
Bachelor’s Thesis

The Rust Programming Language for
Embedded Software Development

Nico Borgsmüller

Faculty: Computer Science
Field of study: Computer Science
Issued on: 05.11.2020
Submitted on: 15.01.2021
First examiner: Prof. Dr. Ulrich Margull
Second examiner: Prof. Dr. rer. nat. Franz Regensburger
Company supervisor: Tobias Mucke

Declaration

I hereby declare that this thesis is my own work, that I have not presented it elsewhere for
examination purposes and that I have not used any sources or aids other than those stated.
I have marked verbatim and indirect quotations as such.

Schrobenhausen, January 15 2021

Nico Borgsmüller

i

Abstract

Current languages employed for embedded software development usually provide unsafe
memory handling often resulting in vulnerabilities. Languages that can provide memory
safety at compile-time can be used instead. This thesis examines the suitability of the Rust
programming language for embedded software development. The relatively new language
provides such memory safety guarantees while offering high performance comparable to
other common languages. The objectives of the thesis are to assess the suitability of Rust
in comparison to an existing language and to explain the necessary steps when eventually
switching development to Rust.

The C language is used for the comparison, as it is currently the most common language
for embedded software development. To be able to assess Rust objectively, the comparison
to C is carried out on the basis of pre-defined aspects that were deemed important. This
comparison is explained and discussed in the main part of the thesis. Furthermore, this part
contrasts safety and performance by explaining the different safety problems as well as coun-
termeasures and subsequently comparing an example program according to the performance
in both languages. To be able to examine the switching process, another set of criteria is em-
ployed. Rust is analyzed according to them and an exemplary switching process is provided.

Comparing the criteria leads to different findings. Some aspects show a similar suitabil-
ity of Rust and C. These include the popularity, the compliance with safety standards as
well as the performance, although the latter highly depends on the tested application. Posi-
tive aspects of C include the large amount of available compilation targets and the maturity.
Rust on the other hand stands out through a greater variety of programming paradigms, a
state-of-the-art and well-adopted toolchain as well as good documentation, community sup-
port and a sound ecosystem. Furthermore the safety guarantees pose a clear advantage over
C and make embedded software provably safer. It is also shown that for switching to Rust,
numerous resources for employee training are available and different tools for the integration
into an existing code base are offered by the programming language and its ecosystem.

The results suggest that Rust is indeed suitable for embedded software development, al-
though the choice must not be made without careful consideration of the examined criteria.

iii

Acknowledgements

For supporting me while writing this thesis, I’d like to thank the following people:

• Tobias Mucke, my supervisor at MBDA, for providing ideas, proofreading the thesis and
enabling me to write about this topic in the first place.

• Patrizia Weidinger for providing the particle filter source code and proofreading.

• Dr. Andreas Ehmanns for giving tips on embedded development and many ideas for
aspects to consider.

• Michael Erskine for giving an overview on certification and safety standards.

• Philipp von Perponcher, Lukas Meitz, Niklas Merkelt for proofreading the thesis.

• Prof. Dr. Ulrich Margull for supervising the thesis, giving helpful advise and feedback.

v

Contents

Abstract iii

Acknowledgements v

Contents vii

Acronyms ix

List of Figures & Tables xi

List of Listings xii

1 Introduction 1

2 Programming Language Basics 3
2.1 C . 4
2.2 Rust . 6

3 Programming a Microcontroller 12
3.1 ...in C . 13
3.2 ...in Rust . 17

4 Comparison of Languages 20
4.1 Methodology . 20
4.2 Technical Aspects . 22

4.2.1 Programming Paradigms . 22
4.2.2 Tooling . 24
4.2.3 Compilation Targets . 29

4.3 Non-technical Aspects . 32
4.3.1 Ease of Use & Productivity . 32
4.3.2 Maturity . 34
4.3.3 Popularity . 35
4.3.4 Standards & Certification . 36

4.4 Safety vs Performance . 40
4.4.1 Safety . 40
4.4.2 Example program . 47
4.4.3 Performance . 49

5 Switching to Rust 56
5.1 Aspects . 56

5.1.1 Learning Rust . 56
5.1.2 Portability . 57
5.1.3 Interoperability . 59

5.2 Example Process . 60

6 Conclusion 62

References xiii

Appendix A - Performance Measurements xxi

Appendix B - Source Code xxvii

vii

Acronyms

ABI Application Binary Interface. 17, 59

ANSI American National Standards Institute. 5

API Application Programming Interface. 30

ASLR Address Space Layout Randomization. 45

BCPL Basic Combined Programming Language. 5

BSP Board Support Package. 15

CCM Core-Coupled Memory. 13

CCRAM Core-Coupled Random Access Memory. 13, 14

CERT Computer Emergency Response Team. 37, 44

CIA Confidentiality, Integrity, Availability. 40

CPU Central Processing Unit. 13

CSS Cascading Style Sheets. 61

CYCCNT Cycle Count. 49

DEP Data Execution Prevention. 45

DWT Data Watchpoint and Trace Unit. 49

FFI Foreign Function Interface. 47, 59, 60, 61

FPU Float Processing Unit. 15

GCC GNU Compiler Collection. 13, 25, 30, 34, 37, 38, 52, 53, 54

GDB GNU Debugger. 12, 16, 19, 26, 27, 38, xxvii, xxviii

GNU GNU’s Not Unix!. 12, 26, 29

GPIO General Purpose Input/Output. 11, 15, 16, 19

HAL Hardware Abstraction Layer. 11, 15

HTML HyperText Markup Language. 25, 26

IDE Integrated Development Environment. 6, 26, 27

IDR Input Data Register. 16, 19

IoT Internet of Things. 1, 2

ISO International Organization for Standardization. 5

ITM Instrumentation Trace Macrocell. 12

JIT Just-in-time. 3, 4, 59

ix

JNI Java Native Interface. 59

JSON JavaScript Object Notation. 8, 27, 28

JVM Java Virtual Machine. 4

LED Light-Emitting Diode. 11, 12, 16, 17, 19, 62

LTO Link Time Optimization. 53

MAC Micro-Architecture Crate. 10, 11, 18, 34

MISRA Motor Industry Software Reliability Association. 37, 44

MSVC Microsoft Visual C++. 25, 30, 37

OOP Object-Oriented Programming. 22, 23, 24

OpenOCD Open On-Chip Debugger. 12, 16, 26, 27

PAC Peripheral Access Crate. 11, 18, 27, 34

PDF Portable Document Format. 25, 26

POSIX Portable Operating System Interface. 30

PYPL PopularitY of Programming Language. 35

RAM Random Access Memory. 13, 14

RFC Request For Comment. 7, 32

RPC Remote Procedure Call. 12

RTOS Real-Time Operating System. 26

SDK Software Development Kit. 6

SEI Software Engineering Institute. 37, 44

SIL Safety Integrity Levels. 36, 37

SPI Serial Peripheral Interface. 11, 14

SQL Structured Query Language. 22

SVD System View Description. 18, 27, 34

SWD Serial Wire Debug. 12

Tcl Tool command languag. 12

UEFI Unified Extensible Firmware Interface. 30

USB Universal Serial Bus. 12, 15

x

List of Figures

1 Hierarchy crate types for embedded development [119] 10
2 Rust (Stack) and C (Data) times . xxiii
3 Rust (Stack) and C (Data) times with optimizations xxiii
4 Rust and C flash size . xxiv
5 Rust and C flash size with optimizations . xxiv
6 Rust and C memory usage . xxv
7 Rust and C memory usage with optimizations xxv
8 Rust and C compilation times (using Stack data structures) xxvi

List of Tables

1 Overview of different possible programming languages 3
2 List of supported targets for Rust and C . 30
3 Largest functions (F) and static variables (V) in the C binary after optimiza-

tions (with -Os and static data) . xxi
4 Largest functions (F) and static variables (V) in the Rust binary after opti-

mizations (with -Os and static data) . xxi
5 Cycle counts in Rust and C with -O3 . xxii
6 Overview of the file structure . xxix

xi

Listings

1 Algebraic data types with enums (Rust) . 8
2 Generic function with trait bound (Rust) . 9
3 Using expressions for the return value (Rust) 9
4 Setting bits in memory mapped registers (Rust) 11
5 The BSRR register’s data structure in Rust 11
6 udev rule to be able to access the microcontroller on Linux 12
7 Creating a pointer to the startup code (C) . 14
8 Modifying a register (C) . 15
9 Register definitions (C) . 15
10 Using macros for modifying a register (C) . 15
11 Cargo configuration file for the ARM target 17
12 Creating a pointer to the startup code (Rust) 17
13 Initializing the data and bss sections (Rust) 18
14 Defining a panic handler (Rust) . 18
15 CMake configuration for including the json-c library 28
16 Conan configuration for including the json-c library 28
17 Accessing a pointer of the wrong data type (C) 42
18 Potential NULL pointer dereference (C) . 42
19 Potential uninitialized use of a variable (C) 43
20 Dangling pointer to stack (C) . 43
21 Explicit primitive type cast (Rust) . 45
22 Explicit type conversion (Rust) . 45
23 No uninitialized use and utilizing the expression syntax (Rust) 46
24 Synchronized data sharing with a Mutex (Rust) 46
25 Correct mutable access to a static variable (Rust) 49
26 Timing measurement invocation (C) . 49
27 Timing measurement invocation (Rust) . 50
28 Object dump example . 50
29 For loop over an array to be ported to Rust (C) 58
30 Iterator over an array ported from C (Rust) 58
31 Functional iterator over an array (Rust) . 58

xii

1 Introduction

Motivation

Embedded software plays an important role in today’s interconnected world. Mobile de-
vices, smart infrastructure and the Internet of Things (IoT) require safe and reliable sys-
tems. While former embedded devices were not connected to networks, security is becoming
increasingly important due to interconnectivity. Examples include the IoT for consumers,
but also the so-called Industry 4.0, where production devices are connected and capable of
adapting to changes due to external factors. The importance of interconnectivity is also
rising for military applications through for example a Combat Cloud [84], where multiple
assets of a nation’s forces are communicating with each other to exchange tactical data. In
such interconnected scenarios, every vulnerability on any device could potentially impair
the whole system’s security.

Many security vulnerabilities are caused by poor memory safety (cf. [39]). As an example,
looking at vulnerabilities in the Linux kernel [91], it becomes clear that a large number of
problems could be solved by better memory handling and that these issues are also a con-
tinuous problem. Embedded programming is highly focused on C, posing risks through not
guaranteeing memory safety and leaving this obligation to the developer. Recent years have
also shown that regardless of high investments into improvement, such problems are not
solved by supporting the developers through coding guidelines, finding issues through code
analysis or other measures. In the real world, dangers like botnets are already a common
occurrence. To create a botnet, an attacker automatically searches for exploitable devices,
especially in the IoT, and takes control through a previously known weakness, like for in-
stance the PureMasuta botnet [3]. Such botnets were responsible for numerous denial of
service attacks in the past [140].

Most higher level programming languages that ensure save memory management, come
with a huge performance overhead through the use of either a garbage collector or inter-
preter. The Rust programming language on the other hand promises zero-cost abstractions
for guaranteed memory safety. This way, vulnerabilities through unsafe memory handling
would be impossible, while still allowing the program to run as fast as without the memory
safety measures. Rust also emerged to be very popular among developers in recent years.
To evaluate these claims, this thesis tries to fulfill some predefined objectives.

Objectives

Switching from a well-established programming language to a fairly new alternative is no
simple choice. The first goal of the thesis is to find out if and how well Rust is suited to
replace programming languages already in use for embedded software development. This
will compare languages according to a set of predefined criteria and result in an overview of
which aspects Rust can improve on and where it is still lacking functionality. The second
goal focuses on a different set of aspects to consider when eventually switching to Rust. It
tries to assess what needs to be taken care of when changing programming languages.

Context

The thesis was created with a focus on the defense industry, targeting safety critical ap-
plications. Basic conditions like reliability and predictability are an important factor for
software development in this area. While performance is not a crucial aspect, it must still
be predictable and within reasonable bounds. Embedded software development must also
follow these conditions.

1

The MBDA Product Cyber Security Team focuses on the security of the company’s prod-
ucts. Preliminary examinations have shown that secure software development has to rely
on a programming language addressing common safety and security issues. Although Rust
is a fitting candidate for these conditions, concerns were raised for its suitability on embed-
ded systems. This motivated the goal of providing an examination of Rust for embedded
programming.

Relevance

Although Rust being an alternative to C or other programming languages is a highly dis-
cussed topic on the internet, very few comprehensive comparisons exist. An exception on
one hand is [132] about Rust for the IoT, which offers a comparison of many topics, but
doesn’t dive deeper into the details. On the other hand, [92] examines the suitability of
Rust for critical systems, also referencing embedded development. Other publications are
mostly limited to specific aspects, like [16] and [18] concerning performance measurements,
or compare other languages to Rust, like [35] considering the Go programming language.
Especially rare is an overview of embedded related topics. With Rust becoming more and
more popular in open source projects, this thesis will offer a decision base allowing to make
informed decisions for introduction of Rust into industry projects.

Structure

To fulfill the objectives defined above, the thesis is structured as follows. Firstly, the com-
pared programming languages and their basic features will be introduced. They will be
further presented by explaining how to program a microcontroller and how their toolchains
work. The following main chapter will evaluate technical as well as non-technical aspects
comparing C and Rust. This comparison will be completed by contrasting the memory
safety and performance aspects. The languages’ approaches to memory safety will be pre-
sented and an example program will be tested according to different performance criteria to
show how these memory safety measures might influence the program’s performance. Af-
terwards it will be discussed, how switching to Rust can be accomplished and what aspects
need to be considered for this goal. The thesis will finish, by summarizing discussed topics
and giving a recommendation under which circumstances Rust can be considered a suitable
replacement for the C language.

2

2 Programming Language Basics

This first chapter will introduce the compared programming languages as well as describe
their basic and most important features. Before diving into the actual contrasted languages
for this thesis, an overview of different programming languages will be provided. They each
have been chosen as representatives for depicting a certain important aspect for this thesis.
Table 1 provides a comparison of these languages according to some basic criteria. The
following paragraphs will introduce existing memory management techniques and shortly
describe each of the programming languages as well as explain why they were or weren’t
chosen for comparison in the whole thesis.

Language Aspect Memory
management

Systems
program.

Bare-metal

Rust Zero-cost safety Automatic Yes Yes

C Currently in use Manual + Automatic Yes Yes

Ada Safety critical apps Manual + Automatic Yes Yes

Python Interpreted Garbage Collected No No

Java JIT Compiler Garbage Collected No No

Go Modern language Garbage Collected Yes Not officially

Haskell Functional Garbage Collected No No

Table 1: Overview of different possible programming languages

There are three common types of memory management. In the first one, the automatic
management, memory is automatically allocated and deallocated by the compiler without
detailed instructions by the developer. This is very common for stack memory, but can
also be applied to the heap section. With manual memory management on the contrary, the
programmer has to take care of allocating and deallocating memory at the correct times and
places. This is mostly used for managing heap memory. The third type of memory man-
agement is the garbage collection. While in this case, allocation can be either automatic
or manual, deallocation is performed by the garbage collector. This part of the run-time
environment stops the execution of the program in certain intervals, searches for memory
that is no longer in use, and deallocates these sections accordingly.

The C programming language is currently the major choice for low-level or systems pro-
gramming. Its manual memory management offers high flexibility for the programmer, but
also requires care to be taken as memory safety is not guaranteed. C was chosen as a
language for comparison in this thesis due to its popularity and widespread usage in the
industry. More information can be found below.

Rust is a relatively new low-level programming language. It provides compiler-verified
memory management and promises memory safety with zero-cost abstractions. Its use
cases include embedded or systems development as well as network services and web de-
velopment. Since Rust is the main focus of this thesis, more information can be found below.

3

Ada, developed by the US American Department of Defense, is especially targeted at safety-
critical systems in the defense industry. It offers features for safe concurrency, compile- and
run-time checks for memory safety as well as tools for program verification. It is mostly
used for embedded and real-time applications in aerospace or other safety-critical industries.
Although being a similar alternative to C as Rust, it is often unpopular among developers
due to its verbosity and outdated programming style. It was not chosen in this thesis be-
cause many comparisons already exist. [22]

The Python programming language is mostly perceived as a scripting language, but can
also be used for application development. It offers functional, procedural as well as object-
oriented paradigms. It is very well suited for data processing and widely used for machine
learning, but is also becoming popular for embedded development, especially for the Rasp-
berry Pi. Because Python is an interpreted and garbage-collected language, it is not suited
for safety-critical applications that must be predictable. Thus it is not chosen as a compared
language. [96]

Java is a strictly object-oriented programming language, running on the so-called Java
Virtual Machine (JVM). It is a Just-in-time (JIT) compiled language and finds its use
mostly in enterprise applications or server software. Java is still very common, but again
not suited for predictable software applications as it is normally garbage collected and re-
quires a virtual machine to run. Thus it is not chosen for this thesis. [58]

Go is a programming language developed by Google for everyday use. It is advertised
for its simple usage as well as fast compilation times and offers utilities for easy concurrent
programming. Its ecosystem and tooling are quite elaborate and similar to Rust [78]. Use
cases for Go include server software like network services, databases, web development, De-
vOps and more [42]. Although this language is suited for systems development, the official
implementation does not support bare-metal applications and is garbage collected. It is
not chosen for comparison because even though it has some similarities with Rust, it is not
targeted at embedded development.

Haskell is a pure functional programming language originally developed for teaching and
research, but also used in the industry in general. Its regular functions don’t have any side
effects and it has a strong, static type system. Many of Rust’s features were influenced by
Haskell, including traits (type classes), pattern matching and the expression syntax. The
language’s use cases include backend services like web applications or data analysis tools.
Although the language handles most of the memory management tasks at compile-time, a
garbage collector is still employed making it unsuitable for systems or embedded develop-
ment. This is also the reason why it wasn’t chosen for the comparison with Rust. (cf. [48],
[139] and [123])

This overview has shown on one hand that many languages are garbage collected or in-
terpreted and thus generally not suited for embedded or safety-critical applications. On
the other hand, alternatives to the very popular C language exist. Since C is the de-facto
standard for systems or embedded programming, the thesis will only look at a comparison
of Rust and C with occasional references to other programming languages where considered
useful.

2.1 C

This introduction to C will first give an overview of the language’s history before explaining
the main programming concepts. After introducing different user bases, the chapter will

4

finish by providing an overview on how embedded software development is approached with
the C programming language.

History

The C programming language was developed from 1969 to 1978 as an replacement for the
existing Assembly languages used to program Unix, which itself was eventually rewritten
in C. After being influenced by BCPL and B, the C language was still changing as no
standard specification existed. In 1978, the book ”The C Programming Language” by Brian
Kernighan and Dennis Ritchie [61] was released and was considered the de-facto standard
reference for many years. In 1989 and 1990, the C98 ANSI C as well as the C90 ISO
standards were released, finally providing an official standard specification. Since then, the
standard was regularly adapted by the C95, C99, C11 and C17 releases. Historically being
mostly used for Operating Systems, C has gained popularity in many fields of software
development. Considering the C++ language being an extension to C, it is even more
important in today’s world. [49]

Programming Concepts

The C language itself only consists of very few keywords and provides a clean programming
experience. Most of the functionality is provided through the standard library (e.g. string
utilities, networking, etc.). Logic is represented by functions that can call each other [61].

C is a weakly typed language, meaning that type safety is not enforced and every type
can easily be reinterpreted as every other type (through so-called type casts). C’s basic
types include:

• Integers of different sizes: char (8bit), short (16bit), int (32bit) and long long

(64bit) with each type existing in a signed as well as an unsigned variant.
Example: int answer = 42;

• Floating point types in a 32bit (float) and 64bit (double) variant.
Example: float pi = 3.14159265f;

• Arrays: Represented as a consecutive list of data in memory. Elements are accessed using
the address of the first element and adding the required offsets. Example:
int[] fib = {1, 1, 2, 3, 5, 8};

• Strings are represented as arrays of char (character) elements in C.

• Pointers: One of the most important data types in C are pointers. These contain an
address of a memory location that can be accessed by dereferencing the pointer variable.
This offers high flexibility to the developer, but also poses safety risks as there is no
check if the pointed-to data is valid or the address can be accessed at all. Nevertheless,
this feature is especially useful in embedded programming to access memory-mapped
registers. Example: int* REG = (int*) 0x12345678; int data = *REG;

Pointer arithmetic allows basic calculations with pointers (like addition or multiplica-
tion). To access an array for example, either the array access syntax can be used (e.g.
int fib3 = fib [2]; to access the third element) or the requested address can be

computed by using pointer arithmetic (int fib3 = *(fib + 2);), which in this
case increases the address by 2 times the size of the referenced data type (e.g. 32bits for
an int).

5

• Structs are used for integrating multiple variables of potentially different types together
into a single data type.

• Enums (Enumerations) are a type that can represent one of multiple declared constant
values.

Another important aspect to consider is the memory management techniques employed. In
C, automatic memory management is used for stack variables. The required stack space is
already considered during compilation and automatically reserved in the stack frame when
the corresponding function is called. The memory is no longer valid after the end of the
respective function. For managing memory space on the heap, manual memory management
is required. The developer needs to request a memory section of a certain size by using a
call to the standard library (e.g. malloc). After the space is no longer needed, it must
be deallocated using the function call free .

The last aspect to consider for the C language is the toolchain. To compile a C program,
all .c files are to be separately compiled using a C Compiler. Subsequently, they need to
be linked together into an executable or library file using a Linker. If additional libraries
need to be included in the binary, they must be explicitly defined using the -l flag of the
Linker. The final result will either by an executable file in the target’s format, or a library
to be linked into other software products.

User Bases

The C community consists of many different user bases. The most important are:

• Embedded developers: The capability to directly access registers and peripherals as
well as the low resource usage, while at the same time allowing the use of many higher
level control flow structures and abstractions, make C a well-suited choice for embedded
programming.

• Operating system/driver developers: C allows to integrate assembly code where needed
and offers fine-grained control of data structures and memory in general, thus making it
a good choice for OS and driver development

• Performance-critical/real-time applications: The deterministic nature and high perfor-
mance of the language in combination with the compiler’s optimizations make C a valu-
able tool for this group of developers.

Embedded

As explained above, C offers many features for embedded development. Apart from them,
abstraction libraries and Software Development Kits (SDKs) for accessing the hardware
of microcontrollers are almost always available directly from the vendor. These include
definitions of register addresses and abstractions for accessing peripherals. Many vendors
even offer their own Integrated Development Environments (IDEs) to provide a simplified
developer experience (e.g. the very common Arduino IDE). Although many of these features
are very helpful, the unchecked and possibly unsafe handling of memory can pose a risk on
bare-metal systems that are not protected by an operating system.

2.2 Rust

This chapter will explain the basics of the Rust programming language to give an overview
of the differences and similarities to C.

6

History

According to a talk by Steve Klabnik [62], Rust’s history can be divided into four epochs.
The first epoch from 2006 to 2010 can be called ”The personal years”. Rust was a personal
project of the inventor Graydon Hoare with the goal of developing a memory safe program-
ming language. The strong type system and the concept of immutability by default were
already in the language, although it still included a garbage collector, making it unsuit-
able for certain environments. The second phase from 2010 to 2012, called ”The Graydon
years”, represents an epoch, where Graydon Hoare was still the primary maintainer, but
the language was already developed as a Mozilla project. Steady improvements on the core
concepts led up to ”The typesystem years” from 2012 to 2014 where Rust’s type system was
majorly overhauled and improved. Many features from the standard library were moved
into external libraries to follow the philosophy of small separated libraries. With Graydon
Hoare stepping back, Rust became a community driven project, introducing an Request For
Comment (RFC) process to propose language changes. The epoch from 2015 to 2016 is
now called ”The release year” as Rust 1.0 was released in 2015. Development focused not
only on language stability, but also explicitly on the ecosystem, user friendly tooling and
the ever-growing community. [63]

Since the 1.0 release, development is divided into editions. After the first edition in 2015
marks the end of the release epoch, the second edition released was the 2018 edition, sum-
marizing changes from the years 2016 to 2018. It was focused on general improvements of
the language, the compiler, the tooling and much more. The 2018 roadmap defined four
major domains that should be addressed in the following years. The focus was on network
services, command line applications, WebAssembly and development for embedded devices.
It is already planned to release the next edition in 2021, summarizing these development
efforts. [117]

Even though Rust has changed drastically over the years, the goal to provide a concur-
rent, safe, systems programming language always stayed the same.

Programming Concepts

The main promise of Rust is to provide memory safety guarantees at compile-time, render-
ing a large number of programming mistakes impossible. A default Rust program implicitly
uses this safe subset of the programming language, but to have more possibilities when
needed (e.g. to interact with existing C code), unsafe Rust is available, too. It must be
explicitly enabled for specific parts of the code and allows the programmer more degrees of
freedom that are not as strictly checked by the compiler.

Rust provides a standard library for basic functionality just like C. What’s special though is
that for operating system related functionality Rust utilises the C standard library available
on the target system.

Logic in Rust is represented through standalone functions (subroutines) as well as imple-
mentation functions belonging to a specific data type or trait. Variables are declared using
the let keyword and are immutable by default. E.g. let a = 5; defines an integer

variable that cannot be modified, whereas let mut a = 5; would allow modifications.
In Rust’s type system, types are generally inferred implicitly at compile-time so that the
explicit notation of data types on variable declaration is only necessary sometimes. For
example: let a : u16 = 5; In addition to that type casts are always explicit, mean-

ing expressions like 5.3 / 3 are not allowed because both numbers have different data

7

types. A correct version could look like 5.3 / 3 as f32 , contributing to the strong
type safety of the Rust programming language [90]. Rust’s basic types include: [120]

• Integers of different sizes, each in a signed (i8 , i16 , i32 , i64) as well as unsigned

(u8, u16 , u32 , u64) variant. Additionally the usize and isize types are
defined with sizes corresponding to the register width of the current architecture.

• There are also two floating point sizes f32 and f64 .

• A boolean type bool with the values true and false is also a part of the language.

• Rust provides first-class string types, even with full UTF-8 support (str and String).

• As a systems programming language, Rust also supports arrays represented as consecutive
elements in memory. These elements can only be accessed through a specific array syntax
(e.g. a[3]), but not through calculating addresses manually (at least in the safe subset
of Rust).

• The Rust language also includes a tuple type, so that returning multiple values is easily
achieved (e.g. (5, "hello")).

• Just like in C, structs are available for holding different types of data, however in Rust,
they are also allowed to be empty. In addition to that, they can have related implemen-
tations and also implement traits (see below).

• Rust enums are an example of algebraic data types, meaning that they can represent
different types of data. Each enum item can have different types associated with it. The
following example represents some arbitrary data structure (e.g. parsed JSON):

enum Data {

Int(i32),

Float(f32),

String(String)

}

fn do_stuff() {

let dat = [Data::Int(5), Data::Float(2.3), Data::Int(7)];

}

Listing 1: Algebraic data types with enums (Rust)

The dat variable is now of type [Data; 3] , representing an array of three arbitrary

Data objects. Every enum item can contain data of a different type, which can only
be accessed when the item type is checked beforehand,
e.g. if let Data::Int(num) = dat [0] { return num; } .

• Another important aspect of Rust’s type system are references, that are also called bor-
rows. These can either be mutably or immutably borrowed values.
So for example let mut x : u32 = 5; let b = &x; results in b having the

reference type &u32 , where b is not allowed to be modified (immutable). Borrowing
x like this: let c = &mut x; gives the type &mut u32 and allows modifications

of the value. These reference types are different to C pointers as they are always guar-
anteed to point to valid data (see paragraph about ownership below). It is also worth
noting that to guarantee safety either multiple immutable or a single mutable borrow
can exist at any given time.

8

Rust also includes a powerful trait system, which allows to abstract common behaviour.
Types that implement the Eq trait for instance can be checked for equality using the ==

operator and types implementing the Add trait can be added together using + . Some
traits can be implemented automatically (derived), if certain conditions are met. To derive
the Eq trait on a struct using #[derive(Eq)] for example, all members must also
implement this trait. To abstract their own common behaviour, programmers can also
define their own traits. To enable polymorphism, the trait type can be used instead of the
real type. When static dispatch is used, the types must be known at compile-time. This is
represented through generic functions like for instance:

fn equal<T>(obj1: T, obj2: T) -> bool where T : Eq {

obj1 == obj2

}

Listing 2: Generic function with trait bound (Rust)

This example only allows types that implement the Eq trait to be passed as arguments.
When using dynamic dispatch, the actual type is only known at run time and denoted as
fn do(obj: &dyn TraitName) .

Another special feature of Rust is that almost every statement can also be used as an
expression. So for instance while call (); is a statement, removing the semicolon results
in an expression. This is especially useful as the last expression of a block is always returned
[65]. For example:

fn max(a: u32, b: u32) -> u32 {

if a > b {

a

} else {

b

}

}

Listing 3: Using expressions for the return value (Rust)

The if/else block returns either a or b and since it is the last expression of the func-
tion, the value of the if/else expression is used as the function return value. This feature
is extremely useful for functional programming, where solely expressions should be used to
prevent side-effects.

Rust’s main approach to safety is the ownership model. Every value has a single owner
denoted as a variable. Memory is only valid as long as the owner lives and automatically
dropped (freed) as soon as the owner goes out of scope. To pass the value around (e.g.
into a function), it can either be moved, where the new location is the new owner and
the old variable can no longer be used, or borrowed as a reference, where the old owner
stays valid. Every reference has an explicit (for example when put into a struct) or implicit
(when the compiler can infer it) lifetime and is not allowed to live longer than its owner.
This concept allows to verify at compile-time that every reference is valid and no two mu-
table references to the same object can exist at the same time. Another safety relevant
feature are panics that represent unrecoverable errors (e.g. a division by zero or an array
access that is out-of-bounds). These are handled cleanly by the runtime and can print an
error message or possibly a backtrace to help with debugging. Furthermore, Rust provides a
standard way to break its strict rules (e.g. working with raw pointers) by introducing unsafe
sections of code that are not as rigidly checked by the compiler. This reduces the amount

9

Figure 1: Hierarchy crate types for embedded development [119]

of code that needs to reviewed for safety issues to some clearly defined and auditable regions.

Rust’s compilation toolchain works similarly to C, but also shows some important differ-
ences. Source files are firstly processed by the Rust compiler, although only the main file
needs to be provided. Referenced source files are found automatically due to a clearly de-
fined folder structure, where the module name equals the file name of the respective source
file. The outputs of the Rust compiler are a low-level representation of the code and subse-
quently given to the LLVM compiler and linker for assembly code generation and linking.
External libraries are linked together automatically when defining them using the Cargo
build system, but they can also be defined manually through an -l flag similarly to the C
compiler. [124]

User Bases

The Rust community consists of many former developers of different languages, which can
be separated into three categories. The first category consists of former C or C++ pro-
grammers with a focus on low-level, systems or embedded programming. Another group
of programmers are former users of scripting languages like Python, who switched for the
high performance of Rust, while still being able to use a modern and capable language for
data processing. The last category are former functional programmers now focusing on a
language more capable for lower-level applications, since a functional programming style
(e.g. like in Haskell) is easily possible in Rust.

Embedded

Since embedded development has been one of the focal areas of the Rust roadmap since
2018 [117], it is worth taking a look at how such development is approached within Rust.
Since direct memory access is necessary, the use of unsafe Rust is required. It is advisable
to quickly abstract these accesses for keeping the room for errors as small as possible. An
example on how such safe interfaces are implemented can be found in [93], but is out of
scope for this thesis. The Rust ecosystem promotes a de-facto standard for the classification
of embedded crates (=libraries). As seen in figure 1, five different crate types are defined:

• Micro-Architecture Crate (MAC): Low-level crate type allowing access to the peripherals
of the processor (e.g. controlling interrupts on a cortex-m processor)

10

• Peripheral Access Crate (PAC): Safe wrapper around most of the controllers peripherals,
used for accessing memory-mapped registers and often generated automatically if the
required data is available.

