

Technische Hochschule Ingolstadt

Faculty of Mechanical Engineering

Renewable Energy Systems

Master’s thesis

Multi-Feature based Development of a Power-Disaggregation Algorithm
for Dairy Farms

Anuj Sinha

Matrikelnummer: 00086760

Issued on : 30.06.2020

Submitted on : 22.01.2021

First examiner : Prof. Dr.-Ing. Wilfried Zörner

Second examiner : Prof. Dr. -Ing. Tobias Schrag

I

Declaration

I hereby declare that this thesis is my own work, that I have not presented it elsewhere

for examination purposes and that I have not used any sources or aids other than those

stated. I have marked verbatim and indirect quotations as such.

Ingolstadt, 22.01.2021

Place, Date

Anuj Sinha

00086760

II

Abstract

Smart meter technology implementation in the last decade had initiated many data

collection processes, which have provided a strong foundation for the development of

Artificial Intelligence (AI) based load monitoring systems. It is easier to identify the

energy-saving potential with the help of advanced load monitoring systems. Since 2015,

deep-learning-based Nonintrusive load monitoring (NILM) is being focused in the

research community. It requires minimal hardware, which can justify its development and

maintenance cost. Several AI-based models and tools are available for load monitoring,

but it is challenging to identify a suitable model for the specific application. There is still

a domain-specific transformation, and considerations are usually required. The

residential sector has been the focus area due to the market size, but the industrial sector

still has massive potential for research and development.

Thus, in the presented thesis, dairy farms in Germany are targeted for developing a

power disaggregation algorithm based on deep learning, which can identify the on/off

state of individual appliances in the farm from the aggregated load profile data. Mainly

four appliances named milk cooling (MK), milk pump (MP), vacuum pump (VP), and

cleaning automatic machine (SA) are targeted for disaggregation. NILM is a promising

approach to identify individual operating times of appliances. Thus, deep neural network-

based algorithms are developed, focusing mainly on one-dimensional convolution neural

network (1D-CNN) and recurrent neural network (RNN).

Literature research was carried out to determine the state-of-the-art of deep-learning-

based NILM and understand AI technology. Data acquisition for model development and

testing was made from four dairy farms based out of Bavaria, Germany. The presented

work provides a detailed discussion about data pre-processing and development of

models. The result shows that deep-learning-based disaggregation algorithms

outperform for this application area, and the proposed model successfully identifies the

states of individual appliances. The presented work provides a foundation for modifying

the proposed algorithm or developing a new algorithm for real-time power

disaggregation.

III

Acknowledgement

The work presented in this thesis was carried out at the Institute of new Energy Systems

(InES), THI, Ingolstadt, and Faculty of Mechanical Engineering at Technische

Hochschule Ingolstadt. I would like to thank my supervisor, Mr. Abdessamad Saidi, for

guiding me in various aspects of the projects, providing ideas and alternatives to the

problems I encountered along the way. His guidance helped me improve the quality of

research during my thesis, which also reflects in the writing part. I would like to thank my

supervisors, Prof. Dr.-Ing. Wilfried Zörner and Prof. Dr.-Ing. Tobias Schrag, for giving me

the opportunity to do my thesis on this particular topic and for their continuous presence,

useful comments, remarks, observations, and engagement, all through this master

thesis's learning process. I would like to thank my parents and friends for their constant

support and motivation, directly or indirectly, that helped me complete this thesis.

IV

Table of contents

Declaration .. I

Abstract .. II

Acknowledgement .. III

List of figures .. VI

List of Tables ... VII

Abbreviations and Symbols .. VIII

1. Introduction ... 1

1.1 Background and Motivation .. 1
1.2 Goal of the thesis ... 4
1.3 Research Questions ... 4

2. Theoretical Background .. 5

2.1 Load Monitoring.. 5
2.1.1 Event and Event-less Load Monitoring Approach ... 5
2.1.2 Intrusive and Non-intrusive Load Monitoring ... 6

2.2 Machine Learning ... 8
2.2.1 Markov Chains ... 9
2.2.2 Hidden Markov Model .. 10

2.3 Deep Learning .. 10
2.3.1 Basic Concept and Brief History .. 10
2.3.2 Deep Learning Libraries .. 11
2.3.3 Artificial Neural Network .. 12
2.3.4 Deep Neural Network Libraries ... 13
2.3.5 Back Propagation .. 13
2.3.6 Recurrent Neural Network (RNN) .. 14
2.3.7 Long Short-Term Memory (LSTM) .. 15
2.3.8 Gated Recurrent Unit (GRU) ... 16
2.3.9 Bidirectional Recurrent Neural Network .. 17
2.3.10 Convolutional Neural Network... 18

2.4 Deep Learning Fundamentals .. 22
2.4.1 Activation Function .. 22
2.4.2 Loss Functions .. 24
2.4.3 Learning Rate .. 25
2.4.4 Optimization ... 26
2.4.5 Parameter Initialization .. 27

2.5 Evaluation Matrix .. 27
2.6 Save and load model ... 28
2.7 Development Tools .. 29

3. Data Collection and Pre-processing ... 30

3.1 Data Collection Process ... 30
3.1.1 Background Information of Project Partners ... 30
3.1.2 Measurement Devices ... 30
3.1.3 Overview of the Data ... 32

3.2 Data Munging ... 34
3.2.1 Handling Missing Values ... 34
3.2.2 Data Transforms .. 36

4. Model Development .. 38

4.1 Model-1: 1D-CNN- BDRNN .. 38
4.2 Model-2: 1D-CNN-LSTM .. 40
4.3 Model-3: LSTM ... 41
4.4 Model-4: Multi-feature 1D-CNN-BDRNN ... 42
4.5 Model-5: Multi-feature 1D-CNN-LSTM ... 43
4.6 Model-6: Multi-feature LSTM .. 44

5. Results and Comparison ... 45

6. Conclusion and Outlook .. 56

V

6.1 General Conclusion .. 56
6.2 Limitation and Future Work .. 56

References ... 57

Appendix .. 62

VI

List of figures

Figure 1 Significant growth in U.S. granted patents (Zeifman and Roth, 2012, p. 3) 3
Figure 2 Composition of electricity consumption in dairy farming (Neser et al., 2014, p. 14) 3
Figure 3 An example of event-based energy disaggregation. (Copyright 1992 IEEE) (Pereira

and Nunes, 2018, p. 2) ... 5
Figure 4 Example of event-less energy disaggregation. Copyright 1992 IEEE) (Pereira and

Nunes, 2018, p. 2) .. 6
Figure 5 Basic Markov chain represented in graph form (Fiol, 2016, pp. 9–10). 9
Figure 6 Example of HMM showing the states and observations (Raiker et al., 2018 - 2018, pp.

381–385) ... 10
Figure 7 A simple feed-forward neural network where nodes in each layer are connected to all

the nodes in the corresponding layer (Dertat, 2017) .. 12
Figure 8 Recurrent neural network (dprogrammer, 2019) ... 14
Figure 9 An unrolled recurrent neural network (oinkina et al., 2015) ... 15
Figure 10 The LSTM network consists of four interacting layers: input gate, output (oinkina et

al., 2015) ... 16
Figure 11 Gated recurrent units (oinkina et al., 2015) .. 17
Figure 12 General structure of Bidirectional recurrent neural networks (oinkina et al., 2015) 18
Figure 13 Example of a filter applied to a two-dimensional input to create a feature map

(Brownlee, 2020a) .. 18
Figure 14 Kernel sliding over the Image (Verma, 2019) ... 19
Figure 15 A typical convolutional neural network .. 21
Figure 16 Kernel sliding over 1 D data (Verma, 2019) .. 22
Figure 17 Commonly used activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU,(d) LReLU

(Feng et al., 2019, p. 3) .. 24
Figure 18 Learning rate (Donges, 2020) ... 25
Figure 19 Local minima and Global minima (Khandelwal, 2018) ... 26
Figure 20 Typical structure of data pre-processing ... 30
Figure 21 EMONIO P3 (Berliner Energieinstitut GmbH, 2019) ... 31
Figure 22 EMONIO Installation in switchboard (Berliner Energieinstitut GmbH, 2019) 31
Figure 23 Lackmann smart meter (Lackmann GmbH & Co. KG, 2020) 32
Figure 24 Exported files from measurement devices .. 33
Figure 25 Load profiles (Raw Data Sample) ... 33
Figure 26 Sample of missing values dataset. (a) Farm1-VP; (b) Farm4-VP 34
Figure 27 Sample of date-time column shift for both the devices ... 35
Figure 28 Architecture of Model-1 (1D-CNN-bidirectional RNN) .. 39
Figure 29 Architecture of Model-2 (1D-CNN_LSTM) .. 40
Figure 30 Architecture of Model-3 (LSTM) .. 41
Figure 31 Architecture of Model-4 (Multi-Feature 1D-CNN-bidirectional RNN) 42
Figure 32 Architecture of Model-5 (Multi-Feature 1D-CNN_LSTM) .. 43
Figure 33 Architecture of Model-6 (Multi-Feature-LSTM) ... 44
Figure 34 Comparison of result for three models tested for MK on different dates and farms ... 46
Figure 35 F1-Score comparison of three model tested for MK on different dates and farms 47
Figure 36 Comparison of the results of three models tested for MP on different dates 48
Figure 37 F1-Score comparison of three model for MP on different dates 48
Figure 38 Comparison of results of the three models tested for VP of different dates and farms

 .. 49
Figure 39 F1-Score comparison of three model for VP tested on different dates and farms 50
Figure 40 Comparison of results of three model for SA tested on different dates 51
Figure 41 F1-Score comparison of three model for SA tested on different dates 51
Figure 42 Comparison of the results of three multi-features model for SA tested on different

dates ... 52
Figure 43 F1-Score comparison of three multi-features model for SA tested on different dates 53
Figure 44 Comparison of the results of three multi-features model for VP tested on different

dates ... 54
Figure 45 F1-Score comparison of three multi-features model for VP tested on different dates 54
Figure 46 Screenshot of query asked from EMONIO Team ... 62

VII

List of Tables

Table 1 Confusion matrix (Bernard, 2018, p. 119) .. 28
Table 2 Software information .. 29
Table 3 Data availability from farms .. 34
Table 4 Sample of error in polarity and accuracy ... 36
Table 5 Parameters for transformation to state values ... 36
Table 6 Example of sample datasets .. 37
Table 7 Selection of datasets for training .. 38
Table 8 Selection of datasets for testing ... 38
Table 9 Training parameters of Model-1 ... 39
Table 10 Training parameters of Model-2 ... 41
Table 11 Training parameters of Model-3 ... 42
Table 12 Training parameters of Model-4 ... 42
Table 13 Training parameters of Model-5 ... 43
Table 14 Training parameters of Model-6 ... 44

VIII

Abbreviations and Symbols

AC Alternative Current

AI Artificial Intelligence

API Application Programming Interface

ANN Artificial Neural Network

BDRNN Bidirectional Recurrent Neural Network

CNN Convolutional Neural Networks

Cos(Φ) Power Factor

CPU Central Processing Unit

FN False Negative

FP False Positive

GPU Graphical Processing Unit

GRU Gated Recurrent Unit

HMM Hidden Markov Model

I Current (A)

InES Institute of new Energy Systems

JVM Java Virtual Machine

L loss

LReLU Leaky Rectified Linear Units

LSTM Long Short-Term Memory

MIT Massachusetts Institute of Technology

MILA Montreal Institute for Learning Algorithms

MK Milk Colling

ML Machine learning

MP Milk Pump

MR Maschinenringe

MSE Mean of the Squared Errors

N Neuron

NILM Non-Intrusive Load Monitoring

p Probability

IX

P Active Power (kW)

Q Reactive Power (kVAR)

ReLU Rectified Linear Units

RNN Recurrent Neural Networks

S Apparent Power (kVA)

SA Rising automatic machine

t Time (second)

THI Technische Hochschule Ingolstadt

TN True Negative

TP True Positive

U Voltage (Volts)

UK United Kingdom

VP Vacuum Pump

y Actual Value

1D One dimensional

2D Two dimensional

3D Three dimensional

e.g. exempli gratia/ example

% Percentage

f(x) Predicted Value

∇ �(�) Gradient of loss-function

�(�) Gradient function with respect to parameters �

�� input vector (m x 1)

ℎ� hidden layer vector (n x 1)

� output vector (n x 1)

�� bias vector (n x 1)

u, v parameter matrices (n x m)

�, � activation functions

� Learning rate

 sigmoid activation function

X

�� weight vector of the forgot gate

�� bias vector of the forgot gate

tanh hyperbolic tangent activation function

� learned weight vectors

� learned bias vectors

Φ Phase Angle

1

1. Introduction

This chapter outlines the relevance of this thesis, summarises related work, and closes

by describing the organizational framework of subsequent chapters.

1.1 Background and Motivation

Globally, governments are facing four common energy issues: increasing renewable

energy share in the electric grid, decrement of fossil fuel reserves, the effects of changing

climate, and obtaining a sustainable energy supply (MacKay, 2010, pp. 2–11). Moreover,

with global population growth, the energy demand will rise with negative implications on

the environment (e.g., CO2 emissions) (Zoha et al., 2012, p. 16839). Substantial energy

waste can be prevented through fine-grained monitoring of energy consumption and

passing that information back to the relevant consumers (Vine et al., 2013, pp. 7–15).

Renewable energy is a clean solution, but it is variable and depends on exogenous

weather conditions. Germany is often considered a front runner in using various sources

of renewable energy. According to the Federal Ministry for Economic Affairs and Energy,

in the year 2018, the government intended to expand the increase renewable energy

share in gross electricity consumption to 45% by the year 2025 and at least 80% by the

year 2050, compared to its share of 36% in the year 2017 and only 3% in the early 1990s

(Zerrahn et al., 2018, pp. 259–279; Federal Ministry for Economic Affairs and Energy,

2016). The progressive transformation of the German energy system from conventional

and centralised power plants to decentralised renewable power plants introducing

considerable challenges in the nationwide electricity grid. To ensure the electric grid

stability and security under such circumstances, the implementation of the smart grid

represents a promising approach. It demands a digital and transparent infrastructure for

interaction among grid operators, energy suppliers, and consumers to have an eye on

precise energy generation and consumption, which can help design optimization

techniques.

