MK MP VP 

Feature Active power 

Data Frequency one’s in 10 s one’s in 2 s one’s in 120 s 

Trainable Parameters 101,249 

Samples 559 4,725 109 

Batch-size 32 

Window-Size 1,500 10 90 

Number of epochs 20 10 5 

Loss function Binary_crossentropy 

Optimizer Adam 

Activation function sigmoid 

Learning rate Initialized with 10-1 and 

reduced until 10-2 during 

epochs. 

10-3 

Model-2 was trained and tested for three appliances with active power. Data-frequencies 

were modified in comparison to Model-1 to make them more suitable for Model-2. The 

learning rate was kept constant for MP and VP. 

4.3 Model-3: LSTM 

Model-3 is an RNN-LSTM model, which gives good results in time series and sequential 

problems. The first hidden layer is an LSTM layer comprising one hundred twenty-eight 

neurons, followed by the batch-normalization layer, activation layer as ‘LeakyReLu’ and 

dropout layer with a 50% drop. Another set of an LSTM layer consisting of sixty-four 

neurons, batch-normalization, ‘LeakyReLu’, and dropout layers with a 50% drop, is 

implemented. The last two fully connected hidden layers are applied with one-thousand 

twenty-four and one neurons, respectively, to step down the weights update and deliver 

the result in either zero or one. 

 

Figure 30 Architecture of Model-3 (LSTM) 

The training parameters applied for Model-3 are defined in Table 11. 
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Table 11 Training parameters of Model-3 

Appliance Name MK MP VP 

Feature Active power 

Data Frequency one’s in 60 s one’s in 2 s one’s in 120 s 

Trainable Parameters 184,321 

Samples 92 4,725 109 

Batch-size 128 32 

Window-Size 500 10 90 

Number of epochs 40 5 10 

Loss function Binary_crossentropy 

Optimizer Adam 

Activation function sigmoid 

Learning rate Initialized with 10-1 and reduced until 10-3 during epochs. 

Model-3 was trained and tested for three appliances utilizing active power. The other 

stated parameters were modified to improve the performance of the model. 

4.4 Model-4: Multi-feature 1D-CNN-BDRNN 

The architect of Model-4 is comparable to Model-1: 1D-CNN- BDRNN, as shown in 

Figure 31. The only modification is in the input layer of Model-4, which comprises two 

features, i.e., active power and reactive power.  

 

Figure 31 Architecture of Model-4 (Multi-Feature 1D-CNN-bidirectional RNN) 

The training parameters selected for Model-4 are defined in Table 12. 

Table 12 Training parameters of Model-4 

Appliance Name VP SA 

Feature Active and Reactive power 

Data Frequency one’s in 60 s one’s in 120 s 

Trainable Parameters 49,897 

Samples 155 77 
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Batch-size 32 32 

Window-Size 150 90 

Number of epochs 3 10 

Loss function Binary_crossentropy 

Optimizer Adam 

Activation function sigmoid 

Learning rate 10-3 

Model-4 was trained and tested for two appliances utilizing active and reactive power. 

The other parameters stated above in the Table 12 were modified to achieve the best 

result. 

4.5 Model-5: Multi-feature 1D-CNN-LSTM 

The architect of Model-5 is similar to Model-2: 1D-CNN-LSTM, as shown in Figure 32. 

This model comprises two features as input, i.e., active power and reactive power. 

 

Figure 32 Architecture of Model-5 (Multi-Feature 1D-CNN_LSTM) 

The training parameters carefully chosen for Model-5 are defined in Table 13. 

Table 13 Training parameters of Model-5 

Appliance Name VP SA 

Feature Active and Reactive power 

Data Frequency one’s in 60 s 

Trainable Parameters 70,217 

Samples 155 

Batch-size 32 
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Window-Size 150 

Number of epochs 10 5 

Loss function Binary_crossentropy 

Optimizer Adam 

Activation function sigmoid 

Learning rate 10-3 

Model-5 was trained and tested for two appliances with active and reactive power. It was 

observed, same parameters worked for both the appliances to achieve desired results. 

4.6 Model-6: Multi-feature LSTM 

The architect of model-6 is analogous to Model-3: LSTM, as shown in Figure 33. This 

model is trained with two features as input, i.e., active power and reactive power. 

 

Figure 33 Architecture of Model-6 (Multi-Feature-LSTM) 

The training and testing parameters selected for Model-6 are defined in Table 14. 