• Embedded Hardware Abstraction Layer (HAL): Not a library by itself (and thus not
in the figure), but a collection of traits for unified interfaces to hardware functionality
(e.g. a Serial Peripheral Interface (SPI) that can be used independently of the actual
hardware).

• HAL crate: An implementation of one or multiple traits of the Embedded HAL according
to specific hardware, mostly making use of PACs for reading and modifying registers.

• Board crate: To provide support for a complete board, board crates often summarize all
the available hardware by including the relevant HAL, PAC and MAC crates. They for
example preconfigure certain GPIO ports as LEDs or buttons according to the actual
conditions.

It should be noted here that while many of these terms are also common in C programming,
they are not as standardized or strictly used as in the Rust ecosystem.

The following code snippet is an example of Rust’s zero-cost abstractions in the context
of embedded development. Accessing a register happens through type-safe interfaces when
the correct libraries are used. The following code sets the GPIO pins number 9 and 10
on port E as active, by using the bsrr (Bit Set/Reset Register) register of the gpioe

register set:

let periph = stm32f303::Peripherals.take().unwrap();

periph.GPIOE.bsrr.write(|w| {

w.bs9().set_bit()

.bs10().set_bit()

});

Listing 4: Setting bits in memory mapped registers (Rust)

The above code allows the programmer to modify registers without having to use actual
addresses, any kinds of binary operators or temporary variables. These data structures are
highly abstracted, often posing a performance overhead when no optimizations are enabled.
The data structure for the bsrr registers for instance looks as follows:

bsrr: stm32f303::gpioe::BSRR {

register: vcell::VolatileCell<u32> {

value: core::cell::UnsafeCell<u32> {

value: 0x0

}

}

}

Listing 5: The BSRR register’s data structure in Rust

When compiled with all optimizations enabled though, the above code results in a direct
memory access with only a single write operation, showing a perfect use-case for Rust’s
zero-cost abstractions.

11

3 Programming a Microcontroller

This chapter will provide an example on how a microcontroller can be programmed with ei-
ther language. A bare-metal device was chosen as it will most likely provide better insights
into differences of the programming languages. Development supported by an operating
system would show more similarities with normal application development and will not be
part of this thesis. Nevertheless could a investigation on such systems give valuable insights.

The hardware used is the STM32F3DISCOVERY board by STMicroelectronics (datasheet
[31]), containing the ARM Cortex M4 controller STM32F303VC (datasheet [114]). The
board also consists of several LEDs, two buttons, an accelerometer, a gyroscope and a mag-
netometer. It also contains a second microcontroller for debugging (an ST-LINK with Serial
Wire Debug (SWD) interface), and two USB ports. One for the debugger and a user USB
port that can be accessed by programs running on the microcontroller. This first example
will introduce embedded development with both languages by using a simple program that
allows someone to turn on a LED by pressing the button.

The following paragraphs will now explain the common steps that had to be taken be-
fore being able to program the development board. All development was performed on
Linux, so the first step was to configure the udev (Linux’ device manager) rules, so that
every user on the system is allowed to access the device. This can be done by creating a new
rule file in the /etc/udev/rules.d/ directory. The following content must be filled
into it to set the permissions of the device file when the device with the given vendor and
product id is connected:

STM32F3DISCOVERY rev C+ - ST-LINK/V2-1

ATTRS{idVendor}=="0483", ATTRS{idProduct}=="374b", MODE:="0666"

Listing 6: udev rule to be able to access the microcontroller on Linux

The microcontroller can now be connected via the ST-Link USB port. To connect with
the debugger, the Open On-Chip Debugger (OpenOCD) utility [89] can be used like this:
openocd -f interface/stlink -v2 -1. cfg -f target/stm32f3x.cfg .

This software needs to stay open to be able to flash and debug programs. OpenOCD provides
a telnet interface on port 4444 to execute manual commands using the scripting language
Tcl, a GNU Debugger (GDB) server on port 3333 for the GNU debugger to connect to
and an RPC server on port 6666 for automated Tcl scripting. Another important aspect
for debugging embedded applications, is the ability to log text messages from the program.
The following methods exist:

• The user USB port could be used to send serial messages.

• Many ARM microcontrollers provide the so-called Instrumentation Trace Macrocell (ITM),
which is a debugging tool for logging messages.

• The third approach is semihosting. This is a technique to forward IO calls to the host
computer of the debugging session. This approach was chosen because it seemed fairly
easy. The program on the microcontroller uses the ARM bkpt (breakpoint) instruction
to communicate with the host computer. The debugger now translates these calls to open
a file or to write to a handle. To log messages, the stdout descriptor is opened and the
returned file handle is written to.

The following chapters will now explain the approach to program a bare-metal ARM mi-
crocontroller with both programming languages.

12

3.1 ...in C

Installation

To get started, a cross compiler for the ARM platform needs to be installed. In this case,
the GNU Compiler Collection (GCC) toolchain will be used, requiring the
arm -none -eabi -gcc executable.

Configuration

The first step to configure the project is to create a Makefile for automation of the build
process. The Firstly, the Makefile firstly contains definitions to configure the compiler and
linker to use correct CPU target as well as standard library settings and secondly describes
the steps that must be taken to generate the final binary file. The following compiler flags
have to be provided:

• -mcpu=cortex -m4 : Set the CPU target

• -mthumb : Generate Thumb assembly instructions instead of ARM instructions (for
smaller binary sizes)

• -mfloat -abi=hard : Use hardware support for floating point calculations

• -g : Add debug information (doesn’t increase flash usage as it is only used on the host)

• -ffreestanding : Assume that no standard library is present when optimizing the
code

• -Wall : Log all warnings

The linker must be provided with the same -m... arguments as above, but also with
some additional flags:

• -nostdlib : Do not include a standard library

• -specs=nosys.specs : Link against standard library stubs

• -Tstm32.ld : Use the linker script stm32.ld for section definitions

The complete file and all other relevant files can be found in appendix B.

The next step is to create the linker script, which configures the linker to move all the
given information, like code and static variables into the defined sections. These sections
are configured with memory addresses, describing where they will be placed on the actual
target. The first section must define the memory layout according to the datasheet [114,
pp. 51 - 54]. The following peripherals of the STM32F303VC are provided for storing data:

• FLASH (Starts at: 0x08000000. Size: 256KB): Read-only memory containing the pro-
gram and read-only static variables.

• CCRAM (Starts at: 0x10000000. Size: 8KB): This small and fast, so-called Core-Coupled
Memory (CCM) can contain data or the program stack.

• RAM (Starts at: 0x20000000. Size: 40KB): The main memory of the controller contains
most of the data and can also contain the stack.

Afterwards, the sections of the binary file and their memory placement have to be defined:

13

• vector -table : The vector table must be placed at the origin of FLASH memory. It
contains an address to the beginning of the stack and the address of the program’s entry
point (The Reset function). This address is extracted from the program code by using
the vector_table.reset_vector section (see below).

• text : After the vector -table , the program’s code is placed in the FLASH.

• rodata : Read-only data follows in the FLASH.

• bss : This section will be placed in RAM and contains all static variables that are
zero-initialized. This must also be done during startup.

• data : This RAM-section will be filled with pre-defined data from FLASH.

• stack : The stack is not explicitly defined in the linker script, but starts at the end of
RAM and grows towards lower addresses. If 8KB are enough for the stack, it can also be
very convenient to place it in the CCRAM memory to separate the stack from the data
section.

Startup Code

The next step is to create the startup code that is invoked when the microcontroller is
reset (started) and sets up the controller before jumping to the main function. It will be
placed in startup.c and contains a function called startup () . This function will
be referenced by a static reset vector variable:

unsigned int * startup_vec __attribute__

((section(".vector_table.reset_vector"))) = (unsigned int *) startup;

void startup() {}

Listing 7: Creating a pointer to the startup code (C) (startup.c in Appendix: p. xxx)

The section attribute declares the section where this variable should reside. The linker script
includes this section at the beginning of flash memory, after the stack address. This will
allow the microcontroller to read the address of the first instruction when starting.

The startup code must now perform the following steps:

1. Initialize the bss section with zeros.

2. Copy the pre-defined data from FLASH (rodata section) to RAM (data section)

3. Call the main function void main() {} . It can then contain arbitrary code for the
actual program.

startup.c should also contain handler methods for hardware interrupts or exceptions,
although they were left out for simplicity here. Exceptions are problems in the controllers
execution flow, including for example access to an invalid address or the use of an undefined
instruction. Interrupts can be fired by many different events, and can mostly be configured
by the user. Examples include timers that have run out or data that was received (e.g.
on the SPI bus). When an interrupt or an exception happens, normal execution flow is
interrupted and execution jumps into the handler routine. After the routine has returned,
normal execution flow resumes. Since the interruption can happen at any point of the
program, the rules of safe concurrency need to be applied. A list of possible interrupts and
exceptions can be found in the datasheet [114, pp. 285 - 288].

14

Using Libraries

After explaining some of the basics without using any foreign code, the following paragraphs
will now use a library to simplify development. The STM32CubeF3 library is provided
directly by STMicroelectronics [113] and contains modules for accessing the ARM core,
definitions for peripheral addresses, hardware abstraction layers (HALs) for the peripherals,
board support packages (Board Support Packages (BSPs)) for different boards including
the STM32F3DISCOVERY as well as high level middlewares e.g. for the USB port and
many example projects. No self-written startup code or linker script is needed anymore. In
addition to that, the provided code now contains full interrupt and exception handlers as
well as additional initialization code for setting up the system clock and the Float Processing
Unit (FPU). The main function is also automatically called by the library’s startup code.
The library also simplifies register access by providing preprocessor constants. An example
on how to configure a GPIO port in output mode looks as follows:

GPIO_TypeDef* gpioe = (GPIO_TypeDef) GPIOE_BASE;

uint32_t temp = gpioe->MODER; // Get current mode value

temp &= ~(GPIO_MODER_MODER8_Msk); // Reset mode for port 8

// Set mode to push/pull for port 8:

temp |= GPIO_MODE_OUTPUT_PP << GPIO_MODER_MODER8_Pos;

gpioe->MODER = temp; // Set the new mode value

Listing 8: Modifying a register (C)

The constants and structs are provided by the library like this (only a short excerpt is
shown):

// ...

#define GPIOE_BASE (AHB2PERIPH_BASE + 0x00001000UL)

#define GPIO_MODER_MODER8_Pos (16U)

#define GPIO_MODER_MODER8_Msk (0x3UL << GPIO_MODER_MODER8_Pos)

// ...

#define GPIO_MODE (0x00000003U)

#define GPIO_MODE_OUTPUT_PP (0x00000001U) /* Mode Output Push-Pull */

// ...

typedef struct

{

volatile uint32_t MODER; /* GPIO mode register, Offset: 0x00 */

volatile uint32_t OTYPER; /* GPIO output type register, Offset: 0x04 */

// ...

} GPIO_TypeDef;

// ...

Listing 9: Register definitions (C)

This manual way of access is often abstracted through macros:

MODIFY_REG(GPIOE->MODER, GPIO_MODER_MODER8_Msk,

GPIO_MODE_OUTPUT_PP << GPIO_MODER_MODER8_Pos);

Listing 10: Using macros for modifying a register (C)

Even though this way of controlling registers is often used, helper functions from the hard-
ware abstraction layer provide a safer alternative without the need to directly access memory
addresses. To finish the integration of this library, the C and Assembly sources required for
compilation as well as the header file include path must be added to the Makefile.

15

Example Program

After all these prerequisites, writing the actual example program is fairly easy. The goal is
to turn on an LED when the button is pressed and to turn it off when it is released. The
steps to achieve this are as follows:

1. Turn on the clock for the GPIO ports. This includes GPIO port A for the button and
GPIO port E for the LED:
MODIFY_REG(RCC ->AHBENR , RCC_AHBENR_GPIOAEN_Msk ,

1 << RCC_AHBENR_GPIOAEN_Pos);

MODIFY_REG(RCC ->AHBENR , RCC_AHBENR_GPIOEEN_Msk ,

1 << RCC_AHBENR_GPIOEEN_Pos);

2. Set the mode for the button GPIO pin to input (pin 0):
MODIFY_REG(GPIOA ->MODER , GPIOA_MODER_MODE0_Msk ,

GPIO_MODE_INPUT << GPIO_MODER_MODE0_Pos);

3. Set the mode for the LED GPIO pin to output (LEDs are pins 8 to 15):
MODIFY_REG(GPIOE ->MODER , GPIOA_MODER_MODE15_Msk ,

GPIO_MODE_OUTPUT_PP << GPIO_MODER_MODE15_Pos);

4. Construct an infinite while loop around the following steps because a program running
on a microcontroller should never end

5. Wait until the button is pressed by reading the Input Data Register (IDR) register:
while((GPIOA ->IDR & GPIO_IDR_0) == 0) {}

6. Turn on the chosen LED:
SET_BIT(GPIOE ->BSRR , GPIO_BSRR_BS_15);

7. Wait until the button is no longer pressed:
while((GPIOA ->IDR & GPIO_IDR_0) == 1) {}

8. Turn off the chosen LED:
SET_BIT(GPIOE ->BSRR , GPIO_BSRR_BR_15);

The c/lib/main.c code can be found in the appendix on page xxxi.

Testing the Program

To test the above program, it needs to be flashed onto the board and can then be debugged.
First of all, use make to run the Makefile which will compile all input files and link the
resulting object files together into a single binary file with the correct layout. Start GDB
with the binary file as an argument and connect to the OpenOCD GDB server by using the
target remote :3333 command. Now flash the binary onto the microcontroller with

the load command and reset the controller to set the instruction pointer to the beginning
of the program by using monitor reset halt . To simplify debugging, a breakpoint
can be set to the main function (break main). Use the continue command to let the
program run until it reaches main. Since they are needed very regularly, these commands
can be put into a GDB script (e.g. openocd.gdb) and specified on the GDB invocation

by using the -x option. The debugger can now be used to step through the program
running remotely and inspect its execution state. When pressing the button, the LED turns
on. When the button is released, the LED turns off.

16

3.2 ...in Rust

The following paragraphs will explain the necessary steps to reach the same goal of turning
and LED on and off in Rust.

Installation

To install the development toolchain, Rust can either be installed through the system’s
package manager, or preferably with the rustup utility [107]. The latter approach allows
to install different toolchains and compilation targets. This chapter will use the default
toolchain with rustup toolchain install stable and the following compile tar-

get to build code for an ARMv7 controller with hardware supported floating point (hf) and
the ARM Thumb instruction set: rustup target add thumbv7em -none -eabihf

Configuration

To create a new project, Rust’s package manager Cargo can be used:
cargo new --edition 2018 --bin app . This initializes a default folder struc-

ture and creates the main file main.rs . To tell the compiler that no standard library
should be included, because no operating system is available, the main file contains the
#![no_std] annotation. Because the main interface will be defined differently, the

#![no_main] annotation also needs to be added. To set the target for this project and
define that a custom linker script is required, the following content needs to be written into
the .cargo/config file:

[build]

target = "thumbv7em-none-eabihf"

[target.thumbv7em-none-eabihf]

rustflags = ["-C", "link-arg=-Tstm32.ld"]

Listing 11: Cargo configuration file for the ARM target (in Appendix: p. li)

The target must be one of those listed in [125]. Further information on targets can be found
in section 4.2.3 Compilation Targets. The linker script is mostly the same as for linking the
C program, although the entry point must be explicitly listed by using ENTRY(Reset); .
Otherwise, the optimizer would get rid of the function as it is not called anywhere.

Startup Code

Just like in C, the reset function has to be declared and its address must be written to the
vector table:

#[link_section = ".vector_table.reset_vector"]

#[no_mangle]

pub static RESET_VECTOR : unsafe extern "C" fn() -> ! = Reset;

#[no_mangle]

pub unsafe extern "C" fn Reset() -> ! {...}

Listing 12: Creating a pointer to the startup code (Rust) (in Appendix: p. li)

The Reset function has several modifiers: Firstly, extern "C" switches the Appli-
cation Binary Interface (ABI) to a C compatible version, allowing the microcontroller to
jump into the function without having to consider Rust specifics. The unsafe keyword

17

declares this function as unsafe, which means that some strong safety checks are not per-
formed because memory addresses need to be dereferenced directly. The return type !

denotes a divergent function, meaning that the function is not allowed to finish at any time.
The #[no_mangle] attribute prevents mangling of the function name, which results in a

function that is exactly called ”Reset” in the final binary. The link_section attribute

places the RESET_VECTOR in the vector_table.reset_vector section so it can
be moved to the beginning of FLASH memory by the linker script.

The reset function handles initialization of bss and data sections just like in C, although
helper functions are available to simplify this process. Start and end addresses of the sec-
tions are available in _sbss and _ebss as well as _sdata and _edata . _sidata

denotes the start of the rodata section:

let ct = &_ebss as *const u8 as usize - &_sbss as *const u8 as usize;

ptr::write_bytes(&mut _sbss as *mut u8, 0, ct);

let ct = &_edata as *const u8 as usize - &_sdata as *const u8 as usize;

ptr::copy_nonoverlapping(&_sidata as *const u8, &mut _sdata as *mut u8, ct);

Listing 13: Initializing the data and bss sections (Rust) (in Appendix: p. li)

Normally, there would be the implementation of exception and interrupt handlers needed,
but this will not be covered here. A feature that’s special to Rust is the panic handler,
which is executed on unrecoverable errors like for example a division by zero. It is declared
as follows:

#[panic_handler]

fn panic(panic: &PanicInfo<’_>) -> ! {...}

Listing 14: Defining a panic handler (Rust) (in Appendix: p. li)

Using Libraries

To use a higher level of abstraction, crates (Rust libraries) are now included. The low-
level crates use small sections of unsafe code to directly access the memory addresses (e.g.
memory-mapped registers) and provide a safe interface on top. Since Rust follows a phi-
losophy of providing many small, self-contained libraries, multiple crates must be included
(see Cargo.toml in appendix on page lii). The following types of crates are relevant:

• MAC: Crates cortex -m [25] for peripheral access to the ARM Cortex-M processor as
well as cortex -m-rt for the runtime (startup code etc.) can be included.

• PAC: Include the stm32f3 crate [112]. Memory and type safe register access with
zero-cost abstractions is provided. This means that writes to read-only registers are
prevented at compile-time. This crate, like many others, was automatically generated
from an System View Description (SVD) file provided by the vendor.

• Panic handler: The panic behaviour can be chosen through many existing crates. Using
the panic -halt crate halts the processor when a panic occurs.

The panic -semihosting crate on the other hand, prints the encountered error
messages over the semihosting debugger.

Since the above-mentioned libraries support more than a single microcontroller, the exact
memory layout still needs to be configured in a file called memory.x , which is part of the
linker scripts. The section layout is already covered by the libraries though and does not
need to be provided here.

18

Example Program

The following steps need to be taken for the example program to perform the same actions
as the C example:

1. Get a handle of the stm32f303 peripherals:
let periph = stm32f303 :: Peripherals ::take (). unwrap ();

2. Turn on the clock for the GPIO ports A and E:
periph.RCC.ahbenr.modify (|_, w| {

w.iopaen (). set_bit (). iopeen (). set_bit ();

});

3. Set the mode for the button GPIO pin to input (pin 0):
periph.GPIOA.moder.modify (|_, w| w.moder0 (). input ());

4. Set the mode for the LED GPIO pin to output:
periph.GPIOE.moder.modify (|_, w| w.moder15 (). output ());

5. Construct an infinite loop around the following steps so the program never ends.

6. Wait until the button is pressed by reading the IDR register:
while periph.GPIOA.idr.read (). idr0 (). bit_is_clear () {}

7. Turn on the LED:
periph.GPIOE.bsrr.write(|w| w.bs15 (). set_bit ());

8. Wait until the button is released:
while periph.GPIOA.idr.read (). idr0 (). bit_is_set () {}

9. Turn off the LED:
periph.GPIOE.bsrr.write(|w| w.br15 (). set_bit ());

The main.rs can be found in the appendix on page lii The main difference to C is that
every register access is already type checked at compile-time and no magic values are used,
making many accidental issues impossible.

Testing the Program

To build the Rust program, cargo build is used. GDB takes again care of flashing

and debugging the program. The same GDB script openocd.gdb as with C is used
here. To further improve the development workflow, the GDB command line call can be
added to .cargo/config , so that building and flashing the program can be done with
cargo run . It can be seen that when pressing the button the LED turns on and when

releasing the button, it turns off again.

19

4 Comparison of Languages

After having introduced the C and Rust programming languages and described how to use
them exemplarly, this section will now compare the two programming languages for their
suitability for embedded software development. At first, the methodology of this section
will be explained. Afterwards, the actual criteria, separated into technical and non-technical
aspects, will be examined. The following chapter will now analyze the safety measures of
both languages and test how they may influence the application’s performance.

4.1 Methodology

Through developing an example program, the previous chapter has provided an overview of
both languages. To be able to compare Rust and C more objectively, a defined set of criteria
must be considered. The following criteria are a mixture of personal experiences and the
results of surveying colleagues as well as some other sources like [11], [134], [132] and [34].
The following list provides an overview of all considered aspects and denotes the reasons why
a specific criterion was chosen for further examination or why it was not. Technical aspects
are shown first, followed by the non-technical aspects. The aspects safety and performance
are placed into a separate chapter due to their importance for the thesis.

• Safety
Being the main reason why the Rust language is considered, this aspect will compare
both languages according to their susceptibility to different types of safety issues.

• Performance
To be a suitable alternative to C, Rust must offer similar performance in spite of the
additional safety measures. This aspect will consider multiple dimensions, such as time
spent, memory used and more while testing an example program.

• Programming Paradigms
Programming Languages offer different possibilities which can be classified using Pro-
gramming Paradigms. This aspect will compare the availability of paradigms in the two
programming languages.

• Tooling
Considers how well a developer is supported by suitable tooling through investigating
the availability of language-specific tools in different categories.

• Targets
The compilation target availability may largely influence the suitability when specific
hardware is required, being especially important in embedded development.

• Functionality
This aspect would compare the available functionality in the ecosystem by defining cate-
gories of required features and finding suitable libraries for both languages. Since virtually
every feature is available in both languages, this aspect was not covered in the thesis. No
valuable conclusions could be drawn from this criterion.

• Real-time Requirements
Although an important aspect for many embedded applications, it was not chosen due
to its complexity and the limited scope of this thesis. A suitable example program would
need to be written and tested using appropriate tooling.

20

• Ease of Use & Productivity
This first non-technical aspect will compare how easy it is to work with both languages
especially referring to documentation and the development workflow. It will also consider
how these properties influence productivity.

• Maturity
To be suitable for the industry in safety-critical applications, the language, tooling and
ecosystem must be sufficiently mature.

• Popularity
Popularity in the industry and among developers can be an important indication for
language suitability.

• Standards & Certification
Certifications can be important for certain customers or industries, especially for safety-
critical products. This criterion will reference many of the previous aspects to give an
indication of standards conformity.

• Cost
Even though cost is an important factor for technological decisions, this aspect was not
chosen because the most important compilers, libraries and other tools are available free
of charge. There also exists almost no proprietary software in the Rust ecosystem making
a comparison to C very difficult.

As one might notice, many of these aspects are generic and applicable to many types of
software. Since embedded development not only includes bare-metal hardware, but is also
used with operating systems like Linux, an embedded programming language needs to be
examined from a broader perspective. This means that the examination in the following
chapters will contain generic as well as embedded-specific aspects.

To be able to assess the criteria, a broad research was performed. Due to Rust being a
quite recent language, very few scientific resources could be found. For this reason, many
blogs and other websites were used for information gathering. Additionally, the experiences
gained during the practical parts of this thesis were incorporated into all aspects.

21

4.2 Technical Aspects

Starting with the comparison, technical aspects are considered first. This includes an inves-
tigation of different programming paradigms the two languages support, available tooling
as well as the support of compilation targets.

4.2.1 Programming Paradigms

Programming paradigms are used to differentiate specific programming styles. Every pro-
gramming language can most likely be used to implement multiple paradigms. Paradigms
define for instance how the goal of the program is described (e.g. through instructions or
a declarative syntax), how the programs are structured (e.g. in functions) or how interac-
tion with data takes place. This chapter will first introduce different relevant programming
paradigms, before comparing C and Rust on how well they support each of them. [135]

Paradigms

• Structured Programming
Being the most common programming paradigm, programs adhering to it make use
of a program flow that consists of sequences of statements. The flow can be altered
through conditional statements and loops. Structured programming is compromised
when instructions are used that break out of the control flow.

• Imperative Programming
In Imperative Programming, statements express step by step how the program should
operate. It can be seen in contrast to Declarative Programming, where only the out-
come is formulated, while the actual execution steps are determined by the run-time
environment (e.g. SQL).

• Procedural Programming
Being a type of Imperative Programming, programs following the Procedural Program-
ming paradigm separate their statements into procedures. These procedures can be called
from any point in the control flow of other procedures and thus make code reuse and
modularity easily possible.

• Object-Oriented Programming (OOP)
This type of Imperative Programming combines data and related logic into so-called
objects. Instead of procedures, statements are now grouped into methods that have
direct access to the object’s data.

• Functional Programming
Functional Programming is highly influenced by mathematical functions. Programs ad-
hering to it consist of procedures with no side effects (called pure functions). Programs
are build as a tree structure of function calls. This is mostly a Declarative Program-
ming paradigm, although it exists in many different variations. Functions are first-class
citizens of the language and can be passed around like variables.

• Concurrent Programming
To allow for multiple execution contexts, data sharing and synchronization utilities must
be available.

22

C
The following list will provide an overview on important programming paradigms that can
be achieved by using the C language:

• Structured Programming
C’s flow can be altered through conditional statements like if or switch and loops
like while or for . Keywords like goto and early function returns are possible.
Thus C can mostly be considered a structured programming language, although it is not
enforced.

• Imperative Programming
C is an imperative programming language as statements are executed one after another.

• Procedural Programming
Procedures are represented by functions.
(e.g. void doSteps () { step1 (); step2 (); }).

• Object-Oriented Programming
C does not offer support for this paradigm, as it is not possible to assign functionality to
its data structures. It should be noted though, that the C++ language is mainly built
around this paradigm by introducing classes and inheritance.

• Functional Programming
Functional Programming is possible in C when being strict, but not all typical features
like for example closures (anonymous functions) are available.

• Concurrent Programming
Support for concurrency is not an explicit language feature, but very common by using
operating system utilities. Data sharing between concurrent execution flows mostly hap-
pens through shared mutable memory, where synchronization is optional and has to be
performed manually.

Rust
The following list examines how much Rust adheres to the programming paradigms ex-
plained above:

• Structured Programming
In respect to this paradigm, Rust is very similar to C with programs made of sequences of
statements being controlled by conditions and loops. It doesn’t provide as many features
to break this paradigm (e.g. no goto keyword), but is still not a perfectly structured

programming language (e.g. early return statements are possible).

• Imperative Programming
This paradigm is completely fulfilled and at the same level as C.

• Procedural Programming
The existence of functions that can call each other also fulfills this paradigm just like C.

• Object-Oriented Programming [32][121]
Rust is mostly an object-oriented programming language as it provides structs that can
have associated functions called implementations. These structs can also implement
multiple traits which are similar to interfaces. Although implementation inheritance
is intentionally not part of the language, Rust’s support for polymorphism as well as
composition and thus code reuse still fulfills the object-oriented programming paradigm.

23

• Functional Programming [86]
Functions are first-class citizens in the Rust language as they can be passed around like a
variable. Furthermore, Rust provides anonymous functions in the form of closures. Rust
encourages the use of pure functions (functions with no side-effects) through its expression
syntax (see below), immutability by default and the absence of global mutable variables.
An example are iterators for the processing of data items:

// Sum square of numbers from 1 to 100

(1..101).map(|x| x * x).fold(0, |x, y| x + y)

This iterator chain is created by a range notation to iterate over the numbers 0 to 100.
Every number is now mapped to its square and finally folded into a single output value
by summing up all squares.

• Concurrent Programming [130]
Rust concurrency is often described as ”fearless concurrency” due to its compile-time
safety guarantees. Rust provides three safe data sharing possibilities, completely pro-
hibiting unsynchronized access in safe Rust. Immutable static memory can always be
accessed from multiple execution flows. Access to mutable shared memory is only pos-
sible with synchronization, which is compiler checked and encoded in the type, through
for instance a mutex that owns the shared data. The third possibility is message passing
by moving data through for example channels that are part of the standard library.

Conclusion
As seen above, both languages are structured, imperative and procedural languages, al-
though Rust is more strict with the Structured Programming paradigm. Object-Oriented
Programming is possible in Rust but not in C. Functional programming can theoretically
be done in both languages, Rust however provides additional language structures to make
it easier to use. Both languages are well suited for concurrent programming, although Rust
enforces synchronized memory handling during compilation. In conclusion one can say that
Rust offers a wider variety of programming paradigms by explicitly supporting functional
as well as object-oriented programming.

4.2.2 Tooling

With software applications getting bigger and more complex, more elaborate tooling is re-
quired. This includes tools that are independent from the programming language like code
versioning or issue management, but also language specific tools like package managers or
the compilers themselves. Even though this aspect is not directly related to the program-
ming languages, it largely affects the productivity when working with them and thus needs
to be considered when assessing the suitability of Rust and C.

The chapter will start by introducing and explaining different categories of required or
convenient tools. Furthermore, it will present and compare existing solutions for C and
Rust before demonstrating a selection of tools with an example.

Categories of Tools
The following categories of tools were deemed relevant for this aspect, however the list
doesn’t aim to cover all possible tools:

• Compiler: The compiler is the software used to translate the actual source code files
into machine code. Common compiler toolchains often include a linker, which is used
to combine different files of machine code into one executable. The compiler toolchain
is expected to produce well-optimized code while still ensuring correctness and do so
quickly to allow for fast development cycles.

24

• Test Framework: To be able to assert correctness of certain parts of a program, unit
tests should be written by the developer. A test framework is then needed to support
writing and executing these tests. It may offer the ability to write stubs (small replace-
ments of complex functions), mock objects (replacements for data objects) and to provide
statistics on the tested code.

• Documentation Generator: Code documentation can be exported in a more readable
format to for example provide other developers with an interface specification without
handing out the complete code base. Such generators often create HTML pages, but can
also generate PDF files or other formats.

• Build System: A build system makes sure that according to a configuration, multiple
source files, libraries and possibly other resources are combined into a single binary (which
can be an executable or a library). Build systems frequently provide support for other
tools, like e.g. executing a test framework, running a formatter, performing static code
analysis, etc.

• Package Manager: As applications are getting more complex, they often depend on a
large amount of software dependencies. A package manager takes care of downloading
those, keeping them up to date and maintaining a list of currently used package versions.
The package source can either be a global, public repository on the Internet, or a private
one hosted in a company’s network for instance.

• Embedded Tooling: This category includes tools for flashing programs onto embedded
devices, debugging them and more.

Tools in C

• Compiler: A large amount of different compilers for the C language exist, but the
following list only contains the most common as well as a choice of certified compilers
[41]:

– GCC: Existing since 1987, this is one of the oldest existing C compilers. It is open
source and very commonly used on Linux platforms. It supports C, C++, Ada, Go
and many more languages, targeting a large variety of platforms (see section 4.2.3
Compilation Targets). To allow for cross-compilation, multiple toolchains can either
be installed manually or through the package manager of the OS. Example: Using the
command arm -none -eabi -gcc instead of gcc , targeting ARM processors with
no operating system and the embedded application binary interface.

– Clang: This open source compiler, existing since the year 2000, uses LLVM as its
compiler backend just like Rust. It offers faster compilation times than GCC, but
benchmarks show that GCC’s optimizations are generally better [41]. Additionally
Clang only supports C, C++ and Objective-C, even though more languages are using
LLVM as their compiler backend (e.g. Rust, Julia or Swift). The compiler provides
more readable compile errors and user friendly diagnostic information. It can di-
rectly be used for cross-compilation by providing so-called target triples. Example:
armv7em -none -eabihf being more specific than GCC, targeting ARM v7 with

hardware floating point (hf) support.