The Smart grids are usually supported with smart metering systems, which allows the

utility companies to monitor the grid more truthfully, which will enable them to detect the

failures rapidly, to regulate the generation more dynamically, to adapt the pricing more

smartly, and to predict the demand more accurately (Zhang et al., 2019, pp. 23–48). In

2016, with the introduction of an act ‘Digitization of the Energy Turnaround Act’ (Federal

Ministry for Economic Affairs and Energy, 2016; Kelly, 2018), a green signal was given

for the use of smart meter, and that also boosted the funding for the research and

development in the field of the smart meter, which came up as the central component for

the communication infrastructure (BUNDESMINISTERIUM FÜR WIRTSCHAFT UND

ENERGIE, 2019; Scully, 2019). According to a detailed review based on around 60

feedback studies suggest that direct feedback mechanisms can help to achieve

2

maximum energy saving (i.e., real-time appliance level energy consumption information)

as compared to indirect feedback mechanisms (i.e., regular monthly advice along with

the energy usage bill). Traditional smart meters have limitations to measure energy

consumption up to house level. Thus, to achieve it, research efforts lead to the

development of several power disaggregation techniques of load monitoring (Ehrhardt-

Martinez et al., 2010, pp. 14–29). The disaggregation technique of load monitoring was

initially targeted to residential consumers, but it proved beneficial for industries equally

with the features like fault detection. The concept of load monitoring is decades old but

recently gained renewed attention in the research area with the parallel development of

sensing technology, data communication and networks, artificial intelligence, and

machine learning. Among the several techniques, the NILM approach got its popularity

due to the least requirement of measuring devices(Zoha et al., 2012, pp. 16838–16866).

Non-Intrusive Appliance Load Monitoring, also known as Non-Intrusive Load Monitoring,

was first introduced in 1985 by an American geometer named George W. Hart at

Massachusetts Institute of Technology (MIT) (Hart, 1985, p. 2). Another milestone was

achieved in 1998 when Cole and Albicki proposed their theory to take into account power

spikes (Cole and Albicki, 2000, pp. 1–6), which typically occurs in load profile at the time

of switch on or off. They suggested to use it as a ‘signature’ to identify appliance. Such

events are commonly known as transients (Fiol, 2016, p. 7). In the early 2000s, the new

era of algorithms came when the meter technology improved. With the new features like

harmonics and signal waveform, the signal processing technology changed, such as,

now using Fourier transform, ‘power signature’ could be detected. A boom in machine

learning approaches has been seen in recent years. In 2010, an algorithm named DDSC

was introduced by J. Zico Kolter (Kolter et al., 2010, 1153–1161). Jack Kelly and William

Knottenbelt introduced another very popular and recent algorithm for disaggregation

using neural networks. They targeted the residential sector based on mainly United

Kingdom (UK) based datasets (Kelly and Knottenbelt, 2015, pp. 55–64). Figure 1 shows

that the period of the year 2007-2011 was booming for NILM development. Both the

small and large-scale companies (4home, PlotWatt, Enetics, Navetas, Belkin, GE, IBM,

Intel) jumped in the development of NILM (Zeifman and Roth, 2012, p. 3). Though, the

energy sector is still waiting for a rigorous, reliable, and robust algorithm for energy

disaggregation.

There is a growing appeal for the power disaggregation for industrial buildings (Kelly,

2017, pp. 1–4). In this thesis, the dairy farm industry is targeted for the development of

a power disaggregation algorithm. The agricultural sector has not yet gained

considerable attention for research in this field. Since the rural areas in Germany are

characterised by highly heterogeneous renewable power producers, and they are

predominantly affected by the issue of power grid overload, smart energy management

solutions in agriculture.

3

Figure 1 Significant growth in U.S. granted patents (Zeifman and Roth, 2012, p. 3)

They can play a significant role in a comprehensive promotion of sustainable energy

supply. In this context, dairy farms as an energy-intensive category of agriculture show

high potential for power grid-oriented demand-side management in addition to benefits

such as comprehensive energy monitoring and the identification of energy savings

potentials. The primary consumer in dairy farming with an average share of 60% in total

electricity consumption, the milking production appliances are focused in the thesis as

shown in Figure 2.

Figure 2 Composition of electricity consumption in dairy farming (Neser et al., 2014, p. 14)

Besides the monitoring and benchmarking, energy disaggregation provides different

application fields in the context of demand-side management and load shifting, which

Lighting; 15%

Feeding; 20%

Manure Removal;

2%

Comfort (

Ventilation, Cow

brushes…); 2%

Vaccume

Pump; 18%

Cleaning of Milking

System; 15%

Milk Cooling ; 26%

Milk Pump; 1%

Milk Production 60%

Dairy cattle 400 kWh/Cow/Year

4

represent a base for promising technological innovations and business models in the

agricultural sector. Use of NILM based algorithm and a comprehensive On-farm energy

management system, significant energy-saving improvements, and additional revenue

streams for local farmers can be provided. Furthermore, the intelligent system allows

sufficient load management for future developments such as increased demand for

electrical capacities for e-mobility. In addition to that, there is an additional benefit of

NILM. It also allows the appliance manufacturing companies to better understand the

machines and their operational pattern on the ground level, improving the performance

and better maintenance plans (Zoha et al., 2012, pp. 16838–16866).

1.2 Goal of the thesis

This main objective of the present thesis is a comparative analysis of existing deep

learning based NILM-methods and the development of a Python-based algorithm, mainly

using Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

This project is a composite of:

 Discussion of the overview of the load monitoring techniques.

 Literature research on deep neural network with an overview of Machine

Learning.

 Measurement of the load profiles of individual appliances from several dairy

farms.

 Development of an algorithm, using multiple features to identify the ‘on-off’ state

of selected appliance from the aggregated load profile of a dairy farm.

1.3 Research Questions

1. How can Deep Learning be used to provide useful solution for load monitoring?

2. Which method is suitable for the NILM?

3. How does the accuracy change with one and multiple features?

5

2. Theoretical Background

This chapter presents an overview of the concepts of load monitoring approaches and

technologies, machine learning, and deep learning methods, which are essential to

understand the methodology, implementation, and evaluation results presented in the

thesis work.

2.1 Load Monitoring

2.1.1 Event and Event-less Load Monitoring Approach

Early days studies made on NILM were focused on an event-based approach. In this

approach, studies performed by disaggregating the total power consumption profile by

detecting and labelling every single appliance linked to it. A typical example of event-

based energy disaggregation is presented in Figure 3. The main idea is to classify

switching events of appliances (e.g., a Refrigerator turning on or off) from the load profile.

Such features can be detected based on the changes in the power demands at the time

of switching on-off of the device. For this, it is crucial to have high-frequency data

measurements, which should be 1Hz or above. For low-frequency data, it becomes

difficult to discriminate among the switching behaviour of different appliances (Parson,

2014, pp. 1–31; Parson et al., 2014, pp. 1–19). Furthermore, this approach shows a

performance limitation. The measurements being used for this project are in the low

frequency range. Therefore, this approach will not be considered for this work.

Figure 3 An example of event-based energy disaggregation. (Copyright 1992 IEEE) (Pereira and Nunes, 2018, p. 2)

In contrast to the event-based approach, event-less approaches do not require a

separate event detection and classification process. In this approach, every sample of

power consumption of a specific appliance attempts to match with the aggregated power

sample measured in the same time frame employing machine-learning. A classic

example is presented in Figure 4. The fundamental advantage of this approach is that

training dataset does not require any labelling. Only the aggregated and specific power

consumption data of the appliances are required, which turns this approach more

economical and straightforward compared to an event-based approach (Pereira and

6

Nunes, 2018, pp. 1–17).

Figure 4 Example of event-less energy disaggregation. Copyright 1992 IEEE) (Pereira and Nunes, 2018, p. 2)

2.1.2 Intrusive and Non-intrusive Load Monitoring

Intrusive load monitoring is a decentralised method of measurement. It requires

several sensors, power measuring devices, communication devices, and other

equipment based on the number of appliances connected to ensure the precise

measurements and to transmit the information for monitoring. Hence, it is a cost intensive

and impractical option of load monitoring. Intrusive load monitoring can be categorised

as direct and indirect monitoring (Parson, 2014, pp. 1–31; Parson et al., 2014, pp. 1–19).

In the direct intrusive load monitoring, every individual appliance needs to be

connected to a power measuring device or a sensor to measure the electric

characteristics of that appliance. There are mainly three methods to accomplish direct

load monitoring. The first method can be named as Electrical Sub-metering. In this

method, individual appliances are monitored by one meter per appliance. Such meters

are mostly of two categories, i.e., either Plug-in meter or Clamp-on meter. They have the

capability to monitor appliances as well as control the flow of electricity. The upgraded

version of this method is known as the Smart Appliances method. In which the smart

appliances can self-report the specific power consumption to a central hub. These

devices can be connected with wired or wireless technology, although old appliances

might not be suitable for this operation and hence need to be replaced or modified, which

entails significant initial investment. Thus, for a large user base, these approaches are

not economic. The third method of intrusive load monitoring is known as Electrical

Probing. In this method, the appliances are designed to send an additional signal into

the electric circuit to determine the mode of operation on-off to a central hub, which is

further used for feature extraction. This technology has a drawback that the power quality

delivered to the appliance gets considerably affected due to this injected signal in the

electric circuit. All of the mentioned technologies are expensive because of the

involvement of enormous numbers of measuring and communication devices and their

installations (Parson, 2014, pp. 1–31).

7

Indirect intrusive load monitoring is not limited to the measurement of the appliance

power. With this method, other parameters, which are influencing power consumption

are also being measured. Likewise, direct load monitoring, indirect load monitoring can

also be accomplished by mainly three methods. The first method is known as Appliance

Tagging. Every individual appliance needs to be modified in such a way that it can emit

a unique signal in the main circuit, which indicates the central hub about the turning on-

off of that appliance. Thus, the central hub estimates the power consumption of each

appliance with time. The second method is called Ambient Sensors. Multiple wireless

sensors are required to monitor several measures, including audio signals, ambient

temperature, device temperature, light sensors, and others, which have an impact on the

appliance usage. The main idea is to identify the relations among them and disaggregate

the consumption of the appliances as well as identify human behaviour. The third method

in this category is the Conditional Demand Analysis. Unlink previous mentioned

methods, this approach needs only electricity consumption bills of a household. Although

it demands a massive database of multiple houses and along with that, it also requires

a detailed questionnaire from each household. These questionnaires include the details

of the consumers, weather, the usage behaviour of appliances like the number of times

per day and the number of hours. Based on the collected database, a multivariate

regression technique is performed to predict and analyse the appliances. Due to the lack

of sensors and measurement devices requirement, this method can get confused with

the non-intrusive load monitoring technology. However, the requirement of parameters

other than the electricity consumption makes it fall under the category of intrusive load

monitoring (Parson, 2014, pp. 1–31). Being ruled out intrusive load monitoring methods

as appropriate solutions for the problem of smart meter energy disaggregation, the

industry is turning to the non-intrusive load monitoring method.

Non-intrusive load monitoring is the method, which requires only aggregated power

consumption data. For training purposes of a program or a machine, it needs a massive

database of the aggregated and individual appliance electrical power consumption for

the same time frame from various but similar kinds of facilities (Nascimento, 2016, pp.

4–7) . It is essential to measure various electrical parameters, e.g., the voltage, the

current, power factor for the practical training of the machine. These are known as

‘features’ in machine learning terminology. More and more features enhance the

accuracy of the predictions. Thus, unlike intrusive load monitoring, NILM does not require

a high number of measurement devices, that is the advantage of this method as it

enhances the reliability and precision of measurement. Only for the training of the

machine, it needs several meters based on the number of appliances. Although studies

performed with low-frequency data also delivered quite promising results (Nascimento,

2016, pp. 4–7).

8

2.2 Machine Learning

Machine learning (ML) is a subfield of AI introduced in the late 1950s. ML is the study of

computer algorithms that automatically improve computer programs through experience

as defined by Tom Mitchell. In the past few years, ML techniques(Graville, 2017) have

provided solutions to problems such as classification, regression, density estimation, and

forecasting (Palma, 2016, p. 2). The approach has gained relevance in various

application domains such as bioinformatics, speech recognition, Spam and fraud

detection, and social networks. Machine learning can be categorised into as supervised

and unsupervised learning.

Supervised learning for training the model is when individual appliance consumption

required along with aggregated power consumption data. Thus, the intrusive load

monitoring method is performed to collect the data at the appliance level. Most popular

supervised learning techniques are:

 Inferring Rules

 Statistical Modelling

 Support Vector Machines

 Decision Trees

 Liner Models-Logistic Regression

 Neural Networks

 Instance-based Learning

For the present thesis, a Neural Networks technique is adopted, which is comparatively

newer but showed good results in research.

Unsupervised learning does not require the appliance level data. The model is trained

only with the aggregated data sets. It is much more challenging to achieve a good result

with unsupervised learning in comparison to supervised learning. However, it is a very

desirable method due to the requirement of less hardware such as measuring devices.

Semi-supervised learning is a combination of both. The model is trained based on

labelled and unlabelled data set, which reduces the requirement of measurements up-to

a considerable amount. For the solutions of NILM, this is one of the most suitable

methods. They are different in terms of training and validating the model (Bernard, 2018,

pp. 18–19; Nascimento, 2016, p. 6; Figueiredo, 2013, pp. 38–55).

In the next sub-topic of this section, a class of probabilistic graphical models addressing

the short-comings of the event-based approaches is discussed. They have been applied

to several real-world applications, speech recognition (Rabiner, 1989), which share a

number of similarities with energy disaggregation. The aim is to identify the most likely

sequence of discrete states(words) corresponding to a time series of continuous

9

measurements (audio recordings). There are some methods proposed for

disaggregation using the Machine Learning technique. An overview of these models is

given below.

