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Abstract

With the rise of autonomous driving technology, concerns over the safety of Al-based systems have increased, particularly regard-
ing their effect on human life and infrastructure. The complexity and unpredictable nature of Al-enabled software functions have
disrupted traditional safety evaluation methods.In such a scenario, the quality control methods used at the manufacturing environ-
ments of sensors used for deploying Al-based perception functions need to be coupled with the downstream functions.This study
focuses on investigating the impact of a specific production-related defect called blemish, which is caused by debris on image
sensors of camera modules. The research aims to answer two fundamental questions: 1) How can blemish artifacts be mathemati-
cally modeled, and what is the process for developing a suitable dataset that incorporates this defect? 2) How can the influence of
blemish artifacts on performance of object detection models be traced back to define quality requirements of the camera modules?
This work takes a novel perspective by shifting the focus from improving model resilience to improving hardware quality camera
modules by studying the effects of manufacturing defects on downstream functions.This research seeks to establish a framework
to derive quality targets for front camera module manufacturing which can be extended to other sensors for similar applications.
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1. Introduction: Determining quality criteria for electronic components in autonomous driving

The beginning of the last decade witnessed an exponential use of software and electronics-enabled functionalities
within the automotive industry. The increasing concern for safety and the need for convenient transportation systems
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Fig. 1: Effect of particles in cameras: On the left, there is the debris on an image sensor, on the right, there is the blemish on the image output

lead to the development of Advanced Driver Assistance Systems (ADAS) [8]. However, with advances in sensor
manufacturing technologies and the rise of deep learning (DL) [3], it is now possible to enable the vehicle to perform
more complex tasks with greater levels of autonomy than ever before. Today features like automated braking systems,
adaptive cruise control, park assistance, and lane keeping are not rare and available in commercially sold cars. As we
are on our path to full vehicle automation, or driverless cars, ensuring the reliability of physical components used for
perception is of utmost importance, especially those that relies on Al-based detection and segmentation of objects.

The reliability of components and the resulting performance of Al models are typically disconnected due to differ-
ent quality standards. It is challenging to assess the reliability of camera-based functions in AI models, particularly
deep learning models, prior to deployment because of their black-box nature. Therefore, quality criteria need to be
aligned with the model’s performance to ensure accurate assessment.

In this paper, we study the effects of one particular production defect called a blemish (see Figure 1) on the object
detection function enabled by the camera-based perception performed by a DL-model using synthetic data. Such
corruptions are the result of dirt or dust particles present in the manufacturing environment that gets them trapped on
the image sensor, covering the pixels it lies on. This may result in partial to complete occlusion of objects present
in the field of vision (FOV). A central question is: “How severe does a defect have to be (e.g., in particle size and
intensity) to significantly deteriorate a vision model such that the part has to be scrapped?”

One challenge is to collect data with such blemishes, as they are generally avoided in the manufacturing stage
due to clean room measures. This raises the question of defining the quality criteria for these defects in cameras.
A very cautious quality target may lead to excessive scrapping of cameras, resulting in wasted time and money,
a lenient target would result in substandard product quality. Another important consideration is that even if such
systems existed, it would be necessary to investigate what would happen to the performance of the detection models
if such defects were deemed “fit” for use. While many approaches currently aim to integrate ML and DL models
into a Decision Support System (DSS) for improved performance and reduced intra-operator variability in quality
control, our approach focuses instead on deriving conventional and interpretable quality gates for defects that still
yield acceptable results in a downstream deep-learning-based object detection model.

Thus, the overall contributions of this work are to provide a statistical proof of quality criteria based on the critical
Al based-functions for perception are used such that the scrap rates can be improved and the production efficiency
is increased. We use publicly available FOV images that are synthetically tainted with blemishes of varying size (see
Section 2), fine-tune a pretrained object detection model based on deep learning, and evaluate how the simulated
defects affect the detection quality in Section 3.