– Microsoft Visual C++ (MSVC): Microsoft’s C compiler exists since 1983 and is pro-
prietary software. It can compile code only to Windows targets and offers no real
cross-compilation (even though compilation on target machines can be integrated into
Visual Studio).

– CompCert: This compiler is verified according to the C standard, providing proven
standards conformity [24].

25

– VxWorks Cert Edition: To compile code for the VxWorks Real-Time Operating Sys-
tem (RTOS), Windriver provides a compiler certified according to multiple safety
standards, allowing to use their product in regulated industries [137].

• Test Framework: There are many different options, all with varying levels of build
system integration. Widely used examples include the Googletest (very common) [43]
and Unity (targeted at embedded environments) [131] frameworks.

• Documentation Generator: The most popular tool, which can be seen as a de-facto
standard, is Doxygen. It provides the ability to generate HTML, PDF and various other
formats for numerous different programming languages [33].

• Build System: Again, many different systems exist. Some of the most popular are: [60]

– Make: A recipe called Makefile needs to be provided which defines dependencies be-
tween files and their compilation order (see section 3 Programming a Microcontroller).
Many of the other systems generate Makefiles at the end, but provide a higher layer
of abstraction.

– GNU Autotools: This is GNU’s set of programming tools to create portable source
code, but it is known for its high complexity.

– CMake: LLVM’s build system provides platform-independent configuration and fast
incremental builds.

– MSBuild: Microsoft’s build system is well-integrated into the Visual Studio IDE and
can compile applications for the .NET framework and Microsoft Visual C++.

• Package Manager: There is no package manager with wide adoption, but different
options with rising popularity exist. The first example is conan, containing around 640
packages (as of November 2020) [99] and being well integrated with multiple build systems
like CMake, MSBuild or the GNU Autotools. Another example is vcpkg (Visual C++
Pkg), containing around 1400 packages (as of November 2020) [99], supporting MSBuild
and CMake.
Although these solutions exist, they are not widely accepted. According to [80], only 20%
of developers in the C/C++ community use package managers. The reasons given include
the use of closed software as well as complicated configuration, insufficient documentation
and low adoption.

• Embedded Tooling: No well-integrated solutions exist. Either a standalone IDE like
the Arduino or STM32Cube IDE should be used, or a combination of separate programs
like OpenOCD and GDB must be utilized.

As this overview shows, the C ecosystem offers many high quality tools for software de-
velopment, but due to their low adoption and high fragmentation, the daily use becomes
impractical. Rust on the other hand tries to provide a highly integrated, well adopted and
easy to use toolchain to overcome these obstacles.
Tools in Rust

• Compiler: The Rust ecosystem provides only a single compiler with full support called
rustc. This could be caused by the language’s low stability (see section 4.3.2 Maturity),
as it would be hard to keep up with the development of multiple compilers. While
different C compilers comply to a standard, Rust only provides a reference manual and
thus doesn’t allow any statement on standards conformity. Since the Rust compiler
performs optimizations over the whole crate (e.g. inlining across object file borders) and
the high complexity of the borrow checker, compilation times tend to be relatively long
in comparison to C (see section 4.4.3 Performance).

26

• Test Framework: The Rust compiler includes a test mode for running unit tests pro-
vided in a test module. Libraries like µTest provide utilities to simplify testing on bare-
metal targets [6].

• Documentation Generator: Rustdoc, being integrated into the toolchain, generates
navigable documentation web pages for the current crate and all its dependencies. An-
other interesting feature is the placement of code in documentation comments, which
will be compiled and tested, ensuring that all code examples in the documentation are
always up to date. [127]

• Build System: The major build system of Rust is called Cargo. It includes packages,
manages their compilation, can run tests and benchmarks, generate documentation and
even install further subcommands from a remote repository.

• Package Manager: Cargo downloads its crates from http://crates.io, which cur-
rently contains about 50.000 crates (November 2020). When deploying crates to the
repository, documentation is also deployed to http://docs.rs. The integrated nature
with the build system and other tools makes it very easy to build applications including
numerous dependencies. As the compiler needs to build all dependencies with rustc and
the general philosophy is to create many small, self-contained crates, a clean build can
sometimes take a very long time (around one to five minutes for even small applications).

• Embedded Tooling: The Rust ecosystem provides no standard or de-facto standard
way to work with embedded devices, but extensive documentation and tutorials pro-
vide easy to follow explanations on how to set up such development environments using
OpenOCD and GDB. Even though they are currently not very common, there are still
tools like probe-rs that combine the process of flashing and debugging into a Cargo inte-
gration [86].
Since Rust doesn’t have as many PACs as C and they are most likely not provided by
the manufacturer, it may be necessary to create them manually. The tool svd2rust can
simplify this process by generating register access libraries from SVD files [115].

The Rust toolchain also includes a linter (Clippy), a formatter (rustfmt) and an IDE in-
tegration (Rust Language server). This means that Rust provides a highly integrated and
de-facto standard toolchain for the most common development tasks.

Example
The following example shows how including dependencies and building a project can be
done with some of the above-mentioned tools. The goal is to include a library for serializing
a struct to JSON in C and deserializing in Rust as well as building both projects using a
build system. The complete examples can be found in Appendix B (c/tools/ (p. xlix)

and rust/tools (p. lxvi))
For the C example, the cmake build system and the conan package manager will be used.
For serializing to JSON, the json-c library will be used. Steps:

1. Create a project folder.

2. Create toolDemo.c with code for the data structure and include json -c/json.h

file.

27

http://crates.io
http://docs.rs

3. Create CMakeLists.txt with the following content:

project(toolDemo)

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(TARGETS)

add_executable(toolDemo toolDemo.c)

target_link_libraries(toolDemo CONAN_PKG::json-c)

Listing 15: CMake configuration for including the json-c library

4. Create conanfile.txt with the following lines:

[requires]

json-c/0.13.1

[generators]

cmake

Listing 16: Conan configuration for including the json-c library

5. Create a folder called build and run the following commands to build the project:
conan install .. --build=json -c , cmake .. and cmake --build .

6. The output file can now be found in build/bin and executed using ./ toolDemo .

Rust will use Cargo both as the build system and package manager. For JSON, the serde
and serde-json libraries will be included. Steps:

1. Create a project folder using cargo new tool_demo --bin

2. Edit main.rs with code for the data structures and include serde:: Deserialize

3. Edit Cargo.toml for adding serde_json = "1.0" and, to be able to automat-

ically generate the serialization helpers serde as dependencies:

serde = { version = "1.0" , features = [" derive "]}

4. Run cargo build to compile the project and its dependencies. It can be executed

using cargo run . The binary can then be found at target/debug/tool_demo .

The Rust configuration with only two lines that must be added manually is much shorter
and more intuitive than the two files for C with nine lines in total. It also posed a challenge
to combine conan and cmake, as the documentation did work as expected on the first try.

Conclusion
While the C community has produced numerous tools during the long time that C exists,
there were no tools designed together with the language during its beginnings. Even today,
C developers refrain from using tools like package managers that are common with most
modern programming languages. Even when such tools are used, the communities are frag-
mented and no de-facto standard exists. The Rust developers however made it part of their
design philosophy to provide a well-integrated and easy-to-use toolchain closely linked to
the programming language that is indeed popular among their community members.

28

4.2.3 Compilation Targets

After having discussed the different types of existing tools in the last chapter, this chapter
will now take a closer look at the compilers and which targets they are able to create code
for. This firstly includes the processor architecture of the target system and secondly the
used standard library. In addition, the chapter will consider the portability of code between
different targets for both C and Rust.

Architectures
For languages that are translated to machine code, compilers always need to target a spe-
cific processor architecture to create the correct assembly code. The target can be the
current host machine itself or the architecture of a different device to perform so-called
cross-compiling. The most common architectures are x86 for AMD or Intel processors and
the ARM architectures used by many manufacturers especially for embedded or lower-end
devices. To be able to use a language for a specific target device, the processor’s target
architecture must be supported by an appropriate compiler. While C supports many tar-
gets through a large number of different compilers or compiler versions, Rust uses the same
compiler for all supported targets. The support is separated into three tiers, where Tier 1
means ”guaranteed to work”, Tier 2 ”guaranteed to build” (but tests aren’t run), with Tier
3 only having very basic support without any guarantees. [125]

Standard libraries
Other important aspects when targeting a specific system are the operating system (OS)
and the standard library. Standard libraries provide implementations of common algorithms
and data structures as well as abstractions of operating system interfaces like file systems or
networking. For the C language, numerous implementations of the standard library exist,
including the GNU libc (glibc), the Microsoft Visual C (MSVC) run-time library, the musl
libc, the Android C standard library Bionic and standard libraries focused on embedded de-
vices like uClibc, Newlib or Nanolib. Rust on the other hand uses its own standard library
which depends on the C standard lib of the current operating system for memory alloca-
tion, networking and more. On Linux, Rust only supports the GNU libc and musl standard
libraries, making it harder to work on embedded Linux platforms, where e.g. uClibc is in-
stalled. On Windows, the Microsoft Visual C and MinGW standard libraries are supported.
On bare-metal embedded devices, no standard library is available since there is no operat-
ing system that would support multithreading, file systems or other utilities. C solves this
problem by bundling required libraries with the executable, where most commonly Newlib
or Nanolib are in use. Rust takes a similar approach by bundling the so-called Core library
with the executable. Core is a subset of the Rust standard library not including any features
related to operating systems or memory allocation.

Supported Targets
What follows is a list of supported architectures of C and Rust with occasional references to
standard libs where deemed informative: [125][111] As the table shows, it can generally be
assumed that a C compiler exists for every possible computer architecture. A new architec-
ture can barely be seen as finished as long as no C compiler exists. Rust support, however,
is still very sparse as only the most common operating systems and standard libraries are
well-supported. Nevertheless can adding support for targets with only the Rust Core (called
no_std targets) be an easy task if the target is already supported by LLVM. Integrating

the full standard library can be a harder task though. In conclusion this means that when
using Rust, devices must be chosen according to the compiler support for the given archi-
tecture while this restriction does not exist for C programming.

29

Target C Rust

x86 (32bit) + x86 64 Y
Tier 1: Linux (glibc), Windows (MinGW,
MSVC), 64bit MacOS
Tier 2: musl standard lib; iOS, Android and
most desktop OSes
Tier 3: e.g. UEFI, VxWorks and 32bit MacOS

ARM 64bit (aarch64) Y Tier 1: only Linux with glibc
Tier 2: Most other OSes and std libs
Tier 3: e.g. FreeBSD

ARM 32bit Y Tier 2: mostly, e.g. bare-metal targets
(+Thumb instruction set) Tier 3: e.g. FreeBSD

Mips, PowerPC, Y Tier 2: Only the most common variations
RISC-V, Sparc Tier 3: Others

nvptx (NVIDIA CUDA) Y Tier 2

WebAssembly Y1 Tier 2

AVR Y Unofficial fork: Rust-AVR [102]

Blackfin, PA-RISC, PDP-11
and many more

Y No official support

Table 2: List of supported targets for Rust and C

Portability
Even though a stable language definition should ensure that code works in every compiler
and standard libraries try to abstract utilities for every system, reality has shown that porta-
bility is indeed a problem. The topic can be separated into portability between different
compilers (on the same architecture and operating system) and portability between different
architectures or operating systems (using the same compiler).

Different C compilers offer specific extensions that are often not compatible with each other.
Most standard features work the same, but ambiguities in the standard definition may be
implemented differently. Providing attributes to functions or variables, for example to con-
figure a function as exported or set the memory alignment of a variable, is one of many
differences. In MSVC, attributes are declared using __declspec (...) , while GCC

and Clang use the __attribute__ (...) modifier. Although it should be noted that
GCC and Clang nowadays support both options for portability reasons. Since the Rust
ecosystem only offers a single compiler, there are no such portability issues present.

Different architectures can have varying pointer sizes, differ between little and big endian
number interpretation and much more. Operating systems adhere to different standards
and calling conventions, most notably Windows and Linux. They especially show large dif-
ferences related to features going beyond what’s defined in the C language standard. An
example is the API to create and manage threads. While on Windows, a new thread is
created using the CreateThread (...) function from the processthreadsapi.h

header, Linux uses the POSIX variant pthread_create (...) from the pthread.h

header. Portable software often bypasses these differences through the use of preprocessor
conditionals. Even though Rust tries to abstract more methods using the standard library,
system specifics (especially in the embedded domain) still need to be considered (e.g. dif-
ferent memory-mapped registers). Thread creation in Rust however has a single interface
thread ::spawn (...) for all operating systems.

30

Conclusion
Due to the long history as well as the enduring prevalence of C in the modern programming
world, almost every possible target will have a suitable C compiler available. Rust, being a
very recent language, only provides a handful of targets with full support and some more
that are only partially supported. Even though Rust improves the portability as only a single
implementation of the language exists, not all target differences can be represented through
abstract interfaces of the language. The large amount of available targets for C poses a clear
advantage over Rust, especially when specific hardware is required for a project.

31

4.3 Non-technical Aspects

The previous chapters only considered hard technical facts. To get an overall impression on
the suitability of both programming languages, a wider picture is required. The following
criteria consist of non-technical aspects and will investigate how easy it is to use the lan-
guages, how mature and popular they are and how well they fulfill certain requirements for
certification purposes.

4.3.1 Ease of Use & Productivity

This first non-technical aspect will analyze challenges for the daily development process. It
will cover the availability of information and support, the development workflow as well as
the ecosystem and the embedded experience for both programming languages.

Availability of information
The first step to become a developer is to learn the specific language. The C commu-
nity offers numerous different tutorials, many of which offer high quality content, although
no central location for providing an overview is available. Such an overview for the most
important tutorials and reference manuals on Rust on the other hand can be found at
https://www.rust-lang.org/learn.

Once the first learning steps are taken, developers will likely need to find further infor-
mation in reference manuals. On C, the only official source is the C standard, which is not
available for free. Nevertheless, many unofficial reference manuals exist (like for example
[13]). Rust provides official and extensive documentation, including the Rust book as well
as the Rust embedded book for teaching the basic concepts, reference manuals for looking
up the details and high quality code documentation. These code comments often not only
document specific functions, but provide overview pages explaining the overall structure of
a library and providing examples. There is even a book on how good documentation can
be written [126]. A different aspect is to find documentation on industry-related topics
and proprietary hard- and software. With C being the main language for many industries,
professional support is available for almost all use cases. In Rust, although having a very
helpful community, they often might not know about proprietary hard- and software. While
for instance assistance for C libraries is almost always provided by hardware vendors, offi-
cial Rust support is rarely available. Generally one can say that documentation for Rust is
by far more visible and centrally promoted than it is the case for C, although proprietary
vendors are still mostly focusing on C support and documentation.

Community support
When problems occur, most developers rely on community support. While for C there is no
central platform, the community on the Q&A site StackOverflow is very active [98]. Rust
however provides a central forum and a Github organization, where the language and its
tools are developed. Rust’s StackOverflow community is also quite active. An aspect that
can be address in this context is the project governance. The focus of the C working group
[14] lies only on the actual language and decisions are made by the committee’s members
[56]. The Rust project though manages different teams and working groups like for example
the Compiler Team or the Embedded Devices Working Group [45] focusing not only on
the language, but also its environment and ecosystem. Decisions about the language are
handled through an RFC process which is completely open to the public [100].

32

https://www.rust-lang.org/learn

Development workflow
While the availability of information and support are two important aspects on the usability,
the actual development workflow also needs to be considered. As section 4.2.2 Tooling has
shown, development tools providing a well-integrated programming experience have higher
adoption in the Rust community with C developers relying on a larger set of different tools.
Another example that influences the developers productivity is the project structure. In C,
many different approaches for organizing a project exist. Function declarations are provided
in header files, definitions in the source file. The developer must take care of including a
header file only once and providing all source files to the compiler separately. In Rust, the
project structure is standardized. All source files or modules are automatically provided
to the compiler when they are included somewhere in the include hierarchy starting at the
main file.

Another aspect that should be mentioned are compilation times. The strict Rust com-
piler leads to a focus on the develop/compile workflow which is largely affected by the long
compilation times, whereas C offers very fast compilation speeds. This is partially caused by
Rust performing optimizations over the whole crate, while C compilers mostly only optimize
across a single source file. After the basic development of a project is done, bug fixing is
often a time consuming activity. Because in C, almost every syntactically correct program
compiles, most errors happen at run time. Most prominently, the segmentation fault (or a
HardFault on embedded) caused by unsafe memory access, is well-known. Such issues need
to be investigated by a debugger or other techniques, while one can generally assume that
bug fixing with C needs the same amount of time as writing the program in the first place.
Rust on the other hand provides its very strict compiler and borrow checker. Although
developing the program in the first place and satisfying these tools is often called ”fighting
the borrow checker”, a program that passes these checks oftentimes just works. In addition
to that, Rust offers helpful run time crashes called panics including error messages with the
originating source file and line (e.g. when accessing an array out of bounds). These differ-
ences are summarized by [19]. While using the C programming language improves the time
until the first version can be shipped, Rust repays its higher early development efforts in
the later stages of development. Because shipped Rust code is way more proven at compile-
time, while C often causes unexpected issues like crashes when used by the customer. One
can conclude that prototyping is faster in C because not all cases must be considered. Rust
however is better suited for reaching production quality fast.

Ecosystem
Another important factor for the ease of use is the ecosystem of accessible libraries. C offers
a large number of libraries for almost every possible use case. Nevertheless it is often difficult
to find these libraries in the first place as there’s no central platform or package manager
with wide adoption. Libraries are also often published without proper documentation or
guidance on how to integrate and build them. Contrastingly, Rust offers a highly integrated
ecosystem with most packages being automatically deployed to http://crates.io. This
package library additionally provides metadata like the popularity and dependent crates.
It is generally accepted that the development of a library also includes documentation and
examples, which can be seen by reading through the documentation of libraries like for in-
stance actix [138] or serde [109].

Embedded experience To move the focus to embedded development, this paragraph will
discuss the user friendliness when working with a microcontroller. The example in chapter
3 has shown that the Rust tooling makes it easier as only very few configuration options are
needed and the write/compile/run cycle works almost out-of-the-box even for embedded.

33

http://crates.io

Tweaking the GCC compiler until the program compiles on the other hand took quite a
long time. The Makefile needed for C consists of almost 100 lines, while the Rust configs
only add up to about ten lines of code. Certain tasks that need to be manually performed
with the GCC toolchain like managing include paths or linking the correct files and libraries
together were all handled by Cargo in the Rust example. This picture looks different when
examining more industry-related hardware. Not many support crates (e.g. MACs or PACs)
for proprietary hardware are available. Although writing board support libraries by hand is
possible, it may be too much of an effort for peripheral access crates. Many vendors though
offer so-called SVD files containing a machine-readable description of the memory layout
and available peripherals. The Rust tool svd2rust can be used to generate the corresponding
PACs from these files.

Conclusion
Concluding this chapter, Rust generally provides better information and support, but looses
to C when considering proprietary applications. A Rust developer is highly supported by
the ecosystem and development workflow, producing high quality results. Nevertheless may
Rusts longer compilation and development complexity make C better suited for prototyping.
Considering embedded development, Rust also provides a solid foundation for support and
libraries, but the ecosystem is by far not on the same level as C, especially with industry-
related technologies. Generally, Rust is better suited for productivity and easier to use, but
still lacking in the proprietary or industry sector.

4.3.2 Maturity

The maturity of a programming language and its tools can be an important factor when
deciding on the languages’ suitability. Using a tool with a high volatility can be difficult
to use in certain products, especially for safety-critical applications. This chapter will ex-
amine the rate of change of the C and Rust languages, compilers as well as their ecosystems.

Language Standard
The first aspect to be considered is the stability of the standard. The C standard specifica-
tion is only changing very rarely with seven years in between the two most recent releases
C11 and C18 [12]. This specification is developed independently from the compiler, requir-
ing them to implement the changes strictly according to the standard. Rust on the other
hand has no language standard. Although language changes can possibly happen on every
compiler release, Rust provides strong stability guarantees. Breaking changes are only intro-
duced into the language with the release of a so-called edition. These editions are released
every three years, including the 2015 edition which marked the 1.0 release, the 2018 edition
and the upcoming 2021 edition. [118]

Compiler
Another factor is the maturity of the compilers. While for C, the GCC and Clang compilers
only have one and two major releases per year respectively [40][73], the Rust compiler team
publishes a release every six weeks summing up to around nine major releases per year [105].
Nevertheless is backwards compatibility an important feature of Rust. All code, using stable
functionality, since version 1.0 is guaranteed to work. Even mixing dependencies written for
different editions is easily possible [118].

Ecosystem
Lastly, the stability of the ecosystem should be considered. As described in section 4.3.1
Ease of Use & Productivity, C has a long history including a very stable ecosystem, espe-
cially in the industry. Rust however is quite new, but already has the majority of important

34

libraries available. Many libraries still have version numbers below 1.0 implying that they
have not yet matured. Rust’s ecosystem is also not well-developed in the industry, as cur-
rently most Rust libraries are only created as hobby projects.

Conclusion
It can be concluded that C, with many decades of development history, offers a high level
of stability in the language standard as well as in available tooling and libraries. The high
volatility of the Rust ecosystem and its language changes could make it more immature,
although Rust provides stability guarantees through the regularly released editions and
backwards compatibility for all previous editions.

4.3.3 Popularity

After analyzing many aspects related to the language itself, the developers’ perspective
should be taken into account. A language cannot be used in practice if there are no de-
velopers available on the market or willing to learn the language. To be able to assess the
general popularity, exemplary projects and programming language rankings will be exam-
ined. For evaluation of professional development, the popularity among companies is also
considered. In addition to that, the adoption of embedded programming is assessed.

General Popularity
The general popularity of C is well-known. It is used widely among many different commu-
nities and industries. Although many modern applications use the C++ derivative instead
of C, it is still very similar and should also be taken in account when examining the popu-
larity. Applications include operating systems like Linux or Windows, browsers like Firefox
and Chrome, language interpreters like CPython and much more. Rust’s popularity is gen-
erally not so clear. It is still mostly used in open source projects and seems to show no
widespread use in larger applications, although its popularity is rising. Examples include
the Wire app using Rust for its protocol implementation [95] or Discord relying on Rust’s
high performance for some of their critical services [52].

According to the Stack Overflow developer survey 2020 [1] Rust is the most loved pro-
gramming language of people developing in the language and wanting to continue to do so
with 86%. It is followed by TypeScript with 67%, while C only resides on 21st place with
only 33%. Among the most wanted languages by people currently not developing in the
language Rust is positioned on 5th place with 15% and C on 16th place with only 5% of
the respondents. However when looking at the actually used languages, Rust is placed on
19th place with only 5% of the respondents developing in this languages, while C resides on
11th place with 22%. Looking at previous years of the survey [29][28], Rust could improve
all its scores, while C stayed the same or even became more unpopular. Another interesting
statistic is the PopularitY of Programming Language (PYPL) ranking from January 2021
[17], which ranks programming languages according to how often a programming tutorial
is searched on Google. Their table shows C/C++ in 5th rank with a 6.33% share and
Rust only on 16th place with a 1.06% share. Considering the past, C/C++ popularity is
almost stable, while Rust’s popularity is rising since the release year 2015. RedMonk [88]
computes its rankings by considering the languages’ popularity on GitHub as well as on
StackOverflow. Their ranking denotes Rust as having entered the top 20 in the year 2020
for the first time. They position C on 10th place, closely reflecting the StackOverflow results.

Professional Adoption
Another aspect to examine is the adoption among companies. While C is a popular lan-
guage, it is often used only for very specific use cases, where a higher level language is

35

not suitable, e.g. where precise control over memory or very high performance is required.
When these requirements are not needed, C++ or other languages are used regularly. Rust
on the other hand finds adoption in many different fields. A case study by NPM [30] has
identified Rust as a very suitable language for their use in performance-critical applications.
Other real-world examples using Rust include: Amazon for their MicroVM supervisor Fire-
cracker [47], Mozilla for parts of their browser Firefox [23], Atlassian, Cloudflare, Dropbox
and many more [94].

Embedded Adoption
The languages’ popularity in embedded development needs to be separated into the adop-
tion by open source developers and by professionals. In a professional environment C is the
de-facto standard for bare-metal embedded development and still common in other embed-
ded applications, although C++ is often used instead as it is equally suited [57]. Among
hobbyists the C language is very common through the Arduino platform. Rust also has
a very active embedded community, which becomes clear when looking at the ”awesome
embedded rust” library list [9] or the Weekly Driver Initiative [5]. In professional embedded
development, Rust has not gained popularity yet. Although commercial interest is rising,
which can be seen by for example WindRiver including Rust support into their real-time
operating system VxWorks [141], no examples of actual productive usage could be found.

Conclusion
In conclusion, this chapter has shown that although Rust is extremely popular among those
already working with it, the languages market share is still very low. C however has a more
stable and higher market share including a larger adoption in commercial products. Rust
has gained traction in the open source community, but is entering industry products more
slowly.

4.3.4 Standards & Certification

Many industries, especially those developing critical systems like the aerospace or energy
sector, need to verify their development efforts for their customers. For this reason, stan-
dards containing guidelines and best practices were developed that a company can and
sometimes must adhere to. The development process needs to be documented according to
those standards and can then be checked for conformity. To prove the standards confor-
mity, a certification can be performed. Since the programming language plays a vital role
in development, it must be part of the certification process including its tools.

IEC 61508
This chapter will exemplarily analyze the C and Rust programming languages according to
the IEC 61508 [53] standard. This standard deals with functional safety for safety-related
systems and defines four Safety Integrity Levelss (SILs) SIL1 to SIL4 with SIL1 being the
lowest and SIL4 the highest level. They each define a set of criteria which need to be fulfilled
in order to be compliant to the respective SIL. Part seven (IEC 61508-7 [54]) of the standard
lists measures that should be taken by a developer to reduce safety risks. The following re-
quirements were deemed relevant for this thesis (each denoted with their respective section
number from the standard):

C.4.1 A strongly typed programming language should be used.

C.4.3 Only certified tools and compilers should be used.

C.4.4 C.4.3 can be weakened: Only proven tools and compilers should be used, which means
according to C.2.10.1, that the following aspects must apply:

36

1. The specification should be stable.

2. The tool is used in different applications.

3. The tool has at least one year on record without safety relevant failures.

4. All relevant problems are documented.

C.4.5 A suitable programming language should be used. The most important criteria are:

1. A block structure

2. Useful compiler checks

3. Run-time checks (especially for types and array bounds)

4. Support for self-contained software modules

5. The possibility to define validity ranges for variables

6. Language structures for error containment

7. Supported by a suitable compiler, libraries, a debugger and other relevant tools

8. Predictable execution

To prove standards conformity, validation suites can be employed. To certify a compiler,
such a suite can prove the compliance with the programming language’s standard specifi-
cation [83]. Other test suites can check for functional safety and certify the compiler or
the programs themselves for specific requirements. Even when the tests report problems or
deviations, the certification can be considered complete. All the discovered problems need
to be fully documented and considered when working with the certified software (e.g. not
using the problematic compiler features).

The following paragraphs will now apply the above-mentioned criteria from the IEC 61508-7
standard to the C and Rust programming languages.

C

C.4.1 C is only weakly typed (see section 4.4.1 Safety)

C.4.3 Validation suites and multiple certified compilers like for instance the VxWorks Cert
Edition (SIL3) [137] are available. Paper [83] shows amongst other things how a
compiler can be certified for SIL4.

C.4.4 There are some very common and proven compilers (e.g. GCC, Clang, MSVC) (see
section 4.3.2 Maturity)

1. The specification is very stable. Even though the compilers differ slightly, they
each have their own stable standards (see part about portability in section 4.2.3
Compilation Targets).

2. They are widely used in many open source and industry applications.

3. Known issues are always fixed quickly.

4. Problems are documented for example in the GCC docs [66] or in the LLVM bug
tracker [72] for Clang.

C.4.5 IEC 61508-7 table C.1 denotes the complete C language as not suited for SIL3 and
SIL4. To be well-suited for all SILs, only a subset of C should be used. As shown
in C.2.6.2, no recursion (C.2.6.7), no implicit type casting and no use of pointers
(C.2.6.6) is allowed, coding guidelines like the MISRA C [81] or SEI CERT C Coding
standards [20] should be applied and static code analysis tools should be employed.
These are the explicitly checked criteria from the list above:

37

1. C is a block structured language.

2. Some compile-time checks (e.g. warnings on uninitialized values) are offered, but
many problematic programs are allowed (e.g. missing checks for memory safety,
see section 4.4.1 Safety).

3. There are almost no run-time checks provided by the language itself (no type or
bounds checking)

4. C provides modularity, even though the configuration must happen through an
external build system and is not part of the actual language (see section 4.2.2
Tooling).

5. For range definitions, only certain machine-driven steps like 16, 32 and 64 bit
integer variables are available.

6. The language also doesn’t support error handling by itself.

7. C doesn’t provide a standard set of tools, but certain solutions are well-integrated
(e.g. GCC compiler and linker + GDB debugger + make build system).

8. The execution is predictable if the external influences are predictable.

To solve the deficiencies, a safer language like Rust can be employed. Nevertheless, this
language needs to be checked according to the same criteria.

Rust

C.4.1 Rust is a strongly typed language.

C.4.3 The single existing Rust compiler is not certified.

C.4.4 The official Rust compiler is not yet as well proven as many C compilers:

1. There is no clear language standard yet. Stability is provided through regularly
released editions, but apart from them the language is still rapidly changing (see
section 4.3.2 Maturity).

2. It is used in many open source projects, but not really proven in the industry.

3. Safety relevant problems are quickly fixed.

4. Problems are documented in Rust’s issue tracker [103].

C.4.5 Table C.1 of the IEC 61508-7 standard does not mention Rust explicitly due to the
language being quite new, but notes that other than the listed languages are allowed
as long as they are assessed according to the same set of criteria which follows below:

1. Rust is a block structured language.

2. Numerous compile-time checks for memory and concurrent safety are provided
exceeding the C compiler checks by far.

3. There are also some run-time checks included: Array bounds are always verified.
Types are not checked at run-time because they are strongly proven at compile-
time.

4. Rust provides a module system that is well-integrated into the compiler and pack-
age manager.

5. For range definitions, only certain machine-driven steps like 16, 32 and 64 bit
integer variables are available.

6. Rust provides some language supported error handling. Verifying results that
could fail before accessing a value must happen explicitly and is checked by the
compiler.

38

7. A large set of well-integrated tools exists (see section 4.2.2 Tooling).

8. The execution is predictable, if external factors are predictable.

Conclusion
After comparing the two languages according to the given criteria, it becomes clear that
they are both only partially suited for use in safety critical applications according to IEC
61508. C is highly verified and proven in the real world while Rust does not offer a certified
compiler and is still changing rapidly. On the contrary Rust fulfills many of the technical
criteria very well, while for C only a smaller subset should be used for standards conformity.
This also means that Rust can possibly comply to the standard once the compiler is proven
or certified, while the C language can never be compliant without restrictions.

39

4.4 Safety vs Performance

This section will examine how safety is handled in C and Rust and investigate how well
both languages perform. Between both chapters, an example program will be introduced
that will be used to carry out the measurements.

4.4.1 Safety

One of the most important aspects and the main reason why the Rust programming lan-
guage could be a better alternative to C is the improved memory safety. Unsafe memory
management often leads to undefined behaviour of the application, which can additionally
affect one or more security goals.

This chapter introduces different types of safety from a programming perspective and ex-
plains the problems that currently exist in the C language which can lead to unsafe be-
haviour of the application. Afterwards, some real world implications and an overview of
current countermeasures are shown. The chapter finishes by looking at how Rust handles
these issues and which problems the new language is able to solve.