2.2.1 Markov Chains

Markov Chains are a stochastic and memory-less process, which can be performed on

a database having a finite number of states. This method is quite useful for time series

databased problem. To perform this, a set of variables is required, and these variables

must be indexed. The most common case is a timely indexed set of variables that form

a series, which represents the overall evolution of the process. ‘A stochastic process is

characterised by random state changes. The memory-less property, which is known as

Markov Property, states that the state of a system at any time ‘t’ is only dependent on

the state of its previous time step ‘t-1’ (Fiol, 2016, pp. 8–12)’. During the transitions from

one state to another state follow a certain probability distribution.

‘A graphical representation of a Markov Chain with a directed graph having a set S=

{1,2,3} and the transitions represented with edge label is presented in Figure 5 (Fiol,

2016, pp. 8–12).’

Figure 5 Basic Markov chain represented in graph form (Fiol, 2016, pp. 9–10).

In this case the transition matrix is the following:

� � �0.25 0 ⋅ 25 0.50 0 10.4 0 ⋅ 25 0 ⋅ 35" (eq. 1)

If the initial state is considered x1 = (0:5; 0:5; 0), It can be seen that the distribution over

the states at time t = 1 will be x1*p = (0:125; 0:125; 0:75). Thus, the probability distribution

over the states of the system at any time t can also be calculated (Fiol, 2016, pp. 8–12).

‘Markov Chains was widespread for being used in several different applications such as

ranking websites in search-engines or generating sequences of numbers that follow the

desired distribution. However, in numerous cases the true state of the model cannot be

measured, and Markov chains got fall short- for such cases, a more robust model was

10

created known as hidden Markov model (Fiol, 2016, pp. 8–12).

2.2.2 Hidden Markov Model

This model is known as Hidden Markova Model (HMM) as its states are not visible to an

observer, but the output associated to them are evident in the form of data, which is also

known as a token. These tokens give information about the states. An example of HMM

is shown in Figure 6.

Figure 6 Example of HMM showing the states and observations (Raiker et al., 2018 - 2018, pp. 381–385)

HMM is a well-established method for solving evaluation problem, decoding problem,

and learning problem. Therefore, a model for NILM is capable of calculating the

probability of a particular observation sequence, which extract information if there is a

pattern in on-off switching. An HMM-based model can also find the most likely sequence

of states which further generates an associated sequence of observations for prediction

purposes. Thus, HMM is an efficient method in extracting the features, which is useful

for NILM (Raiker et al., 2018 - 2018, pp. 381–386).

2.3 Deep Learning

Deep learning is a subset of ML, while ML algorithms build their learning process around

the input data structure; deep learning-based algorithms use layers of Artificial Neural

Networks (ANN) for the learning process. In this work, ANN are used in analogous to AI.

Frank Rosenblatt introduced the first artificial neural network called perceptron in 1958

(ROSENBLATT, 1958, pp. 386–408). The idea of ANN is derived from the human

biological neurons, which helps us gain various skills by performing the tasks and

learning from it. Deep Learning in neural networks denotes the network with many layers

(Arnold et al., 2011, pp. 2–13). “Deep Learning allows computational models that are

composed of multiple processing layers to learn representations of data with multiple

levels of abstraction” (LeCun et al., 2015, pp. 436–444). The main objective is to learn

the hierarchy of features by discovering the convoluted structure in the training dataset

with the help of a backpropagation algorithm to identify how a machine should update its

internal parameters, which are further used to compute the output for the upcoming layer

from the previous layer (LeCun et al., 2015, pp. 436–444; Arnold et al., 2011, pp. 2–13).

2.3.1 Basic Concept and Brief History

Deep Learning models have proven the capabilities of end-to-end learning. They are

11

flexible, which allows a model working in several applications with a slight modification

based on the type of training data sets. These models are capable of extracting feature

representations and learn them automatically.

Deep Architectures have been in research for several years but could not get any big

breakthrough until the 20th Century. More specifically, in 2006 and 2007 significant

research began to be capable of training deeper network (Hinton et al., 2006, pp. 1527–

1554), the exception it was the CNN used by LeCun (Lecun et al., 1998, pp. 2278–2324;

Nascimento, 2016, pp. 10–11). The new success came with the recent development of

several platforms and libraries, which included new optimization techniques and

architectures. Also, the large amount of training data is essential for the deep neural

network, which improved significantly in the last decades. The computational power of

the recent graphical processing units (GPUs) has become the backbone of this new

era of Artificial intelligence development. Training of a model is only useful when it is

provided a large set of data frames. It could extract and learn enough features, but it

takes hours by a central processing unit (CPUs) for processing such huge amount of

data even though its configuration is very high and mighty. GPUs have resolved this

issue and cut down the processing time from days to few hours (Nascimento, 2016, pp.

10–12).

The latest approaches in NILM are based on deep learning. Firstly in 2015, Jack Kelly

and William Knottenbelt introduced the deep-learning based approach (Kelly and

Knottenbelt, 2015, pp. 55–58). They proposed a few models, including Convolutional

Neural Networks, Recurrent Neural Networks, and Denoising Autoencoder. Another

development was from Anders Huss in the same year; he proposed a hybrid algorithm

based on CNNs and a hidden semi-Markov model (Huss, 2015, pp. 1–3). Since then,

several developments took place in the last couple of years. In 2019, Zang et al.

proposed sequence-to-point learning also based on majorly CNN (Zhang et al., 2019,

pp. 23–26), they proposed a model using five hidden convolutional layers, and numerous

other attempts have been made in solving NILM using deep learning (Kim et al., 2017,

pp. 1–5; Valenti et al., 2018 - 2018, pp. 1–8; Rafiq et al., 2018 - 2018, pp. 234–239).

2.3.2 Deep Learning Libraries

Deep learning libraries are the pre-made set of functions or modules which can be called

through any program. There are several open-source libraries that are maintained by

major industrial stakeholders. On the commercial level, there are some libraries like

Caffe developed by the University of California, Berkeley. It is written in C++, with a

python interface (Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev,

Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell,

Trevor, 2014). Another library is Deepleaning4j, which is written in JAVA Virtual Machine

(JVM),which was released under Apache license 2.0 (Nicholson and Kokorin, 2013). The

12

Torch is another machine learning library based on Lua programming language. The

development of Torch has been stopped; however, PyTorch, which is Torch based, is

actively developed as of June 2020. PyTorch is a Python package, and it provides two

high-level features, i.e., Tensor Computation and Deep neural networks built on tape-

based ‘autograd system’(Chanan et al., 2020). Theano is one of the most established

Python-based libraries. It was developed by Montreal Institute for Learning Algorithms

(MILA) at ‘Université de Montréal’. It was developed in 2007, and the latest version was

introduced in 2017. Theano is mostly popular among the university students for research

and project purposes. Its application programming interfaces (APIs) are easy to call,

which makes it very simplified to use for programming. The accuracy of the algorithms

has made it so much popular (Montreal Institute for Learning Algorithms, 2007).

The deep learning library used for the present work is called TensorFlow. It is also a

free and open-source software library for machine learning, which is developed and

continuously maintained by Google Brain Team. It was first released under the Apache

License 2.0 in 2015. This library is very versatile and written in Python, C++, and CUDA.

It can be run on CPUs or GPUs, and even on mobile operating systems (Agarwal et al.,

2015).

2.3.3 Artificial Neural Network

The ANN consists of fundamental adaptive blocks called artificial neurons or nodes

densely connected. They are capable of processing information and have the

characteristics of handling data with non-linearity, fault and noise tolerance, and

generalization capabilities in the learning process (Basheer and Hajmeer, 2000, pp. 3–

31). Generally, a group of nodes arranged together forms a layer, and the connection

between the layers defines the architecture of the neural network and its capabilities or

characteristics as shown in Figure 7.

Figure 7 A simple feed-forward neural network where nodes in each layer are connected to all the nodes in the

corresponding layer (Dertat, 2017)

13

If the ANN consists of more than one layer, it is called a multi-layer feed-forward neural

network. When all the nodes of one layer are connected to all the nodes of the

corresponding layer without any loop, it forms a fully connected feed-forward neural

network. It is a simple form of neural network and consists of an input layer, a hidden

layer, and an output layer (Basheer and Hajmeer, 2000, pp. 3–31).

2.3.4 Deep Neural Network Libraries

KERAS is an open-source Neural Network Library written in Python programming

language. It is a high-level API and runs on top of Libraries like Theano or TensorFlow.

It was developed Francois Chollet and released in 2015. The stable release came in

June 2020 as version 2.4.0. Its APIs are easy to use and have proved themselves with

high-quality performances. It contains plentiful implementations of frequently used

neural-network building blocks such as layers, activation functions, optimizers, which are

going to be discussed in detail (Chollet 2015).

2.3.5 Back Propagation

Gradient descent is the most established first-order optimization algorithm.

Backpropagation aims to update the output weight and hidden weights in the neural

network during an iterative process so that the new weights cause the output to be closer

to the target. A weight can be defined as a parameter which transforms the input data

to hidden layers within a neural network. The updates of weights are based on the partial

derivative of the total error with respect to hidden weights and output weights, which can

be express with the equation below. The algorithm starts with a random guess at the

parameters and tries to configure the parameters in the direction in which the loss

function steeps downward the most. This process is repeated until the lowest point in the

loss function is found (Biansoongnern and Plangklang, 2016 - 2016, pp. 1–4).

� = � − � ∙ % �(�) (eq. 2)

Where,

� : Learning rate

∇ �(�) : Gradient of loss-function

�(�) : Gradient function with respect to parameters �

The process of learning in neural networks, using gradient descent and backpropagation

can be summarised as follows. A neural network is trained by using backpropagation in

which, it first propagates forward, calculating the dot products of the input and their

corresponding weights. An activation algorithm is applied to this weighted sum, which

transforms the input signals to the output signal. It also introduces non-linearity into the

model, which allows the present model to learn the complex relationship between the

inputs and outputs. After this, it propagates backwards in the network carrying the error

14

terms. While moving backwards in our network, it updates the weight values using

gradient descent. The iterative update of weights is performed by calculating the gradient

error function with respect to the weights or the parameters. Afterwards, it updates the

parameters in the opposite direction of the gradient of the loss function. This process

repeats until the local minima are determined.

2.3.6 Recurrent Neural Network (RNN)

Recurrent neural networks are another branch from the traditional feed-forward

networks, which, as the name suggests, is recurrent or has loops in its architecture.

Figure 8 shows the general schema of an RNN unit. The loop provides added

advantages to this architecture over the simple feed-forward neural networks. This

looping enabled RNNs to have self-sustained temporal activation dynamics in the

absence of input and recurrent connection networks.

Figure 8 Recurrent neural network (dprogrammer, 2019)

When the input data is provided to the RNN, it preserves this data in an internal state,

which means that RNNs have a dynamic memory (Lukoševičius and Jaeger, 2009, pp.

127–149). These make the RNN stand out for applications where long sequences of data

should be memorised. Hence, RNNs are used in NILM. The approach is also used in the

present thesis work. The following equations represent in case of feed-forward:

ℎ� = �(&�) � �('��� +)�ℎ�*+ + ��) (eq. 3)

,� � �(
�) � �(��ℎ� + ��) (eq. 4)

where,

�� : input vector (m x 1)

ℎ� : hidden layer vector (n x 1)

� : output vector (n x 1)

�� : bias vector (n x 1)

15

u, v : parameter matrices (n x m)

v : parameter matrix (n x n)

�, � : activation functions

Figure 9 shows the unrolled RNN, where the green colour box is the neural network, and

the arrow indicates the feed-forward. The current time step and previous time step are

feed to the next input, as shown.

Figure 9 An unrolled recurrent neural network (oinkina et al., 2015)

2.3.7 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) network is a category of RNN, which can solve

sequence prediction problems with learning order dependence capability. Standard

RNNs suffer from vanishing and exploding gradient problems. LSTM provides solutions

to these problems by introducing new gates such as input and forget gates. It consists

of four layers interacting in an especial manner. The architecture shown in Figure 10

enables an LSTM network to remember information for a long time (Hochreiter and

Schmidhuber, 1997, pp. 1735–1780). The working principle and the mathematical

formulation of an LSTM network are explained below.

The state update ℎ�, and the output
� is calculated as follows:

ℎ� ,
� � -(�� , ℎ�*+) (eq. 5)

It consists of a forget gate -�, which decides what information not to remember. This gate

contains a sigmoid activation function, and if the value of it is zero, then the value is

thrown away.

-� � (�� ∗ /ℎ�*+, ��0 + ��) (eq. 6)

where,

 : sigmoid activation function

�� : weight vector of the forgot gate

�� : bias vector of the forgot gate

16

Figure 10 The LSTM network consists of four interacting layers: input gate, output (oinkina et al., 2015)

The next layer is the update gate layer in which the sigmoid layer decides what

information to store in the cell state. The layer ‘tanh’ creates a vector of new candidate

values 12� that could be added to the state.

3� � (�4 ∗ /ℎ�*+, ��0 + �4) (eq. 7)

12� � 567ℎ(�8 9 /ℎ�*+, ��0 + �8) (eq. 8)

where,

tanh : hyperbolic tangent activation function

 � : learned weight vectors

� : learned bias vectors

After this, the cell states are updated,

1� � -� ∗ 1�*+ + &� ∗ 12� (eq. 9)

The output layer
� , is a filtered version of the gate state. First, the sigmoid layer is used

to decide what part of the cell state to output. Then the cell state passes through a ‘tanh’

activation function and multiplies with the output of the sigmoid layer.

� � (�:/ℎ�*+, ��0 + �:) (eq. 10)

ℎ� �
� ∗ 567ℎ(1�) (eq. 11)

2.3.8 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a featured and efficient variant of LSTM. It maintains the

effect of LSTM while making the structure simpler (Macal and North, 2010, pp. 151–162).