1.1. Related Work

There is ongoing research in the field of investigation of the robustness of perception functions and also methods
for improvement. [9] provides an overarching study by defining what corruptions and robustness are in deep neural
networks. Further, the study gives an overview of all existing methods to improve corruption robustness including
data augmentation and many others [5]. Another relevant work is [2] in which image classifiers were benchmarked in
the presence of certain standard corruptions like Gaussian Noise, pixelation etc. However, this work is not specific to
the use case of autonomous driving. In this domain, a robust detection benchmark was introduced by [6], investigating
the effects of certain corruptions based on Hendryck’s framework [2] as well certain datasets containing fog or time
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of day corruptions. One of the few papers that deals with investigating the effects of camera-related failures on object
detection models is [7] in which the authors identify various failure modes associated with production-related failures
of a camera system, including blemish along with other corruptions. The effects of these corruptions are also studied
on various object detectors. However, the defects such as blemishes and other dirt that can appear on the camera lens
are grouped together and their effect on the models is studied together. In order to define blemish characteristics,
we need to trace the physical model of the shadow created by the interaction of light with dust particles on an image
sensor. Such studies are also limited in the existing literature. One notable exception is the paper by [10] on the artifacts
produced by dust particles on lenses. In this work, the artifacts are modeled using geometrical optics to find the relation
between lens parameters and dust size. However, the intensity distribution is only qualitatively modeled and shown to
be a Gaussian distribution or a top hat distribution depending on the size of the particle and the diameter subtended by
the light rays on the lens. However, all of these works do not elaborate on a specific mathematical model that can be
used for injecting blemish corruption into images. This work aims to bridge these gaps by first establishing a model
for the blemish artifacts and also defining severity in the context of autonomous driving applications. Moreover,
our approach is the first to systematically investigate the effect blemishes of varying size and intensity have on a
downstream deep-learning-based object detection model to derive quality gates for manufacturing.

2. Methodology: Creating realistic synthetic blemishes and fine-tuning an object detection model
2.1. Simulating Blemishes on Existing Image Datasets
Dust artifacts can be represented as an array of attenuation factors for each pixel in the camera [10]. These artifacts

can then be incorporated into test images by pixel-wise multiplication with attenuation kernel values. The attenuation
factor can be understood as a proportion of the collection cone blocked by the dust.
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(a) Light occlusion is minimal outside the particle (b) Light occlusion increases within the particle

Fig. 2: Light occlusion levels at different positions

From Figure 2, it is clear that the attenuation factor depends on the size of the particle, the image distance and
apparent aperture (entrance pupil), the diameter of the entrance pupil as well as the thickness of the particle As the
thickness of the particle decreases, the falloff in attenuation reduces and the shadow formed would be approximately
the silhouette of the particle itself. As the size of the particle reduces to a point, we can see the constancy in attenuation
drop of 100% reduces to a point spot resulting in an approximate Gaussian function.

These considerations allow us to make a model for the blemish function which can be represented by a symmetric
super-Gaussian function as shown in Figure 3. The attenuation function, denoted as f(x,y), can be represented in 2D
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Fig. 3: Blemish injection by pixel manipulation: A super-Gaussian function (see Equation (1)) is applied in two dimensions on an image to make
its pixels appear darker than they originally are.

and is symmetric about the X and Y axes. It is given by:

2 5\ P
f(6y) = 0 exp (_(% o) ) N

The value of P determines the rate of intensity fall-off and Q represents the peak drop in pixel intensity value. This
should be calibrated based on the particle thickness and object-entrance pupil distance.

e At P = 0, the attenuation function reduces to a normal Gaussian function.

e As P — oo, the attenuation function tends towards a rectangular function.

The selected datasets, KITTI [1] and BDD100k [11], do not contain any blemishes which is why we transform
them into synthetic datasets with blemishes. The symmetric super-Gaussian kernel represents the attenuation matrix
which is then applied to the image using pixel-wise multiplication as shown in Figure 3. This multiplication is done
by first extracting the region of interest, which in our case, is the area where the blemish is to be injected (represented
by the red box), and then applying the pixel-wise operation to individual color channels of the image. The location of
the blemish, the diameter, and the peak intensity (the intensity of the darkest pixel) can be varied as per the user or
test requirement and results in images as depicted in Section 2.1. The process can be iterated multiple times to create
multiple blemishes on the image which also depends on user/test requirement.