Safety basics
Before diving into the types of safety, the term undefined behaviour needs to be explained.
Undefined behaviour means that in a certain situation, the compiler can freely decide what
to do because the situation is not valid according to the language standard. Dereferencing
a null pointer in C is an example of undefined behaviour. This means that a compiler is
allowed to assume that every pointer that is dereferenced is indeed valid and can apply
optimizations accordingly. [68]

The safety domain can be divided into different categories. The lack of a specific type
of safety can also lead to an unfulfilled security goal. For each category, the implications
for security are mentioned in the description. As most categories affect all security goals
according to the CIA triad (Confidentiality, Integrity, Availability) the goals will not always
be mentioned explicitly in the following list. When only a specific goal is affected, it will be
denoted in the description. The categories are as follows:

• Type safety:
Type safety prevents type errors like type confusion: Reinterpreting a memory location
as a different type (e.g. through pointer casting) can lead to wrong semantics. When
casting a small pointer type to a larger one and reading its referenced value, uninitialized
memory or different variables will be accessed.

• Memory safety (see [116] and [51]):
Issues regarding the access of invalid memory locations. While they could lead to a crash
of the application, they can often impair security by leaking data or enabling further
attacks.

– Spatial safety: Memory issues caused by accessing memory at improper locations.

∗ Buffer overflow or underflow
This is realized by accessing buffer indices that are larger than the size of the buffer
(overflow) or smaller than zero (underflow). This can lead to arbitrary memory
reads and writes on the stack, heap or data segment of the program.

∗ Null pointer dereferencing
In addition to be seen as undefined behaviour, dereferencing a null pointer can have
different implications. Running as a user space program in an operating system,

40

it will lead to a segmentation fault and thus to a program crash. This is of course
not the intended behaviour, but only affects the availability of the application.
Running in kernel space or bare-metal embedded environments, access to the null
address is indeed possible and could allow an attacker to read or store data at this
location.

– Temporal safety: Memory issues caused by accessing memory at an invalid time.

∗ Uninitialized use
In this case, a variable is accessed before it is initialized. Because memory is not
cleared (e.g. set to zero) before introducing variables most of the time, foreign or
invalid data can be accessed.

∗ Dangling pointer to stack
This issue is caused by returning a pointer to a stack variable from a function.
Because the stack frame is no longer valid after returning from the function and
will even be overwritten by new function calls, the memory address points again
to foreign or invalid data, which can thus be accessed.

∗ Use-after-free
Using a pointer to a previously allocated heap section after it is freed causes the
same problems as the dangling pointer to stack issue, just with heap sections in-
stead. A common special case of using such a pointer is freeing the memory again
(called double-free), which can possibly corrupt the memory manager leading to
unexpected behaviour in totally different parts of the program.

• Memory leakage:
In this case, allocated heap space is not freed, leading to an increased memory usage.
This issue again only affects the availability by provoking a Denial of Service.

• Safe concurrency:
Running concurrent tasks for example through multiple operating system threads or
interrupt handlers on embedded systems can cause a different set of problems.

– Race conditions:
Multiple tasks accessing the same data at the same time without any synchronization
measures can lead to unintended results (e.g. skipping security logic). If the first
task for example only executes code if a variable is non-null and the second task
regularly replaces this variable, a situation can occur where the check for non-null was
successful, then the other task sets the variable to null and only then the code of the
first task is executed, now leading to a null pointer dereference.

– Deadlocks:
A program can block itself from executing if two tasks prevent their advance mutually.
If for example task 1 waits for lock A having exclusively acquired lock B and task 2
waits for lock B having exclusively acquired lock A, no more progress is possible. This
is once again only a problem for availability by provoking a Denial of Service.

• Side-effects:
This generally means that the program state can be modified through other means than
the program code. One example are volatile addresses. If the memory at an address
can change from outside of the current execution context (e.g. through memory-mapped
registers on embedded, which are changed due to hardware conditions), the compiler
must consider these effects when optimizing the code. Otherwise, the values may be
reused instead of re-read, thus leading to incorrect behaviour.

Memory Safety in C
C offers a high degree of freedom for the developer, often allowing the programmer to write

41

code that leads to one of the above-mentioned issues. The first aspect is the weak type
safety of C. A reinterpretation of memory is easily possible through casting as seen below:

typedef struct {

int passenger;

} Bike;

typedef struct {

int passengers[5];

} Car;

void main() {

Bike bike;

bike.passenger = 5;

Car* car = (Car*) &bike;

int *p = car->passengers;

int pass = p[4]; // Will access foreign/uninitialized memory

}

Listing 17: Accessing a pointer of the wrong data type (C)

Spatial memory safety is not always guaranteed. Array indices for instance are not
checked. Consider an array x with the length of five. x[5] accesses an element outside

of the array’s memory (buffer overflow). A buffer underflow (x[-1]) is also easily
possible. C’s pointer arithmetic, which can be very useful in many cases, often makes such
issues hard to find. Considering null pointer dereferences, a null pointer is often used
as a magic value for many different interpretations (e.g. an error occurred, a variable is
not yet initialized, there was no value, etc.). Since these interpretations are not enforced
by the compiler, they need to be clearly documented by the developers or otherwise lead to
unexpected consequences like undefined behaviour. Example:

const char* getData() {

if (global_success) {

return &global_data;

} else {

// The first developer uses NULL to signal an issue.

return NULL;

}

}

void process() {

const char* data = getData();

// A different developer assumes that data will never be NULL.

char first = *data; // May access memory at address 0.

}

Listing 18: Potential NULL pointer dereference (C)

Temporal memory safety is another large challenge of the C language. Uninitialized
use of memory is not strictly checked, though many compilers will produce a warning.

42

Example:

int color;

Color colors[2];

switch (input) {

case COLOR_BLUE:

color = 0;

break;

case COLOR_RED:

color = 1;

break;

}

// When input is neither BLUE nor RED, access to unknown memory

Color colorRgb = colors[color];

Listing 19: Potential uninitialized use of a variable (C)

The following example shows a dangling pointer to the stack:

int* getState() {

int state = 5;

return &state;

}

void doStuff() {

char data[10];

//...

}

void main() {

int* state = getState();

doStuff();

if (*state == 1) {

//...

}

}

Listing 20: Dangling pointer to stack (C)

Here, getState () returns an address to memory inside its stack frame. Calling

doStuff () will now most likely overwrite this memory with its own stack frame be-
cause of the much larger data variable. Accessing the now overwritten memory may lead to
unexpected results. Even though issues considering the heap are not relevant for low-end
or safety critical embedded programming, they may become increasingly important when
memory sizes get larger and are thus still considered here. Since the heap space needs to
be managed manually using malloc () to allocate and free() to free memory, use-
after-free issues are possible. The pointer used to free the memory will still be valid from
a compiler perspective afterwards and can thus be used to access invalid memory. Sharing
pointers to the same value may lead to a double-free issue when those pointers are freed
at different positions in code, which may be hard to debug. Manually managing memory
can also lead to memory leakage when new memory is allocated regularly, but not freed
if no longer needed.

43

When running multiple threads or interrupt handlers, direct write access to all static vari-
ables is possible with no synchronization required, possibly leading to race conditions. In
addition to that, mutable references to stack or heap variables can be shared and therefore
used simultaneously, too. There is also no simple way to prevent deadlocks apart from
carefully placing synchronization code.
Side effects are not always considered, since the compiler can reorder memory accesses.
This can be solved by marking the required variables with the volatile keyword (e.g.
volatile int* a), which will treat all operations on these variables as volatile and

thus perform all memory accesses exactly as described in the program. This is of course
error-prone because the choice of which variables to mark is highly dependent on the envi-
ronment of the application.

Real World Implications
The following paragraphs will discuss the real world implications of the mentioned memory
issues and present countermeasures which are currently used. According to Microsoft [79]
and the Chromium team [77] about 70% of discovered vulnerabilities in recent years are
caused by unsafe handling of memory. Their research has shown that this rate stayed the
same over the past 20 years despite the efforts taken to reduce the issues. The major prob-
lems include heap corruption, use-after-free, type confusion, uninitialized use and others.
Due to the severity of issues caused by unintended use of the null pointer, Tony Hoare, the
”creator” of NULL called its invention once ”the billion dollar mistake” (cf. [50, at 27:40]),
hinting at the damage such simple mistakes can cause. In addition to that, the MITRE cor-
poration lists at least five memory safety vulnerabilities in their top 25 software weakness
list (in addition to some others that can be caused by them) (cf. [82]).

Countermeasures
Due to the severity and the large consequences of mistakes with memory handling, many
countermeasures have been developed. They can be separated into two different categories:

The first category tries to prevent issues during development and focuses on writing better
software. Firstly, coding standards and guidelines can improve code quality and prevent
common mistakes. Examples include the C secure coding guidelines [55], the MISRA C
standard [81], the SEI CERT C Coding standard [20] and many more. Nevertheless the
application of these standards is optional or not enforced in a project. An additional ap-
proach are static code analysis tools which scan the code for possible vulnerabilities and
guideline conformity without executing it. Cppcheck [27] or SonarQube [110] are popular
examples for the C language. As the study [37] concludes, none of the tested tools were
perfect in detecting all crafted vulnerabilities, thus requiring additional approaches. Very
similar to static code analysis is the so-called Fuzzing, which tests the program dynamically
by inputting random or unexpected data with the goal to produce undesired results. As one
can expect, this approach will not detect every issue because most of time it can’t repro-
duce every possible situation. Testing the code at run-time is an approach also pursued by
dynamic examination tools like Valgrind [133] running the program in some kind of virtual
machine. They can be used for memory debugging, memory leak detection and more, but
are not viable in embedded environments. Many of the safety issues could also be solved by
external libraries or even the C++ standard library (e.g. smart pointers in C++11 handling
unique ownership and other concepts), but since they are not enforced by the compiler, a
misuse or deviation from best practices is always possible. (cf. [38, p. 12])

The second category, which is again not applicable for embedded environments, doesn’t
try to solve the actual memory problems, but to contain the damage during execution.

44

The first approach in this category includes different operating system tools (cf. [136]) like
ASLR, which makes it harder to guess memory locations, or DEP, which prevents execution
of user-introduced code. Analyzing at real-world vulnerabilities shows that bypassing these
measures is still very common. The second approach is sandboxing. Applications are sepa-
rated inside smaller units, making access to the outer world harder and thus preventing the
attacker from gaining access to the whole system if one application is compromised. This
includes technologies like virtualization, containerization or process sandboxing.

Looking at Microsoft’s statistics [79], the same classes of vulnerabilities have prevailed over
the past 20 years, meaning that even though the countermeasures may be useful, they don’t
prevent the issues in the first place. It may therefore be better to consider employing a safer
language like Rust.

Memory Safety in Rust
The Rust programming language reduces the freedom available to the developer with the
goal to still offer everything needed in a safe way [38]. The following paragraphs explain
which memory safety problems introduced at the beginning of this chapter are solved by
Rust and which are not.

Rust offers strong type safety. This means that for example type casts are only allowed
on primitive types and always need to be expressed explicitly:

let a : u32 = 5;

let b : f32 = 7.5;

let c = a as f32 / b; // Explicit type cast

Listing 21: Explicit primitive type cast (Rust)

Other type conversions must be explicitly supported by the types through implementing the
From or Into traits. In the following example, a custom Number type is introduced

that can be created from an i32 value:

struct Number {

value: i32

}

impl From<i32> for Number {

fn from(item: i32) -> Self {

Number { value: item }

}

}

fn main() {

let val = 5;

let num: Number = val.into();

}

Listing 22: Explicit type conversion (Rust)

Spatial memory safety is enforced by different mechanisms. Array access with indices
is always checked according to the array’s length making buffer overflows or underflows
impossible [90, pp. 11-15]. Rust uses so-called fat pointers containing not only the ad-
dress of the first element like in C, but also the size of the array. It must be noted that
these checks may introduce a run-time overhead. To solve this, Rust provides faster al-
ternatives for common programming patterns, for example Iterators for looping over an

45

array (see section 5.1.2 Portability). Furthermore, safe Rust has no pointers and thus no
null references. Alternatives for most use cases exist: To represent optional or uninitialized
values, the Option <T> type can be used. To return a value that may be an error, the

Result <T, E> type should be used.

For temporal memory safety, uninitialized variables are not possible, variables always
need to be initialized before they can be used. Rust also makes it easier to live with these
restrictions due to its expression syntax:

let color = match input {

ColorBlue => 1,

ColorRed => 2,

_ => 0 // Default value is always required

};

// .. color can be used here

Listing 23: No uninitialized use and utilizing the expression syntax (Rust)

Both the dangling pointer to stack as well as the use-after-free issues are impossi-
ble in safe Rust (cf. [21]) due to its ownership model which was explained in section 2.2
Rust. The basic approach can be described as Aliasing XOR Mutability, which means that
either multiple read-only references to the same value exist or the value can be modified,
but not both at the same time. In addition to that, the compiler always manages life-
times of objects and borrows (references), dropping (freeing) the object implicitly after the
owner goes out of scope. This is all guaranteed during compilation and therefore poses
no run-time overhead. Most of the time, using the automatic dropping of variables is the
preferred way and memory leakage is impossible. Though it is also safe in Rust to call the
mem:: forget(data) function which prevents cleaning up the referenced object when

data goes out of scope (while still holding all safety guarantees). This can be useful to
share data with libraries written in other programming languages. But it also means in this
case, that memory leakage is possible in Rust.

The checking of references also applies to concurrent tasks. Race conditions are im-
possible and checked by the compiler (cf. [130]). Only immutable references can be shared
over different execution contexts (threads, interrupt handlers, etc.). As explained in sec-
tion 2.2 Rust, mutably shared memory is only possible with explicit synchronization. The
following is an incorrect example, that would work fine in C, but is rejected by the compiler
in Rust [90, p. 21]:

let mut data = vec![1, 2, 3];

let mutex = Mutex::new(data); // Mutex owns data

data.push(4); // Compilation error: data was moved

let mut d = mutex.lock().unwrap();

d.push(5); // Correct way

Listing 24: Synchronized data sharing with a Mutex (Rust)

Although unsafe use is impossible, the provided tools can still be used incorrectly to create
deadlocks, which are not prevented by the language just like in C. Another advantage of
the ownership system is that even when concurrency was not considered during development
(e.g. in a used library), safety is still guaranteed.

46

Considering side effects, the behaviour is similar to C. But instead of whole data struc-
tures, only the required operations need to be marked as volatile, offering finer control:
ptr:: read_volatile(x)

All the mentioned Rust language semantics can make it hard for beginners as develop-
ment may feel like working against the borrow checker. If the compilation succeeds though,
the program is proven to be free of a large amount of memory or concurrency issues.

As one might notice, many actions especially in embedded development, would not be
possible with the above-mentioned strict rules. This is the reason a wider set of the lan-
guage called ”unsafe Rust” exists. In this set, the code is not verified by the borrow checker
and thus provides the ability to perform actions like directly accessing memory addresses or
working with raw pointers (which is required for memory-mapped registers). Such parts of
the code must be explicitly labeled with the unsafe keyword so they can easily be audited
and reviewed. The programmer is expected to write memory safe code in these small sec-
tions, which can be easier in such separated spaces in comparison to a whole C program,
but still poses a risk for memory safety. It is common practice to keep these sections as
small as possible and abstract them through a higher, safe interface. The paper [97] finds
that reasons for using unsafe Rust include the reuse of existing code (for instance with a
Foreign Function Interface (FFI) to C), performance improvements (e.g. for unchecked ar-
ray access) or bypassing too strict compiler checks. The paper also finds that unsafe code
can only be replaced by safe Rust in some situations, but is indeed required to perform the
required actions in most cases. On the other hand it might be alarming that the survey
[36] finds that in June 2019, about 30% of all crates published on crates.io used some kind
of unsafe code. There are also some real-world problems. The memory safety chapter of
[97] found null pointer dereferences, buffer overflows and more in unsafe code. The Rustsec
Advisory Database, which collects security issues of Rust crates, also contains numerous
memory safety vulnerabilities inside unsafe Rust code [46]. This means that Rust is also
not completely free from these issues, but they can significantly be decreased by reducing
unsafe Rust code and carefully examining the clearly separated remains.

Conclusion
After summarizing different memory safety issues in C, looking at the real world and cur-
rently used countermeasures one can conclude that to solve memory safety problems, the
issues need to be eliminated at compile-time. Seeing how Rust tries to respond to these
problems shows that safer low-level programming is indeed possible, still careful examination
is required when developing safety or security critical code.

4.4.2 Example program

To be able to assess certain aspects, a more elaborate programming example is needed. An
existing implementation of a particle filter qualified as such an example. The purpose of this
algorithm lies in sensor data fusion and it can be seen as an alternative to a Kalman filter.
In the defence context, it is used to merge tracking data of multiple radar sensors. It is com-
putationally more intensive than the Kalman filter, but allows to work with non-Gaussian
probabilities. At the beginning, a defined number of particles, each with the same weight,
is distributed in the coordinate space. After a measurement is received, the particle weights
are adapted according to the distance to the measured point. To get rid of very inaccurate
particles, the particles with the lowest weight are discarded and new ones are created close
to the measurement in a resampling step. To predict the movement of the measured object,
the particles are moved according to a proposal function. A predicted position can now be
determined through the weighted distribution of the particles. To simplify the problem, a

47

pendulum was used as an application. The input of the filter is now the position of the
object as detected by the sensor at each time step. In this simplified version, the movement
of a pendulum is generated by a differential equation at the beginning of the program and
the position at each simulation step is provided to the filter. The output would result in a
prediction of the object’s flight path, but to be able to compare the results clearly, a single
number is printed in this simplified case. The products of the particle weight and their
position are summed up to provide a deterministic and comparable output value. The C++
code of the program was already available and provided by a colleague. It was adapted to
C and afterwards rewritten in Rust for the comparison.

The flow of the program looks as follows. The identifier given in parentheses is later used
in the performance statistics:

1. The measurements are generated (generate).

2. The system is initialized, by placing the particles uniformly along the pendulums path
(initialize).

3. A loop iterates over all measurements, simulating the different time steps (filter).

a) For each measurement, the particles are updated (sir_filter).

i. Each particle is moved according to the proposal function (proposal).

ii. Each particle’s weight is changed respectively to its distance to the measurement
(importance).

b) The particles are resampled, so that particles with low weight are replaced by particles
closer to the measurement (resample).

After all measurements are processed, the output metric is generated and printed over the
semihosting channel.

For both the Rust and the C program, two variants of data storage are used. Because
of the immutability of static variables in Rust, it is common to place data structures on
the stack, while in C static variables regularly utilize the data segment. To be able to com-
pare this aspect, two programs for each of the languages are tested. One with most of the
data on the stack (stack example) and one that uses the data segment (data example). In
the data example for C, structures like cl_particle particles[N]; exist as static
variables. For giving elements to a function, indices are utilized. In the stack example,
these data structures are mostly initialized in the main function, and pointers are passed
to function calls for referencing a certain element. In the idiomatic Rust variant (stack
example), the arrays are placed in structs which reside on the stack. E.g.

pub struct ParticleFilter { particles: [Particle; N] }

Here, elements are passed as references and indices are almost never used. Using static
mutable variables for the data example is a greater challenge in Rust. Two conditions must
be fulfilled for the compiler to prove safety: Firstly, the data must be synchronized over
multiple execution contexts (e.g. main function and interrupt handlers). This is handled by
a Mutex object. Since there is no operating system to provide synchronization utilities,
this mutex can only be locked in an interrupt-free section. Such a section is introduced by
the interrupt ::free utility method. The second condition is the interior mutability.
Since it is impossible for the compiler to prove that only a single mutable borrow of a static
variable exists at any time, borrowing is performed at run-time. A RefCell object is
employed for that. The definition of the variable now looks as follows:

static particles : Mutex<RefCell<[Particle; N]>> = //...

48

For accessing the data mutably, three steps need to be performed. Interrupts must be
disabled, the Mutex must be locked and the RefCell value must be borrowed. A
typical access now looks like this:

interrupt::free(|critical_section| {

let p = particles.borrow(critical_section).borrow_mut()[0];

});

Listing 25: Correct mutable access to a static variable (Rust)

So in the end, four programs, two for each programming language are tested. All code files
can be found in Appendix B in c/perf (p. xxxiii) and rust/perf (p. liii).

4.4.3 Performance

To evaluate how well Rust delivers on its promises on zero-cost abstractions, performance
measurements were performed. The additional safety checks could impair the speed of the
application or increase its footprint both of the executable and in memory at run-time. To
be able to assess these implications, the particle filter example program was tested in both
C and Rust according to defined aspects. These criteria include the time spent per method,
the memory usage, the size of the executable and the compilation time. The following para-
graphs will first explain how the measurements were performed, then present the numbers
and finally discuss the results.

Measurements
To be able to measure the time spent per function, the processor cycles are counted. Many
ARM controllers, including the one used in this thesis, contain a so-called Data Watchpoint
and Trace Unit (DWT) [7][76]. This unit provides a 32bit Cycle Count (CYCCNT) register
that can be read to return the number of processor cycles since startup. To enable cycle
counting, the CYCCNTENA (CYCCNT Enable) bit in the DWT CTRL (Control) register
has to be set [26]. By reading and storing the cycle count at the beginning of a function and
subtracting it from the register’s value at the end of the function, the cycles spent during
method execution can be computed. This value is logged over the semihosting channel (see
chapter 3 Programming a Microcontroller). To allow for nested measurements, a global
variable stores the cycles spent during the timing calculations, which will be subtracted
from all measurements. For C, the timing calculations are contained in time.c , while
the Rust code is in timing.rs . The C code can be used as follows, which will print the
cycles spent in between both function calls:

unsigned int tval = TimerStart();

// ... function body

TimerEnd(tval, "functionName");

Listing 26: Timing measurement invocation (C)

To be able to use the global mutable variable for storing the time spent during measurements
in Rust, explicit synchronization would be required. Because this would influence the timings
and direct access is indeed safe due to the variable being only accessed from one execution
flow (not from any interrupt handlers), it is read and written directly in an unsafe block.
The Rust code uses the Drop trait, which works like a destructor. As soon as the object

goes out of scope, which is at the end of the current block, the drop method is called.
This method will then calculate the passed time. It can be used like follows:

49

{

let _t = timing.time("functionName");

// ... function body

}

Listing 27: Timing measurement invocation (Rust)

The measurements are performed at the seven different spots of the program flow as defined
in section 4.4.2 Example program.

For the memory usage, the maximum stack size is assessed. For measuring this metric,
a technique called stack painting is employed. Before the program starts, the whole stack is
filled with a predetermined pattern. After completion of the program, the stack is searched
from the end of the stack segment. The first element that is not equal to the pattern corre-
sponds to the maximum stack address. Then the size can easily be computed by subtracting
this value from the address of the bottom of the stack (highest address) [75]. In both Rust
and C, painting begins at the current stack pointer so that the already existing stack frames
for the startup code are not overwritten. The stack size is reported through the semihost-
ing channel at the end. The relevant code can be found in stackcheck.c for C and
stackcheck.rs for Rust.

Another important factor for embedded development is the size of the executable which
must be loaded into flash memory. This memory section contains code as well as static data
and can be very limited on some microcontrollers. To measure this aspect, the section sizes
are retrieved from the binary file using the arm -none -eabi -objdump -h command,

resulting in a list of sections including their size, target address (VMA), address in the flash
(LMA), file offset, alignment (Algn) and flags. For example the text section looks as follows:

Idx Name Size VMA LMA File off Algn

1 .text 00007c34 080001c0 080001c0 000101c0 2**6

CONTENTS, ALLOC, LOAD, READONLY, CODE

Listing 28: Object dump example

The sizes of the text (program code), rodata (read-only data), data (mutable data)
and bss (zero-initialized data) sections are considered for comparison.

The last aspect is the time spent during compilation of the program. Although this does not
influence the actual execution time, it is still important for software development and can
possibly impair productivity. For measurement, the Linux time command was employed,
resulting in an output containing the real time that has elapsed as well as the total execution
time from multiple processor cores added together.

All these parameters are measured for different programs and settings. Firstly, the C and
Rust programs are tested with different optimization levels, including no optimization (-O0),
the best optimization for speed (-O3) and the optimization for size (-Os). Both variants,
the stack and the data example, are tested for the two programming languages.

All measurements were performed separately. Firstly, the program was compiled without
any measurement code in place and the compilation time was measured. This binary was
also used to output the section sizes. After that, the program was compiled and run with
the timing instrumentation in place. Afterwards, the stack painting methods were build
into the binary and the program was run again. These steps can be found in the respective

50

run_tests.sh scripts in every programming language’s folder. Since the per-function
timing and stack data was received over the semihosting channel and written to a file, the
results must be parsed. The summarize.py script adds up all the invocations of the
same functions and calculates the minimum, maximum and average cycle counts for each
of them. The source code for all the measurement utilities can be found in Appendix B in
c/perf (p. xxxiii) and rust/perf (p. liii).

Results
Figure 2 (page xxiii) visualizes the number of total processor cycles spent during program
execution. For both variants, with data structures in the data segment as well as on the
stack, the measurement was executed for the three optimization levels 0, 3 and s. The results
for the two variants are very similar, although differences can be seen between C and Rust.
Table 5 (page xxii) provides an overview of the cycles spent per method. The rows corre-
spond to the function hierarchy explained in section 4.4.2 Example program. Ten particles
as well as ten measurements were used, resulting in ten executions for the sir_filter

and resample functions and 100 executions for importance and proposal . For
each function, the sum of all invocations, the average execution time and the minimum
as well as the maximum execution times are provided. Functions with a ”-” mark at the
per-invocation fields were only executed a single time per program run. All variants were
executed multiple times and turned out to be completely deterministic.

The resulting section sizes can be seen in figure 4 (page xxiv). The differences between
the data and the stack variants were minimal. Since in both cases the data structures will
only be initialized after starting the program, they don’t occupy any flash space. The data

section is also not drawn to this diagram, because it was almost empty for all test cases.
To be able to compare the sizes of uninitialized data, which can be an indicator of memory
usage, the bss section could be used. Although for C this section’s size is filled with
useful data, Rust doesn’t seem to utilize it. This is most likely due to the fact that the Rust
data structures are wrapped with an additional Mutex and RefCell , complicating the
initialization, so that the zero-initialized bss section is not used. These are the reasons
why only the text and rodata segments are drawn in this diagram, depicting the total
flash memory usage. These numbers were again deterministic.

Figure 6 (page xxv) now shows the stack usage for different optimization levels and vari-
ants. In this case, large differences between the two data storage variants as well as the two
languages can be observed. All measurements were again deterministic.

The last measurement in figure 8 (page xxvi), depicts the average compilation time in
seconds for both programming languages and the three optimization levels. Those values
were not deterministic, so this test had to be run multiple times and the average was cal-
culated for each test. In addition to cleanly building the complete project, the compilation
time was also measured when only a single file was changed.

Discussion
This section will try to explain the resulting statistics and investigate certain anomalies.
Problems that are found will be fixed by optimizing the code, which will result in different
measurements. The improved results will then be presented in the next chapter.

The first aspect to be discussed is the execution time measured in processor cycles as can be
seen in figure 2 (page xxiii). C has very similar execution times on all optimization levels,
but level 3 is still the best just like in Rust. For optimization level 0 however, Rust

51

has a much higher execution time, due to its additional abstractions. Stepping through
the Rust program with a debugger reveals that all call structures remained intact without
optimizations. Large call stacks were often caused by iterators or formatting functions.
The optimized code however contained almost no function calls and iterators were shrunken
down to only a few assembly instructions. In C, there were no such complicated functions
in the first place as on one hand the formatting was implemented very simply and on the
other hand basic for -loops were used for iterations. This only allowed the optimizer to
improve the execution time of the C program by around 100.000 cycles (9%) from level 0

to 3 , while the Rust compiler reduced the number of cycles by around 450.000 (30%). The
s optimization level showed almost the same number as 3 by only slightly increasing

execution time. All in all, the cycle counts of Rust and C on optimization levels 3 and
s are close to each other, although C being slightly ahead. Rust requires 104% of C’s

execution time for the same goal.

Table 5 (page xxii) takes a deeper look at the function timings. Firstly, it can be seen
that the generate and initialize functions only make up small parts of the total

program. While generate is faster in C, Rust is quicker when executing initialize .

The generate improvement most likely depends on the compiler-provided implementa-
tions of the sine and cosine functions, as only mathematical formulas are executed. The
reason why initialize is faster in Rust could be the use of iterators as they might
allow the compiler to perform more targeted optimizations than when using basic for -
loops. Examining the difference between stack- and data-located arrays, C shows almost no
difference for generate . Rust however shows an improvement when the measurements
are placed in the data section. Even though the additional synchronization measures were
expected to impair performance, generate ’s return data does not need to be copied as
it would be the case for stack-located data.

The next function, importance only takes very few cycles for execution. Interestingly,
the Rust function is much faster than the C variant, although both functions contain almost
the same code. As investigations of the C code revealed, the double function fabs for
getting the absolute value was used instead of the more suited float function fabsf .
This caused type conversions that were responsible for the longer execution time. It was
also found that floating point literals in C did not include the trailing f and thus were
interpreted as double values. This caused additional overhead, since double calcula-
tions are not supported natively by the processor and had to be provided by the compiler.
Comparing the stack and data variants only very small differences, probably relating to the
controller’s memory management, can be seen.

Further examinations showed that the double functions sin and cos used in other
parts of the code were also falsely applied. Replacing them with their float counterparts
improved the execution time of the C program drastically. Looking at the Rust assembly, al-
though the correct float functions for sine and cosine were used, they internally relied on
double calculations, leading to the same problems as with C. Since Rust does not include

any math support in the core, but only in the standard library, the external crate libm

was used. This crate does not provide any special implementations for specific targets like
GCC does and thus relies on f64 (double in Rust) implementations for sine and cosine
that are very slow on float -only targets. It is already discussed in the Rust issue tracker
to provide target-specific math functions in core, but was not yet implemented [4]. Other
solutions to this problem would include using the micromath crate for inaccurate approx-
imations of math functions or depending on a faster C library by linking it into the binary.
Since internally, f64 arithmetic was still used, the Rust program could not be optimized as

52

well as the C program as the final performance measurements, explained below, have shown.

A more complex part of the program is the proposal function. Although containing
no conditions or loops, execution times differ largely between the minimum and maximum.
The sine and cosine functions used could be the root cause for this behaviour, since they will
most likely provide shortcuts for special input values, e.g. one or zero. While on average, C
is faster, Rust shows faster min and max values. Rust being slower could again be caused
by the implementations of the sine and cosine functions. Comparing stack and data vari-
ants does not show large differences. These functions are both called in the sir_filter

function. The additional time taken by this function is smaller in Rust than it is in C,
probably again caused by the use of iterators.

Finally looking at the resample function, Rust takes significantly less time for exe-
cution. This result is relatively unexpected due to the use of a range-style for loop. Rust
needs to check the array bounds before accessing them multiple times, which would in
theory cause an increase of execution time. The time spent by C was largely decreased
by the float optimizations. As the investigations have shown, the overhead was caused

by the (1.0/N) divisions, that required conversions from float to double and back.

Taking a look at the flash size of optimization level s in figure 4 (page xxiv), Rust bi-
naries are much larger than those of C. This is not only the case with the text , but
also the rodata segment. While C generates a text segment of around 25KB and a
rodata segment of only around 500 bytes, Rust requires significantly more flash mem-

ory with around 40KB of text and 7KB of rodata . To improve these numbers, Link
Time Optimization (LTO) (lto = true in Cargo.toml) was applied, which allows
the linker to perform additional optimizations. This slightly improved the size, but only by
about 3KB. Further investigation with llvm -nm -print -size , which prints all sym-

bols (functions) and their sizes in the binary, revealed that the float formatting functions
for outputting the result were taking up large amounts of space. In C, these were already
implemented manually because the standard library did not offer them. Reimplementing
them manually in Rust, reduced the flash size to around 22KB (18KB + 4KB). This also
reduced stack sizes, which will be described in the following paragraph. Rust now seemed
to be on the same level as C, but enabling LTO for GCC revealed also largely improved
code sizes. The total size was shrunken to more than half (to around 10KB) of the previous
value, keeping the distance between C and Rust.
Another investigation showed that the remaining large data section is caused by UTF-8 data
used for Rust’s string functionality. Since strings were only used for outputting the result
over the semihosting channel and this is not part of the actual program, it was left out for
further tests. To make sure that the program still runs correctly, the result was written to
a predefined memory location that could be examined using GDB.