GRU combines the input and forget gate of LSTM into an update gate, and the output

gate in LSTM is named as reset gate in GRU. Update gate determines how to combine

the new input with the previous memory and reset gate determines how much of the

17

previous memory can pass through. GRU model structure is shown in Figure 11.

Figure 11 Gated recurrent units (oinkina et al., 2015)

Below mentioned equations represent the mathematics during feed forward:

;� � (�< ∗ /ℎ�*+, ��0 + �<) (eq. 12)

=� � (�> ∗ /ℎ�*+, ��0 + �>) (eq. 13)

ℎ?� � 567ℎ(�� ∙ /=� ⊙ ℎ�, �� + ��) (eq. 14)

ℎ� � (1 − A�) ⨀ ℎ�*+ + A�⨀ℎ�
C (eq. 15)

where,

ℎ� : hidden layer vectors

�� : input vector

�<, �>, �� : bias vector

�<, �> , �� : parameter matrices

, 567ℎ : activation functions

2.3.9 Bidirectional Recurrent Neural Network

Bidirectional recurrent neural networks (BDRNN) have the capability to connect the two

hidden layers of opposite directions, i.e. from past(backward) and future(forward) to the

one output, as shown in Figure 12. Thus, the output layer can get information from both

past and future states simultaneously, which enhances the learning of the model.

18

Figure 12 General structure of Bidirectional recurrent neural networks (oinkina et al., 2015)

2.3.10 Convolutional Neural Network

The convolution layer is the primary and first building block of a convolution neural

network (CNN). Convolution is a linear operation between an array, called kernel or

filler having a set of weights and the input. The filters are much smaller in size than the

input data size. In general practice, it is in the range of 1*1 to 7*7 blocks. The

multiplication between the filter and the same size input data is a dot product, as shown

in Figure 15b, which occurs element-wise. The sum of this dot product value generates

a single value. The filter moves over the input dataset in the left to right and then in the

top to bottom direction, as shown in Figure 13, Figure 14, and Figure 16. This filter gets

multiply with different patches of input data, which are same in size (Brownlee, 2020a).

This process is considered one step, and the output of this step is an extracted feature,

which helps in training the model. This output gets transfer into the next fully-connected

hidden layer in the model, as shown in Figure 13 (Brownlee, 2020a).

Figure 13 Example of a filter applied to a two-dimensional input to create a feature map (Brownlee, 2020a)

19

CNN can be categorised as 2D (two dimensional) and 1D (one dimensional) network.

The main function of a convolutional layer is to extract the features from the raw data.

2D CNN is named because the kernel is two-dimensional, which slides in the third

dimension, as shown in Figure 14 (Verma, 2019). Initially, 2D-CNN was designed to

deliver state-of-the-art accuracy in tasks such as image recognition, speech recognition,

object detection, and language translation (Krizhevsky et al., 2012, pp. 1–9;

Srinivasamurthy, 2018, pp. 6–15).

Figure 14 Kernel sliding over the Image (Verma, 2019)

1D Convolutional Neural Network was recently developed to handle the data in a 1D

sequence of data, such as in signal processing, ECG classification, Cardiac Arrhythmias

(Kiranyaz et al., 2016, pp. 664–675; Kiranyaz et al., 2015, pp. 2608–2611). There are

several advantages of 1D-CNNs due to the following reasons (Brownlee, 2020b):

 1D CNNs require simple array operations, which make the computational

complexity lower. Such models run faster over GPUs but can also be trained on

CPUs.

 Recent studies showed that the 1D CNNs have shallow architectures, which

means that based on the quality of the database available for training, these

networks need comparatively less hidden-layer (e.g., <2) and neurons (e.g., <50)

for accurate results.

 Due to the low computational power requirements, it is more suitable for real-time

operations, and it is also cost-effective.

The input datasets obtained for NILM algorithm are in 1D and CNNs have been an

20

outstanding method in dealing with 1D dataset. Thus, the presented algorithms in this

thesis primarily created using CNNs. The following hyper-parameters determine the

configuration of a 1D-CNN model (Kiranyaz et al., 2015, pp. 2608–2611):

 The number of hidden layers and neurons.

 Filter (kernel) size in each convolutional layer.

 Subsampling factor in each convolutional layer.

 The choice of pooling and activation operators

A typical 1D CNN model (see Figure 15a) has a hidden convolutional layer followed by

an input layer that operates over 1D sequence data. Based on the length or the

complexity of input data, sometimes the first hidden convolutional layer is connected to

another hidden convolutional layer, and the next layer could be a pooling layer, e.g.,

‘Max-pooling layer’ whose job is to distil the output of the previous layer to the most

salient elements. Afterward, a dense layer, which interprets the extracted features by

convolutional layers. A flatten layer can also be used between the dense and

convolutional layers to reduce the features maps to a single 1D vector (Brownlee,

2020b).

Pooling Layer This layer is used to down-sample the data from one layer to the next

layer. In general, two types of pooling are used, i.e., Maximum number pooling and

average pooling. When the target is to down-sample a ten numbers array to half of it

(i.e., 5). The first step is to choose a size of the window. In this case, it is two, which

means if Max-pooling layer is applied, one out of two number having higher weightage

will be chosen for the next layer. The main advantage is to speed up the process by

reducing the amount of data (Nascimento, 2016, p. 17).

Dropout Layer is an important layer and often used to handle the problem of overfitting.

Due to handling a massive set of data, deep neural networks are prone to overfit. Main

function is to randomly drop out some units with some probability at the time of training.

There is not any fixed rule to choose the percentage but mostly chosen 50%. It works

because it is doing an ensemble of several “destroyed” versions of the main network.

Thus, it also improves the capabilities of network by reducing the dependence of specific

weights in the layer (Nascimento, 2016, pp. 17–18).

21

Figure 15 A typical convolutional neural network

Dense Layer is a fully connected layer, which performs the dot product with the previous

22

layer and the number of neurons or unit specified in the dense layer. A densely

connected layer delivers the learning features from all the combinations of the previous

layer features, whereas a convolutional layer relies on consistent features with a small

repetitive field. For example, if the input shape to dense layer is (batch size,8) and the

number of neurons or units in the dense layer is chosen 16, the output shape will be

(batch size,16) (Nascimento, 2016, pp. 17–18).

One of the crucial parts of such a model is the shape of input. Each sample input should

be in terms of the number of time steps, which is calculated based on the steps or time

required to complete one full cycle by the appliance, i.e., on, operation, and off. It is not

a rule to choose it like that, but this way gives better request and the number of

features, which are considered one or two in this thesis, i.e., Active power and Reactive

power. In 1D CNN, the input to the first hidden layer shall be in the shape of (samples,

time-steps, features) (Brownlee, 2020b). Reshaping and its techniques will be

discussed in detail in the next chapter of data pre-processing. The important fact to

understand is that CNN does not view the data as human, but the data is treated as a

sequence over which the convolutional layer performs read operation, like a 1D image,

which is very similar to the 2D CNN model in case of image processing. The kernel slides

in one-dimension in 1D CNNs, as shown in Figure 16 (Verma, 2019). Figure shows an

example of measurement from an accelerometer, where the first dimension is time-steps,

and others are the different measurements by the meter, which can also be referred to

as number of features (Brownlee, 2020b).

Figure 16 Kernel sliding over 1 D data (Verma, 2019)

2.4 Deep Learning Fundamentals

Deep learning has dramatically impacted image classification, speech recognition,

sequence prediction, sentiment classification, image classification, and cybersecurity.

Primary hyper-parameters used in deep learning methods play a crucial role, which will

be discussed in this section.

2.4.1 Activation Function

An artificial neuron calculates the weighted sum of its input and adds a bias to it. Consider

the following equation,

D � ∑(FG&Hℎ5 ∗ &7�'5) + �&6I (eq. 16)

23

The output Y can be any value ranging from - ∞ to + ∞. The neuron does not know the

bounds of the output value and cannot decide on its own if it should or should not fire. It

is where activation functions come into the picture. An activation function decides

whether a neuron should be activated or not by calculating the weighted sum and adding

bias to it. There are two classes of activation functions, namely:

1. Linear Activation function: A linear activation function happens to be a straight-line

function where the activation is proportional to the input. Linear activation function

has limitation with inability to capture complex relationships. It can be represented

as:

-(�) = � (eq. 17)

2. Non-Linear Activation functions: These are the most utilised activation function as

they enhance the neural network capability to learn complex and complicated data

and generate non-linear mappings from input to output.

(a) Sigmoid: Also known as the logistic Activation Function. It is an S-shaped curve

with an output value lies in the range between zero and one. It deals with a

problem of vanishing gradient, i.e., there is almost no change in output for a very

large and a small values of the input, which leads to no update in weights and

thus no further learning of network (Chollet, 2018, pp. 178–233).

(b) Hyperbolic tangent (JKL M): Tanh function is also a sigmoidal or S-shaped in

nature; it outputs the value in the Range (-1,1). It strongly maps the negative

inputs to the negative outputs and maps only zero-valued inputs to near-zero

outputs, which improves the training of networks. However, it still has a significant

problem with vanishing gradient (Chollet, 2018, pp. 178–233).

(c) Rectified Linear Units (ReLU): It is a simple activation function that returns the

value provided as input directly or the value zero if the input is zero or negative,

as mentioned in Figure 17(c). ReLU has an advantage over the above-discussed

functions that It is faster to compute and converge the network quickly. It also

reduces the vanishing gradient problem compared to sigmoid, and tanh function

due to the constant derivative (Nascimento, 2016, p. 17). The disadvantage is

that when the inputs come to near zero or negative in value, the function gradient

becomes zero. Thus, the network cannot perform backpropagation and stop

learning, which is identified as the Dying ReLU problem (Chollet, 2018, pp. 178–

233).

(d) Leaky ReLU: Leaky ReLU solves the “dying ReLU” problem by allowing the

negative slope to be learned. This function provides the slope in negative values

part; therefore, the backpropagation is possible. The functionality of Leaky ReLU

is not standardized, and it depends on case to case base, which makes it

24

complicated (Chollet, 2018, pp. 178–233).

Figure 17 Commonly used activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU,(d) LReLU (Feng et al., 2019, p. 3)

2.4.2 Loss Functions

A deep neural network leans to map a set of inputs to a set of outputs from the training

data available to it. These networks are trained using one of the optimizers, whose

application is to update the weights. The aim is to move down the slope of an error where

the error is a measure of how far the results are from the desired output. This error is

calculated using the loss function.

The loss function should act as a metric to evaluate the performance of the model. It

should represent all the aspects of the model in a single number such that it can reflect

any performance degradation or improvement made by the model (Goodfellow et al.,

2016, pp. 271–311). A cost function is an associated term to the loss function, which is

the average loss over the entire training set. In contrast, the loss function evaluates the

metrics for a single training set. Regression and classification make use of different loss

functions. Some of the commonly used loss functions are listed below (Mahendru, 2019).

(a) Squared Error Loss: It is the square of the difference between the actual values

and the predicted values from the model. It can be expressed with the equation

(Mahendru, 2019),

N = (, − -(�))O (eq. 18)

where,

L is the loss,

y is the actual values,

f(x) is the predicted values.

25

The corresponding cost function is the Mean of these squared Errors (MSE). It can be

express as the below-mentioned equation, where the first part is the mean of the

variables n with the square error of the predicted and observed values.

PQR �
+

S
∑ (,� − ,�T)OS

�U+ (eq. 19)

(b) Binary Cross Entropy Loss: Binary classification is defined as a predictive

algorithm where the output is either one of the two items, indicated by zero or one.

For example, if the prediction output is 0.58, which is greater than the halfway mark

then the output is one. Else, if the prediction output is 0.45, then the output is zero.

This is the most commonly used loss function is the binary classification (Mahendru,

2019).

In the presented thesis work, the primary task of the algorithm is to detect the on-off

state of appliances. This loss function is implemented in such a that if the power

consumption is below certain pre-defined value, then the output will be zero or else

one. The binary cross-entropy error aims to reduce the entropy of the predicted

probability as output from the model (Mahendru, 2019).

2.4.3 Learning Rate

Learning rate defines how much alterations of the weights are necessary with respect to

the loss gradient. Selection of the learning rate is quite flexible. It can be set as either a

fixed value or modified in each epoch while training a model. Epoch defines the number

of iterations of the entire training dataset. The number of epochs is selected so that the

difference of the losses from one epoch to the next epoch gets minimal or zero, which

means that there is no more weight update process occurring and no learning happening

in the model. Learning rate regulates the speed of convergence to global minima. If the

learning rate is chosen very low (in order of 10-3 - 10-4), the convergence to global minima

will take longer time, but if the learning rate value is chosen very high (in order of 100 -

101), there are possibilities of no convergence, as shown in Figure 18. Also, weights get

updated slightly in one epoch, when the learning rate is low, which leads to an increase

in the required number of epochs for training.

Figure 18 Learning rate (Donges, 2020)

26

‘Global minima’ is the minimum point of the entire domain, and ‘local minima’ is a sub

optimal point, as shown in Figure 19. Local minima offer the comparatively minimum

point where the losses are minimal but not the least (Khandelwal, 2018). The goal of a

model is to train until it reaches the global minima. Optimizers are designed to focus on

global minima while weights update in any layer (Khandelwal, 2018).

Figure 19 Local minima and Global minima (Khandelwal, 2018)

2.4.4 Optimization

Selection of the optimization algorithm plays a critical role in the convergence of a deep

learning algorithm. An optimizer can reduce the losses by changing network attributes

such as weights and learning rate. Advantages of the most used optimizers are

discussed as follows.

(a) Adagrad: The Adaptive Gradient Algorithm has an adaptive learning rate capability,

which allows a network to regulate the learning rate for individual features. Adagrad

is a very efficient method if the input dataset has lots of missing values. This method

has a drawback that the learning rate keeps reducing after every iteration. This

problem was taken care of by some optimizers discussed below (Algorithmia, 2018).