(a) Clean Image from dataset [1] (b) Blemish injected image

Fig. 4: Example of synthetic blemishes, inserted onto a clean image at known positions of objects.

2.2. Model fine-tuning

We choose the YOLOvSm model [4] for the purpose of our work as it provides the right trade-off with respect to
the size of our dataset and training time. The training is done on the pre-trained model by readjusting weights of the
backbone, neck, and head using the BDD 100k dataset — with “clean” images only, to prevent the model from learning
to ignore blemishes. No additional augmentation was performed during the training of the model as the dataset is
sufficiently large and diverse. Further augmentation may result in augmenting the robustness of the model which
would lead to possible error-masking when in fact we aim to understand the worst-case scenario. The model is trained
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on a BDD100k training dataset which consists of 70k images and validation set of 20k images. At this point, it is
important to emphasize that commercial-grade models such as those offered by vendors like Mobileye will probably
be even stronger at compensating for minor camera defects. Nevertheless, an open-source fine-tuned YOLOVS serves
as an upper bound estimation of decrease in precision.

2.3. Blemish placement scenarios

Our aim is to evaluate the risk associated with the blemish properties defined by the probability of a blemish
appearing on any object, the probability of an object appearing in any specific size group, and the severity of the
blemish. We conducted experiments on individual frames (not video sequences) to trace the effect of blemish size
and intensity on the performance of the models. The experiments involved varying the diameter of the blemish from
5px to 50px and the intensity from 0.1 to 0.9. For the perception function used in autonomous driving, it is crucial
to identify objects near the vehicle under consideration more accurately than those farther away. To assess this, we
consider object sizes in the image, as they are inversely correlated with the distance from the vehicle. By dividing the
object sizes into four quartiles (0 to 304 pixels, 304 to 811 pixels, 811 to 2947 pixels, and 2947 and more pixels),
we gain greater insight into the model inference degradation when a blemish of a particular diameter and intensity is
placed on objects that are close to or far from the vehicle. This approach enables us to evaluate the effects of blemishes
in relation to the distance of objects from the vehicle and their impact on the overall risk. We conceived two relevant
scenarios, one evaluating the worst case that could happen if blemishes directly align with ground truth objects, and
another which places blemishes at random to more adequately model the manufacturing distribution.

Stress test — Blemishes placed directly on objects. In this test, we want to evaluate the object detection model by
constraining the location of the blemish. This is done by placing the blemish in the ground truth (GT) bounding box
of the objects in the image. This scenario represents the “worst case scenario” as the blemish appears directly on an
object to be detected, leading to its occlusion. The diameter of the blemish can be either kept fixed or varied based
on a predetermined ratio with respect to the object size. When the diameter is set to a constant value, is possible
that the blemish on an object may also result in partial or complete occlusion of nearby objects and augments the
effect of existing blemishes, making it difficult to draw a direct conclusion on the blemish characteristics to the model
degradation.

Coverage test — Blemishes placed uniformly at random. While the stress test is beneficial for understanding the worst-
case scenario and allows for establishing a relation between the object size and blemish size on the degradation of
the model, in reality, the probability that every object in a frame is covered by a blemish is highly unlikely. In order
to simulate a more realistic scenario, we generate blemishes at random locations. Through the coverage test, we aim
to establish the correlation between the effective area covered by blemish to the degradation in model performance.
This is done by a brute force algorithm that generates blemishes of varying diameter but a fixed intensity at locations
such that no two blemishes would overlap until the predefined coverage (expressed as the percentage of image size)
is reached. For example, a 0.01% coverage defined by the user or the test for an image of resolution 1280px x 720 px
would mean the algorithm would generate blemishes at random locations until 0.01 x 1280 x 720 = 9216 pixels are
covered by the blemishes. The result only gives a probabilistic estimate regarding the influence since a comprehensive
study should ideally include an extremely large sample.