Before applying the above-mentioned optimizations, the stack usage looked like depicted
in figure 6 (page xxv). Rust’s maximum stack sizes were much higher than C’s, especially
in data example. The optimizations could largely improve on that, most likely caused by a
large call stack of the float to string conversion methods.

The compilation times shown in figure 8 (page xxvi) display an expected behaviour. While
C, especially the GCC compiler is known for its fast compilation times, a Rust program takes
significantly more time to build. Although the GCC times differ between the optimization
levels, they are always below three seconds. Rust on the other hand differs only slightly
between the levels, but with a constantly high compilation time of around 40 seconds. Note

53

that this time applies to the whole project being compiled including libraries. When only
a single file is changed, Rust doesn’t recompile the dependencies and C even recompiles
only the specific file. This results in the compilation times on the right hand side of the
diagram. Rust’s high compilation time are partially caused by the numerous libraries that
are included. In the tested setup, 53 libraries were compiled by Rust, while most likely only
a very small amount of code was actually part of the resulting binary. To be fair one must
add, that while Rust considers all input files for compilation, in C only the necessary files
were included in the Makefile and not the whole library. Rust’s higher compilation time can
also be explained by the additional checks introduced due to the borrow checker and the
strong type system. Additionally, the very mature and grown optimizations of GCC may
be hard to reach.

Results after Optimizations
After the above-mentioned optimizations were applied, new measurements were performed.
All diagrams were drawn again to allow for comparison. As can be seen in figure 3 (page
xxiii), the optimized C version is around ten times faster as before, while Rust could only
improve its timings slightly. Execution times are hardly comparable now since only the C
code was optimized and the Rust issues could not be solved easily. To be able to compare
the languages in a fair way, the non-optimized graph in figure 2 (page xxiii) should still
give a good view on the relative speeds of C and Rust, since both languages relied on the
unoptimized double or f64 implementations at this point.

The section sizes were largely decreased due to the removed functions (see figure 5) (page
xxiv). Interestingly, this is only true for optimization levels 3 or s . The size of the unop-
timized Rust version was even increased by around ten kilobytes. Rust’s flash size was now
reduced to about 12KB and 9KB for 3 and s respectively, while C used around 6KB for
both variants. The larger Rust size is most likely caused by the remaining f64 functions.
The tables 3 and 4 (page xxi) show the largest functions and static variables from the output
of llvm -nm -print -size . It can be seen that the sine and cosine functions as well
as their utilities take up the largest space. Only looking at the particle filter algorithm, the
start and main functions in C and the __cortex_m_rt_main function in Rust

must be considered. It can be seen that the Rust function (1272 bytes) is only slightly
bigger than the C functions (1116 bytes). Another interesting aspect is the particles

array which takes up 200 bytes in C and 204 bytes Rust, most likely containing additional
management data for the Mutex and RefCell . The additional functions for double
calculations in Rust also take up much space, again making the results hardly comparable.

The stack size in figure 7 (page xxv) now gives a more diverse picture. While the 0 variant
was only slightly decreased, the other optimizations levels show larger improvements. C’s
stack usage was reduced by 62% to around 100 bytes for the data variant, while Rust only
reached 250 to 350 bytes through a 40% - 50% decrease. While for the stack variant C uses
slightly less memory than Rust with s optimizations, it was just slightly reduced to 670KB
by 70KB for level 3 . In this special case, Rust can even beat C by only requiring 650KB
of stack space.

The compilation time was not measured again as it did not change in any meaningful way.

Other Performance Measurements
A quick look at other published performance measurements should be taken. Looking at
[8] and [16], they both measured Rust’s performance in comparison to C for a specific, non-
embedded use case. Both blog posts conclude that when using the correct features of Rust

54

for the specific problems, the language can be on par with C performance or even outperform
it. The blog post ”Speed of Rust vs C” [67] provides a list of Rust features that are beneficial
or obstructive for performance. Positive examples include highly optimizable iterator chains
or strings with sizes known at run time, so that no strlen with a complexity of O(n)
is needed. Negative examples however are the forced synchronization of static data even
for single-threaded applications, the additional bounds-checks for arrays or other run-time
checks that may be needed when the strict compile-time borrowing rules cannot be satisfied.

Conclusion
This chapter has shown how measurements for spent time, used memory and flash as well
as compilation time can be performed for C and Rust. It also presented and discussed the
results of these measurements applied to the particle filter example program. Investiga-
tions revealed different problems with the implementations, but also the languages them-
selves. Although the issues found during the performance measurements are very specific,
general conclusions can still be drawn. It becomes clear that C requires much more at-
tention for tasks that are covered by Rust’s type system. This was shown very well by
the float / f64 vs double / f32 problem. In Rust, it would be impossible to call a
f64 function with f32 values without explicit conversion due to its strong type system.

Although, when investing time into the optimization of C code, the performance can be
greatly improved and fine tuned. Rust on the other hand already shows pretty good per-
formance with the first compiling program, but is harder to optimize for example caused by
the use of libraries. Although the f32 variants of the sine/cosine functions were used, they
internally still relied on the f64 type, making Rust’s type system advantage meaningless.
This shows that Rust’s ecosystem is still lacking certain utilities, especially for embedded
devices, although it is only a very specific example. In such environments, C is much more
optimized and mature. In conclusion one can say that while the additional safety measures
of Rust don’t impair the language’s performance and allow similar performance to C, other
factors like the ecosystem can limit the ability for further optimization.

55

5 Switching to Rust

After the previous section has shown that Rust could be a viable alternative, this chapter will
now look at important aspects to consider when actually switching programming languages
and provide examples on how such a process could be approached. Firstly, three criteria
will be examined before secondly, the results are summarized by providing examples from
the industry and presenting an exemplary switching process.

5.1 Aspects

Three criteria, one non-technical and two technical, are considered. The first will investigate
how a company could build up know-how for Rust and how employees can be trained. The
other two aspects deal with the introduction of Rust into an existing code base. They will
look at how legacy code can be ported to the new language as well as how new Rust code
can interoperate with the established software projects.

5.1.1 Learning Rust

Before diving deeper into the technical aspects of switching to Rust, this chapter will look
at how the goal of trained employees can be reached by examining three different approaches.

Firstly, already existing skills of the employees can be considered. Since Rust is already
a quite popular language for open source projects, suitable programming skills could al-
ready be available in-house. Encouraging the use of a popular language at work may even
boost the employees’ motivation.

The second approach is of course trying to find Rust programmers on the market. Al-
though it is a popular programming language, professional Rust developers are still quite
rare (see section 4.3.3 Popularity). This may change in the future though, as according to
the StackOverflow survey [1], the Rust developer is one of the best-paying programmer jobs
available: A median salary of $74,000 a year puts Rust in fourth place globally. Even though
this may be large investment, hiring Rust programmers can also be a plus for employer mar-
keting in general, promoting the use of modern and popular programming languages.

An additional approach that will almost certainly be applied is to train the current employ-
ees. Feedback from the current development has to be considered. Everyone has favorite
languages and technologies and may react differently to a change thereof. Rust also poses
some challenges for learning and is known for its steep learning curve especially at the be-
ginning. The developers need to get familiar with the ownership concept including lifetimes
and borrowing and will have to get used to new tools and conventions. To perform the
actual training, different methods are available. The employees can be given time to teach
themselves, as everyone will have different learning speeds. As shown in section 4.3.1 Ease
of Use & Productivity, elaborate official resources are available on the Internet. Examples
include ”The Rust Programming Language” [64], ”Rust By Example” [104] or ”Rustlings”
[106], which provides small exercises for beginners. As the study [2] has found, examples
are the most important resources when learning the Rust programming language, directly
followed by Q&A sites. Employees can also be trained by their coworkers. If knowledge of
Rust is already available in-house, the already qualified programmers can use free training
concepts, like for instance the RustBridge workshop [70] to train their team members. An-
other but also generally more expensive method is to employ external training courses or
coaches. Examples include online courses like the ”Rust Fundamentals” on PluralSight [85],
but also Rust consulting companies like Ferrous Systems [69], which offer training programs

56

for Rust beginners and even courses on Rust embedded development.

The best approach highly depends on the specific situation of the company, including the
budget and the industry where it is situated. After qualified developers are now available,
Rust’s integration into actual software projects can be addressed.

5.1.2 Portability

Switching programming languages often includes rewriting existing code. This chapter will
examine different aspects that have to be considered when porting C code to Rust. Firstly,
some general considerations are explained and two possible approaches are presented. Af-
terwards, an exemplary procedure is denoted and some real-world examples are described.

When porting code, the results must be somehow verifiable. It should be tested that the new
code still works as expected and produces the same results. This should happen through
fine-grained unit tests on the one hand and higher level system tests on the other hand.
Either way, a high test coverage must be ensured. Another aspect to consider before port-
ing existing code is the availability of required libraries. Not everything might be available
for the relatively recent Rust programming language and may need additional develop-
ment efforts for the dependencies or the use of interoperability features (see section 5.1.3
Interoperability).

The rewrite of existing code should happen on a per-function basis. This allows to di-
vide the whole task into smaller, easily approachable sub-tasks. Rewriting a function can
either happen by starting completely new with the goal to reach the same functionality or
by porting every line of code to Rust. In the first case, the function signature is copied and
translated to fit Rust’s syntax. Afterwards, the function is implemented anew according
to the documentation or requirements. In the second case, the whole function is copied to
Rust and modified so that it compiles by only changing the syntax. This might prove diffi-
cult when the previous C code contained unsafe approaches in regards to memory handling,
which will be uncovered by Rust’s additional safety checks (see section 4.4.1 Safety). At the
beginning, the new code will most likely perform worse than the C code due to these checks,
meaning that the Rust program will need to be refactored to employ more idiomatic Rust
features (see examples below). Regardless of the approach used, tests need to be carried out
to check if the results are correct or fixes need to be performed. Performance measurements
can also play a vital role for optimizing the new code and reaching the same or even better
execution speeds than before. [87]

The following list will now provide a exemplary procedure for moving C code to Rust:

• Signature: Move the return type to the end of the line (after an -> operator). Invert
the type definitions (e.g. flag: bool instead of bool flag), change basic types

accordingly (e.g. u32 and i16 instead of unsigned int and short) and finally

add the fn keyword at the beginning.

• Variables: Remove types from variable definitions where possible and add the let

keyword instead. When variables need to be modified, also add the mut keyword for
mutability.

• Remove parentheses from control structures: e.g. if flag instead of if (flag)

• Change for loops to use Rust’s range syntax:
e.g. for i in 0..N instead of for (int i = 0; i < N; i++) .

57

• Change the last return statement in a function from e.g. return sum; to an expres-
sion like sum .

The use of custom types may require additional steps to be taken, including the introduction
of structs or enums. At this point, functions will most likely need the unsafe keyword because
raw pointers might still be used. To make the code more idiomatic, the following guidelines
should be considered:

• Change pointers to references and make sure that the borrow checker is satisfied. This
might require increased efforts when for instance multiple mutable references to the same
object exist, but will definitely be a benefit for the overall safety of the program.

• Introduce a more functional syntax like iterators and closures when working with arrays
or other data structures (see examples below).

• Change function and variable names to match Rust’s conventions (normally camel case):
e.g. particle_filter instead of ParticleFilter

• Further aspects and details can be found in the Rust Porting book [74].

The following example will compare how the iteration over an array can be rewritten in
Rust. The following C code should be ported:

particle particles[N] = ...;

int weight_sum = 0;

for (int i = 0; i < N; i++) {

weight_sum += particles[i].weight;

}

Listing 29: For loop over an array to be ported to Rust (C)

Directly rewriting the for loop in Rust would perform a size check on the array on each
iteration. Thus it is better to use so-called Iterators, which only perform a single size check:

let particles : [Particle; N] = ...;

let mut weight_sum = 0;

for particle in particles.iter() {

weight_sum += particle.weight;

}

Listing 30: Iterator over an array ported from C (Rust)

Using a more functional syntax with closures, this loop can be compacted even more, relying
on Rust to take care of the actual iteration process:

let particles : [Particle; N] = ...;

let sum : u32 = particles.iter().map(|particle| particle.weight).sum();

Listing 31: Functional iterator over an array (Rust)

A different approach than rewriting everything manually is to use source code converters.
The most common example is http://c2rust.com [15], although it only performs the first
step of porting C code to Rust by producing a compilable, but unsafe and non-idiomatic
version of the code.

Rewriting software in a new programming language can improve the code, reveal issues,

58

http://c2rust.com

increase safety and performance, but can also easily introduce new bugs and take a lot of
time. Instead of porting the software, code can also be reused, which will be explained in
the following chapter.

5.1.3 Interoperability

Switching to a new programming language often raises the fear of having to rewrite en-
tire code bases. An alternative is to reuse certain software modules written in C or other
languages. While for example critical code like parsing user provided data should be imple-
mented in a memory safe programming language like Rust, proven and unexposed algorithms
can still be kept in an external C library. Rust provides the ability to interact with C code
through a so-called Foreign Function Interface (FFI).

An FFI is a standardized way of calling functions from a different programming language.
In the best case, calls and function signatures even look idiomatic in both languages. The
interface needs to be realized through the compiler, by providing compatible Application
Binary Interfaces (ABIs). These ABIs define calling conventions for function calls. Exam-
ples include the cdecl (for x86 C applications on Linux) or fastcall (for system calls
on Linux) calling conventions. When using cdecl , function parameters are pushed to
the stack in reverse order before the function is called. After returning, the stack needs to
be cleaned up and the result can be read from the eax register. Fastcall on the other
hand requires the parameters to be loaded into registers before the function is called. In the
special case of Linux system calls on x86, eax contains the system call id and ebx , ecx

and edx contain the parameters. To be inter-operable with C code, other programming
languages’ compilers need to adhere to these standards. It is very common for many lan-
guages to provide an FFI to the C language. Examples include Ada, where FFIs are called
language bindings or C++ by using the extern "C" declaration. Even JIT-compiled
languages like Python or Java (called Java Native Interface (JNI)), provide this feature.

Due to Rust using its own non-standardized ABI and thus calling convention, C function
calls must be explicitly indicated. To be able to call C functions from Rust, they need to be
declared in an extern block and include a semicolon after the signature. To inform the

linker about the library to link to, the #[link(name = "libname ")] attribute must
be provided on the extern block. Calls to these functions must be wrapped in an unsafe
block, as the compiler can make no safety guarantees on external code. The programmer
has to make sure that the invoked C code is actually safe. To provide safe abstractions,
these unsafe blocks are generally encapsulated. [128]
This includes code for converting inputs and outputs, including for example:

• Convert a Rust array into a pointer and length with arr.ptr() and arr.len() .

• Convert a Rust string into a null-terminated byte array.

• Convert a return value that could be NULL into a Result or an Option type.

To be able to call Rust functions from C code however, defined functions can be made
ABI compatible using the extern specifier. Multiple ABIs are available [122]. Ex-
amples include extern "C" for the default C ABI of the current target as well as
extern "cdecl" and extern "fastcall" for cdecl and fastcall call-

ing conventions respectively. Normally, Rust functions are mangled, which means that
the function name given in the program is different from the resulting name in the ob-
ject file. So for example _RNvNtCs1234_7mycrate3foo3bar is the internal name

for mycrate ::foo::bar [142]. This can be turned off using the #[no_mangle]

59

attribute. In general, these FFI methods can be safe, but still require unsafe blocks for
certain actions, e.g. when working with raw pointers that were received from C. For both
languages to have a shared understanding of basic types, the Rust crate libc provides type
definitions for C types containing for instance the size_t or c_int types. More com-
plex data structures require more consideration, e.g. Rust structs are allowed to be
freely reordered by the compiler. To force binary compatibility with C, they need to be
annotated with #[repr(C)] .

To be able to use these interoperability tools in production code, some more aspects must
be considered. As an interesting example, the Chromium team [101] has defined some
features that are required for productive use of the FFI. The first issue they have iden-
tified is to reduce boilerplate code, since redefining all functions in Rust manually might
require too much effort. This problem is not completely solved yet, but the definitions
can at least be generated automatically using a tool called bindgen [10]. For example
typing bindgen include/api.h -o src/bindings.rs automatically generates
Rust bindings for the api.h header. Reducing the amount of unsafe keywords required for
basic operations like passing data is another challenge identified by the Chromium team.
This has sparked some discussion about whether or not unsafe blocks are required in all
cases. From a Rust developer’s point of view, these are mandatory because the safety of
interfaces to C cannot be proven [59]. The Chromium developers noted that around 60%
of their C and C++ code can be called from Rust with already available tools like the cxx
library [129] and up to 92% are possible with some more tweaks.

Additional safety recommendations for FFIs can be found in [108], with the most important
being:

• Type use must be consistent in both languages: E.g. don’t mix integers of different sizes.

• Validity checks should happen on the Rust side for improved safety.

• FFI functions should use raw pointers instead of Rust references, as their validity cannot
be guaranteed by the C side.

• A single language must be responsible for allocation as well as deallocation of data.

• Rust code called from the FFI must not panic, or else it would be undefined behaviour.

The Rust Omnibus page [44] contains many examples of programs making use of the Rust
FFI from several different languages and can be a useful reference when dealing with inter-
operability.

An FFI allows high flexibility when writing software in different languages, making code
reuse easily possible. Rust offers many tools to enable and simplify this process, although
there are still some challenges present that may hinder productive use. This feature may
also allow testing the suitability of Rust in large or complex applications with low effort by
being able to include small parts of Rust code into the existing code base.

5.2 Example Process

This final chapter will exemplarly describe how switching to Rust can happen in a real
world project. It will firstly discuss some successful examples from the software industry
and finish by presenting an example process.

As a first example, Microsoft is looking for ways to improve memory safety in their products.

60

They classified their projects in three different categories and provide a recommendation for
each case: [38, p. 21]

• New software: In this case a safer language like Rust should be employed. To start a
project, only trained employees are needed, allowing this choice to be taken without too
much of a risk.

• Software actively developed: A safer language should be used where possible, otherwise
safe development practices must be applied. This requires some of the above-mentioned
portability or interoperability approaches to be applied.

• Software in maintenance: Since switching to a safer language is too expensive, adopting
safer practices must be enough in this case.

The most interesting and common case is the second one, where it needs to be decided what
code is ported to Rust and which parts remain in the original language and only commu-
nicate with Rust through for example the FFI explained above. It must be evaluated, how
much rewriting is advisable and when integrating code is the better solution [71].

A different approach that is also very common in the industry is starting out with small
projects instead of rewriting entire systems in order to get familiar with the language. Ex-
amples include components of larger systems (e.g. the CSS Engine Stylo for Firefox, [23])
on one hand, but also separate systems that are completely implemented in Rust (e.g. Ama-
zon’s MicroVM host Firecracker [47]) on the other hand.

An example process for switching development to Rust could look as follows: Firstly, the
current employees must be trained and/or professional Rust developers should be recruited
(see section 5.1.1 Learning Rust). Then, to build up know-how, a complete project should be
realized in Rust. To stay on the safe side, this can be a small, non-business-critical project.
After analyzing the results, it should be decided if Rust can be incorporated in more impor-
tant software projects or if the use of the Rust language will no longer be pursued. If the
results are promising and a baseline of knowledge is available, Rust can be integrated into
business-critical software. The first step is now to decide if components should be rewritten
in Rust or if only new parts of the project should use this language. According to [87], a
rewrite, which was described in section 5.1.2 Portability is most sensible for performance and
safety reasons as well as lower maintenance costs, since Rust promises fewer runtime prob-
lems than other languages. Furthermore, new components should always be developed in
Rust, especially if they are safety or security critical. All components written in Rust must
now be integrated into the existing system. This can happen through the FFIs explained in
section 5.1.3 Interoperability. At all times, it must be ensured that introducing Rust into
the code base does not produce any regressions or performance losses by performing auto-
mated tests and comparing the Rust performance to the old program in the case of a rewrite.

Conclusion
In summary, the decision of switching to a new programming language is influenced by
many factors and needs to be adapted to the individual business needs. The steps explained
above can be a guideline on how to approach this process. Taking small steps can be a
low-risk approach for introducing this new language into the company, like many examples
have successfully shown.

61

6 Conclusion

To finish the thesis, a summary will be provided. Furthermore, aspects remaining for future
research will be identified and motivated. Lastly, the objectives defined in the introduction
are fulfilled by giving recommendations on the suitability of Rust for embedded software
development.

Summary

To introduce the Rust and C programming languages, their history, programming concepts,
user bases as well as their embedded functionality was explained. After that, a comparison
of microcontroller programming followed. It showed that both languages are equally suited
for the presented task. While the approach differed in the utilized tooling, libraries and code
to modify registers, the general approach was the same, including the section configuration
and startup logic. The required effort to read the input value of a button and toggle an
LED was very similar.

The following comparison evaluated the two programming languages according to a pre-
viously defined and motivated set of criteria. On some aspects, the suitability of Rust was
on par with C, while on others, it differed significantly. As it turned out, the popularity of
both languages is very balanced. While Rust is gaining adoption and is more popular than
C among programmers using the language, C is in use by a larger number of developers and
industries. Another diverse topic is the performance. While execution speed and memory
usage can be very similar to C, it was shown that with the reliance on the ecosystem Rust
does not always allow the same optimizations easily. Rust code also generally results in
larger binary sizes. Another positive aspect for C is the large amount of available targets.
While Rust only supports a small number of architectures and standard libraries, it can
generally be assumed that every hardware target available has a suitable C compiler. Due
to C’s long history, the language and its ecosystem are more mature and stable compared
to Rust. While C offers a stable standard definition, Rust mostly depends on the imple-
mentations of a single compiler. However, there are also several aspects where Rust offers
improvements upon C. The new language offers a greater variety of programming paradigms
including object-oriented as well as functional programming. Additionally, Rust offers state-
of-the-art tooling for many development tasks which increases productivity. While C has
numerous tools available too, they are not in widespread use and often hard to integrate.
Furthermore, very extensive documentation, community support and a sound ecosystem
make Rust easy to use.
Coming to the main motivation to use Rust, memory safety guarantees at compile-time are
offered by the language. C however requires the developer to take care of these potential
issues. Besides safe memory handling, Rust code is also free from race conditions and offers
strong type safety. A criterion that references many of the other aspects is the certification.
The reviewed guidelines of the IEC 61508 standard showed that the Rust language is very
well suited for safety critical applications from a technical perspective. C however should
only be allowed with certain limitations in place. On the other hand it also showed that
C’s maturity is equally important for such applications, which may pose a problem for the
relatively new and potentially immature Rust programming language.

The final chapter presented different aspects to be considered when eventually switching
to Rust and provided an exemplary process. It was shown that numerous resources are
available for employee training, but also that Rust programmers are not very common yet
on the market. The language and its ecosystem also offer different tools for integration
into an existing code base, including the Foreign Function Interface as well as portability

62

utilities. For a company to switch to the Rust programming language, it is advisable to
take smaller steps by firstly introducing the language into non-business-critical projects.

Suggested Future Research

To further examine the suitability of Rust, further investigations can be carried out. An
important field could be to continue with the performance improvements, for instance im-
plementing different approaches for the sine and cosine functions and testing them. Further
performance tests could also be carried out including peripheral interaction or interrupt
handling. To get a clearer picture on the performance of certain aspects of the languages,
smaller tests could be performed for looking at different safety measures separately. Mea-
suring real-time behaviour can also be the goal of future work. Many of the experiences in
this thesis were gathered by working with a bare-metal microcontroller. Since embedded
development also includes more powerful devices with an operating system, such targets can
also be an object of further examinations. Another goal for future research could be the
focus on other programming languages like Ada for comparison to Rust.

Recommendations

Corresponding to the objectives defined in the introduction, the following recommendations
can be given:

1. When choosing a programming language, one has to make a decision based on the above-
mentioned criteria. It should become clear that while Rust can improve on many problems
of C, it still comes with some drawbacks. Rust can thus be a suitable replacement for
existing programming languages, although the decision should not be made without
careful consideration of the examined criteria.

2. It was shown, that when switching to Rust, a holistic approach has to be taken to
overcome obstacles from the beginning and make the transition a success. Employees
must be trained, the new code must be integrated and a process tailored to the company’s
situation must be applied.

Outlook

The above-mentioned results and recommendations provide a foundation for informed deci-
sions on the usage of Rust. In the MBDA Product Cyber Security team, the use of Rust is
considered for safety critical components. According to this thesis’ findings, the program-
ming language will be further examined for a potential use in the company’s products.

63

References

[1] 2020 Developer Survey. StackOverflow. 2020. url: https://insights.stackoverflow.
com/survey/2020 (visited on 12/30/2020).

[2] Parastoo Abtahi and Griffin Dietz. “Learning Rust: How Experienced Programmers
Leverage Resources to Learn a New Programming Language”. In: Extended Abstracts
of the 2020 CHI Conference on Human Factors in Computing Systems. CHI EA
’20. Honolulu, HI, USA: Association for Computing Machinery, 2020, pp. 1–8. isbn:
9781450368193. doi: 10.1145/3334480.3383069.

[3] Ankit Anubhav. Masuta : Satori Creators’ Second Botnet Weaponizes A New Router
Exploit. NewSky Security. Jan. 23, 2018. url: https://blog.newskysecurity.com/
masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-

2ddc51cc52a7 (visited on 01/05/2021).

[4] Jorge Aparicio. Math support in core. July 23, 2018. url: https://github.com/
rust-lang/rfcs/issues/2505 (visited on 11/15/2020).

[5] Jorge Aparicio. The weekly driver initiative. Jan. 18, 2018. url: https://github.
com/rust-embedded/wg/issues/39 (visited on 12/05/2020).

[6] Jorge Aparicio. utest. url: https : / / github . com / japaric / utest (visited on
12/28/2020).

[7] Arm Cortex-M4 Processor Technical Reference Manual Revision r0p1. ARM. url:
https://developer.arm.com/documentation/100166/0001/Data-Watchpoint-

and-Trace-Unit (visited on 11/15/2020).

[8] Reid Atcheson. Rust And C++ On Floating-Point Intensive Code. Oct. 19, 2019.
url: https://www.reidatcheson.com/hpc/architecture/performance/rust/c+
+/2019/10/19/measure-cache.html (visited on 01/06/2021).

[9] Awesome Embedded Rust. Rust Embedded Working Group. url: https://github.
com/rust-embedded/awesome-embedded-rust (visited on 12/05/2020).

[10] bindgen. Rust. url: https://github.com/rust-lang/rust-bindgen (visited on
12/16/2020).

[11] Benjamin M. Brosgol. “A Comparison of Ada and Java as a Foundation Teaching
Language”. In: Ada Lett. XVIII.5 (Sept. 1998), pp. 12–38. issn: 1094-3641. doi:
10.1145/291712.291752.

[12] C - Project status and milestones. JTC1/SC22/WG14. url: http://www.open-
std.org/jtc1/sc22/wg14/www/projects (visited on 12/20/2020).

[13] C language. cppreference.com. url: https://en.cppreference.com/w/c/language
(visited on 12/10/2020).

[14] C working group. JTC1/SC22/WG14. url: http://www.open- std.org/jtc1/

sc22/wg14/ (visited on 12/10/2020).

[15] C2Rust Demonstration. Galois and Immunant. url: https://c2rust.com/ (visited
on 12/12/2020).

[16] Bryan Cantrill. The relative performance of C and Rust. Sept. 28, 2018. url: http:
//dtrace.org/blogs/bmc/2018/09/28/the-relative-performance-of-c-and-

rust/ (visited on 12/05/2020).

[17] Pierre Carbonnelle. PYPL PopularitY of Programming Language. Jan. 2021. url:
https://pypl.github.io/PYPL.html (visited on 01/05/2021).

xiii

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://doi.org/10.1145/3334480.3383069
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://github.com/rust-lang/rfcs/issues/2505
https://github.com/rust-lang/rfcs/issues/2505
https://github.com/rust-embedded/wg/issues/39
https://github.com/rust-embedded/wg/issues/39
https://github.com/japaric/utest
https://developer.arm.com/documentation/100166/0001/Data-Watchpoint-and-Trace-Unit
https://developer.arm.com/documentation/100166/0001/Data-Watchpoint-and-Trace-Unit
https://www.reidatcheson.com/hpc/architecture/performance/rust/c++/2019/10/19/measure-cache.html
https://www.reidatcheson.com/hpc/architecture/performance/rust/c++/2019/10/19/measure-cache.html
https://github.com/rust-embedded/awesome-embedded-rust
https://github.com/rust-embedded/awesome-embedded-rust
https://github.com/rust-lang/rust-bindgen
https://doi.org/10.1145/291712.291752
http://www.open-std.org/jtc1/sc22/wg14/www/projects
http://www.open-std.org/jtc1/sc22/wg14/www/projects
https://en.cppreference.com/w/c/language
http://www.open-std.org/jtc1/sc22/wg14/
http://www.open-std.org/jtc1/sc22/wg14/
https://c2rust.com/
http://dtrace.org/blogs/bmc/2018/09/28/the-relative-performance-of-c-and-rust/
http://dtrace.org/blogs/bmc/2018/09/28/the-relative-performance-of-c-and-rust/
http://dtrace.org/blogs/bmc/2018/09/28/the-relative-performance-of-c-and-rust/
https://pypl.github.io/PYPL.html

[18] Cosmin Cartas. “Rust - The Programming Language for Every Industry”. In: Econ-
omy informatics 19.1 (2019), pp. 45–51. issn: 1582-7941. doi: 10.12948/ei2019.
01.05.

[19] Nick Carter. Moving from C to Rust. Nov. 27, 2019. url: https://www.flocknetworks.
com/moving-from-c-to-rust/ (visited on 01/11/2021).

[20] CERT. SEI CERT C Coding Standard. Rules for Developing Safe, Reliable, and
Secure Systems. Pittsburgh, 2018. url: https://wiki.sei.cmu.edu/confluence/
display/c/SEI+CERT+C+Coding+Standard.

[21] Yong Wen Chua. Appreciating Rust’s Memory Safety Guarantees. Government Dig-
ital Services, Singapore. July 14, 2017. url: https : / / blog . gds - gov . tech /

appreciating-rust-memory-safety-438301fee097 (visited on 12/09/2020).

[22] D. C. S. Clair. “Ada: A new programming language: The Department of Defense
developed an incredible new programming language and named it in honor of Ada
Lovelace, the world’s first programmer”. In: IEEE Potentials 4.3 (1985), pp. 26–29.
doi: 10.1109/MP.1985.6500263.

[23] Lin Clark. Inside a super fast CSS engine: Quantum CSS (aka Stylo). Mozilla.
Aug. 22, 2017. url: https://hacks.mozilla.org/2017/08/inside-a-super-
fast-css-engine-quantum-css-aka-stylo/ (visited on 12/31/2020).

[24] COMPCERT. INRIA. url: https://compcert.org/ (visited on 12/28/2020).

[25] cortex-m. Rust Embedded Working Group. url: https : / / github . com / rust -

embedded/cortex-m (visited on 12/17/2020).

[26] Cortex-M3 Technical Reference Manual. ARM. url: https://developer.arm.com/
documentation/ddi0337/e/system-debug/dwt/summary-and-description-of-

the-dwt-registers?lang=en (visited on 11/15/2020).

[27] Cppcheck. Cppcheck team. url: http://cppcheck.sourceforge.net/ (visited on
12/09/2020).

[28] Developer Survey Results 2018. StackOverflow. 2018. url: https : / / insights .

stackoverflow.com/survey/2018 (visited on 12/30/2020).

[29] Developer Survey Results 2019. StackOverflow. 2019. url: https : / / insights .

stackoverflow.com/survey/2019 (visited on 12/30/2020).