(b) RMSprop: It stands for the Root Mean Square Propagation, which is an updated

version of Adagrad. It only accumulates gradients in a fixed size window, unlike

Adagrad, and deals with the radically diminishing problem of Adagrad.

(c) Adam: Adam is derived from adaptive moment estimation, and it is based on the

concept of momentum. The adaptive learning rate of each parameter is calculated

from the estimate of the first and the second moments of the gradient. Adam deals

27

with the radically diminishing problem of the Adagrad and performs efficiently with

faster computational power(Algorithmia, 2018).

2.4.5 Parameter Initialization

Weights initialization plays an essential role in the training of a neural network. If all the

weights are assigned as zero initially, there will be no learning in the network. Because,

even after the gradient update, all the values will be zero. Wrong initialization of weights

may lead the network to take more time and computational power to reach global minima.

There are some ways for parameter initialization, which are discussed as follows:

(a) Xavier Initialization: It is always good to have the same variance while moving from

one layer to another. It supports to keep the signal from exploding to a considerable

big value or zero at the end. It is based on Gaussian distribution and represented for

a fully-connected layer having m inputs as (Stewart, 2019):

�4V~X(0,
+

Y
) (eq. 20)

where,

W is the weights

N is the neuron in the layer

The value of m is known as fan-in, i.e., the number of incoming neurons or units

(Stewart, 2019).

(b) He Normal Initialization: It is a modified Xavier method with a multiplication factor

of 2, as shown in the equation below.

�4V~X(0,
O

Y
) (eq. 21)

The initial weights are assigned, keeping in mind the size of the previous layer. It

helps to attain the global minimum faster and more efficiently. This method is

recommended to use with ReLU layer.

(c) Pre-initialization: It is designed to import the weights of the already-trained network.

A model can be saved along with the weights in a particular file format known as

h5py. Keras provides a feature to load the stored model with predefined weights for

further actions. The only limitation is that the datasets used while saving the model

must have the same properties as the new dataset required for testing or additional

training(Stewart, 2019).

2.5 Evaluation Matrix

F-Measure, also known as F1-score, is a single measurement that contains both recall

and precision. A perfect F-measure score would be one; thus, the closer the model score,

the better the performance (Brownlee, 2020d). It can be determined as,

28

Z − PG6I'=G �
O∗[>\84]4:S∗^\8_``

[>\84]4:Sa^\8_``
 (eq. 22)

The confusion matrix is one of the most recognised techniques for evaluating results.

It is not enough to calculate only classification accuracy of results when a vast dataset

is utilised for training a model for several appliances. The confusion matrix calculation

provides more inside of the outcomes (Brownlee, 2020d).

1b6II&-&c65&
7 6cc'=6, (%) �
�:�_` 8:>>\8� e>\f48�4:S]

�:�_` e>\f48�4:S] Y_f\
∗ 100 (eq. 23)

whereas, the confusion matrix has more parameters and can be encapsulated as,

Table 1 Confusion matrix (Bernard, 2018, p. 119)

 Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Positive (FP)

Negative Class False Negative (FN) True Negative (TN)

where (Brownlee, 2020d),

true positive: correctly predicted event values.

false positive: incorrectly predicted event values.

true negative: correctly predicted no-event values.

false negative: incorrectly predicted no-event values.

Precision for Binary Classification is one of the metrics required to calculate the F1-

score. It can be computed as,

g=Gc&I&
7 �
h[

h[ai[
 (eq. 24)

Recall for Binary Classification is another metric that quantifies the number of correct

positives made out of all positive predictions and it can be estimated as,

jGc6bb �
h[

h[aik
 (eq. 25)

2.6 Save and load model

One of the advantages of a neural network, which is a necessity as well, is that it must

train and validate the model only once. It is a tedious procedure that takes a lot of time,

computational power, and datasets. TensorFlow provides a feature that once the model

starts giving the desired outcomes, it is feasible to save the weights.

This process also helps to create checkpoints during the training. If the availability of

computational power is not adequate to execute the training with entire dataset at once,

it is possible to breakdown training into several chunks. Once a model is saved, its initial

weights assigned will not be random when loading it; rather, the weights will presume

their properties. The saving points of a model are known as checkpoints. A model is

29

saved in HDF5 format, which only contains the trained weights. It is essential to call all

the libraries again, used while training the model, before loading it(Agarwal et al., 2015).

2.7 Development Tools

The primary programming language used for model development in this research is

Python, which is the most commonly used programming language in Data science

research communities. Python is a high-level, interpreted programming language with

a strong focus on readability and understandability. Its broad selection of libraries and

features that could help streamline the development process and heavily machine

learning-oriented toolkit resulted in Python being the primary choice for this task.

Recent advances in the AI field have eased the learning curve significantly, and

especially, deep learning has historically been a rather tricky subject to break. Google

released its Python-based software library TensorFlow to the public (Agarwal et al.,

2015). TensorFlow has several uses, but its primary domain is machine learning by

simplifying the development process. Besides, this research employs the usage of

Keras, a neural network library that is implemented on top of TensorFlow, streamlining

the process even further.

Additional Python packages used in this project are Stats-models, SciKit Learn, Numpy,

Pandas, and Matplotlib. SciKit Learn includes several tools for statistical modelling and

analysis in machine learning, while others simplify the development.

 Table 2 Software information

Software Version

Python 3.7.0

Microsoft 365 365 ProPlus

Adobe 20.13.20064.405839

Pandas 0.23.4

Numpy 1.16.2

TensorFlow 2.3.0

Keras 2.4.3

Scikit-learn 0.24

matplotlib 2.2.3

Statsmodels 0.12.0

30

3. Data Collection and Pre-processing

This thesis work is based on real load profile data, not on the simulated database. This

chapter provides the details of the project partner, data collection process, and data pre-

processing techniques. The typical structure of the whole process is shown in Figure 20.

Figure 20 Typical structure of data pre-processing

3.1 Data Collection Process

3.1.1 Background Information of Project Partners

The load profile measurement and data collection process from four dairy farms based

in the Bayern state of Germany are executed by the team of Technische Hochschule

Ingolstadt (THI), Ingolstadt, Germany, along with their project partner company named

Maschinenringe Germany GmbH (MR), Neuburg an-der Donau, Germany. Those four

farms are named as Farm1, Farm2, Farm3, and Farm4 in this document. The individual

measurements of four electrical appliances (having significant power consumption in a

dairy farm) were taken care of by THI. These four appliances are MK, VP, MP, and SA.

The milking process in all the selected farms occurs twice every day. MK is used for

maintaining the temperature of the milk. SA is used for cleaning the udder of cow and

pipelines, mainly used twice a day. MP is used to pump the milk to storage. VP is used

for the milk suction process. MR provided the aggregated load profiles of the respective

farms. MR performed these measurements incorporation with Lackmann

Metergesellschaft mbH & Co. KG, Münster, Germany.

3.1.2 Measurement Devices

All the measurements performed by THI are measured with a 3-Phase Power Logger

named EMONIO P3, as shown in Figure 21, manufactured by Berliner Energieinstitut

GmbH, Berlin, Germany. EMONIO is ISO 500001 and DIN EN 601010-1 certified class

1 (i.e., accuracy ±1) power logger and capable of measuring phase-wise current, voltage,

power factor, active power, and apparent power with time index. The uncertainty for

reactive power is less than three percent. The input voltage range is 400 Volts (U) phase-

31

phase and 240 V Neutral; also, it can withstand up to 80 Ampere (A) alternative current

(AC), which are in accordance with the dairy farm appliances.

Figure 21 EMONIO P3 (Berliner Energieinstitut GmbH, 2019)

EMONIO has a measurement category of CAT III, which means this device is safe to be

used in a control panel or switchboard, as shown in Figure 22.

Figure 22 EMONIO Installation in switchboard (Berliner Energieinstitut GmbH, 2019)

32

EMONIO has communication interfaces as an intern and extern WLAN, MQTT, and

Bluetooth, which provided the option to control and monitor it from a remote location

(Berliner Energieinstitut GmbH, 2019).

On the other hand, the aggregated load profile provided by MR was measured using a

smart meter from Lackmann, as shown in Figure 23. The smart meter from Lackmann is

designed for industrial applications and can measure various electric parameters. It also

has vast communication support (Lackmann GmbH & Co. KG, 2020). For the presented

work, only the aggregated active and reactive power with the time index was acquired.

Figure 23 Lackmann smart meter (Lackmann GmbH & Co. KG, 2020)

3.1.3 Overview of the Data

For the development of NILM algorithm, one or more features were required.

Two features i.e., active, and reactive power are considered for the developed

algorithm. Studies say that the performance of model become better if trained with more

features (Li et al., 2019, p. 27). The measurements from EMONIO were captured one’s

every second and from Lackmann meter, one’s every two second. The frequency of

measurement plays an important role in neural network training. It is essential not to miss

any load profile variations as input to the model to train it accurately. When the time

frame is short (in seconds), the load profile has more probability of capturing all the

variations. Measurement frequency also depends on measuring device capability. The

measurements from both the devices are delivered in ‘.csv’ file format, as shown in

33

Figure 24 (b). Figure 24 (a) shows a sample of available raw data.

Figure 24 Exported files from measurement devices

Figure 25 shows a selection of load profiles for aggregated load in blue and individual

appliances in red, orange, and green. The y-axis shows the power in kilowatt (kW), and

the x-axis is the time axis.

Figure 25 Load profiles (Raw Data Sample)

Initially, it was planned to collect the individual appliance power consumption load profile

data from all four farms for a minimum period of seven to ten days, and the aggregated

load profile data for the respective farm in same time frame supposed to be received

from MR. There were some challenges faced at the time of extracting the data from the

measuring devices, which will be discussed in this section. The availability of the overall

datasets is listed in Table 3, which concludes that reactive power is only available for the

Farm1. A total of three farms can contribute to modelling. Variations in MP and SA

datasets are limited to only one farm, and VP datasets are available from two farms. MK

has the maximum data availability from three farms for training and testing.

34

Table 3 Data availability from farms

Farm
Name

Date No. Of
Days

VP MP MK SA Aggregated

From To P Q P Q P Q P Q P Q

FARM1 24.06.2020 21.07.2020 28

FARM2 23.11.2019 03.12.2019 11

FARM3

29.05.2019 30.05.2019 2
04.06.2019 07.06.2019 4
08.06.2019 13.06.2019 6

 FARM4

21.07.2019 23.07.2019 3
26.07.2019 26.07.2019 1
28.07.2019 03.08.2019 7
05.08.2019 13.08.2019 9

where,

P : Active power

Q : Reactive power

 : Available

 : Not available

3.2 Data Munging

The process of transforming data from a raw data form to another format to make it more

appropriate and valuable for the downstream processes is called data munging.

3.2.1 Handling Missing Values

The first error was observed with a large percentage of missing values in the raw

dataset. The timespan of the missing values was in a wide range, i.e., from a few seconds

to several hours, as shown in Figure 26.

Figure 26 Sample of missing values dataset. (a) Farm1-VP; (b) Farm4-VP

EMONIO delivers data in both on and off condition of the appliance; thus, a possible

35

reason for the missing values could be power cut to the particular appliance in that

timespan. This error was rectified by creating a fresh data-time data-frame for a required

number of days and time. Using an API of pandas-library in Python, called merge, the

new data-frame and raw values data-farm were merged on the basis of the date-time

index of the freshly created data-frame. The column with missing values gets filled with

nan, which were replaced with an average of nan and the next value using a Python

function called fill.na. This process is known as forward filling. The second method is

to replace the value with a zero value.

The second error was observed in the time index, which was not the same for the

dataset measured by THI and MR in some cases, as shown in Figure 27.

Figure 27 Sample of date-time column shift for both the devices

It is required to give input data of aggregated and individual appliances in the same

index. Otherwise, the learning and prediction might also shift by the same time index

difference. This error was handled by initially plotting several graphs and extracting the

days with this error. Later the adjustments were performed on the time indexes using the

‘pandas’ and ‘NumPy’ libraries in python. Also, the EMONIO device was reset before the

installation in the next farm.

The third error was determined in the dataset measured with EMONIO. Datasets had

negative power values for one or more phases. EMONIO is a polarity-sensitive device,

and thus, the reason was quite apparent that at the time of installation, the current coil

was connected in reverse polarity. This challenge was remedied by multiplying the

measured value with a factor of minus one.

The fourth error was also detected in the dataset measured with EMONIO. As shown

in Table 4, some of the power measurement values were negative, which was identified

as the reverse polarity issue of the current coil. Current measurement at the same time

found zero. It is also not the self-consumption of the device, which is only 9 W. Thus, the

exact reason could not be identified, but the possible cause could be a measurement

error. All the values below zero were transformed to zero using the ‘pandas’ library in

python to handle this error.

36

Table 4 Sample of error in polarity and accuracy

3.2.2 Data Transforms

Data transformation from raw data to a model readable data format plays a significant

role in any deep neural network modelling. All the techniques, processes, and steps

taken will be discussed briefly.

Scaling of numerical inputs to a standard range enhances the performance of algorithms.

Two most popular techniques for scaling numerical data prior to modelling

are Standardization and Normalization (Brownlee, 2020c).

Data Normalization scales every input variable into a range of zero to one. Neural

networks training are data sensitive, and their outcomes improve when trained over small

weights. If a model is trained over large value datasets, model weights in hidden layers

become large, which make the learning complicated (Brownlee, 2020c). Thus, the

‘MinMaxScaler’ operator of python based ‘sklearn’ library was applied to the aggregated

load profile and individual appliances load profiles for normalization. This operator

divides the whole dataset by its maximum value and transforms the dataset into a range

of zero to one.

Transformation of datasets, from normalised power values to the State of appliance

(i.e.,0/1 for on/off, respectively). The transformation parameters are defined in Table 5.