3. Experimental Results
3.1. Validity of Synthetic Blemishes

We discuss the impact of injecting the blemish augmentation on images on the object detection capabilities of
our fine-tuned Yolov5. Before evaluating this impact, it is important to check if the mathematical model derived for
a blemish within this work is a good representation of blemishes found in reality. In order to do this, we check how
well the intensity distribution plot for the theoretical blemish(based on super gaussian equation) and observed blemish
correlates, as can be qualitatively compared in terms of distance and pixel intensity in Figure 5a. The goodness of fit
can then further be quantified using a y2-test, as depicted in Figure 5b.
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Fig. 5: Grounding of simulated blemishes in real data. No significant difference in intensity distribution was detected (significance level 0.05)

3.2. Baseline and Metrics

We first look at the results obtained using the clean images in the BDD100K validation dataset shown in Table 1.
These results highlight the model’s capability to handle clean images and establish a baseline for comparison with the
blemish-augmented dataset.

The mAP is a comprehensive metric that measures average precision values at various recall values across all
object classes. This gives a holistic evaluation of the overall detection capability of the model at a given threshold of
Intersection over Union (a measure of how well the predicted and ground truth bounding boxes overlap) — here we
chose 50%, then called mAP50. In the context of autonomous driving, another critical metric is False Negatives which
indicates the situations when the model failed to recognize the presence of an object. For example, when looking at
car objects only, our fine-tuned YOLOVS5 reaches a mean average precision (mAP) of 74 % and fails to detect 74,450
objects out of 236,790, i.e., 31%. This is safety-critical because instances like missing a vehicle or pedestrian could
have fatal consequences. By understanding the baseline metrics given in Table 1, we can put the deterioration of mAP
and FN in the presence of blemishes into perspective.

Table 1: Baseline Object Detection Metrics

Object Class Number of instances Precision Recall mAP@50 False Negatives

all 428306 73% 45% 50.1% NA
traffic light 62593 67% 56% 57% 27747
traffic sign 79672 74% 56% 62% 35349
car 236790 77% 69% 74% 74450
person 30648 2% 49% 56% 15659
bus 4004 68% 53% 59% 1885
truck 9824 68% 54% 60% 4546
rider 1504 1% 39% 45% 915
bike 2287 69% 42% 48% 1324
motor 934 65% 37% 40% 591
train 50 1 0.00 0.00 NA

3.3. Stress test

We first evaluate the effect of blemish diameter and intensity on the object detection model’s inference. During this
test, we also want to gain insight into how the object size (directly proportional to the proximity of the object from the
vehicle) on which the blemish appears affects the occlusion levels and corresponding model performance degradation.



622 Nitin Augustine et al. / Procedia Computer Science 232 (2024) 616-625

9.000% 35.00% 32.91%
) 7.841%
8.000% 30.00%
7.000%
o 6.000%  2500%
< bt 20.48%
&
< 5.000% 2.003% o 20.00%
& 4.000% 2
£ 4.000% © 15.00%
5 11.55%
X 3.000% £
2:116% 10.00%
2 %
000% 2.90%
1.000% 0.725% 5.00%
0.090% Siin
0.000% 0.00% ————— e
5 10 20 30 40 50 5 10 20 30 40 50
Blemish Diameter (pixels) Blemish Diameter(pixels)
—(.9 —(.7 0.5 0.3 e=—0.1 —(.9 —(.7 0.5 0.3 e=—0.1
(a) Effect on mAP (b) Change in FN%
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Looking at Section 3.2, we can inspect the results across all object classes and sizes. For blemishes up to 10 pixels
in size, there is no noticeable change in either mAP nor FN. Using a blemish intensity with just 0.1 (referring to a
maximum intensity drop, i.e., darkening, of 10% of the original pixel intensity in the region of interest of placement in
the image) only leads to an mAP drop of 0.097 % — even if the blemish diameter is 50 pixels (cf. Figure 6a). Similarly,
blemishes with intensity 0.9 would led to an increase of 12.8 % in the false negative rate (FN), i.e., missed objects (cf.
Figure 6b). Roughly translated to our baselines in Table 1, instead of a 30% FN rate for cars, we could expect about
a 43% FN rate. Figures 7 and 8 show the same plots for the lowest and highest of the four quartiles of object sizes —
with the others (not depicted) leading to similar results.