Table 14 Training parameters of Model-6 

Appliance Name VP SA 

Feature Active and Reactive power 

Data Frequency one’s in 60 s one’s in 120 s 

Trainable Parameters 123,849 70,217 

Samples 155 78 

Batch-size 32 32 

Window-Size 150 60 

Number of epochs 5 10 

Loss function Binary_crossentropy 

Optimizer Adam 

Activation function sigmoid 

Learning rate 10-3 
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5. Results and Comparison 

The performance analysis of the six models discussed in chapter 4 is presented in this 

chapter. The comparative evaluation of the models is performed based on their F1 score, 

defined in chapter 2.5. Outcomes of models are either one or zero, which indicates the 

state of appliance, on or off respectively. All models are tested on a full-day load profile, 

and their results are plotted separately for each day. The outcome of models is plotted 

with either normalised power of appliance or actual state (on-off) of the appliance. The 

data frequency parameters were chosen differently for each appliance for all six models, 

that caused a difference in time-indexing of the normalised value of power in plotted 

graphs of results. 

The outcomes of the three models tested for MK on five days of datasets are shown 

in Figure 34. Every row represents the selected day from a farm as mentioned vertically 

with ‘Farm_date’. It is observed that the LSTM model outperformed for a few days, but 

the performance is not consistent. In other two models, the convolutional layers 

performed well in extracting the power variation features, and bi-directional layers helped 

to minimise the difference between the actual state and outcome of the model. The result 

of the 1D-CNN-LSTM and 1D-CNN-BDRNN models are nearly identical to normalised 

power. The performance of 1D-CNN-BDRNN model is consistent and best out of these 

three models. 

Note: In the following graphs, the X-axis is representing the time of a full day starting 

from 00:00:01 (HH: MM: SS), and the Y-axis is representing the state (on-off as one-

zero) for results and the normalised power value of an appliance between zero and one. 

The actual state of appliances is denoted with a key as Actual _device name (MK, VP, 

MP or SA) _N (normalised)_AP (active power). The result of each model is displayed 

with orange colour, and the normalised power of the appliance is shown in purple colour. 
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Figure 34 Comparison of result for three models tested for MK on different dates and farms 

where, 

Actual_MK_N_AP: ground truth of MK (normalised active power). 

Result_1DCNN-BDRNN: result from Model-1. 
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Result_CNN_LSTM: result from Model-2. 

Results_LSTM: result from Model-3. 

It was observed that the performances of models were varying for the different farms. 

The possible reasons identified behind this behaviour were the difference in operational 

time and power consumption of MK for all the three farms, and limitation of variations in 

the dataset available for training. The graphs displayed in Figure 34 cannot quantify the 

results; this was achieved with an F1 score graph, as shown in Figure 35. The F1 score 

for the models 1D-CNN-BDRNN and 1D-CCNN-LSTM are very close to one, which is 

the maximum possible score. The score of an LSTM model is not consistent for all the 

five days and relatively lower than other two stated models. 1D-CCNN-LSTM model 

outperformed based on the F1 score and consistency in results for five days of testing.  

 

Figure 35 F1-Score comparison of three model tested for MK on different dates and farms 

where, 

F1, F2, and F4 are Farm1, Farm2, and Farm4 respectively.  

F1 Score_1DCNN-BDRNN: result from Model-1. 

F1 Score _CNN_LSTM: result from Model-2. 

F1 Score _LSTM: result from Model-3. 

The results of the three models tested for MP on two days of the dataset are shown 

in Figure 36. It was observed that the performances of all the models were virtually 

identical to the normalised values of power consumption and the consistent for both the 

days. The possible reasons identified behind this behaviour were the limitation of 

variations in the dataset available to only one farm. The convolution layer and LSTM 

layer are capable of extracting and memorizing the features and their patterns. 
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Figure 36 Comparison of the results of three models tested for MP on different dates 

where, 

Actual_MP_N_AP: ground truth of MP (normalised active power). 

Result_1DCNN-BDRNN: result from Model-1. 

Result_CNN_LSTM: result from Model-2. 

Results_LSTM: result from Model-3. 

Figure 37 shows that the F1 scores for all the models are one, which is only an ideal 

case. Therefore, the models should be tested on the dataset of different farms to identify 

their performances further and make them more robust. 

 

Figure 37 F1-Score comparison of three model for MP on different dates 

where, 
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F4 is the Farm4. 

F1 Score_1DCNN-BDRNN: result from Model-1. 

F1 Score _CNN_LSTM: result from Model-2. 