Table 5 Parameters for transformation to state values

Name of device Chosen parameter for on/off

VP if VP_ normalised power <0.02 then '0' else '1'

MP if MP_ normalised power <0.5 then '0' else '1'

MK if MK_ normalised power <0.07 then '0' else '1'

SA if SA_ normalised power <0.02 then '0' else '1'

Train-Test Split is a procedure to estimate the performance of a deep learning

algorithm. A neural network needs data in train and test datasets. This procedure is

appropriate when dealing with a very large dataset. It helps to evaluate the performance

of a model in a short period.

The percentage of split is not fixed, but the common split percentages include train: 80%,

test: 20%, train: 67%, test: 33%, or train: 50%, test: 50%. The training dataset is a

composition of ‘X_train’ and ‘Y_train’. X_train can be defined as the data which is input

to a model (e.g., aggregated power), and Y_train can be defined as the desired output

from a model (e.g., Individual appliance power, or on-off state of the appliance). Similarly,

37

the testing dataset is also a composition of ‘X_test’ and ‘Y_test’. X_test can be defined

as the dataset, which is provided to a model as input for testing (e.g., aggregated power),

and Y_test can be defined as the outcome of a model (e.g., on-off state of the appliance).

Validation Dataset is a dataset that is used to describe the evaluation of any model

when tuning hyper-parameters. Train dataset can be divided into train and validation

dataset, or validation dataset can be prepared separately from raw data, which is not

used for training or testing. Likewise, Train-Test Split, validation data set split percentage

is also not fixed. The common split percentages include train: 85%, Validation: 15%,

train: 75%, Validation: 25%.

Reshaping is a very crucial procedure when dealing with 1D-dataset as discussed in

2.3.10; the model expects the input to be 3D with [sample, timesteps, features].

For this thesis work, features are considered as either only active power or both active

and reactive power; thus, features are either one or two, respectively. The next

parameter is timesteps also known as window-size, which can be defined as the

number of measurements performed for any particular dataset type. If aggregated power

is measured one’s every two seconds for 24 hours. Then, there will be a total of 43,200

data points. This number is the timesteps for this dataset. There is no rule for the

selection of a number of time steps, but selection criteria should be in such a way that at

least one complete cycle (i.e., on-off) of the appliance is covered. Timesteps were

preferred differently for all four appliances based on their operation cycles. The last

parameter in reshaping is a sample also known as batch-size, defined as the number

of sets prepared from the 43,200 data points for training. Each sample will have a defined

number of timesteps. For example, 10,000 samples can be prepared, each having 10

timesteps. The variables of a sample are chosen in such a way that either they are

‘unique’ in each sample or ‘partially repeats’ in each sample (Brownlee, 2020b). Table 6

shows three cases of samples made from a univariant dataset

[10,20,30,40,50,60,70,80,90] having one feature. The timesteps is considered as 3 for

reshaping all the cases. Case 1 and Case 3 are partially repeating the values whereas

Case 2 is having unique values.

Table 6 Example of sample datasets

Case1:

[10,20,30]

[20,30,40]

[30,40,50]

[40,50,60]

[60,70,80]

[70,80,90]

Case2:

[10,20,30]

[40,50,60]

[70,80,90]

Case3:

[10,20,30]

[30,40,50]

[50,60,70]

[70,80,90]

38

4. Model Development

This thesis demands to develop an algorithm for the classification of the on-off status of

the selected appliances. Thus, the sequence-to-sequence approach was adopted for this

work. The advantage of the sequence-to-sequence approach is that the size and shape

of the outcome will remain the same as the input dataset. If the model is tested on one

full day of operations, the classification results will be available for the whole day. Several

models using CNN, LSTM, and their combinations were trained and tested over the same

datasets. The architecture of models providing satisfactory results based on their F-1

scores was examined. The availability of datasets is shown in Table 3. It was observed

that training of a neural network mainly requires variations in data instead of the data of

a similar type. Thus, complete datasets were not used for training the models to avoid

overfitting issues. Due to the unavailability of reactive power for the appliance MP and

MK, they were trained and tested with one-feature (i.e., active power). Nevertheless, SA

and VP were trained and tested for both one-feature (i.e., active power) as well as two-

features (i.e., active and reactive power).

The following datasets were chosen for training purpose as shown in Table 7.

Table 7 Selection of datasets for training

Appliance
Name

Farm1 Farm2 Farm4

MK 24.06.20 to 28.06.20 23.11.19 and 27.11.19 21.07.19 to 22.07.19

VP 24.06.20 to 28.06.20 - 21.07.19 to 22.07.19

SA 24.06.20 to 28.06.20 - -

MP - - 05.08.19 to 10.08.19

The following datasets were selected for testing purpose as shown in Table 8.

Table 8 Selection of datasets for testing

Appliance
Name

Farm1 Farm2 Farm4

MK 29.06.20 to 30.06.20 28.11.19 to 29.11.19 23.07.19

VP 29.06.20 to 30.06.20 - 23.07.19

SA 29.06.20 to 30.06.20 - -

MP - - 11.08.19 to 12.08.19

4.1 Model-1: 1D-CNN- BDRNN

The first model is a one-dimensional convolutional bi-directional neural network with

eleven layers, as shown in Figure 28. The first two hidden layers are the 1D convolutional

layer having sixty-four neurons, each with a filter size of three and five, respectively.

39

Sixty-four neurons fitted well to handle the stated amount of data and eliminating the

overfitting issues. A filter of 3*3 and 5*5, respectively, slides over the dataset to extract

the unique characteristics in the first two layers. The third hidden layer is max-pooling

with a filter size of two, which reduces the data-size to half by selecting one out of every

two values, whichever delivers more significant weight. The fourth hidden layer is

bidirectional GRU with thirty-two neurons, which supports the loss function by reducing

the losses to get closer to the desired results, and the fifth hidden layer is the dropout-

layer with a 50% drop. The next two hidden layers are again bidirectional GRU and

dropout. The second last hidden layer is a fully connected dense layer with one-hundred

neurons, which collects all the information from the previously hidden layer and puts it

into neurons. The last hidden layer is a dense layer with one node, which will give only

one value at a time as required in the form of either zero or one.

Figure 28 Architecture of Model-1 (1D-CNN-bidirectional RNN)

The training parameters nominated for Model-1 are defined in Table 9 for all four

appliances.

Table 9 Training parameters of Model-1

Appliance Name MK MP VP SA

Feature Active power

Data Frequency one’s in 30 s one’s in 2 s one’s in 60 s one’s in 60 s

Trainable Parameters 64,841

Samples 181 5,670 218 79

Batch-size 128 32 32 32

Window-Size 1,500 10 150 60

Number of epochs 20 10 20 5

Loss function Binary_crossentropy

Optimizer Adam

Activation function sigmoid

Learning rate Initialized with 10-1 and reduced until 10-3 during epochs

Active power was used for the training of the Model-1. The selection of data-frequency

40

was performed on the bases of the switching cycle of each appliance. This model creates

a total of sixty-four thousand eight hundred forty-one trainable parameters based on the

assortment of hidden layers. The window size chosen for each appliance is adequate for

at least one full operation (on and off) cycle, respectively. The hyper-parameters play

extremely critical roles, and the outcomes might get affected by slight changes.

‘Binary_crossentropy’ loss function and ‘Adam’ optimizer provided pertinent results, and

they are best suitable for classification problems. It is also recommended to implement

the ‘sigmoid’ activation function in the last hidden layer if the ‘Binary_crossentropy’ loss

function is applied. The learning rate was initialized with 0.1 for fast learning and later

reduced until 10-3 during epochs to avoid overshoot the global minima.

4.2 Model-2: 1D-CNN-LSTM

Model-2 is a combination of 1D-CNN and RNN consisting of fourteen layers, as shown

in Figure 29. The first two hidden layers are the 1D convolutional layer, each

accommodating sixty-four neurons with a filter size of three and five, respectively. The

third hidden layer is an LSTM layer consisting of sixty-four neurons, which is

implemented here to understand the pattern of features extracted through the

convolutional layers. The fourth hidden layer is the batch-normalization layer, which

automatically standardises the inputs. The fifth hidden layer is ‘LeakyReLu’, which works

as an activation function for the LSTM layer, followed by the sixth hidden layer as a

dropout with a 50% drop. Another set of an LSTM, batch-normalization, ‘LeakyReLu’,

and dropout layers, is applied. The second last hidden layer is a fully connected dense

layer with one-thousand twenty-four neurons. A large number of neurons is chosen here

to minimise the losses. The final hidden layer is a dense layer with one node, which will

give only one value at a time as required in the form of either zero or one.

Figure 29 Architecture of Model-2 (1D-CNN_LSTM)

The training parameters selected for Model-2 are defined in Table 10.

41

Table 10 Training parameters of Model-2

Appliance Name MK MP VP

Feature Active power

Data Frequency one’s in 10 s one’s in 2 s one’s in 120 s

Trainable Parameters 101,249

Samples 559 4,725 109

Batch-size 32

Window-Size 1,500 10 90

Number of epochs 20 10 5

Loss function Binary_crossentropy

Optimizer Adam

Activation function sigmoid

Learning rate Initialized with 10-1 and

reduced until 10-2 during

epochs.

10-3

Model-2 was trained and tested for three appliances with active power. Data-frequencies

were modified in comparison to Model-1 to make them more suitable for Model-2. The

learning rate was kept constant for MP and VP.

4.3 Model-3: LSTM

Model-3 is an RNN-LSTM model, which gives good results in time series and sequential

problems. The first hidden layer is an LSTM layer comprising one hundred twenty-eight

neurons, followed by the batch-normalization layer, activation layer as ‘LeakyReLu’ and

dropout layer with a 50% drop. Another set of an LSTM layer consisting of sixty-four

neurons, batch-normalization, ‘LeakyReLu’, and dropout layers with a 50% drop, is

implemented. The last two fully connected hidden layers are applied with one-thousand

twenty-four and one neurons, respectively, to step down the weights update and deliver

the result in either zero or one.

Figure 30 Architecture of Model-3 (LSTM)

The training parameters applied for Model-3 are defined in Table 11.

42

Table 11 Training parameters of Model-3

Appliance Name MK MP VP

Feature Active power

Data Frequency one’s in 60 s one’s in 2 s one’s in 120 s

Trainable Parameters 184,321

Samples 92 4,725 109

Batch-size 128 32

Window-Size 500 10 90

Number of epochs 40 5 10

Loss function Binary_crossentropy

Optimizer Adam

Activation function sigmoid

Learning rate Initialized with 10-1 and reduced until 10-3 during epochs.

Model-3 was trained and tested for three appliances utilizing active power. The other

stated parameters were modified to improve the performance of the model.

4.4 Model-4: Multi-feature 1D-CNN-BDRNN

The architect of Model-4 is comparable to Model-1: 1D-CNN- BDRNN, as shown in

Figure 31. The only modification is in the input layer of Model-4, which comprises two

features, i.e., active power and reactive power.

Figure 31 Architecture of Model-4 (Multi-Feature 1D-CNN-bidirectional RNN)

The training parameters selected for Model-4 are defined in Table 12.

Table 12 Training parameters of Model-4

Appliance Name VP SA

Feature Active and Reactive power

Data Frequency one’s in 60 s one’s in 120 s

Trainable Parameters 49,897

Samples 155 77

43

Batch-size 32 32

Window-Size 150 90

Number of epochs 3 10

Loss function Binary_crossentropy

Optimizer Adam

Activation function sigmoid

Learning rate 10-3

Model-4 was trained and tested for two appliances utilizing active and reactive power.

The other parameters stated above in the Table 12 were modified to achieve the best

result.

4.5 Model-5: Multi-feature 1D-CNN-LSTM

The architect of Model-5 is similar to Model-2: 1D-CNN-LSTM, as shown in Figure 32.

This model comprises two features as input, i.e., active power and reactive power.

Figure 32 Architecture of Model-5 (Multi-Feature 1D-CNN_LSTM)

The training parameters carefully chosen for Model-5 are defined in Table 13.

Table 13 Training parameters of Model-5

Appliance Name VP SA

Feature Active and Reactive power

Data Frequency one’s in 60 s

Trainable Parameters 70,217

Samples 155

Batch-size 32

44

Window-Size 150

Number of epochs 10 5

Loss function Binary_crossentropy

Optimizer Adam

Activation function sigmoid

Learning rate 10-3

Model-5 was trained and tested for two appliances with active and reactive power. It was

observed, same parameters worked for both the appliances to achieve desired results.

4.6 Model-6: Multi-feature LSTM

The architect of model-6 is analogous to Model-3: LSTM, as shown in Figure 33. This

model is trained with two features as input, i.e., active power and reactive power.

Figure 33 Architecture of Model-6 (Multi-Feature-LSTM)

The training and testing parameters selected for Model-6 are defined in Table 14.

Table 14 Training parameters of Model-6

Appliance Name VP SA

Feature Active and Reactive power

Data Frequency one’s in 60 s one’s in 120 s

Trainable Parameters 123,849 70,217

Samples 155 78

Batch-size 32 32

Window-Size 150 60

Number of epochs 5 10

Loss function Binary_crossentropy

Optimizer Adam

Activation function sigmoid

Learning rate 10-3

45

5. Results and Comparison

The performance analysis of the six models discussed in chapter 4 is presented in this

chapter. The comparative evaluation of the models is performed based on their F1 score,

defined in chapter 2.5. Outcomes of models are either one or zero, which indicates the

state of appliance, on or off respectively. All models are tested on a full-day load profile,

and their results are plotted separately for each day. The outcome of models is plotted

with either normalised power of appliance or actual state (on-off) of the appliance. The

data frequency parameters were chosen differently for each appliance for all six models,

that caused a difference in time-indexing of the normalised value of power in plotted

graphs of results.

The outcomes of the three models tested for MK on five days of datasets are shown

in Figure 34. Every row represents the selected day from a farm as mentioned vertically

with ‘Farm_date’. It is observed that the LSTM model outperformed for a few days, but

the performance is not consistent. In other two models, the convolutional layers

performed well in extracting the power variation features, and bi-directional layers helped

to minimise the difference between the actual state and outcome of the model. The result

of the 1D-CNN-LSTM and 1D-CNN-BDRNN models are nearly identical to normalised

power. The performance of 1D-CNN-BDRNN model is consistent and best out of these

three models.