When looking at the largest objects (i.e., the closest ones in the FOV) in Figure 8, even a distribution of high-
intensity high-diameter blemishes does not provoke more than a 1% increase in FN or decrease in mAP. For these
objects most nearby, the effect of blemishes is relatively low. If we are willing to accept a 1% change in mAP or FN,
across all objects (Section 3.2), blemishes with an intensity of 0.1 or 0.3 are tolerable up to almost all diameters (at
least in terms of mAP). We defer a discussion of acceptance thresholds to Section 3.6.

3.4. Likelihood Study

We want to evaluate how likely the situations simulated in the above experiments can happen in real scenarios,
i.e., being so unfortunate that objects are directly occluded by blemishes. Hence, we conduct a probabilistic study
to evaluate this by generating coordinates sampled from a uniform distribution equal to the number of objects in the
frame. The blemishes that happen to fall in the bounding boxes within an image are counted. We are interested in
the ratio of the number of coordinates that appear on an object to the total number of objects in a given image. The
number of overlaps or multiple blemishes occurring in the same bounding box is not considered here. The experiment
was repeated a total of 10 times for each condition to ensure confidence.

Table 2 shows, in the event that the number of particles on sensor happen to be equal to number of objects in any
given frame, how likely can it cover any object of a particular size group. Though there are an equal number of objects
in each group, the probability of a particle appearing on objects of the largest size groups is the highest (almost 1 in
10 objects), which also follows our intuition.

Table 2: Likelihood of blemish appearing on an object. Size ranges refer to quartiles.

Scenario Percentage
Number of blemishes is equal to number of objects in FOV 11.4%
Number of blemishes is equal to the number of all objects in 0-0.033% size range in an image 0.1%

Number of blemishes is equal to the number of all objects in size range 0.033-0.088% in an image 0.2%
Number of blemishes is equal to the number of all objects in size range 0.088-0.32% in an image  0.7%
Number of blemishes is equal to the number of all objects in size range 0.32-89.9% in an image 11.3%

3.5. Coverage test

The variation in mAP and false negatives across the experiments is noted for 3 different coverage levels: 0.01%,
0.1% and 1% with a fixed intensity of 0.9. The maximum intensity is chosen as the 0.9 to find the worst case scenario
as observed from the previous studies. Tables 3 and 4 show the minimum and maximum change in metrics, across
ten trials, for varying coverage percentages and FN and mAP, respectively. We find that when 1% of the pixels are
covered, there is larger variation across the ten experiment trials for false negatives while the mAP change remains
consistent. Also, we find that 1% coverage of pixels also leads to a maximum increase in 1 object additionally missed
per every 100 objects detected.

3.6. Key Findings

The main objective of our study is to determine the critical thresholds for blemish characteristics such as diameter
and intensity, as well as the critical object size at which blemishes have detrimental effects on the perception model.
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Table 3: Percentage change in False Negatives

Percentage of pixels covered by blemishes Min Change Max Change

1% 0.4% 1.2%
0.1% 0% 0.34%
0.01% 0.23% 0.25%

Table 4: Percentage change in mAP

Percentage of pixels covered by blemishes Min Change Max Change

1% 0% 0.31%
0.1% 0.11% 0.21%
0.01% 0.0% 0.11%

Table 5: Risk framework to derive threshold for blemish properties: Color coding shown instead of numeric values.

Experiment Critical Critical Likelihood Severity due

Diameter Intensity of blemish to change in
on object metric

All objects 20 0.1

Object size between 0 and 304 pixels in area 20 0.1

Object size between 304 and 811 pixels in area 20 0.3

Object size between 811 and 2947 pixels in area 20 0.3

Object size larger than 2947 pixels in area 50 0.9

This would further provide guidance on the acceptable particle size based on assumptions about blemish properties
which could be applied directly in manufacturing to predict scrap. Our aim is to evaluate the risk associated with the
blemish properties defined by:

Risk = Probability of blemish appearing on any object
X Probability of object appearing in any specific size group

X Severity

The probability study gave insight into how likely a blemish can appear on an object when the number of blemishes is
equal to the number of target objects on which they are supposed to appear in the experiments that expose the critical
diameter and intensity. However, the probability of a blemish appearing on the sensor should be derived from the
production setting.