[30] The Rust Project Developers. “Rust Case Study: Community makes Rust an easy
choice for npm”. In: (Feb. 25, 2019). url: https://www.rust-lang.org/static/
pdfs/Rust-npm-Whitepaper.pdf.

[31] Discovery kit with STM32F303VC MCU. UM1570. Rev. 6. STMicroelectronics. Aug.
2020. url: https : / / www . st . com / resource / en / user _ manual / dm00063382 -

discovery-kit-with-stm32f303vc-mcu-stmicroelectronics.pdf.

[32] Steve Donovan. A Gentle Introduction To Rust - Object-Orientation in Rust. url:
https://stevedonovan.github.io/rust-gentle-intro/object-orientation.

html (visited on 12/22/2020).

[33] Doxygen. url: https://www.doxygen.nl/index.html (visited on 12/28/2020).

[34] Emily. Is Rust ready for embedded software? Sept. 5, 2019. url: https://www.

bluefruit.co.uk/quality/is-rust-ready-for-embedded-software/ (visited on
12/17/2020).

[35] Matthias Endler. Go vs Rust? Choose Go. Sept. 15, 2017. url: https://endler.
dev/2017/go-vs-rust/ (visited on 12/27/2020).

xiv

https://doi.org/10.12948/ei2019.01.05
https://doi.org/10.12948/ei2019.01.05
https://www.flocknetworks.com/moving-from-c-to-rust/
https://www.flocknetworks.com/moving-from-c-to-rust/
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://blog.gds-gov.tech/appreciating-rust-memory-safety-438301fee097
https://blog.gds-gov.tech/appreciating-rust-memory-safety-438301fee097
https://doi.org/10.1109/MP.1985.6500263
https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-stylo/
https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-stylo/
https://compcert.org/
https://github.com/rust-embedded/cortex-m
https://github.com/rust-embedded/cortex-m
https://developer.arm.com/documentation/ddi0337/e/system-debug/dwt/summary-and-description-of-the-dwt-registers?lang=en
https://developer.arm.com/documentation/ddi0337/e/system-debug/dwt/summary-and-description-of-the-dwt-registers?lang=en
https://developer.arm.com/documentation/ddi0337/e/system-debug/dwt/summary-and-description-of-the-dwt-registers?lang=en
http://cppcheck.sourceforge.net/
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://www.st.com/resource/en/user_manual/dm00063382-discovery-kit-with-stm32f303vc-mcu-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00063382-discovery-kit-with-stm32f303vc-mcu-stmicroelectronics.pdf
https://stevedonovan.github.io/rust-gentle-intro/object-orientation.html
https://stevedonovan.github.io/rust-gentle-intro/object-orientation.html
https://www.doxygen.nl/index.html
https://www.bluefruit.co.uk/quality/is-rust-ready-for-embedded-software/
https://www.bluefruit.co.uk/quality/is-rust-ready-for-embedded-software/
https://endler.dev/2017/go-vs-rust/
https://endler.dev/2017/go-vs-rust/

[36] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. “Is Rust Used Safely by
Software Developers?” In: Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering. ICSE ’20. Seoul, South Korea: Association for Com-
puting Machinery, 2020, pp. 246–257. isbn: 9781450371216. doi: 10.1145/3377811.
3380413.

[37] A. Fatima, S. Bibi, and R. Hanif. “Comparative study on static code analysis tools for
C/C++”. In: 2018 15th International Bhurban Conference on Applied Sciences and
Technology (IBCAST). 2018, pp. 465–469. doi: 10.1109/IBCAST.2018.8312265.

[38] Sebastian Fernandez. The Quest to Memory Safety. Microsoft Security Response Cen-
ter. Sept. 2019. url: https://github.com/microsoft/MSRC-Security-Research/
blob/master/presentations/2019_09_Ekoparty/EKO19_Quest_Memory_Safety_

PL.pdf (visited on 12/09/2020).

[39] Alex Gaynor. Introduction to Memory Unsafety for VPs of Engineering. Aug. 12,
2019. url: https://alexgaynor.net/2019/aug/12/introduction-to-memory-
unsafety-for-vps-of-engineering/ (visited on 09/21/2020).

[40] GCC Releases. GNU. url: https://gcc.gnu.org/releases.html (visited on
12/20/2020).

[41] GCC vs. Clang/LLVM: An In-Depth Comparison of C/C++ Compilers. Alibaba
Tech. Aug. 29, 2019. url: https://alibabatech.medium.com/gcc-vs-clang-
llvm-an-in-depth-comparison-of-c-c-compilers-899ede2be378 (visited on
12/28/2020).

[42] Go - Use Cases. Google. url: https://go.dev/solutions#use-cases (visited on
12/27/2020).

[43] Googletest - Google Testing and Mocking Framework. Google. url: https://github.
com/google/googletest (visited on 01/12/2021).

[44] Jake Goulding. The Rust FFI Omnibus. url: http://jakegoulding.com/rust-
ffi-omnibus/ (visited on 12/16/2020).

[45] Governance. Rust. url: https://www.rust- lang.org/governance (visited on
12/10/2020).

[46] Rust Secure Code Working Group. The Rust Security Advisory Database. url: https:
//rustsec.org/advisories/ (visited on 12/09/2020).

[47] Arun Gupta and Linda Lian. Announcing the Firecracker Open Source Technology:
Secure and Fast microVM for Serverless Computing. Amazon. Nov. 27, 2018. url:
https://aws.amazon.com/de/blogs/opensource/firecracker-open-source-

secure-fast-microvm-serverless/ (visited on 12/31/2020).

[48] Haskell. Haskell.org. url: https://www.haskell.org/ (visited on 12/27/2020).

[49] History of C. cppreference.com. url: https : / / en . cppreference . com / w / c /

language/history (visited on 12/27/2020).

[50] Sir Charles Antony Richard Hoare. Null References: The Billion Dollar Mistake.
[Video]. Aug. 25, 2009. url: https://www.infoq.com/presentations/Null-

References-The-Billion-Dollar-Mistake-Tony-Hoare/ (visited on 12/09/2020).

[51] Diane Hosfelt. Fearless Security: Memory Safety. Mozilla. Jan. 23, 2019. url: https:
//hacks.mozilla.org/2019/01/fearless-security-memory-safety/ (visited on
12/09/2020).

[52] Jesse Howarth. Why Discord is switching from Go to Rust. Discord. Feb. 4, 2020.
url: https://blog.discord.com/why-discord-is-switching-from-go-to-
rust-a190bbca2b1f (visited on 12/30/2020).

xv

https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1109/IBCAST.2018.8312265
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_09_Ekoparty/EKO19_Quest_Memory_Safety_PL.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_09_Ekoparty/EKO19_Quest_Memory_Safety_PL.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_09_Ekoparty/EKO19_Quest_Memory_Safety_PL.pdf
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://gcc.gnu.org/releases.html
https://alibabatech.medium.com/gcc-vs-clang-llvm-an-in-depth-comparison-of-c-c-compilers-899ede2be378
https://alibabatech.medium.com/gcc-vs-clang-llvm-an-in-depth-comparison-of-c-c-compilers-899ede2be378
https://go.dev/solutions#use-cases
https://github.com/google/googletest
https://github.com/google/googletest
http://jakegoulding.com/rust-ffi-omnibus/
http://jakegoulding.com/rust-ffi-omnibus/
https://www.rust-lang.org/governance
https://rustsec.org/advisories/
https://rustsec.org/advisories/
https://aws.amazon.com/de/blogs/opensource/firecracker-open-source-secure-fast-microvm-serverless/
https://aws.amazon.com/de/blogs/opensource/firecracker-open-source-secure-fast-microvm-serverless/
https://www.haskell.org/
https://en.cppreference.com/w/c/language/history
https://en.cppreference.com/w/c/language/history
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://hacks.mozilla.org/2019/01/fearless-security-memory-safety/
https://hacks.mozilla.org/2019/01/fearless-security-memory-safety/
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f

[53] IEC-61508. Functional safety of electrical/electronic/programmable electronic safety-
related systems. International Electrotechnical Commission, 2010.

[54] IEC-61508-7. Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 7: Overview of techniques and measures. International Elec-
trotechnical Commission, 2010.

[55] Information Technology — Programming languages, their environments and system
software interfaces — C Secure Coding Rules. JTC1/SC22/WG14, May 30, 2013.
url: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1717.pdf.

[56] Javier Luis Cánovas Izquierdo and Jordi Cabot. “Analysis and Modeling of the
Governance in General Programming Languages”. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering. SLE 2019.
Athens, Greece: Association for Computing Machinery, 2019, pp. 179–183. isbn:
9781450369817. doi: 10.1145/3357766.3359533.

[57] j4x. C vs C++ in embedded Linux. Mar. 1, 2011. url: https://stackoverflow.
com/a/5158223 (visited on 01/12/2021).

[58] Java. Oracle. url: https://go.java/ (visited on 01/12/2021).

[59] Russell Johnston. The problem of safe FFI bindings in Rust. Aug. 22, 2020. url:
https://www.abubalay.com/blog/2020/08/22/safe-bindings-in-rust (visited
on 12/16/2020).

[60] Julien Jorge. An overview of build systems (mostly for C++ projects). July 17, 2018.
url: https://medium.com/@julienjorge/an-overview-of-build-systems-
mostly-for-c-projects-ac9931494444 (visited on 12/28/2020).

[61] Brian W Kernighan and Dennis M Ritchie. The C programming language. Upper
Saddle River, NJ, USA: Prentice Hall, 1978. isbn: 9780131101630.

[62] Steve Klabnik. “The History of Rust”. In: Applicative 2016. Applicative 2016. New
York, NY, USA: Association for Computing Machinery, 2016. isbn: 9781450344647.
doi: 10.1145/2959689.2960081.

[63] Steve Klabnik. The Story of Rust. url: http://steveklabnik.github.io/history-
of-rust/ (visited on 01/05/2021).

[64] Steve Klabnik and Carol Nichols. The Rust programming language. San Francisco,
CA, USA: No Starch Press, 2018. isbn: 978-1-59327-828-1.

[65] Aleksey Kladov. Why is Rust the Most Loved Programming Language? Feb. 14, 2020.
url: https://matklad.github.io/2020/02/14/why- rust- is- loved.html

(visited on 01/05/2021).

[66] Known Causes of Trouble with GCC. url: https://gcc.gnu.org/onlinedocs/
gcc/Trouble.html (visited on 12/09/2020).

[67] Kornel. Speed of Rust vs C. url: https://kornel.ski/rust-c-speed (visited on
01/06/2021).

[68] Chris Lattner. What Every C Programmer Should Know About Undefined Behavior.
LLVM. May 13, 2011. url: https://blog.llvm.org/posts/2011-05-13-what-
every-c-programmer-should-know/ (visited on 12/09/2020).

[69] Learn Rust from world-class trainers. Ferrous Systems. url: https://ferrous-

systems.com/training/ (visited on 01/11/2021).

[70] Learn with RustBridge. url: https://rustbridge.com/learn/ (visited on 01/11/2021).

xvi

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1717.pdf
https://doi.org/10.1145/3357766.3359533
https://stackoverflow.com/a/5158223
https://stackoverflow.com/a/5158223
https://go.java/
https://www.abubalay.com/blog/2020/08/22/safe-bindings-in-rust
https://medium.com/@julienjorge/an-overview-of-build-systems-mostly-for-c-projects-ac9931494444
https://medium.com/@julienjorge/an-overview-of-build-systems-mostly-for-c-projects-ac9931494444
https://doi.org/10.1145/2959689.2960081
http://steveklabnik.github.io/history-of-rust/
http://steveklabnik.github.io/history-of-rust/
https://matklad.github.io/2020/02/14/why-rust-is-loved.html
https://gcc.gnu.org/onlinedocs/gcc/Trouble.html
https://gcc.gnu.org/onlinedocs/gcc/Trouble.html
https://kornel.ski/rust-c-speed
https://blog.llvm.org/posts/2011-05-13-what-every-c-programmer-should-know/
https://blog.llvm.org/posts/2011-05-13-what-every-c-programmer-should-know/
https://ferrous-systems.com/training/
https://ferrous-systems.com/training/
https://rustbridge.com/learn/

[71] Ryan Levick and Sebastian Fernandez. R-Evolution - A Story of Rust Adoption. Mi-
crosoft Security Response Center. Nov. 2019. url: https://github.com/microsoft/
MSRC- Security- Research/blob/master/presentations/2019_11_RustFest/

RustFestEU19_REvolution_Keynote.pdf (visited on 12/09/2020).

[72] LLVM bug tracker. url: https://bugs.llvm.org/ (visited on 12/09/2020).

[73] LLVM Download Page. LLVM. url: https://releases.llvm.org/ (visited on
12/20/2020).

[74] locka99. A Guide to Porting C/C++ to Rust. url: https://locka99.gitbooks.
io/a-guide-to-porting-c-to-rust/content/ (visited on 12/12/2020).

[75] Terry Louwers. Stack Painting. url: https://github.com/tlouwers/embedded/
tree/master/StackPainting (visited on 11/15/2020).

[76] Measuring the cycle count of the Cortex-M3 and Cortex-M4 processor’s own activity.
ARM. url: https://developer.arm.com/documentation/ka001406/1-0 (visited
on 11/15/2020).

[77] Memory safety. The Chromium project. url: https://www.chromium.org/Home/
chromium-security/memory-safety (visited on 12/09/2020).

[78] J. Meyerson. “The Go Programming Language”. In: IEEE Software 31.5 (2014),
pp. 104–104. doi: 10.1109/MS.2014.127.

[79] Matt Miller. Trends, challenges, and strategic shifts in the software vulnerability mit-
igation landscape. Microsoft Security Response Center. Feb. 7, 2019. url: https://
github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/

2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%

2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

(visited on 12/09/2020).

[80] André Miranda and João Pimentel. “On the Use of Package Managers by the C++
Open-Source Community”. In: Proceedings of the 33rd Annual ACM Symposium on
Applied Computing. SAC ’18. Pau, France: Association for Computing Machinery,
2018, pp. 1483–1491. isbn: 9781450351911. doi: 10.1145/3167132.3167290.

[81] MISRA. MISRA C:2012. Guidelines for the use of the C language in critical systems.
Nuneaton, Warwickshire CV10 0TU, UK, Mar. 2013.

[82] MITRE. 2020 CWE Top 25 Most Dangerous Software Weaknesses. The MITRE
Corporation. 2020. url: https://cwe.mitre.org/top25/archive/2020/2020_
cwe_top25.html.

[83] O. Morgan. “Certified Testing of C Compilers for Embedded Systems”. In: 2007 3rd
Institution of Engineering and Technology Conference on Automotive Electronics.
2007, pp. 1–5.

[84] Multi-Domain Combat Cloud. Airbus. url: https://www.airbus.com/defence/
Multi-Domain-Combat-Cloud.html (visited on 01/05/2021).

[85] Dmitri Nesteruk. Rust Fundamentals. May 27, 2016. url: https://www.pluralsight.
com/courses/rust-fundamentals (visited on 01/11/2021).

[86] Raphael Nestler and Noah Hüsser. Embedded Rust. June 18, 2020. url: https :

//github.com/rust-zurichsee/meetups/blob/master/2020-06-18_embedded-

update-probe.rs/slides.pdf (visited on 12/22/2020).

[87] Carol Nichols. Rust out your C. url: https://github.com/carols10cents/rust-
out-your-c-talk (visited on 01/11/2021).

xvii

https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_11_RustFest/RustFestEU19_REvolution_Keynote.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_11_RustFest/RustFestEU19_REvolution_Keynote.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_11_RustFest/RustFestEU19_REvolution_Keynote.pdf
https://bugs.llvm.org/
https://releases.llvm.org/
https://locka99.gitbooks.io/a-guide-to-porting-c-to-rust/content/
https://locka99.gitbooks.io/a-guide-to-porting-c-to-rust/content/
https://github.com/tlouwers/embedded/tree/master/StackPainting
https://github.com/tlouwers/embedded/tree/master/StackPainting
https://developer.arm.com/documentation/ka001406/1-0
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://doi.org/10.1109/MS.2014.127
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://doi.org/10.1145/3167132.3167290
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://www.airbus.com/defence/Multi-Domain-Combat-Cloud.html
https://www.airbus.com/defence/Multi-Domain-Combat-Cloud.html
https://www.pluralsight.com/courses/rust-fundamentals
https://www.pluralsight.com/courses/rust-fundamentals
https://github.com/rust-zurichsee/meetups/blob/master/2020-06-18_embedded-update-probe.rs/slides.pdf
https://github.com/rust-zurichsee/meetups/blob/master/2020-06-18_embedded-update-probe.rs/slides.pdf
https://github.com/rust-zurichsee/meetups/blob/master/2020-06-18_embedded-update-probe.rs/slides.pdf
https://github.com/carols10cents/rust-out-your-c-talk
https://github.com/carols10cents/rust-out-your-c-talk

[88] Stephen O’Grady. The RedMonk Programming Language Rankings: June 2020. Red-
Monk. July 27, 2020. url: https://redmonk.com/sogrady/2020/07/27/language-
rankings-6-20/ (visited on 12/30/2020).

[89] OpenOCD User’s Guide. The OpenOCD Project. url: http://openocd.org/doc/
html/index.html (visited on 12/17/2020).

[90] Philipp Oppermann. The Rust Way of OS Development. May 30, 2018. url: https:
//phil-opp.github.io/talk-konstanz-may-2018/ (visited on 12/09/2020).

[91] Serkan Özkan. Linux : Vulnerability Statistics. url: https://www.cvedetails.com/
vendor/33/Linux.html (visited on 01/10/2021).

[92] A. Pinho, L. Couto, and J. Oliveira. “Towards Rust for Critical Systems”. In: 2019
IEEE International Symposium on Software Reliability Engineering Workshops (IS-
SREW). 2019, pp. 19–24. doi: 10.1109/ISSREW.2019.00036.

[93] Dan Pittman. C vs. Rust: Which to choose for programming hardware abstractions.
Jan. 17, 2020. url: https : / / opensource . com / article / 20 / 1 / c - vs - rust -

abstractions (visited on 01/05/2021).

[94] Production users. Rust. url: https://www.rust-lang.org/production/users
(visited on 12/31/2020).

[95] Proteus. Wire. url: https://github.com/wireapp/proteus (visited on 12/30/2020).

[96] Python. Python Software Foundation. url: https://www.python.org/about/

(visited on 01/12/2021).

[97] Boqin Qin et al. “Understanding Memory and Thread Safety Practices and Issues in
Real-World Rust Programs”. In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI 2020. London, UK:
Association for Computing Machinery, 2020, pp. 763–779. isbn: 9781450376136. doi:
10.1145/3385412.3386036.

[98] Questions tagged [rust]. Stackoverflow. url: https://stackoverflow.com/questions/
tagged/rust (visited on 01/12/2021).

[99] Repository statistics. Repology.org. url: https://repology.org/repositories/
statistics (visited on 11/26/2020).

[100] RFCs. Rust. url: https://github.com/rust-lang/rfcs (visited on 12/10/2020).

[101] Rust and C++ interoperability. Chromium. url: https://www.chromium.org/

Home/chromium-security/memory-safety/rust-and-c-interoperability (vis-
ited on 12/15/2020).

[102] Rust AVR. The AVR-Rust project. url: https://github.com/avr-rust (visited
on 01/11/2021).

[103] Rust bug tracker. url: https://github.com/rust-lang/rust/issues (visited on
12/09/2020).

[104] Rust by Example. Rust. url: https://doc.rust-lang.org/stable/rust-by-
example/ (visited on 01/11/2021).

[105] Rust Releases. Rust. url: https://github.com/rust-lang/rust/blob/master/
RELEASES.md (visited on 12/20/2020).

[106] Rustlings. Rust. url: https://github.com/rust- lang/rustlings (visited on
01/11/2021).

[107] rustup. Rust. url: https://rustup.rs/ (visited on 12/17/2020).

xviii

https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
http://openocd.org/doc/html/index.html
http://openocd.org/doc/html/index.html
https://phil-opp.github.io/talk-konstanz-may-2018/
https://phil-opp.github.io/talk-konstanz-may-2018/
https://www.cvedetails.com/vendor/33/Linux.html
https://www.cvedetails.com/vendor/33/Linux.html
https://doi.org/10.1109/ISSREW.2019.00036
https://opensource.com/article/20/1/c-vs-rust-abstractions
https://opensource.com/article/20/1/c-vs-rust-abstractions
https://www.rust-lang.org/production/users
https://github.com/wireapp/proteus
https://www.python.org/about/
https://doi.org/10.1145/3385412.3386036
https://stackoverflow.com/questions/tagged/rust
https://stackoverflow.com/questions/tagged/rust
https://repology.org/repositories/statistics
https://repology.org/repositories/statistics
https://github.com/rust-lang/rfcs
https://www.chromium.org/Home/chromium-security/memory-safety/rust-and-c-interoperability
https://www.chromium.org/Home/chromium-security/memory-safety/rust-and-c-interoperability
https://github.com/avr-rust
https://github.com/rust-lang/rust/issues
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/stable/rust-by-example/
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rustlings
https://rustup.rs/

[108] Secure Rust Guidelines - Foreign Function Interface. Agence nationale de la sécurité
des systèmes d’information. url: https://anssi-fr.github.io/rust-guide/07_
ffi.html (visited on 12/16/2020).

[109] Serde. Serde. url: https://serde.rs/ (visited on 01/12/2021).

[110] SonarQube. SonarSource S.A. url: https : / / www . sonarqube . org/ (visited on
12/09/2020).

[111] Status of Supported Architectures from Maintainers’ Point of View. GNU. url:
https://gcc.gnu.org/backends.html (visited on 01/11/2021).

[112] stm32-rs. url: https://github.com/stm32-rs/stm32-rs (visited on 12/17/2020).

[113] STM32CubeF3. STMicroelectronics. url: https://github.com/STMicroelectronics/
STM32CubeF3 (visited on 12/17/2020).

[114] STM32F303xB/C/D/E, STM32F303x6/8, STM32F328x8, STM32F358xC, STM32F398xE
advanced ARM®-based MCUs. RM0316. Rev. 8. STMicroelectronics. Jan. 2017.
url: https : / / www . st . com / resource / en / reference _ manual / dm00043574 -

stm32f303xb-c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-

advanced-arm-based-mcus-stmicroelectronics.pdf.

[115] System View Description. ARM. url: https://www.keil.com/pack/doc/CMSIS/
SVD/html/index.html (visited on 12/28/2020).

[116] L. Szekeres et al. “SoK: Eternal War in Memory”. In: 2013 IEEE Symposium on
Security and Privacy. 2013, pp. 48–62. doi: 10.1109/SP.2013.13.

[117] The Rust Core Team. Rust’s 2018 roadmap. Dec. 3, 2018. url: https://blog.rust-
lang.org/2018/03/12/roadmap.html (visited on 01/05/2021).

[118] The Edition Guide - What are Editions? Rust. url: https://doc.rust-lang.org/
edition-guide/editions/index.html (visited on 12/20/2020).

[119] The Embedded Rust Book - Memory Mapped Registers. Rust. url: https://rust-
embedded.github.io/book/start/registers.html (visited on 01/05/2021).

[120] The Rust Programming Language - Data Types. Rust. url: https://doc.rust-
lang.org/book/title-page.html (visited on 01/05/2021).

[121] The Rust Programming Language - Object Oriented Programming Features of Rust.
Rust. url: https://doc.rust-lang.org/book/ch17-00-oop.html (visited on
12/22/2020).

[122] The Rust References - External blocks. Rust. url: https://doc.rust-lang.org/
reference/items/external-blocks.html (visited on 12/15/2020).

[123] The Rust References - Influences. Rust. url: https : / / doc . rust - lang . org /

reference/influences.html (visited on 12/27/2020).

[124] The rustc book - Command-line arguments. Rust. url: https://doc.rust-lang.
org/rustc/command-line-arguments.html (visited on 01/05/2021).

[125] The rustc book - Platform Support. Rust. url: https://doc.rust- lang.org/

nightly/rustc/platform-support.html (visited on 12/17/2020).

[126] The rustdoc book. Rust. url: https://doc.rust-lang.org/rustdoc (visited on
01/11/2021).

[127] The rustdoc book - Documentation tests. Rust. url: https://doc.rust-lang.org/
rustdoc/documentation-tests.html (visited on 12/28/2020).

[128] The Rustonomicon - Foreign Function Interface. Rust. url: https://doc.rust-
lang.org/nomicon/ffi.html (visited on 12/15/2020).

xix

https://anssi-fr.github.io/rust-guide/07_ffi.html
https://anssi-fr.github.io/rust-guide/07_ffi.html
https://serde.rs/
https://www.sonarqube.org/
https://gcc.gnu.org/backends.html
https://github.com/stm32-rs/stm32-rs
https://github.com/STMicroelectronics/STM32CubeF3
https://github.com/STMicroelectronics/STM32CubeF3
https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-stmicroelectronics.pdf
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://doi.org/10.1109/SP.2013.13
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://doc.rust-lang.org/edition-guide/editions/index.html
https://doc.rust-lang.org/edition-guide/editions/index.html
https://rust-embedded.github.io/book/start/registers.html
https://rust-embedded.github.io/book/start/registers.html
https://doc.rust-lang.org/book/title-page.html
https://doc.rust-lang.org/book/title-page.html
https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/reference/items/external-blocks.html
https://doc.rust-lang.org/reference/items/external-blocks.html
https://doc.rust-lang.org/reference/influences.html
https://doc.rust-lang.org/reference/influences.html
https://doc.rust-lang.org/rustc/command-line-arguments.html
https://doc.rust-lang.org/rustc/command-line-arguments.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/rustdoc
https://doc.rust-lang.org/rustdoc/documentation-tests.html
https://doc.rust-lang.org/rustdoc/documentation-tests.html
https://doc.rust-lang.org/nomicon/ffi.html
https://doc.rust-lang.org/nomicon/ffi.html

[129] David Tolnay. CXX — safe FFI between Rust and C++. url: https://github.
com/dtolnay/cxx (visited on 12/16/2020).

[130] Aaron Turon. Fearless Concurrency with Rust. Rust. Apr. 10, 2015. url: https:
//blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html (visited on
12/09/2020).

[131] Unity. ThrowTheSwitch. url: http://www.throwtheswitch.org/unity (visited on
01/12/2021).

[132] T. Uzlu and E. Şaykol. “On utilizing rust programming language for Internet of
Things”. In: 2017 9th International Conference on Computational Intelligence and
Communication Networks (CICN). 2017, pp. 93–96. doi: 10.1109/CICN.2017.

8319363.

[133] Valgrind. url: https://valgrind.org/ (visited on 12/09/2020).

[134] Ivan Valkov, Natalia Chechina, and Phil Trinder. “Comparing Languages for Engi-
neering Server Software: Erlang, Go, and Scala with Akka”. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing. SAC ’18. Pau, France: As-
sociation for Computing Machinery, 2018, pp. 218–225. isbn: 9781450351911. doi:
10.1145/3167132.3167144.

[135] Peter Van Roy. “Programming Paradigms for Dummies: What Every Programmer
Should Know”. In: (Apr. 2012).

[136] V. van der Veen. et al. “Memory Errors: The Past, the Present, and the Future”.
In: Research in Attacks, Intrusions, and Defenses. RAID 2012. Ed. by Cova M.
Balzarotti D. Stolfo S.J. Berlin, Heidelberg: Springer, 2012, pp. 86–106. doi: 10.
1007/978-3-642-33338-5_5.

[137] VXWORKS CERT EDITION. WindRiver. url: https://www.windriver.com/
products/vxworks/certification-profiles/#vxworks_cert (visited on 12/28/2020).

[138] Welcome to Actix. The Actix team. url: https://actix.rs/docs/ (visited on
01/12/2021).

[139] What exactly do companies use Haskell for? Aug. 23, 2016. url: https://www.
reddit.com/r/haskell/comments/4z4svh/what_exactly_do_companies_use_

haskell_for/ (visited on 12/27/2020).

[140] What is a DDoS Botnet? Cloudflare. url: https://www.cloudflare.com/learning/
ddos/what-is-a-ddos-botnet/ (visited on 12/27/2020).

[141] Wind River Redefines Embedded Software Development with New VxWorks Release.
WindRiver. Oct. 8, 2019. url: https://www.windriver.com/news/press/pr.
html?ID=22444 (visited on 12/05/2020).

[142] Michael Woerister. RFC 2603 Rust Symbol Mangling. Nov. 27, 2018. url: https:
//rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html

(visited on 01/12/2021).

xx

https://github.com/dtolnay/cxx
https://github.com/dtolnay/cxx
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
http://www.throwtheswitch.org/unity
https://doi.org/10.1109/CICN.2017.8319363
https://doi.org/10.1109/CICN.2017.8319363
https://valgrind.org/
https://doi.org/10.1145/3167132.3167144
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1007/978-3-642-33338-5_5
https://www.windriver.com/products/vxworks/certification-profiles/#vxworks_cert
https://www.windriver.com/products/vxworks/certification-profiles/#vxworks_cert
https://actix.rs/docs/
https://www.reddit.com/r/haskell/comments/4z4svh/what_exactly_do_companies_use_haskell_for/
https://www.reddit.com/r/haskell/comments/4z4svh/what_exactly_do_companies_use_haskell_for/
https://www.reddit.com/r/haskell/comments/4z4svh/what_exactly_do_companies_use_haskell_for/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-botnet/
https://www.windriver.com/news/press/pr.html?ID=22444
https://www.windriver.com/news/press/pr.html?ID=22444
https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html
https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html

Appendix A - Performance Measurements

The raw data of all measurements can be found in the attachment in the performance

folder.