F1 Score _LSTM: result from Model-3. 

The outcomes of models tested for VP on three days dataset from two farms are 

shown in Figure 38. It was observed that the operation cycle of VP reflects several 

variations throughout the day, and the load profiles are also entirely different for both the 

farms. The outcomes of all the three models are identical to the power consumptions for 

Farm4, which indicates their excellent performance. On the other hand, the convolutional 

layer-based models are not capable of identifying the ‘on-state’ of VP for Farm1 at some 

points. Which shows the limitation of a convolutional layer in extracting the features in 

small windows. Among the three models, LSTM based model outperformed as the LSTM 

layer works to learn the pattern from datasets. 

 

Figure 38 Comparison of results of the three models tested for VP of different dates and farms 

where, 

Actual_VP_N_AP: ground truth of VP (normalised active power). 

Result_1DCNN-BDRNN: result from Model-1. 
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Result_CNN_LSTM: result from Model-2. 

Results_LSTM: result from Model-3. 

Figure 39 shows that the F1 scores for 1DCNN-BDRNN and CNN_LSTM are not 

consistent for three days. Thus, these models are not suitable for VP. The LSTM model 

outperformed with a score of about 0.7 for all three days as well as it shows consistency. 

Therefore, it is recommended to opt for the LSTM model for VP. 

 

Figure 39 F1-Score comparison of three model for VP tested on different dates and farms 

where, 

F1, and F4 are Farm1, and Farm4 respectively.  

F1 Score_1DCNN-BDRNN: result from Model-1. 

F1 Score _CNN_LSTM: result from Model-2. 

F1 Score _LSTM: result from Model-3. 

The outcomes of the 1DCNN-BDRNN model tested for SA on a two days dataset for 

one farm is shown in Figure 40. It was observed that SA operates only twice a day for a 

short time of around thirty minutes. The availability of dataset was limited to only one 

farm; consequently, the LSTM based models could not identify any useful sequence in 

dataset. The convolutional layer successfully extracted the feature, and the result of 

1DCN-BDRNN are indistinguishable to the normalised power, as shown in Figure 40. 
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Figure 40 Comparison of results of three model for SA tested on different dates 

where, 

Actual_SA_N_AP: ground truth of SA (normalised active power). 

Result_1DCNN-BDRNN: result from Model-1. 

Result_CNN_LSTM: result from Model-2. 

Results_LSTM: result from Model-3. 

Figure 41 shows, the F1 scores of the 1D-CNN-BDRNN model for both the days are 

above 0.5 but consistent. Hence, this model needs to be trained and tested with multiple 

farms dataset to ensure the credibility of the performance. 

 

Figure 41 F1-Score comparison of three model for SA tested on different dates 

where, 
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F1 is the Farm1. 

F1 Score_1DCNN-BDRNN: result from Model-1. 

F1 Score _CNN_LSTM: result from Model-2. 

F1 Score _LSTM: result from Model-3. 

The results discussed so far were based on only one feature, and the results of models 

trained and tested with two features (i.e., active power and reactive power) are discussed 

later in this chapter. Graphs were plotted between the on-off state on X-axis and time 

on Y-axis for the actual state of the appliance and the result of the model, the remaining 

measures are the same as the above-discussed graphs. 

Figure 42 shows the outcomes of the three multi-features models tested for SA on 

two days of Farm1. The results of models overlap with the actual states, which signifies 

the virtuous performances of all the models. It was observed that the unique combination 

of active and reactive power reduced the complexity of an LSTM layer to recognise the 

pattern and enhance the overall performance of the model. Still, the consistency of 

convolutional layer-based models for SA is better than LSTM model. The enhancement 

in training of model certified that the overall performance improves with an increase in 

the number of features while training. 

 

Figure 42 Comparison of the results of three multi-features model for SA tested on different dates 

where, 

Actual_Status_SA: ground truth state of SA (on-off). 

Result_2F_1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN. 

Result_2F _CNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM. 

Results_2F _LSTM: result from Model-6: Multi-feature LSTM. 
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Figure 43 shows, the F1 score of the LSTM model is lower compared to the other two 

convolutional layer-based models, which are having a score of about 0.65 and above. 

The consistency in the results of all the models is significantly small. The availability of 

dataset for training was limited to only one farm. Therefore, to ensure the performance 

and robustness of the models, it is essential to train and test them with datasets of the 

multiple farms. The 1DCNN-LSTM model outperformed among the three models with the 

highest F1 score.  