Note: In the following graphs, the X-axis is representing the time of a full day starting

from 00:00:01 (HH: MM: SS), and the Y-axis is representing the state (on-off as one-

zero) for results and the normalised power value of an appliance between zero and one.

The actual state of appliances is denoted with a key as Actual _device name (MK, VP,

MP or SA) _N (normalised)_AP (active power). The result of each model is displayed

with orange colour, and the normalised power of the appliance is shown in purple colour.

46

Figure 34 Comparison of result for three models tested for MK on different dates and farms

where,

Actual_MK_N_AP: ground truth of MK (normalised active power).

Result_1DCNN-BDRNN: result from Model-1.

47

Result_CNN_LSTM: result from Model-2.

Results_LSTM: result from Model-3.

It was observed that the performances of models were varying for the different farms.

The possible reasons identified behind this behaviour were the difference in operational

time and power consumption of MK for all the three farms, and limitation of variations in

the dataset available for training. The graphs displayed in Figure 34 cannot quantify the

results; this was achieved with an F1 score graph, as shown in Figure 35. The F1 score

for the models 1D-CNN-BDRNN and 1D-CCNN-LSTM are very close to one, which is

the maximum possible score. The score of an LSTM model is not consistent for all the

five days and relatively lower than other two stated models. 1D-CCNN-LSTM model

outperformed based on the F1 score and consistency in results for five days of testing.

Figure 35 F1-Score comparison of three model tested for MK on different dates and farms

where,

F1, F2, and F4 are Farm1, Farm2, and Farm4 respectively.

F1 Score_1DCNN-BDRNN: result from Model-1.

F1 Score _CNN_LSTM: result from Model-2.

F1 Score _LSTM: result from Model-3.

The results of the three models tested for MP on two days of the dataset are shown

in Figure 36. It was observed that the performances of all the models were virtually

identical to the normalised values of power consumption and the consistent for both the

days. The possible reasons identified behind this behaviour were the limitation of

variations in the dataset available to only one farm. The convolution layer and LSTM

layer are capable of extracting and memorizing the features and their patterns.

48

Figure 36 Comparison of the results of three models tested for MP on different dates

where,

Actual_MP_N_AP: ground truth of MP (normalised active power).

Result_1DCNN-BDRNN: result from Model-1.

Result_CNN_LSTM: result from Model-2.

Results_LSTM: result from Model-3.

Figure 37 shows that the F1 scores for all the models are one, which is only an ideal

case. Therefore, the models should be tested on the dataset of different farms to identify

their performances further and make them more robust.

Figure 37 F1-Score comparison of three model for MP on different dates

where,

49

F4 is the Farm4.

F1 Score_1DCNN-BDRNN: result from Model-1.

F1 Score _CNN_LSTM: result from Model-2.

F1 Score _LSTM: result from Model-3.

The outcomes of models tested for VP on three days dataset from two farms are

shown in Figure 38. It was observed that the operation cycle of VP reflects several

variations throughout the day, and the load profiles are also entirely different for both the

farms. The outcomes of all the three models are identical to the power consumptions for

Farm4, which indicates their excellent performance. On the other hand, the convolutional

layer-based models are not capable of identifying the ‘on-state’ of VP for Farm1 at some

points. Which shows the limitation of a convolutional layer in extracting the features in

small windows. Among the three models, LSTM based model outperformed as the LSTM

layer works to learn the pattern from datasets.

Figure 38 Comparison of results of the three models tested for VP of different dates and farms

where,

Actual_VP_N_AP: ground truth of VP (normalised active power).

Result_1DCNN-BDRNN: result from Model-1.

50

Result_CNN_LSTM: result from Model-2.

Results_LSTM: result from Model-3.

Figure 39 shows that the F1 scores for 1DCNN-BDRNN and CNN_LSTM are not

consistent for three days. Thus, these models are not suitable for VP. The LSTM model

outperformed with a score of about 0.7 for all three days as well as it shows consistency.

Therefore, it is recommended to opt for the LSTM model for VP.

Figure 39 F1-Score comparison of three model for VP tested on different dates and farms

where,

F1, and F4 are Farm1, and Farm4 respectively.

F1 Score_1DCNN-BDRNN: result from Model-1.

F1 Score _CNN_LSTM: result from Model-2.

F1 Score _LSTM: result from Model-3.

The outcomes of the 1DCNN-BDRNN model tested for SA on a two days dataset for

one farm is shown in Figure 40. It was observed that SA operates only twice a day for a

short time of around thirty minutes. The availability of dataset was limited to only one

farm; consequently, the LSTM based models could not identify any useful sequence in

dataset. The convolutional layer successfully extracted the feature, and the result of

1DCN-BDRNN are indistinguishable to the normalised power, as shown in Figure 40.

51

Figure 40 Comparison of results of three model for SA tested on different dates

where,

Actual_SA_N_AP: ground truth of SA (normalised active power).

Result_1DCNN-BDRNN: result from Model-1.

Result_CNN_LSTM: result from Model-2.

Results_LSTM: result from Model-3.

Figure 41 shows, the F1 scores of the 1D-CNN-BDRNN model for both the days are

above 0.5 but consistent. Hence, this model needs to be trained and tested with multiple

farms dataset to ensure the credibility of the performance.

Figure 41 F1-Score comparison of three model for SA tested on different dates

where,

52

F1 is the Farm1.

F1 Score_1DCNN-BDRNN: result from Model-1.

F1 Score _CNN_LSTM: result from Model-2.

F1 Score _LSTM: result from Model-3.

The results discussed so far were based on only one feature, and the results of models

trained and tested with two features (i.e., active power and reactive power) are discussed

later in this chapter. Graphs were plotted between the on-off state on X-axis and time

on Y-axis for the actual state of the appliance and the result of the model, the remaining

measures are the same as the above-discussed graphs.

Figure 42 shows the outcomes of the three multi-features models tested for SA on

two days of Farm1. The results of models overlap with the actual states, which signifies

the virtuous performances of all the models. It was observed that the unique combination

of active and reactive power reduced the complexity of an LSTM layer to recognise the

pattern and enhance the overall performance of the model. Still, the consistency of

convolutional layer-based models for SA is better than LSTM model. The enhancement

in training of model certified that the overall performance improves with an increase in

the number of features while training.

Figure 42 Comparison of the results of three multi-features model for SA tested on different dates

where,

Actual_Status_SA: ground truth state of SA (on-off).

Result_2F_1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN.

Result_2F _CNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM.

Results_2F _LSTM: result from Model-6: Multi-feature LSTM.

53

Figure 43 shows, the F1 score of the LSTM model is lower compared to the other two

convolutional layer-based models, which are having a score of about 0.65 and above.

The consistency in the results of all the models is significantly small. The availability of

dataset for training was limited to only one farm. Therefore, to ensure the performance

and robustness of the models, it is essential to train and test them with datasets of the

multiple farms. The 1DCNN-LSTM model outperformed among the three models with the

highest F1 score.

Figure 43 F1-Score comparison of three multi-features model for SA tested on different dates

where,

F1 is the Farm1.

F1 Score_(2F)1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN

F1 Score _(2F)1DCNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM.

F1 Score _(2F)LSTM: result from Model-6: Multi-feature LSTM.

The results of the three models tested for VP on a two-days dataset from Farm1 are

shown in Figure 44. It is challenging to categorise the performances of models due to

the overlapping of actual states and the results. However, the consistency of the results

is comparable for all the three models.

54

Figure 44 Comparison of the results of three multi-features model for VP tested on different dates

where,

Actual_Status_VP: ground truth state of VP (on-off).

Result_2F_1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN.

Result_2F _CNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM.

Results_2F _LSTM: result from Model-6: Multi-feature LSTM.

F1 score of 1DCNN-BDRNN model is lower than the LSTM based models, as shown in

Figure 45.

Figure 45 F1-Score comparison of three multi-features model for VP tested on different dates

where,

55

F1 is the Farm1.

F1 Score_(2F)1DCNN-BDRNN: result from Model-4: Multi-feature 1D-CNN-BDRNN

F1 Score _(2F)CNN_LSTM: result from Model-5: Multi-feature 1D-CNN-LSTM.

F1 Score _(2F)LSTM: result from Model-6: Multi-feature LSTM.

The F1 score of the multi-feature LSTM model is significantly higher compared to the

model trained with one feature for VP. It specifies that the performance of an LSTM

based model prominently improves with multi-feature input data. F1 score for both the

LSTM based models are close to 0.85, and the results show consistency for both the

days. Model-6 outperformed for VP with the highest F1 score.

56

6. Conclusion and Outlook

6.1 General Conclusion

Literature research was carried out around the deep-learning-based neural network

model development, as this is the latest trend in the NILM field. This thesis presented

the potential of energy saving in dairy farms and proposed a deep-learning-based power

disaggregation algorithm developed in Python. The measured load profile of the four

appliances and the aggregated load profile of the four dairy farms located in Bavaria,

Germany, were accumulated and analysed. By analysing the collected data, four main

problems were identified and later rectified (as discussed in chapter 3.2.1). Several deep-

learning based models were developed, trained, and tested as the operational patterns

and behaviours of appliances were utterly different from each other. It is observed that

the data gathered was not adequate to train a model which imparts the desired results

for all the four appliances. The results of the three most performing models developed

with one feature (i.e., active power) were discussed, along with their challenges. Another

observation is that the performance of a model can be enhanced by adding a number of

features for training the model. This thesis also identifies that the development of the

multi-feature-based model for SA and VP improves the results with better F1 score.

Performances of all the models were evaluated with F1-score and presented by testing

the models on several days of unseen load profiles. The 1D-CNN-BDRNN and 1D-CNN-

LSTM outperformed for MK. All three models performed excellent for MP, but the

datasets used for the training and testing of the model were limited to only one farm. The

LSTM model performed outstandingly for VP, and only the 1D-CNN-BDRNN model

performed for SA. The final observation is that it is not recommended to use only one

model for all the appliances. Instead, it is suggested to combine the best performing

model for each appliance and implement the final combined algorithm for the best

results.

6.2 Limitation and Future Work

The backbone of any deep neural network model is the amount of data. It was initially

planned to collect data from at least six to eight farms, which ended up to only four farms

due to some external conditions. While dealing with a tremendous amount of data for

training the neural network, the use of GPU becomes essential. The availability of GPU

could accelerate the whole process and contribute to improving the overall performance.

It is recommended to make the data measurement process more precise to avoid the

changes in formats, which will help in data pre-processing. Secondly, more data should

be collected with multiple features; this will make learning easier.

 In the future, the models could be modified to work on real-time data. The existing model

can also be improvised, or a new model can be developed to estimate the power

consumption of the appliance along with the on-off state.

57

References

Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig,
Corrado, Greg.S, Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat,
Sanjay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael, Jia,
Yangqing, Jozefowicz, Rafal, Kaiser, Lukasz, Kudlur, Manjunath, Levenberg,
Josh, Man, Dandelion, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah,
Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya,
Talwar, Kunal, Tucker, Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Vi,
Fernanda, Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin,
Yu, Yuan and Zheng, Xiaoqiang (2015), “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems”, available at:
https://www.tensorflow.org/ (accessed 2 November 2020).

Algorithmia (2018), “Introduction to Optimizers”, available at:
https://algorithmia.com/blog/introduction-to-optimizers (accessed 16
November 2020).

Arnold, Ludovic, Rebecchi, Sébastien, Chevallier, Sylvain and Paugam-Moisy,
Hélène (Eds.) (2011), An Introduction to Deep Learning, 19th European
Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, Bruges, Belgium, April 27-28-29, 2011 proceedings.

Basheer, Imad and Hajmeer, Maha (2000), “Artificial neural networks:
fundamentals, computing, design, and application”, Journal of
Microbiological Methods, Vol. 43 No. 1, pp. 3–31.

Berliner Energieinstitut GmbH (2019), “EMONIO P3- 3-Phase Power Logger”,
available at: http://emonio.com/images/docs/Emonio_datasheet.pdf
(accessed 17 November 2020).

Bernard, Timo (2018), “Non-Intrusive Load Monitoring (NILM): Combining
multiple Non-Intrusive Load Monitoring (NILM): Combining multiple distinct
Electrical Features and Unsupervised Machine Learning Techniques”,
Doctoral, Fraunhofer IMS, Universit� at Duisburg- �Essen, Von der Fakult at
f� ur Ingenieurwissenschaften, Abteilung Informatik und Angewandte
Kognitionswissenschaft, 22 June.

Biansoongnern, Somchai and Plangklang, Boonyang (2016 - 2016),
“Nonintrusive load monitoring (NILM) using an Artificial Neural Network in
embedded system with low sampling rate”, in 2016 13th International
Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), 28/06/2016 -
01/07/2016, Chiang Mai, Thailand, IEEE, pp. 1–4.

Brownlee, Jason (2020a), “How Do Convolutional Layers Work in Deep
Learning Neural Networks?”, available at:
https://machinelearningmastery.com/convolutional-layers-for-deep-learning-
neural-networks/ (accessed 16 November 2020).

Brownlee, Jason (2020b), “How to Develop Convolutional Neural Network
Models for Time Series Forecasting”, available at:
https://machinelearningmastery.com/how-to-develop-convolutional-neural-
network-models-for-time-series-forecasting/ (accessed 16 November 2020).

Brownlee, Jason (2020c), “How to Use StandardScaler and MinMaxScaler
Transforms in Python”, available at:
https://machinelearningmastery.com/standardscaler-and-minmaxscaler-
transforms-in-python/ (accessed 19 November 2020).

Brownlee, Jason (2020d), “How to Calculate Precision, Recall, and F-Measure
for Imbalanced Classification”, available at:
https://machinelearningmastery.com/precision-recall-and-f-measure-for-
imbalanced-classification/ (accessed 20 November 2020).