Name Size [Byte] F/V Description

__kernel_rem_pio2f 1664 F
Required part of the sine and cosine
functions

two_over_pi 792 V
Precomputed 2

Π value for use in sine
and cosine functions

start 760 F
The whole particle filter algorithm
(All function calls were inlined)

__ieee754_rem_pio2f 668 F
Wrapper around
__kernel_rem_pio2f

main 356 F
The program’s main function that
calls start

__kernel_cosf 260 F Internal cosine function

scalbnf 228 F
Used for sine and cosine. Multiplies
a number with two to the power of
another number

particles 200 V
Particles array to be placed in the
bss section

Table 3: Largest functions (F) and static variables (V) in the C binary after optimizations
(with -Os and static data)

Name (Demangled) Size [Byte] F/V Description

rem_pio2f 2696 F
Required part of the sine and cosine
functions

__cortex_m_rt_main 1272 F
The main function including the
whole particle filter algorithm

__adddf3 976 F
Double addition for the sine/cosine
functions

__muldf3 768 F
Double multiplication for the sine/-
cosine functions

sinf 448 F The sine function

__truncdfsf2 392 F
Double utility used for sine/cosine
functions

(...) (...) (...) (...)

particles 204 V
Particles array to be placed in the
bss section

Table 4: Largest functions (F) and static variables (V) in the Rust binary after optimizations
(with -Os and static data)

xxi

C
w

it
h

S
ta

ck
R

u
st

w
it

h
S

ta
ck

C
w

it
h

D
a
ta

R
u

st
w

it
h

D
a
ta

F
u

n
c
ti

o
n

T
o
ta

l
A

v
g

M
in

M
a
x

T
ot

al
A

v
g

M
in

M
ax

T
ot

al
A

v
g

M
in

M
a
x

T
o
ta

l
A

v
g

M
in

M
a
x

ge
n

er
at

e
8
43

43
-

-
-

89
59

2
-

-
-

84
34

4
-

-
-

8
9
3
3
9

-
-

-

in
it

ia
li

ze
4
27

16
-

-
-

41
20

6
-

-
-

42
67

5
-

-
-

4
1
2
7
2

-
-

-

im
p

o
rt

an
ce

1
44

00
14

4
1
44

14
4

90
00

90
90

90
14

50
0

14
5

1
45

1
4
5

9
2
0
0

9
2

9
2

9
2

p
ro

p
o
sa

l
8
22

35
6

82
24

1
28

3
12

27
2

88
50

66
88

51
45

5
96

61
82

28
56

82
29

1
28

8
1
2
2
7
7

8
8
4
6
6
6

8
8
4
7

4
5
1

9
6
5
7

si
r

fi
lt

er
8
44

49
6

84
45

0
64

20
4

97
01

4
89

82
36

89
82

4
84

93
2

92
07

4
84

47
96

84
48

0
64

23
4

9
7
0
4
4

8
9
7
7
1
6

8
9
7
7
2

8
4
8
8
0

9
2
0
2
2

re
sa

m
p

le
2
59

42
2
59

4
25

44
2
60

0
70

81
70

8
68

8
71

3
25

52
6

2
55

3
25

13
2
5
5
7

7
5
4
7

7
5
5

7
2
4

7
5
9

fi
lt

er
8
71

29
9

-
-

-
90

56
45

-
-

-
87

11
83

-
-

-
9
0
5
6
3
1

-
-

-

T
o
ta

l
9
98

35
8

-
-

-
1
03

64
43

-
-

-
99

82
02

-
-

-
1
0
3
6
2
4
2

-
-

-

T
ab

le
5:

C
y
cl

e
co

u
n
ts

in
R

u
st

an
d

C
w

it
h

-O
3

xxii

0 (Data) 3 (Data) s (Data) 0 (Stack) 3 (Stack) s (Stack)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·106

Optimization level (Data structure location)

E
x
ec

u
ti

on
ti

m
e

[c
y
cl

es
]

GCC Rust

Figure 2: Rust (Stack) and C (Data) times

0 (Data) 3 (Data) s (Data) 0 (Stack) 3 (Stack) s (Stack)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·106

Optimization level (Data structure location)

E
x
ec

u
ti

on
ti

m
e

[c
y
cl

es
]

GCC Rust

Figure 3: Rust (Stack) and C (Data) times with optimizations

xxiii

0 (Data) 3 (Data) s (Data) 0 (Stack) 3 (Stack) s (Stack)
0

10

20

30

40

50

60

70

80

·103

Optimization level (Data structure location)

S
ec

ti
on

si
ze

[b
y
te

]

GCC (text) GCC (rodata) Rust (text) Rust (rodata)

Figure 4: Rust and C flash size

0 (Data) 3 (Data) s (Data) 0 (Stack) 3 (Stack) s (Stack)
0

10

20

30

40

50

60

70

80

·103

Optimization level (Data structure location)

S
ec

ti
o
n

si
ze

[b
y
te

]

GCC (text) GCC (rodata) Rust (text) Rust (rodata)

Figure 5: Rust and C flash size with optimizations

xxiv

0 (Data) 3 (Data) s (Data) 0 (Stack) 3 (Stack) s (Stack)
0

200

400

600

800

1,000

1,200

1,400

Optimization level (Data structure location)

M
a
x
.

st
ac

k
si

ze
[b

y
te

]

GCC Rust

Figure 6: Rust and C memory usage

0 (Data) 3 (Data) s (Data) 0 (Stack) 3 (Stack) s (Stack)
0

200

400

600

800

1,000

1,200

1,400

Optimization level (Data structure location)

M
ax

.
st

a
ck

si
ze

[b
y
te

]

GCC Rust

Figure 7: Rust and C memory usage with optimizations

xxv

0 3 s
0

10

20

30

40

Optimization level

C
om

p
il
at

io
n

ti
m

e
[s

ec
on

d
s]

GCC Rust

0 3 s
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Optimization level

C
om

p
il
at

io
n

ti
m

e
[s

ec
on

d
s]

GCC Rust

Figure 8: Rust and C compilation times (using Stack data structures)
Left: Clean build. Right: Only single file changed

xxvi

Appendix B - Source Code

Overview

The source code of all files that were referenced in this thesis can be found on the following
pages. All other relevant files (e.g. configuration files etc.) are only in the attached zip file
in the source folder. The following list contains all files. Descriptions are only provided
if not self-explanatory.

File path
Printed
below?

Description

/c/bare/ - The C bare metal example

main.c No

Makefile Yes

openocd.gdb No The GDB script for flashing

run.sh No
startup.c Yes

stm32.ld Yes Linker script

/c/lib/ - The C library example

main.c Yes

Makefile No

openocd.gdb No

run.sh No

startup_stm32f303xc.s No Library provided startup code

stm32.ld No Library provided linker script

stm32f3xx_hal_conf.h No Library configuration file

STM32CubeF3/ No

STM32 library taken
from https://github.

com/STMicroelectronics/

STM32CubeF3

/c/perf/ - C Particle filter example

filter.c Yes Main file

Makefile No

manual.gdb No Script for manual flashing

openocd.gdb No Script for automated flashing

openocd.sh Yes Script to start openocd

run.sh No

run_tests.sh Yes Script to run the tests

semi.c Yes Semihosting implementation

semi.h Yes

stackcheck.c Yes Stack painting implementation

stackcheck.h Yes

startup_stm32f303xc. No

stm32.ld No Library provided linker script

stm32f3xx_hal_conf.h No Library configuration file

summarize.py Yes Script to summarize timings

time.c Yes Cycle count implementation

time.h Yes

STM32CubeF3/ No STM32 library

tracking/ - Tracking sub-folder

xxvii

https://github.com/STMicroelectronics/STM32CubeF3
https://github.com/STMicroelectronics/STM32CubeF3
https://github.com/STMicroelectronics/STM32CubeF3

cl_particle.h Yes

cl_particle_filter.c Yes Particle filter stack example

cl_particle_filter.h Yes

cl_particle_filter_data.c Yes Particle filter data example

cl_particle_filter_data.h Yes

cl_pendulum.c Yes

cl_pendulum.h Yes

/c/tools/ - JSON example on Tooling

CMakeLists.txt Yes

conanfile.txt Yes

toolDemo.c Yes

/rust/bare/ - The Rust bare metal example

Cargo.toml No

openocd.gdb No The GDB script for flashing

.cargo/config Yes

rt/ - Runtime sub-crate

build.rs No

Cargo.toml No

link.x No Linker script

.cargo/config Yes

src/lib.rs Yes Startup code

src/main.rs No Main file

/rust/crates/ - The Rust example with libraries

Cargo.toml No

memory.x No The memory configuration

openocd.gdb No

.cargo/config No

src/main.rs Yes

/rust/perf/ - Rust Particle filter example

Cargo.toml No

memory.x No

openocd.gdb No

openocd.sh No Script to start OpenOCD

run_tests.sh Yes Script to run the tests

summarize.py No Script to summarize timings

.cargo/config No

src/ - Source folder

main.rs Yes
measurement.rs Yes Measurement struct

particle_filter.rs Yes Particle filter stack example

particle_filter_data.rs Yes Particle filter data example

pendulum.rs Yes
Pendulum generator (stack exam-
ple)

pendulum_data.rs Yes
Pendulum generator (data exam-
ple)

stackcheck.rs Yes Stack painting implementation

timing.rs Yes Cycle count implementation

xxviii

/rust/tools/ - JSON example on Tooling

Cargo.toml Yes

family.json Yes JSON input file

src/main.rs Yes

Table 6: Overview of the file structure

The sources

source/c/bare/Makefile

TARGET = main

Set compilation sources

C_SRC = ./main.c ./startup.c

Set linker script, opt level and target processor

OPT_LEVEL = 0

LD_SCRIPT = stm32.ld

MCU_SPEC = cortex-m4

Configure toolchain

TOOLCHAIN = /usr

CC = $(TOOLCHAIN)/bin/arm-none-eabi-gcc
OC = $(TOOLCHAIN)/bin/arm-none-eabi-objcopy

Set flags for compiler and linker

CFLAGS += -mcpu=$(MCU_SPEC)
CFLAGS += -mthumb

CFLAGS += -Wall

CFLAGS += -g

CFLAGS += -mfloat-abi=hard

CFLAGS += -O$(OPT_LEVEL)
CFLAGS += -ffreestanding

LSCRIPT = ./$(LD_SCRIPT)
LFLAGS += -mcpu=$(MCU_SPEC)
LFLAGS += -mthumb

LFLAGS += -Wall

LFLAGS += -specs=nosys.specs

LFLAGS += -nostdlib

LFLAGS += -T$(LSCRIPT)
LFLAGS += -mfloat-abi=hard

LFLAGS += -O$(OPT_LEVEL)

OBJS += $(C_SRC:.c=.o)

.PHONY: all

all: $(TARGET).bin

%.o: %.c

$(CC) -c $(CFLAGS) $(INCLUDE) $< -o $@

$(TARGET).elf: $(OBJS)

xxix

$(CC) $^ $(LFLAGS) -o $@

$(TARGET).bin: $(TARGET).elf
$(OC) -S -O binary $< $@

.PHONY: clean

clean:

rm -f $(OBJS)
rm -f $(TARGET).elf

source/c/bare/startup.c

// Linker defined section variables

extern unsigned int _sidata;

extern unsigned int _sbss;

extern unsigned int _ebss;

extern unsigned int _sdata;

extern unsigned int _edata;

void startup();

void main();

// Put address of startup function (reset vector) into separate section

unsigned int * startup_vec __attribute__ ((section(".vector_table.reset_vector")))

= (unsigned int *) startup;

void startup() {

unsigned int * bss_start_p = &_sbss;

unsigned int * bss_end_p = &_ebss;

// Initialize BSS section to 0

while (bss_start_p != bss_end_p) {

*bss_start_p = 0;

bss_start_p++;

}

unsigned int * data_rom_start_p = &_sidata;

unsigned int * data_ram_start_p = &_sdata;

unsigned int * data_ram_end_p = &_edata;

// Copy DATA section from FLASH to RAM

while (data_ram_start_p < data_ram_end_p) {

*data_ram_start_p = *data_rom_start_p;

data_ram_start_p++;

data_rom_start_p++;

}

// Call main

main();

}

source/c/bare/stm32.ld

/* Define memory regions */

MEMORY

{

FLASH : ORIGIN = 0x08000000, LENGTH = 256K

CCMRAM : ORIGIN = 0x10000000, LENGTH = 8K

RAM : ORIGIN = 0x20000000, LENGTH = 40K

xxx

}

SECTIONS

{

/* Vector table for stack address and reset vector at the beginning of FLASH */

.vector_table ORIGIN(FLASH) :

{

/* First entry: initial Stack Pointer value */

LONG(ORIGIN(CCMRAM) + LENGTH(CCMRAM));

/* Second entry: reset vector */

KEEP(*(.vector_table.reset_vector));

} > FLASH

/* text section for the program code in FLASH */

.text :

{

(.text .text.);

} > FLASH

/* rodata section for read-only data in FLASH */

.rodata :

{

(.rodata .rodata.);

} > FLASH

/* Beginning of data in FLASH to be copied into data section in RAM */

_sidata = .;

/* Zero-initialized data section to be situated in RAM */

.bss :

{

/* Define start of bss for startup code */

_sbss = .;

(.bss .bss.);

/* Define end of bss for startup code */

_ebss = .;

} > RAM

/* Data section to be situated in RAM, copied from FLASH at _sidata */

.data : AT(_sidata)

{

/* Define start of data for startup code */

_sdata = .;

(.data .data.);

/* Define end of data for startup code */

_edata = .;

} > RAM

/* Discard additional sections */

/DISCARD/ :

{

(.ARM.exidx .ARM.exidx.);

}

}

source/c/lib/main.c

#define STM32F303xC

xxxi

#include "stm32f3xx_hal.h"

static GPIO_InitTypeDef GPIO_InitStruct;

/*

* Main function, can either execute the PA or HAL main function.

* Both functions implement a program listening for button presses.

* When the button is pressed, an LED lights up, if it is released, it turns off.

*/

void main() {

main_pa();

//main_hal();

}

/*

* This PA (Peripheral Access) main function

* Directly accesses the register values by using preprocessor definitions

*/

void main_pa() {

// Start peripheral clock for GPIOA and GPIOE ports

MODIFY_REG(RCC->AHBENR, RCC_AHBENR_GPIOAEN_Msk, 1 << RCC_AHBENR_GPIOAEN_Pos);

MODIFY_REG(RCC->AHBENR, RCC_AHBENR_GPIOEEN_Msk, 1 << RCC_AHBENR_GPIOEEN_Pos);

// Configure button

MODIFY_REG(GPIOA->MODER, GPIO_MODER_MODER0_Msk, 0b00 << GPIO_MODER_MODER0_Pos);

// Configure LED

MODIFY_REG(GPIOE->MODER, GPIO_MODER_MODER15_Msk, 0b01 << GPIO_MODER_MODER15_Pos);

// Loop forever

while (1) {

// Wait until button is pressed

while ((GPIOA->IDR & GPIO_IDR_0) == 0b0) {};

// Turn on LED by setting the set bit

SET_BIT(GPIOE->BSRR, GPIO_BSRR_BS_15);

// Wait until button is released

while ((GPIOA->IDR & GPIO_IDR_0) == 0b1) {};

// Turn off LED by setting the reset bit

SET_BIT(GPIOE->BSRR, GPIO_BSRR_BR_15);

}

}

/*

* HAL (Hardware abstraction layer) main function.

* This function uses a higher level API to work with the GPIO pins.

* It is only provided as reference.

*/

void main_hal() {

// Enable GPIOE and GPIOA Clock

__HAL_RCC_GPIOE_CLK_ENABLE();

__HAL_RCC_GPIOA_CLK_ENABLE();

xxxii

// Configure LED

GPIO_InitStruct.Pin = GPIO_PIN_15;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_PULLUP;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;

HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

// Configure button

GPIO_InitStruct.Pin = GPIO_PIN_0;

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

// Loop forever

while (1) {

// Wait until button is pressed

while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_RESET);

// Turn on LED by setting the set bit

HAL_GPIO_TogglePin(GPIOE, GPIO_PIN_15);

// Wait until button is released

while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET);

// Turn off LED by setting the reset bit

HAL_GPIO_TogglePin(GPIOE, GPIO_PIN_15);;

}

}

source/c/perf/filter.c

#define STM32F303xC

#include "stm32f3xx_hal.h"

#include "semi.h"

#include "time.h"

#include "stackcheck.h"

#include "tracking/cl_particle_filter.h"

void main() {

// Semihosting channel is needed if measurement data must be printed

#if defined MEASURE_TIME || defined STACK_PAINT

openSemihosting();

#endif

// Paint the stack

stack_paint();

// Initialize the cycle counter

TimerInit();

// Run the particle filter algorithm

float res = start();

// Save result to pre-defined memory address

xxxiii

volatile float *keep = (float*) 0x20001000;

*keep = res;

// Print stack usage

stack_print();

while(1);

}

void HardFault_Handler() {

while(1);

}

source/c/perf/openocd.sh

#!/bin/bash

openocd -f interface/stlink-v2-1.cfg -f target/stm32f3x.cfg > bench/times_stack.log

source/c/perf/run tests.sh

#!/bin/bash

Measure compilation time

make clean

{ time make 2>/dev/null; } 2> bench/time.log

Extract section sizes

arm-none-eabi-objdump -h filter.elf > bench/sizes.log

Measure timings

make clean

export FEATURES=-DMEASURE_TIME

make

arm-none-eabi-gdb -q -x openocd.gdb filter.elf

Measure stack sizes

make clean

export FEATURES=-DSTACK_PAINT

make

arm-none-eabi-gdb -q -x openocd.gdb filter.elf

Summarize timing measurements

python summarize.py bench/times_stack.log > bench/times_stack.json

rm -f bench/times_stack.log

source/c/perf/semi.c

#include <string.h>

// OPEN system call id

int SYS_OPEN = 0x01;

// WRITE system call id

int SYS_WRITE = 0x05;

// Truncate open mode

int W_TRUNC = 0x4;

// Handle of the semihosting target file

int SEMI_HANDLE;

xxxiv

/*

* Perform the actual system call

* nr: System call id

* argPointer: Array with three elements

*/

int _syscall(int nr, int argPointer[3]) {

register int nr_reg asm("r0") = nr;

register int* arg_reg asm("r1") = argPointer;

register int ret asm("r0");

// GCC ASM: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

// ARM Semihosting:

// https://www.keil.com/support/man/docs/armcc/armcc_pge1358787048379.htm

__asm__ volatile (

"bkpt 0xab\n\t" // Call semihosting breakpoint (when enabled on host)

: "=r" (ret) // Bind ret as output register variable

: "r" (nr_reg), // Bind nr_reg as input register variable

"r" (arg_reg), // Bind arg_reg as input register variable

"m" (argPointer[0]),

"m" (argPointer[1]),

"m" (argPointer[2])

);

return ret;

}

/*

* Perform a semihosting system call.

* nr: System call id

* arg1-arg3: System call arguments

*/

int syscall(int nr, int arg1, int arg2, int arg3) {

int args[] = {arg1, arg2, arg3};

return _syscall(nr, args);

}

/*

* Perform the open system call.

* name: Name of the file

* mode: Open mode

* size: Size of the name

*/

int open(char* name, int mode, int size) {

return syscall(SYS_OPEN, (int) name, mode, size);

}

/*

* Write a string over the semihosting channel.

* Can only be called when the target was opened with openSemihosting.

* data: The string

* size: The length of the string

*/

int debug(char* data, int size) {

int written = 0;

while (written < size){

int res = syscall(SYS_WRITE, SEMI_HANDLE,

(int) &data[written], size - written);

if (res == 0){

break;

} else if (res <= size - written){

xxxv

written = (size - written) - res;

} else if (res > 0xfffffff0){

break;

} else {

return -1;

}

}

return size;

}

/*

* Formats an integer value and writes it over the semihosting channel.

* Note that prefixLen + length of number + suffixLen must be < 30

* val: The value to print

* base: The base of the number (2-16)

* prefix: A string to prepend

* suffix: A string to append

*/

void debugInt(int val, int base, char* prefix,

char* suffix) {

if (base > 16)

return;

char const digit[] = "0123456789ABCDEF";

char b[30];

char* p = b;

int shifter = val;

int size = 0;

int i;

// Add prefix

for (i = 0; i < strlen(prefix); i++) {

*p++ = prefix[i];

size++;

}

// Compute number length

do {

++p;

shifter = shifter / base;

size++;

} while(shifter);

// Add suffix

for (i = 0; i < strlen(suffix); i++) {

*(p+i) = suffix[i];

size++;

}

*(p+i) = ’\0’;

// Write number

do {

*--p = digit[val % base];

val = val / base;

} while(val);

debug(b, size);

}

xxxvi

/*

* Formats a float value and writes it over the semihosting channel.

* fVal: The value to print

*/

void debugFloat(float fVal)

{

char result[21];

int dVal, dec, i, j;

char sign = ’+’;

if (fVal < 0) {

fVal = -fVal;

sign = ’-’;

}

fVal += 0.005;

dVal = fVal;

dec = (int)(fVal * 100.f) % 100;

result[0] = ’\0’;

result[1] = ’\n’;

result[2] = ’ ’;

result[3] = (dec % 10) + ’0’;

result[4] = (dec / 10) + ’0’;

result[5] = ’.’;

i = 6;

while (dVal > 0)

{

result[i] = (dVal % 10) + ’0’;

dVal /= 10;

i++;

}

result[i] = sign;

i++;

char str[21];

for (i=i-1, j=0; i>=0; i--, j++)

str[j] = result[i];

debug(str, j - 1);

}

/*

* Opens the semihosting channel so that

* writes can be performed.

*/

void openSemihosting(){

SEMI_HANDLE = open(":tt", W_TRUNC, 3);

}

source/c/perf/semi.h

#ifndef SEMI_H

xxxvii

#define SEMI_H

void openSemihosting();

void debugInt(int val, int base, char* prefix, char* suffix);

void debugFloat(float fVal);

#endif // SEMI_H

source/c/perf/stackcheck.c

#include "semi.h"

extern unsigned int _estack;

extern unsigned int _sstack;

// Only implement functions when stack painting is enabled

#ifdef STACK_PAINT

// Paint the stack beginning at current stack pointer

void stack_paint() {

unsigned int* stack_top = &_sstack;

unsigned int stack_now;

// Read current stack pointer

asm (

"mov %0, sp"

: "=r" (stack_now)

::

);

unsigned int size = (stack_now - (unsigned int) stack_top) / 4;

// Fill with pattern

for (unsigned int i = 0; i < size; i++) {

*stack_top = 0xBADEAFFE;

stack_top++;

}

}

// Get the maximum stack size by analyzing where the

// pattern still stands

unsigned int stack_get() {

unsigned int* stack_bottom = &_estack - 1;

unsigned int following_patterns = 0;

unsigned int stack_size = 0;

while (stack_bottom > &_sstack) {

if (*stack_bottom == 0xBADEAFFE) {

following_patterns++;

} else {

following_patterns = 0;

}

if (following_patterns == 1) {

stack_size = (unsigned int) (&_estack - (stack_bottom + 1)) * 4;

}

stack_bottom--;

xxxviii

}

return stack_size;

}

// Print the maximum stack size over the semihosting channel

void stack_print() {

unsigned int size = stack_get();

debugInt(size, 16, "0x", " bytes\n");

}

#else

void stack_paint() {}

unsigned int stack_get() { return 0; }

void stack_print() {}

#endif

source/c/perf/stackcheck.h

#ifndef STACKCHECK_H

#define STACKCHECK_H

void stack_paint();

unsigned int stack_get();

void stack_print();

#endif // STACKCHECK_H

source/c/perf/summarize.py

import sys

functions = {}

if len(sys.argv) < 2:

print("Provide input file");

exit();

with open(sys.argv[1]) as f:

for line in f.readlines():

if line.startswith("-"):

continue

elif line.startswith("0x"):

functions["stack"] = line.split(" ")[0]

continue

parts = line.split(" ")

name = parts[0]

val = int(parts[1])

if name in functions:

old = functions[name]

functions[name] = {’time’: old[’time’] + val, ’num’: old[’num’] + 1, \

’max’: max(old["max"], val), ’min’: min(old["min"], val)}

else:

functions[name] = {’time’: val, ’num’: 1, ’max’: val, ’min’: val}

Compute average

for f in functions:

function = functions[f]

xxxix

if type(function) is dict:

function[’avg’] = function["time"] / function["num"]

print(functions)

source/c/perf/time.c

#include "stm32f3xx_hal.h"

#include "semi.h"

TIM_HandleTypeDef TimHandle;

int subtractCount = 0;

// Only implement functions when time measurements are enabled

#ifdef MEASURE_TIME

// Start the timer by returning the current cycle count

unsigned int TimerStart() {

return DWT->CYCCNT - subtractCount;

}

// Stop the timer and print the amount of elapsed cycles since the given start value

void TimerEnd(unsigned int start_val, char* name){

uint32_t now = DWT->CYCCNT;

uint32_t endTime = now - subtractCount;

uint32_t diff;

if (endTime >= start_val){

diff = endTime - start_val;

} else {

diff = (UINT32_MAX - start_val) + endTime;

}

debugInt(diff, 10, name, " cycles\n");

uint32_t spent = DWT->CYCCNT - now;

subtractCount += spent;

}

// Initialize the timer by enabling cycle counting

void TimerInit() {

// Enable DWT cycle counter register

DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;

}

#else

unsigned int TimerStart() {return 0;}

void TimerEnd(unsigned int start_val, char* name) {}

void TimerInit() {}

#endif

source/c/perf/time.h

#ifndef TIME_H

#define TIME_H

unsigned int TimerStart();

void TimerEnd(unsigned int s, char* n);

void TimerInit();

xl

#endif // TIME_H

source/c/perf/tracking/cl particle.h

#ifndef CL_PARTICLE_H

#define CL_PARTICLE_H

typedef struct

{

float x;

float y;

float w;

float phi;

float omega;

} cl_particle;

#endif // CL_PARTICLE_H

source/c/perf/tracking/cl particle filter.c

#include "cl_particle_filter.h"

#include "cl_particle.h"

#include "cl_pendulum.h"

#include "../time.h"

#include <math.h>

#define PI 3.14159265f

//Number of samples

#define N 10

// Number of inputs

#define M 10

//Duration of one timeslot

float dt;

/*

* Resample particle space.

* Get rid of particles with low weights and place new

* particles at places with other high-weight particles.

* Also resets all weights to 1/N

*/

void resample(cl_particle* particles)

{

unsigned int tval = TimerStart();

float c[N];

float U[N];

//Initialize the CSW(cumulative sum of weights)

c[0] = particles[0].w;

for(int i=1; i<N; i++) {

c[i]= c[i-1] + particles[i].w;

}

int i=0;

xli

// Draw a starting point

// Normally would use a random number,

// but to be able to compare Rust and C,

// 0.54 is random enough!

U[0] = 0.54f * (1.0f / N);

for(int j=0; j<N; j++) {

U[j] = U[0] + (1.0f/N) * j;

while(U[j] > c[i]) {

i++;

}

particles[j].x = particles[i].x;

particles[j].y = particles[i].y;

particles[j].phi = particles[i].phi;

particles[j].omega = particles[i].omega;

particles[j].w = 1.0f/N;

}

TimerEnd(tval, "resample ");

}

/* This is basically the first step of filtering: Prediction

* Move particles according to the motion model.

* In this case: A differential equation for typical pendulum movement

*/

void calculate_proposal_pendulum(cl_particle* particle)

{

unsigned int tval = TimerStart();

//Known Parameters:

float l = 1.0; //Length of the pendulum in m

float x_a = 0; //Attachment point x

float y_a = 0; //Attachment point y

float r = 0.2; //Friction in 1/s

float deltat = dt; //Time interval in s

float g = 9.81; //Acceleration due to gravity

float gdl = g/l;

//Unknown parameters:

float phi; //phi at time 0 in radians

float omega; //angular velocity

float omegazw; //Derivative of Omega

float phizw; //Derivative of phi

float omeganeu;

phi = particle->phi;

omega = particle->omega;

omegazw = omega + (-gdl * sinf(phi) - r * omega) * deltat;

phizw = phi + omega * deltat;

omeganeu = omega + (-gdl * sinf(0.5f * (phi + phizw)) - r * 0.5f

* (omega + omegazw)) * deltat;

phi = phi + 0.5f * (omega + omeganeu) * deltat;

omega = omeganeu;

xlii

// Update particle for the new time step

particle->x = -sinf(phi)+ x_a;

particle->y = -cosf(phi)+ y_a;

particle->phi = phi;

particle->omega = omega;

TimerEnd(tval, "proposal ");

}

/*

* Changes the weight of a particle according to its distance to the measurement.

*/

void calculate_importance_density(cl_particle* measurement,

cl_particle* particle, float* erg)

{

unsigned int tval = TimerStart();

float dx = fabsf(particle->x - measurement->x);

float dy = fabsf(particle->y - measurement->y);

*erg = 1.0f/(dx * dy) + particle->w;

TimerEnd(tval, "importance ");

}

/*

* This is the actual filtering process, this includes every step but

* resampling and initialization.

*/

void SIR_filter(cl_particle* particles, cl_particle *measurement)

{

unsigned int tval = TimerStart();

// Tmp variable for the weight before normalizing

float erg[N];

for(int i=0; i<N; i++) {

//calculate the proposal to predict the next position of the particles

calculate_proposal_pendulum(&particles[i]);

//Evaluate the importance weights

calculate_importance_density(measurement, &particles[i], &erg[i]);

}

//Calculate total weight

float t = erg[0];

for(int i = 1; i<N; i++) {

t = t + erg[i];

}

// Normalize weights

for(int i = 0; i<N; i++) {

particles[i].w = erg[i] * (1.0f/t);

}

TimerEnd(tval, "sir_filter ");

}

xliii

/*

* Run complete particle filter algorithm.

*/

float start()

{

cl_particle measurements[M];

cl_particle particles[N];

// Generate pendulum data

unsigned int tval = TimerStart();

generate_pendulum_data(measurements, M, &dt);

TimerEnd(tval, "generate ");

// Generate N samples with weigth N/1 that are equally distributed

tval = TimerStart();

for(int i = 0; i<N; i++){

particles[i].w = 1.0f/N;

particles[i].phi = i * ((2.0f*PI)/N);

particles[i].x = -sinf(particles[i].phi);

particles[i].y = -cosf(particles[i].phi);

particles[i].omega = 0.0f;

}

TimerEnd(tval, "initialize ");

tval = TimerStart();

// Perform filter and resample steps on every measurement

for (int k = 0; k < M; k++) {

SIR_filter(particles, &measurements[k]);

resample(particles);

}

TimerEnd(tval, "filter ");

// Compute result value

float res = 0;

for (int i = 0; i < N; i++) {

res += particles[i].phi * particles[i].w;

}

return res;

}

source/c/perf/tracking/cl particle filter.h

#ifndef CL_PARTICLE_FILTER_H

#define CL_PARTICLE_FILTER_H

#include "cl_particle.h"

void resample(cl_particle* particles);

void calculate_proposal_pendulum(cl_particle* particle);

void calculate_importance_density(cl_particle* measurement, cl_particle* particle,

float* erg);

void SIR_filter(cl_particle* particles, cl_particle *measurement);

float start();

#endif // CL_PARTICLE_FILTER_H

xliv

source/c/perf/tracking/cl particle filter data.c

#include "cl_particle_filter.h"

#include "cl_particle.h"

#include "cl_pendulum.h"

#include "../time.h"

#include <math.h>

//Number of samples

#define N 10

#define PI 3.14159265f

// Number of inputs

#define M 10

//Duration of one timeslot

float dt;

cl_particle particles[N];

cl_particle measurements[M];

float erg[N];

float c[N];

float U[N];

/*

* Resample particle space.

* Get rid of particles with low weights and place new

* particles at places with other high-weight particles.

* Also resets all weights to 1/N

*/

void resample()

{

unsigned int tval = TimerStart();

//Initialize the CSW(cumulative sum of weights)

c[0] = particles[0].w;

for(int i=1; i<N; i++) {

c[i]= c[i-1] + particles[i].w;

}

int i=0;

// Draw a starting point

// Normally would use a random number,

// but to be able to compare Rust and C,

// 0.54 is random enough!

U[0] = 0.54f * (1.0f / N);

for(int j=0; j<N; j++) {

U[j] = U[0] + (1.0f/N) * j;

while(U[j] > c[i]) {

i++;

}

xlv

particles[j].x = particles[i].x;

particles[j].y = particles[i].y;

particles[j].phi = particles[i].phi;

particles[j].omega = particles[i].omega;

particles[j].w = 1.0f/N;

}

TimerEnd(tval, "resample ");

}

/* This is basically the first step of filtering: Prediction

* Move particles according to the motion model.

* In this case: A differential equation for typical pendulum movement

*/

void calculate_proposal_pendulum(int i)

{

unsigned int tval = TimerStart();

//Known Parameters:

float l = 1.0; //Length of the pendulum in m

float x_a = 0; //Attachment point x

float y_a = 0; //Attachment point y

float r = 0.2; //Friction in 1/s

float deltat = dt; //Time interval in s

float g = 9.81; //Acceleration due to gravity

float gdl = g/l;

//Unknown parameters:

float phi; //phi at time 0 in radians

float omega; //angular velocity

float omegazw; //Derivative of Omega

float phizw; //Derivative of phi

float omeganeu;

phi = particles[i].phi;

omega = particles[i].omega;

omegazw = omega + (-gdl * sinf(phi) - r * omega) * deltat;

phizw = phi + omega * deltat;

omeganeu = omega + (-gdl * sinf(0.5f * (phi + phizw)) - r * 0.5f

* (omega + omegazw)) * deltat;

phi = phi + 0.5f * (omega + omeganeu) * deltat;

omega = omeganeu;

// Update particle for the new time step

particles[i].x = -sinf(phi)+ x_a;

particles[i].y = -cosf(phi)+ y_a;

particles[i].phi = phi;

particles[i].omega = omega;

TimerEnd(tval, "proposal ");

}

/*

* Changes the weight of a particle according to its distance to the measurement.

*/

void calculate_importance_density(int k, int i)

xlvi

{

unsigned int tval = TimerStart();

float dx = fabsf(particles[i].x - measurements[k].x);

float dy = fabsf(particles[i].y - measurements[k].y);

erg[i] = 1.0f/(dx * dy) + particles[i].w;

TimerEnd(tval, "importance ");

}

/*

* This is the actual filtering process, this includes every step but

* resampling and initialization.