 

Figure 43 F1-Score comparison of three multi-features model for SA tested on different dates 

where, 

F1 is the Farm1. 

F1 Score_(2F)1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN 

F1 Score _(2F)1DCNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM. 

F1 Score _(2F)LSTM: result from Model-6: Multi-feature LSTM. 

The results of the three models tested for VP on a two-days dataset from Farm1 are 

shown in Figure 44. It is challenging to categorise the performances of models due to 

the overlapping of actual states and the results. However, the consistency of the results 

is comparable for all the three models.   
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Figure 44 Comparison of the results of three multi-features model for VP tested on different dates 

where, 

Actual_Status_VP: ground truth state of VP (on-off). 

Result_2F_1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN. 

Result_2F _CNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM. 

Results_2F _LSTM: result from Model-6: Multi-feature LSTM. 

F1 score of 1DCNN-BDRNN model is lower than the LSTM based models, as shown in 

Figure 45.  

 

Figure 45 F1-Score comparison of three multi-features model for VP tested on different dates 

where, 
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F1 is the Farm1. 

F1 Score_(2F)1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN 

F1 Score _(2F)CNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM. 

F1 Score _(2F)LSTM: result from Model-6: Multi-feature LSTM. 

The F1 score of the multi-feature LSTM model is significantly higher compared to the 

model trained with one feature for VP. It specifies that the performance of an LSTM 

based model prominently improves with multi-feature input data. F1 score for both the 

LSTM based models are close to 0.85, and the results show consistency for both the 

days. Model-6 outperformed for VP with the highest F1 score. 
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6. Conclusion and Outlook 

6.1 General Conclusion  

Literature research was carried out around the deep-learning-based neural network 

model development, as this is the latest trend in the NILM field. This thesis presented 

the potential of energy saving in dairy farms and proposed a deep-learning-based power 

disaggregation algorithm developed in Python. The measured load profile of the four 

appliances and the aggregated load profile of the four dairy farms located in Bavaria, 

Germany, were accumulated and analysed. By analysing the collected data, four main 

problems were identified and later rectified (as discussed in chapter 3.2.1). Several deep-

learning based models were developed, trained, and tested as the operational patterns 

and behaviours of appliances were utterly different from each other. It is observed that 

the data gathered was not adequate to train a model which imparts the desired results 

for all the four appliances. The results of the three most performing models developed 

with one feature (i.e., active power) were discussed, along with their challenges. Another 

observation is that the performance of a model can be enhanced by adding a number of 

features for training the model. This thesis also identifies that the development of the 

multi-feature-based model for SA and VP improves the results with better F1 score. 

Performances of all the models were evaluated with F1-score and presented by testing 

the models on several days of unseen load profiles. The 1D-CNN-BDRNN and 1D-CNN-

LSTM outperformed for MK. All three models performed excellent for MP, but the 

datasets used for the training and testing of the model were limited to only one farm. The 

LSTM model performed outstandingly for VP, and only the 1D-CNN-BDRNN model 

performed for SA. The final observation is that it is not recommended to use only one 

model for all the appliances. Instead, it is suggested to combine the best performing 

model for each appliance and implement the final combined algorithm for the best 

results. 

6.2 Limitation and Future Work 

The backbone of any deep neural network model is the amount of data. It was initially 

planned to collect data from at least six to eight farms, which ended up to only four farms 

due to some external conditions. While dealing with a tremendous amount of data for 

training the neural network, the use of GPU becomes essential. The availability of GPU 

could accelerate the whole process and contribute to improving the overall performance. 

It is recommended to make the data measurement process more precise to avoid the 

changes in formats, which will help in data pre-processing. Secondly, more data should 

be collected with multiple features; this will make learning easier. 

 In the future, the models could be modified to work on real-time data. The existing model 

can also be improvised, or a new model can be developed to estimate the power 

consumption of the appliance along with the on-off state. 
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Appendix 

 
Clarification on missing data measured from EMONIO 

Q1: We are facing an issue in the measurement data.  The values are missing in several 

measurement files. We have attached few samples. Do you know the reason? 

 

Figure 46 Screenshot of query asked from EMONIO Team 

Response: 

Name: Anonymous  

Company: Berliner Energieinstitut GmbH 

Position: Technical Support  

Answer: The missing values marked in yellow look like a reboot and/or a minor network 

deadlock that resulted in a hang of a few seconds. The second, missing several hours I 

have no theory besides power loss. 

 