58

BUNDESMINISTERIUM FÜR WIRTSCHAFT UND ENERGIE (2019),
Barometer Digitalisierung der Energiewende 2018, available at:
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/barometer-
digitalisierung-der-energiewende.html (accessed 10 November 2020).

Chanan, Gregory, Chintala, Soumith, Gross, Sam and Paszke, Adam (2020),
“PyTorch Development”, available at: https://pytorch.org/ (accessed 28
October 2020).

Chollet, François (2018), Deep learning with Python, Safari Tech Books Online,
Shelter Island, NY, Manning.

Cole, Agnim and Albicki, Alexander (2000), Nonintrusive Identification of
Electrical Loads in a Three-phase Environment Based on Harmonic Content:
2000 IEEE Instrumentation and Measurement Technology Conference,
Piscataway, IEEE.

Dertat, Arden (2017), “Applied Deep Learning - Part 1: Artificial Neural
Networks”, available at: https://towardsdatascience.com/applied-deep-
learning-part-1-artificial-neural-networks-d7834f67a4f6 (accessed 6
November 2020).

Donges, Niklas (2020), “GRADIENT DESCENT: AN INTRODUCTION TO ONE
OF MACHINE LEARNING'S MOST POPULAR ALGORITHMS”, available at:
https://builtin.com/data-science/gradient-descent (accessed 16 November
2020).

dprogrammer (2019), “Artificial Intelligence, Tutorial: RNN, LSTM & GRU”,
available at: http://dprogrammer.org/rnn-lstm-gru (accessed 6 November
2020).

Ehrhardt-Martinez, Karen, Donnelly, Kat A. and Laitner, John A. (2010),
Advanced Metering Initiatives and Residential Feedback Programs: A Meta-
Review for Household Electricity-Saving Opportunities, available at:
https://www.aceee.org/research-report/e105 (accessed 10 November 2020).

Federal Ministry for Economic Affairs and Energy (2016), The Energy
Transition, Germany, available at:
https://www.bmwi.de/Redaktion/EN/Pressemitteilungen/2016/20160708-
gabriel-die-naechste-phase-der-energiewende-kann-beginnen.html
(accessed 10 November 2020).

Feng, Junxi, He, Xiaohai, Teng, Qizhi, Ren, Chao, Chen, Honggang and Li,
Yang (2019), “Reconstruction of porous media from extremely limited
information using conditional generative adversarial networks”, Physical
review. E, Vol. 100 No. 3-1, p. 33308.

Figueiredo, Marisa B. (2013), “Contributions to Electrical Energy Disaggregation
in a Smart Home”, Doctoral, University of Coimbra, Department of
Informatics Engineering, Portugal, 09/2013.

Fiol, Albert (2016), “Algorithms for Energy Disaggregation”, Master’s
dissertation, Universitat Politècnica de Catalunya, Departament de Ciències
de la Computació, Barcelona, Spain, 2016.

Goodfellow, Ian, Bengio, Yoshua and Courville, Aaron (2016), Deep learning,
Cambridge, Massachusetts, London, England, MIT Press.

Graville, Vincent (2017), “Difference between Machine Learning, Data Science,
AI, Deep Learning, and Statistics”, available at:
https://www.datasciencecentral.com/profiles/blogs/difference-between-
machine-learning-data-science-ai-deep-learning (accessed 6 November
2020).

Hart, George W. (1985), Prototype nonintrusive appliance load monitor (Tech.
Rep.)., Cambridge, available at:
http://www.georgehart.com/research/Hart1985.pdf (accessed 11 November
2020).

59

Hinton, Geoffrey E., Osindero, Simon and Teh, Yee-Whye (2006), “A fast
learning algorithm for deep belief nets”, Neural computation, Vol. 18 No. 7,
pp. 1527–1554.

Hochreiter, S. and Schmidhuber, J. (1997), “Long short-term memory”, Neural
computation, Vol. 9 No. 8, pp. 1735–1780.

Huss, Anders (2015), “Hybrid Model Approach to Appliance Load
Disaggregation. EXPRESSIVE APPLIANCE MODELLING BY COMBINING
CONVOLUTIONAL NEURAL NETWORKS AND HIDDEN SEMI MARKOV
MODELS.”, Degree project, KTH ROYAL INSTITUTE OF TECHNOLOGY,
Stockholm, Sweden, 2015.

Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey
and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and
Darrell, Trevor (2014), “Caffe: Convolutional Architecture for Fast Feature
Embedding”.

Kelly, Jack and Knottenbelt, William (2015), “Neural NILM: Deep Neural
Networks Applied to Energy Disaggregation”, pp. 55–64.

Kelly, Jack D. (2017), “Disaggregation of Domestic Smart Meter Energy Data”,
PhD, University of London, Imperial College of Science, Technology and
Medicine, London, 2017.

Kelly, Michael (2018), “Germany moving ahead with smart meter rollout plans”,
available at: https://guidehouseinsights.com/search-
results?search=Germany%20moving%20ahead%20with%20smart%20mete
r%20rollout%20plans (accessed 10 November 2020).

Khandelwal, Renu (2018), “Machine learning Gradient Descent”, available at:
https://arshren.medium.com/gradient-descent-5a13f385d403 (accessed 16
November 2020).

Kim, Jihyun, Le, Thi-Thu-Huong and Kim, Howon (2017), “Nonintrusive Load
Monitoring Based on Advanced Deep Learning and Novel Signature”,
Computational intelligence and neuroscience, Vol. 2017, p. 4216281.

Kiranyaz, Serkan, Ince, Turker and Gabbouj, Moncef (2016), “Real-Time
Patient-Specific ECG Classification by 1-D Convolutional Neural Networks”,
IEEE transactions on bio-medical engineering, Vol. 63 No. 3, pp. 664–675.

Kiranyaz, Serkan, Ince, Turker, Hamila, Ridha and Gabbouj, Moncef (2015),
“Convolutional Neural Networks for patient-specific ECG classification”,
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
International Conference, Vol. 2015, pp. 2608–2611.

Kolter, J. Z., Batra, Siddarth and Ng, Andrew Y. (2010), “Energy disaggregation
via discriminative sparse coding”, Vol. 1, Pages 1153–1161.

Krizhevsky, Alex, Sutskever, Ilya and Hinton, Geoffrey (Eds.) (2012), ImageNet
Classification with Deep Convolutional Neural Networks.

Lackmann GmbH & Co. KG (2020), “Smart Metering MT382”, available at:
https://www.lackmann.de/hardware/elektrizitaetszaehler/industrie-
gewerbezaehler (accessed 17 November 2020).

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), “Gradient-based
learning applied to document recognition”, Proceedings of the IEEE, Vol. 86
No. 11, pp. 2278–2324.

LeCun, Yann, Bengio, Yoshua and Hinton, Geoffrey (2015), “Deep learning”,
Nature, Vol. 521 No. 7553, pp. 436–444.

Li, Kuan-Ching, Chen, Xiaofeng and Susilo, Willy (2019), Advances in Cyber
Security: Principles, Techniques, and Applications, Singapore, Springer
Singapore.

60

Lukoševičius, Mantas and Jaeger, Herbert (2009), “Reservoir computing
approaches to recurrent neural network training”, Computer Science Review,
Vol. 3 No. 3, pp. 127–149.

Macal, Charles. M. and North, Mystic J. (2010), “Tutorial on agent-based
modelling and simulation”, Journal of Simulation, Vol. 4 No. 3, pp. 151–162.

MacKay, David (2010), Sustainable energy - without the hot air, Reprinted.,
Cambridge, UIT Cambridge.

Mahendru, Khyati (2019), “A Detailed Guide to 7 Loss Functions for Machine
Learning Algorithms with Python Code”, available at:
https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-
functions-machine-learning-python-code/ (accessed 16 November 2020).

Montreal Institute for Learning Algorithms (2007), “Theano 1.0.0”, available at:
http://www.deeplearning.net/software/theano/NEWS.html (accessed 23
October 2020).

Nascimento, Pedro P.M.d. (2016), “APPLICATIONS OF DEEP LEARNING
TECHNIQUES ON NILM”, Master’s dissertation, Universidade Federal do
Rio de Janeiro, Rio de Janeiro, Brazil, 04/2016.

Neser, Dr. S., Neiber, Josef, Niedermeier, Josef, Götz, Manfred, Kraus, Ludwig
and Pettinger, Prof. K.-H. (2014), “Energieverbrauch im
MilchviehbetriebEffizienz und Einsparpotential”, available at:
https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/ene
rgieverbrauch_im_milchviehstall_065687.pdf (accessed 6 November 2020).

Nicholson, Chris and Kokorin, Vyacheslav (2013), “Eclipse Deeplearning4j”,
available at: https://projects.eclipse.org/proposals/eclipse-deeplearning4j
(accessed 28 October 2020).

oinkina, Gers, Felix, Cummins, Fred, Fernandez, Santiago, Bayer, Justin,
Wierstra, Daan, Togelius, Julian, Gomez, Faustino, Gagliolo, Matteo and
Graves, Alex (2015), “Understanding LSTM Networks”, available at:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed 6
November 2020).

Palma, Wilfredo (2016), Time series analysis, Wiley series in probability and
statistics.

Parson, Oliver (2014), “Unsupervised Training Methods for Non-intrusive
Appliance Load Monitoring from Smart Meter Data”, Doctoral, University of
Southampton, Faculty of Engineering and Physical Sciences, 04/2014.

Parson, Oliver, Ghosh, Siddhartha, Weal, Mark and Rogers, Alex (2014), “An
unsupervised training method for non-intrusive appliance load monitoring”,
Artificial Intelligence, Vol. 217, pp. 1–19.

Pereira, Lucas and Nunes, Nuno (2018), “Performance evaluation in non‐
intrusive load monitoring: Datasets, metrics, and tools—A review”, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 8
No. 6, pp. 1–17.

Rafiq, Hasan, Zhang, Hengxu, Li, Huimin and Ochani, Manesh K. (2018 -
2018), “Regularized LSTM Based Deep Learning Model: First Step towards
Real-Time Non-Intrusive Load Monitoring”, in 2018 IEEE International
Conference on Smart Energy Grid Engineering (SEGE), 12.08.2018 -
15.08.2018, Oshawa, ON, IEEE, pp. 234–239.

Raiker, Gautam A., Subba Reddy, B., Umanand, L., Yadav, Aman and Shaikh,
Mujeefa M. (2018 - 2018), “Approach to Non-Intrusive Load Monitoring using
Factorial Hidden Markov Model”, in 2018 IEEE 13th International Conference
on Industrial and Information Systems (ICIIS), 01/12/2018 - 02/12/2018,
Rupnagar, India, IEEE, pp. 381–386.

61

ROSENBLATT, Frank (1958), “The perceptron: a probabilistic model for
information storage and organization in the brain”, Psychological review,
Vol. 65 No. 6, pp. 386–408.

Scully, Padraig (2019), “Smart Meter Market Report 2019-2024. Smart Meter
Market 2019: Global penetration reached 14% – North America, Europe
ahead”, available at: https://iot-analytics.com/smart-meter-market-2019-
global-penetration-reached-14-percent/ (accessed 10 November 2020).

Srinivasamurthy, Ravisutha S. (2018), “Understanding 1D Convolutional Neural
Networks Using Multiclass Time-Varying Signals”, Clemson University,
Clemson, South Carolina, 8/2018.

Stewart, Matthew (2019), “Neural Network Optimization”, available at:
https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0
(accessed 16 November 2020).

Valenti, Michele, Bonfigli, Roberto, Principi, Emanuele and Squartini, and S.
(2018 - 2018), “Exploiting the Reactive Power in Deep Neural Models for
Non-Intrusive Load Monitoring”, in 2018 International Joint Conference on
Neural Networks (IJCNN), 08.07.2018 - 13.07.2018, Rio de Janeiro, IEEE,
pp. 1–8.

Verma, Shiva (2019), “Understanding 1D and 3D Convolution Neural Network |
Keras”, available at: https://towardsdatascience.com/understanding-1d-and-
3d-convolution-neural-network-keras-
9d8f76e29610#:~:text=In%201D%20CNN%2C%20kernel%20moves,2D%20
CNN%20is%203%20dimensional. (accessed 16 November 2020).

Vine, Desley, Buys, Laurie and Morris, Peter (2013), “The Effectiveness of
Energy Feedback for Conservation and Peak Demand: A Literature Review”,
Open Journal of Energy Efficiency, Vol. 02 No. 01, pp. 7–15.

Zeifman, Michael and Roth, Kurt (2012), Non‐intrusive Appliance Load
Monitoring (NIALM): Promise and Practice, USA.

Zerrahn, Alexander, Schill, Wolf-Peter and Kemfert, Claudia (2018), “On the
economics of electrical storage for variable renewable energy sources”,
European Economic Review, Vol. 108, pp. 259–279.

Zhang, Zijian, He, Jialing, Zhu, Liehuang and Ren, Kui, in Li, K.-C., Chen, X.
and Susilo, W. (Eds.) (2019), “Non-intrusive Load Monitoring Algorithms for
Privacy Mining in Smart Grid”, remove Advances in Cyber Security:
Principles, Techniques, and Applications, Vol. 66, Singapore, Springer
Singapore, pp. 23–48.

Zoha, Ahmed, Gluhak, Alexander, Imran, Muhammad A. and Rajasegarar,
Sutharshan (2012), “Non-intrusive load monitoring approaches for
disaggregated energy sensing: a survey”, Sensors (Basel, Switzerland),
Vol. 12 No. 12, pp. 16838–16866.

62

Appendix

Clarification on missing data measured from EMONIO

Q1: We are facing an issue in the measurement data. The values are missing in several

measurement files. We have attached few samples. Do you know the reason?

Figure 46 Screenshot of query asked from EMONIO Team

Response:

Name: Anonymous

Company: Berliner Energieinstitut GmbH

Position: Technical Support

Answer: The missing values marked in yellow look like a reboot and/or a minor network

deadlock that resulted in a hang of a few seconds. The second, missing several hours I

have no theory besides power loss.