*/

void SIR_filter(int k)

{

unsigned int tval = TimerStart();

for(int i=0; i<N; i++) {

//calculate the proposal to predict the next position of the particles

calculate_proposal_pendulum(i);

//Evaluate the importance weights

calculate_importance_density(k, i);

}

//Calculate total weight

float t = erg[0];

for(int i = 1; i<N; i++) {

t = t + erg[i];

}

// Normalize weights

for(int i = 0; i<N; i++) {

particles[i].w = erg[i] * (1.0f/t);

}

TimerEnd(tval, "sir_filter ");

}

/*

* Run complete particle filter algorithm.

*/

float start()

{

// Generate pendulum data

unsigned int tval = TimerStart();

generate_pendulum_data(measurements, M, &dt);

TimerEnd(tval, "generate ");

//Generate N samples with weigth N/1 that are equally distributed

tval = TimerStart();

for(int i = 0; i<N; i++){

particles[i].w = 1.0f/N;

xlvii

particles[i].phi = i * ((2.0f*PI)/N);

particles[i].x = -sinf(particles[i].phi);

particles[i].y = -cosf(particles[i].phi);

particles[i].omega = 0.0;

}

TimerEnd(tval, "initialize ");

tval = TimerStart();

// Perform filter and resample steps on every measurement

for (int k = 0; k < M; k++) {

SIR_filter(k);

resample();

}

TimerEnd(tval, "filter ");

// Compute result value

float res = 0;

for (int i = 0; i < N; i++) {

res += particles[i].phi * particles[i].w;

}

return res;

}

source/c/perf/tracking/cl particle filter data.h

#ifndef CL_PARTICLE_FILTER_H

#define CL_PARTICLE_FILTER_H

void resample();

void calculate_proposal_pendulum();

void calculate_importance_density(int k, int i);

void SIR_filter(int k);

float start();

#endif // CL_PARTICLE_FILTER_H

source/c/perf/tracking/cl pendulum.c

#include "cl_pendulum.h"

#include <math.h>

void DGlStep (float *phi, float *omega, float dt, float gdl, float r);

void generate_pendulum_data(cl_particle *measurements, int maxMeasures,

float *deltat_ret) {

// Parameters

float phi = 2.0;

float omega = 0.0;

float time = 0.0;

float deltat = 0.1;

float l = 1.0;

float g = 9.81;

float r = 0.2;

float x_a = 0;

float y_a = 0;

float accuracy = 0.15;

int measureId = 0;

xlviii

*deltat_ret = deltat;

// Simulation loop

while (time < maxMeasures * deltat)

{

float x = -sinf(phi) + x_a;

float y = -cosf(phi)+ y_a;

measurements[measureId].x = x;

measurements[measureId].y = y;

measurements[measureId].w = accuracy;

measureId++;

// Compute simulation step

DGlStep (&phi, &omega, deltat, g / l, r);

time += deltat;

}

}

void DGlStep(float *phi, float *omega, float dt, float gdl, float r)

{

float omegazw = *omega + (-gdl * sinf(*phi) - r * *omega) * dt;

float phizw = *phi + *omega * dt;

float omeganeu = *omega + (-gdl * sinf(0.5f * (*phi + phizw)) - r * 0.5f

* (*omega + omegazw)) * dt;

*phi = *phi + 0.5f * (*omega + omeganeu) * dt;

*omega = omeganeu;

}

source/c/perf/tracking/cl pendulum.h

#ifndef CL_PENDULUM_H

#define CL_PENDULUM_H

#include "cl_particle.h"

void generate_pendulum_data(cl_particle *measurements, int maxMeasures,

float *deltat_ret);

#endif // CL_PENDULUM_H

source/c/tools/CMakeLists.txt

cmake_minimum_required(VERSION 3.10)

project(toolDemo)

include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)
conan_basic_setup(TARGETS)

#include_directories(${CONAN_INCLUDE_DIRS_JSON-C})

add_executable(toolDemo toolDemo.c)

target_link_libraries(toolDemo CONAN_PKG::json-c)

source/c/tools/conanfile.txt

xlix

[requires]

json-c/0.13.1

[generators]

cmake

source/c/tools/toolDemo.c

#include <stdio.h>

#include <json-c/json.h>

typedef struct {

char* firstName;

char* lastName;

} Human;

typedef struct {

Human parents[2];

Human child;

} Family;

struct json_object* serialize_human(Human* human) {

struct json_object* target = json_object_new_object();

json_object_object_add(target, "first_name",

json_object_new_string(human->firstName));

json_object_object_add(target, "last_name",

json_object_new_string(human->lastName));

return target;

}

struct json_object* serialize_parents(Human parents[2]) {

struct json_object* parents_res = json_object_new_array();

for (int i = 0; i < 2; i++) {

json_object_array_add(parents_res, serialize_human(&parents[i]));

}

return parents_res;

}

struct json_object* serialize_family(Family* family) {

struct json_object* family_res = json_object_new_object();

json_object_object_add(family_res, "parents",serialize_parents(family->parents));

json_object_object_add(family_res, "child", serialize_human(&family->child));

return family_res;

}

void main() {

// Create data

Family flintstones = {

{

{"Fred", "Flintstone" },

{"Wilma", "Flintstone"}

},

{"Pebbles", "Flintstone"},

};

struct json_object* flintstones_json = serialize_family(&flintstones);

printf("The family: \n%s\n", json_object_to_json_string(flintstones_json));

}

l

source/rust/bare/.cargo/config

[target.thumbv7em-none-eabihf]

Set compiler flag to include the link script

rustflags = ["-C", "link-arg=-Tlink.x"]

Command to run when execution cargo run

runner = "arm-none-eabi-gdb -q -x openocd.gdb"

Set default compiler target triple

[build]

target = "thumbv7em-none-eabihf"

source/rust/bare/rt/.cargo/config

Set compiler flag to include the link script

[target.thumbv7em-none-eabihf]

rustflags = ["-C", "link-arg=-Tlink.x"]

Set default compiler target triple

[build]

target = "thumbv7em-none-eabihf"

source/rust/bare/rt/src/lib.rs

// Crate without standard lib

#![no_std]

use core::panic::PanicInfo;

use core::ptr;

// Put address of startup function (reset vector) into separate section

#[link_section = ".vector_table.reset_vector"]

pub static RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;

// Define panic handler for unrecoverable runtime errors

#[panic_handler]

fn panic(_panic: &PanicInfo<’_>) -> ! {

loop {}

}

#[no_mangle]

pub unsafe extern "C" fn Reset() -> ! {

extern "C" {

static mut _sbss: u8;

static mut _ebss: u8;

static mut _sdata: u8;

static mut _edata: u8;

static _sidata: u8;

}

// Initialize BSS section to 0

let count = &_ebss as *const u8 as usize - &_sbss as *const u8 as usize;

ptr::write_bytes(&mut _sbss as *mut u8, 0, count);

// Copy DATA section from FLASH to RAM

let count = &_edata as *const u8 as usize - &_sdata as *const u8 as usize;

ptr::copy_nonoverlapping(&_sidata as *const u8, &mut _sdata as *mut u8, count);

// Call main

li

extern "Rust" {

fn main() -> !;

}

main()

}

// Define "entry" macro for easier definition of main

#[macro_export]

macro_rules! entry {

($path:path) => {

#[export_name = "main"]

pub unsafe fn __main() -> ! {

let f: fn() -> ! = $path;

f()

}

};

}

source/rust/crates/Cargo.toml

[package]

name = "embed-demo-crates"

version = "0.1.0"

authors = ["Nico Borgsmueller <nico.borgsmueller@mbda-systems.de>"]

edition = "2018"

[dependencies]

cortex-m = "0.6.3"

cortex-m-rt = "0.6.13"

panic-semihosting = "0.5.3"

cortex-m-semihosting = "0.3.5"

[dependencies.stm32f3]

features = ["stm32f303", "rt"]

version = "0.12.1"

[profile.release]

debug = true

opt-level = 3

source/rust/crates/src/main.rs

#![no_std]

#![no_main]

// Use semihosting strategy for panics (by including a crate)

use panic_semihosting as _;

use cortex_m_rt::entry;

use stm32f3::stm32f303;

#[entry]

fn main() -> ! {

let peripherals = stm32f303::Peripherals::take().unwrap();

// Enable peripheral clock for IO ports A and E

peripherals.RCC.ahbenr.modify(|_, w| {

lii

w

.iopeen().set_bit()

.iopaen().set_bit()

});

// Set mode of button to input

peripherals.GPIOA.moder.modify(|_, w| {

w.moder0().input()

});

// Set mode of LED 9 to output

peripherals.GPIOE.moder.modify(|_, w| {

w.moder9().output()

});

loop {

while peripherals.GPIOA.idr.read().idr0().bit_is_clear() {}

// Write to GPIO bit set/reset register

peripherals.GPIOE.bsrr.write(|w| {

// Turn LED 9 on

w.bs9().set_bit()

});

while peripherals.GPIOA.idr.read().idr0().bit_is_set() {}

// Write to GPIO bit set/reset register

peripherals.GPIOE.bsrr.write(|w| {

// Turn LED 9 off

w.br9().set_bit()

});

}

}

source/rust/perf/Cargo.toml

[package]

name = "embed-perf"

version = "0.1.0"

authors = ["Nico Borgsmueller <nico.borgsmueller@mbda-systems.de>"]

edition = "2018"

[features]

paint_stack = []

measure_time = []

use_data = []

print = []

[dependencies]

cortex-m = "0.6.3"

cortex-m-rt = "0.6.13"

panic-semihosting = "0.5.3"

cortex-m-semihosting = "0.3.5"

libm = "0.2.1"

[dependencies.arrayvec]

version = "0.5.2"

default-features = false

liii

[dependencies.stm32f3]

features = ["stm32f303", "rt"]

version = "0.12.1"

[profile.release]

opt-level = ’s’

lto = true

source/rust/perf/run tests.sh

#!/bin/bash

cargo clean

{ time cargo +nightly build --release -q 2>/dev/null; } 2> bench/time.log

arm-none-eabi-objdump -h target/thumbv7em-none-eabihf/release/embed-perf>sizes.log

cargo +nightly run --release --features measure_time,use_data

#cargo +nightly run --release --features measure_time

cargo +nightly run --release --features paint_stack,use_data

#cargo +nightly run --release --features paint_stack

python summarize.py bench/times_stack.log > bench/times_stack.json

rm -f bench/times_stack.log

source/rust/perf/src/main.rs

#![no_std]

#![no_main]

#![feature(asm)]

#![feature(core_intrinsics)]

// Conditional imports for the different features:

mod timing;

mod measurement;

#[cfg(feature="paint_stack")]

mod stackcheck;

#[cfg(not(feature="use_data"))]

mod particle_filter;

#[cfg(not(feature="use_data"))]

mod pendulum;

#[cfg(feature="use_data")]

mod particle_filter_data;

#[cfg(feature="use_data")]

mod pendulum_data;

#[cfg(debug_assertions)]

use panic_semihosting as _;

#[cfg(not(debug_assertions))]

use core::intrinsics;

#[cfg(not(debug_assertions))]

use core::panic::PanicInfo;

#[cfg(not(debug_assertions))]

#[panic_handler]

liv

fn panic(_info: &PanicInfo) -> ! {

intrinsics::abort()

}

use cortex_m_rt::entry;

#[cfg(feature="paint_stack")]

use crate::stackcheck::StackChecker;

#[cfg(any(feature="paint_stack",feature="print"))]

use cortex_m_semihosting::hio;

#[cfg(any(feature="paint_stack",feature="print"))]

use core::fmt::Write;

#[cfg(not(feature="use_data"))]

use crate::particle_filter::ParticleFilter;

#[cfg(feature="use_data")]

use crate::particle_filter_data::ParticleFilter;

#[cfg(feature="print")]

use core::str;

use core::ptr;

#[allow(unused_imports)] // Required to link the interrupt handlers

use stm32f3::stm32f303::{interrupt, Interrupt, NVIC};

#[entry]

fn main() -> ! {

#[cfg(feature="paint_stack")]

StackChecker::paint();

#[cfg(any(feature="paint_stack",feature="print"))]

let mut h_std_out = hio::hstdout().unwrap();

// Run the particle filter

let mut filter = ParticleFilter::init();

let res = filter.start();

// To be able to check the result in GDB with x/fw 0x20001000

unsafe {

ptr::write_volatile(0x20001000 as *mut f32, res);

}

// If the print feature is enabled, log the result over the semihosting channel

#[cfg(feature="print")]

{

let res_str = to_str(res);

let res_str = str::from_utf8(&res_str).unwrap();

writeln!(h_std_out, "Result: {}", res_str).ok();

}

// If the paint_stack feature is enabled, print the stack size over semihosting

#[cfg(feature="paint_stack")]

{

let stack_size = StackChecker::get();

writeln!(h_std_out, "{:#x} bytes", stack_size).ok();

lv

}

loop {}

}

// Function for converting the resulting float into a string

#[cfg(feature="print")]

fn to_str(mut f_val: f32) -> [u8; 10]

{

let sign = if f_val < 0.0 {

f_val = -f_val;

’-’

} else {

’+’

};

f_val += 0.005;

let mut d_val = f_val as i32;

let dec = (f_val * 100.0) as i32 % 100;

let mut bytes = [0_u8; 10];

bytes[0] = (dec % 10) as u8 + ’0’ as u8;

bytes[1] = (dec / 10) as u8 + ’0’ as u8;

bytes[2] = ’.’ as u8;

let mut i = 3;

while d_val > 0 {

bytes[i] = (d_val % 10) as u8 + ’0’ as u8;

d_val /= 10;

i+=1;

}

bytes[i] = sign as u8;

bytes.reverse();

bytes

}

source/rust/perf/src/measurement.rs

#[derive(Clone, Copy)]

pub struct Measurement {

pub x: f32,

pub y: f32,

pub accuracy: f32

}

source/rust/perf/src/particle filter.rs

use crate::timing::TimingManager;

use crate::pendulum::Pendulum;

use crate::measurement::Measurement;

use arrayvec::ArrayVec;

use libm::{sinf, cosf};

// Number of particles

const N : usize = 10;

lvi

// Trait to get the absolute value

trait Abs {

fn abs(self) -> Self;

}

impl Abs for f32 {

fn abs(self) -> Self {

if self >= 0_f32 { self } else { -self }

}

}

#[derive(Clone, Copy)]

struct Particle {

x: f32,

y: f32,

w: f32,

phi: f32,

omega: f32

}

pub struct ParticleFilter {

particles: [Particle; N]

}

impl ParticleFilter {

pub fn init() -> ParticleFilter {

ParticleFilter { particles: [Particle {x: 0.0, y: 0.0, w: 0.0, phi: 0.0,

omega: 0.0 }; N] }

}

pub fn start(&mut self) -> f32 {

let cortex_peripherals = cortex_m::Peripherals::take().unwrap();

let timing = TimingManager::init(&cortex_peripherals.DWT);

let measurements = {

let _t = timing.time("generate");

Pendulum::generate()

};

{

let _t = timing.time("initialize");

for (i, particle) in self.particles.iter_mut().enumerate() {

particle.w = 1.0/N as f32;

particle.phi= i as f32 * ((2_f32 * core::f32::consts::PI)/N as f32);

particle.x = -sinf(particle.phi);

particle.y = -cosf(particle.phi);

}

}

{

let _t = timing.time("filter");

for measurement in measurements.0.iter() {

self.sir_filter(measurement, measurements.1, &timing);

self.resample(&timing);

}

}

lvii

let res = self.particles.iter().map(|p| p.phi * p.w).sum::<f32>();

res

}

fn sir_filter(&mut self, measurement: &Measurement, delta_t: f32,

timing: &TimingManager) {

let _t = timing.time("sir_filter");

for particle in self.particles.iter_mut() {

particle.calculate_proposal_pendulum(delta_t, timing);

particle.calculate_importance_density(measurement, timing);

}

let total = self.particles.iter().map(|p| p.w).sum::<f32>();

for particle in self.particles.iter_mut() {

particle.w = particle.w * (1_f32 / total);

}

}

fn resample(&mut self, timing: &TimingManager) {

let _t = timing.time("resample");

let csw : ArrayVec<[_; N]> = self.particles.iter()

.scan(0_f32, |state, particle| {

*state = *state + particle.w;

Some(*state)

}).collect();

let csw = csw.into_inner().expect("CSW array was not completely filled!");

let mut u = [0_f32; N];

let init = 0.54 * (1_f32 / N as f32);

let mut i = 0;

for j in 0..N {

u[j] = init + (1_f32 / N as f32) * j as f32;

while u[j] > csw[i] {

i += 1;

}

self.particles[j].x = self.particles[i].x;

self.particles[j].y = self.particles[i].y;

self.particles[j].phi = self.particles[i].phi;

self.particles[j].omega = self.particles[i].omega;

self.particles[j].w = 1_f32 / N as f32;

}

}

}

impl Particle {

fn calculate_proposal_pendulum(&mut self, delta_t: f32,

timing: &TimingManager) {

let _t = timing.time("proposal");

let l: f32 = 1.0;

let x_a: f32 = 0.0;

let y_a: f32 = 0.0;

lviii

let r: f32 = 0.2;

let g: f32 = 9.81;

let gdl = g/l;

let phi = self.phi;

let omega = self.omega;

let omegazw = omega + (-gdl * sinf(phi) - r * omega) * delta_t;

let phizw = phi + omega * delta_t;

let omeganeu = omega + (-gdl * sinf(0.5 * (phi + phizw)) - r * 0.5

* (omega + omegazw)) * delta_t;

let phi = phi + 0.5 * (omega + omeganeu) * delta_t;

let omega = omeganeu;

self.x = -sinf(phi) + x_a;

self.y = -cosf(phi) + y_a;

self.phi = phi;

self.omega = omega;

}

fn calculate_importance_density(&mut self, measurement: &Measurement,

timing: &TimingManager) {

let _t = timing.time("importance");

let dx = (self.x - measurement.x).abs();

let dy = (self.y - measurement.y).abs();

self.w = 1_f32 / (dx * dy) + self.w;

}

}

source/rust/perf/src/particle filter data.rs

use crate::timing::TimingManager;

use crate::pendulum_data::Pendulum;

use crate::measurement::Measurement;

use arrayvec::ArrayVec;

use libm::{sinf, cosf};

use core::cell::RefCell;

use cortex_m::interrupt;

use cortex_m::interrupt::Mutex;

use cortex_m::interrupt::CriticalSection;

const N : usize = 10;

const M : usize = 10;

const ACCURACY : f32 = 0.15;

trait Abs {

fn abs(self) -> Self;

}

impl Abs for f32 {

fn abs(self) -> Self {

if self >= 0_f32 { self } else { -self }

}

}

#[derive(Clone, Copy)]

struct Particle {

lix

x: f32,

y: f32,

w: f32,

phi: f32,

omega: f32

}

pub struct ParticleFilter {}

static particles : Mutex<RefCell<[Particle; N]>>

= Mutex::new(RefCell::new([Particle { x: 0.0, y: 0.0, w: 0.0,

phi: 0.0, omega: 0.0 }; N]));

static measurements : Mutex<RefCell<[Measurement; M]>>

= Mutex::new(RefCell::new([Measurement { x: 0.0, y: 0.0,

accuracy: ACCURACY }; M]));

impl ParticleFilter {

pub fn init() -> ParticleFilter {

ParticleFilter { }

}

pub fn start(&mut self) -> f32 {

let cortex_peripherals = cortex_m::Peripherals::take().unwrap();

let timing = TimingManager::init(&cortex_peripherals.DWT);

let delta_t = {

let _t = timing.time("generate");

interrupt::free(|cs| {

Pendulum::generate(measurements.borrow(cs).borrow_mut())

})

};

{

let _t = timing.time("initialize");

interrupt::free(|cs| {

for (i, particle) in particles.borrow(cs).borrow_mut().iter_mut()

.enumerate() {

particle.w = 1.0/N as f32;

particle.phi = i as f32 * ((2_f32

* core::f32::consts::PI)/N as f32);

particle.x = -sinf(particle.phi);

particle.y = -cosf(particle.phi);

}

});

}

{

let _t = timing.time("filter");

interrupt::free(|cs| {

for measurement in measurements.borrow(cs).borrow().iter() {

self.sir_filter(measurement, delta_t, &timing, cs);

self.resample(&timing, cs);

}

});

}

let res = interrupt::free(|cs| {

particles.borrow(cs).borrow().iter().map(|p| p.phi * p.w).sum::<f32>()

lx

});

res

}

fn sir_filter(&mut self, measurement: &Measurement, delta_t: f32,

timing: &TimingManager, cs: &CriticalSection) {

let _t = timing.time("sir_filter");

for particle in particles.borrow(cs).borrow_mut().iter_mut() {

particle.calculate_proposal_pendulum(delta_t, timing);

particle.calculate_importance_density(measurement, timing);

}

let total = particles.borrow(cs).borrow().iter().map(|p| p.w).sum::<f32>();

for particle in particles.borrow(cs).borrow_mut().iter_mut() {

particle.w = particle.w * (1_f32 / total);

}

}

fn resample(&mut self, timing: &TimingManager, cs: &CriticalSection) {

let _t = timing.time("resample");

let csw : ArrayVec<[_; N]> = particles.borrow(cs).borrow().iter()

.scan(0_f32, |state, particle| {

*state = *state + particle.w;

Some(*state)

}).collect();

let csw = csw.into_inner().expect("CSW array was not completely filled!");

let mut u = [0_f32; N];

let init = 0.54 * (1_f32 / N as f32);

let mut i = 0;

let mut parts = particles.borrow(cs).borrow_mut();

for j in 0..N {

u[j] = init + (1_f32 / N as f32) * j as f32;

while u[j] > csw[i] {

i += 1;

}

parts[j].x = parts[i].x;

parts[j].y = parts[i].y;

parts[j].phi = parts[i].phi;

parts[j].omega = parts[i].omega;

parts[j].w = 1_f32 / N as f32;

}

}

}

impl Particle {

fn calculate_proposal_pendulum(&mut self, delta_t: f32,

timing: &TimingManager) {

let _t = timing.time("proposal");

let l: f32 = 1.0;

let x_a: f32 = 0.0;

lxi

let y_a: f32 = 0.0;

let r: f32 = 0.2;

let g: f32 = 9.81;

let gdl = g/l;

let phi = self.phi;

let omega = self.omega;

let omegazw = omega + (-gdl * sinf(phi) - r * omega) * delta_t;

let phizw = phi + omega * delta_t;

let omeganeu = omega + (-gdl * sinf(0.5 * (phi + phizw)) - r * 0.5

* (omega + omegazw)) * delta_t;

let phi = phi + 0.5 * (omega + omeganeu) * delta_t;

let omega = omeganeu;

self.x = -sinf(phi) + x_a;

self.y = -cosf(phi) + y_a;

self.phi = phi;

self.omega = omega;

}

fn calculate_importance_density(&mut self, measurement: &Measurement,

timing: &TimingManager) {

let _t = timing.time("importance");

let dx = (self.x - measurement.x).abs();

let dy = (self.y - measurement.y).abs();

self.w = 1_f32 / (dx * dy) + self.w;

}

}

source/rust/perf/src/pendulum.rs

use crate::measurement::Measurement;

use libm::{sinf, cosf};

pub struct Pendulum;

const M : usize = 10;

impl Pendulum {

pub fn generate() -> ([Measurement; M], f32) {

let mut phi : f32 = 2.0;

let mut omega : f32 = 0.0;

let delta_t : f32 = 0.1;

let l : f32 = 1.0;

let g : f32 = 9.81;

let r : f32 = 0.2;

let x_a : f32 = 0.0;

let y_a : f32 = 0.0;

let accuracy : f32 = 0.15;

let mut measurements = [Measurement {

x: 0.0,

y: 0.0,

accuracy

}; M];

lxii

for measurement in measurements.iter_mut() {

let x = -sinf(phi) + x_a;

let y = -cosf(phi) + y_a;

measurement.x = x as f32;

measurement.y = y as f32;

let (phi2, omega2) = Pendulum::dgl_step(phi, omega, delta_t, g / l, r);

phi = phi2;

omega = omega2;

}

(measurements, delta_t)

}

fn dgl_step(phi: f32, omega: f32, dt: f32, gdl: f32, r: f32) -> (f32, f32) {

let omegazw = omega + (-gdl * sinf(phi) as f32 - r * omega) * dt;

let phizw = phi + omega * dt;

let omeganeu = omega + (-gdl * sinf(0.5 * (phi + phizw)) as f32 - r

* 0.5 * (omega + omegazw)) * dt;

let phineu = phi + 0.5 * (omega + omeganeu) * dt;

(phineu, omeganeu)

}

}

source/rust/perf/src/pendulum data.rs

use crate::measurement::Measurement;

use libm::{sinf, cosf};

use core::cell::RefMut;

pub struct Pendulum;

const M : usize = 10;

impl Pendulum {

pub fn generate(mut measurements: RefMut<[Measurement; M]>) -> f32 {

let mut phi : f32 = 2.0;

let mut omega : f32 = 0.0;

let delta_t : f32 = 0.1;

let l : f32 = 1.0;

let g : f32 = 9.81;

let r : f32 = 0.2;

let x_a : f32 = 0.0;

let y_a : f32 = 0.0;

for measurement in measurements.iter_mut() {

let x = -sinf(phi) + x_a;

let y = -cosf(phi) + y_a;

measurement.x = x as f32;

measurement.y = y as f32;

let (phi2, omega2) = Pendulum::dgl_step(phi, omega, delta_t, g / l, r);

phi = phi2;

omega = omega2;

}

delta_t

}

lxiii

fn dgl_step(phi: f32, omega: f32, dt: f32, gdl: f32, r: f32) -> (f32, f32) {

let omegazw = omega + (-gdl * sinf(phi) as f32 - r * omega) * dt;

let phizw = phi + omega * dt;

let omeganeu = omega + (-gdl * sinf(0.5 * (phi + phizw)) as f32 - r

* 0.5 * (omega + omegazw)) * dt;

let phineu = phi + 0.5 * (omega + omeganeu) * dt;

(phineu, omeganeu)

}

}

source/rust/perf/src/stackcheck.rs

use core::ptr;

pub struct StackChecker;

impl StackChecker {

pub fn paint() {

extern "C" {

static mut _stack_start: u32;

static mut _stack_end: u32;

}

unsafe {

let mut stack_start : *mut u32;

// Get current stack pointer

asm!("MOV {}, SP", out(reg_thumb) stack_start);

// Add buffer for the following call stack

stack_start = stack_start.offset(-0xc);

let count = stack_start as usize - &_stack_end as *const u32 as usize;

ptr::write_bytes(&mut _stack_end as *mut u32 as *mut u8, 0xAB, count);

}

}

pub fn get() -> usize {

extern "C" {

static mut _stack_start: u32;

static mut _stack_end: u32;

}

let mut stack_size = 0;

let mut following_patterns = 0;

unsafe {

let mut cur_ptr = &_stack_start as *const u32 as *mut u32;

cur_ptr = cur_ptr.offset(-0x1);

while cur_ptr > &_stack_end as *const u32 as *mut u32 {

if *cur_ptr == 0xABABABAB {

following_patterns += 1;

} else {

following_patterns = 0;

}

if following_patterns == 1 {

let stack_start_addr = &_stack_start as *const u32 as usize;

lxiv

stack_size = stack_start_addr - cur_ptr.offset(0x1) as usize;

}

cur_ptr = cur_ptr.offset(-0x1);

}

}

stack_size

}

}

source/rust/perf/src/timing.rs

#[cfg(feature="measure_time")]

use cortex_m_semihosting::hio::HStdout;

#[cfg(feature="measure_time")]

use core::fmt::Write;

#[cfg(feature="measure_time")]

use cortex_m_semihosting::hio;

use cortex_m::peripheral::DWT;

#[cfg(feature="measure_time")]

const DWT_CTRL_ENABLE_CYCCNT : u32 = 0x00000001;

// Static mutable is ok here because no concurrency or borrowing is performed

// It is required, so that timings are not influenced by this timing mechanism

#[cfg(feature="measure_time")]

static mut SUBTRACT_COUNT : u32 = 0;

#[cfg(feature="measure_time")]

pub struct Timing<’a> {

start: u32,

dwt: &’a DWT,

h_std_out : HStdout,

name: &’static str

}

#[cfg(feature="measure_time")]

impl Timing<’_> {

pub fn init<’t>(dwt: &’t DWT, name: &’static str) -> Timing<’t> {

let now = unsafe { dwt.cyccnt.read() - SUBTRACT_COUNT };

let h_std_out = hio::hstdout().unwrap();

Timing { start: now, dwt, h_std_out, name }

}

}

#[cfg(feature="measure_time")]

impl Drop for Timing<’_> {

fn drop(&mut self) {

let now = self.dwt.cyccnt.read();

let end = unsafe { now - SUBTRACT_COUNT };

let diff = if end >= self.start {

end - self.start

} else {

lxv

(u32::max_value() - self.start) + end

};

writeln!(self.h_std_out, "{}: {} cycles", self.name, diff).ok();

let spent = self.dwt.cyccnt.read() - now;

unsafe {

SUBTRACT_COUNT += spent;

}

}

}

#[cfg(not(feature="measure_time"))]

pub struct Timing;

#[cfg(not(feature="measure_time"))]

impl Timing {

fn init(_: &DWT, _: &’static str) -> Timing { Timing {} }

}

pub struct TimingManager<’a> {

dwt: &’a DWT

}

impl TimingManager<’_> {

#[cfg(feature="measure_time")]

pub fn init(dwt: &DWT) -> TimingManager {

// Enable DWT cycle count register

unsafe {

dwt.ctrl.modify(|mut val| {

val |= DWT_CTRL_ENABLE_CYCCNT;

val

});

}

TimingManager { dwt }

}

#[cfg(not(feature="measure_time"))]

pub fn init(dwt: &DWT) -> TimingManager {

TimingManager { dwt }

}

pub fn time(&self, name: &’static str) -> Timing {

Timing::init(self.dwt, name)

}

}

source/rust/tools/Cargo.toml

[package]

name = "tool_demo"

version = "0.1.0"

authors = ["Nico Borgsmueller <nico.borgsmueller@mbda-systems.de>"]

edition = "2018"

[dependencies]

serde = { version = "1.0", features = ["derive"]}

serde_json = "1.0"

lxvi

source/rust/tools/family.json

{ "parents": [{ "first_name": "Fred", "last_name": "Flintstone" },

{ "first_name":"Wilma", "last_name": "Flintstone" }],

"child": { "first_name": "Pebbles", "last_name": "Flintstone" } }

source/rust/tools/src/main.rs

use serde::Deserialize;

use std::error::Error;

use std::fs::File;

use std::io::BufReader;

#[derive(Deserialize, Debug)]

struct Human {

first_name: String,

last_name: String

}

#[derive(Deserialize, Debug)]

struct Family {

parents: [Human; 2],

child: Human

}

fn main() -> Result<(), Box<dyn Error>> {

let file = File::open("family.json")?;

let reader = BufReader::new(file);

let family : Family = serde_json::from_reader(reader)?;

println!("Deserialized family: {:#?}", family);

Ok(())

}

lxvii

	Abstract
	Acknowledgements
	Contents
	Acronyms
	List of Figures & Tables
	List of Listings
	Introduction
	Programming Language Basics
	C
	Rust

	Programming a Microcontroller
	...in C
	...in Rust

	Comparison of Languages
	Methodology
	Technical Aspects
	Programming Paradigms
	Tooling
	Compilation Targets

	Non-technical Aspects
	Ease of Use & Productivity
	Maturity
	Popularity
	Standards & Certification

	Safety vs Performance
	Safety
	Example program
	Performance

	Switching to Rust
	Aspects
	Learning Rust
	Portability
	Interoperability

	Example Process

	Conclusion
	References
	Appendix A - Performance Measurements
	Appendix B - Source Code