The most conservative case is defined by the first experiment where we analyzed the worst-case scenario of a
blemish appearing on every object in an image. However, it is important to note that from the probability study,
we found that the likelihood of a randomly generated blemish appearing on an object is 0.113. On average, there are
18.93 objects per frame. Considering this and assuming independence for every object, the probability for a blemish to
appear on every object simultaneously is 0.113'° ~ 1073 ~ 0. This indicates that this scenario is extremely unlikely.
Still, the critical diameter and intensity derived from the worst-case scenario are a diameter of 20 pixels and intensity
0.3 for mAP, a diameter of 20 pixels and intensity 0.1 for FN.

For groups of objects based on size ranges (expressed as a percentage of image size), we note the likelihood in
Table 5 for both the metrics along with the severity. The overall severity is defined by two factors:

- Severity due to the size of the object: This comes from domain knowledge that the severity of damage is more
when the detection of an object near the vehicle gets affected by the vehicle than the ones farther from it.

- Severity due to the metric change: This comes from the experiments conducted where the effect of model perfor-
mance due to blemish is measured in terms of mAP and false negatives.
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In Table 5, we only mention the severity due to size of object since the critical diameter and intensity mentioned
is derived from the severity due to metric change. Also note that the likelihood is defined only by the probability
experiment and does not depict how probable it is in a real case scenario. This is because a blemish with a large
diameter can also affect the performance of the model when it appears near an object. This scenario is not considered
in the study as the diameter of a blemish is found to be smaller than most object sizes that are of relevance in the FOV.
The likelihood in real scenarios is also contributed by other factors like how likely a blemish of particular intensity
can occur. While it is difficult to establish general acceptance thresholds, an analysis like the one proposed, enables
quality engineers to get an insight into the behavior of blemishes and set appropriate limits on intensity and diameter
during manufacturing. This has to be aligned with the current scrap rate and quality goals.

4. Conclusion and Future Work

We presented a methodological blueprint for deriving quality gates for manufacturing front camera modules taking
into account the effect of synthetic blemishes on the object detection performance in a downstream deep learning
model. To ensure the safety and reliability of these modules, which are vital for autonomous driving applications, a
testing system aligned with functional performance was proposed. Experiments were conducted to determine critical
blemish diameter and intensity, considering worst-case and average-case scenarios throughout different object sizes.
Safety limits were established, and the risk associated with blemishes appearing on objects was assessed. By present-
ing a methodology for analyzing the trade-off between risk and quality, stakeholders can make informed decisions
regarding blemish thresholds. This work is based on simulating blemishes using a mathematical approximation and
conducting experiments to establish critical quality gates for blemish properties. However, real production environ-
ments may exhibit variability in particle sizes, shapes, and thickness on the image sensor. One approach to address
this could involve using variational autoencoders or generative adversarial networks to find distributions adjacent to
the simulated ones, introducing greater testing variations. Another direction of research is exploring more DL archi-
tectures and datasets. Finally, the same testing strategy could be adapted to include other use cases of downstream
computer vision tasks such as semantic segmentation or scene forecasting.

Acknowledgments
This work was partially funded by Bavarian Ministry of Economic Affairs, Energy and Technology in the BayVFP
project PALIM — Performance-Accelerated Learning for Intelligent Manufacturing (DIK-2195-0062 / DIK0331/02).

References

[1] Geiger, A., Lenz, P,, Stiller, C., Urtasun, R., 2013. Vision meets robotics: The kitti dataset. The International Journal of Robotics Research 32,
1231-1237.

[2] Hendrycks, D., Dietterich, T., 2019. Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint
arXiv:1903.12261 .

[3] Huang, Y., Chen, Y., 2020. Autonomous driving with deep learning: A survey of state-of-art technologies. arXiv preprint arXiv:2006.06091 .

[4] Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L., Laughing, Hogan, A., Lorenzomammana, Tkianai,
YxXNONG, AlexWang1900, Diaconu, L., Marc, Wanghaoyang0106, M15ah, Doug, Hatovix, Poznanski, J., , L.Y., Changyu98, Rai, P., Fer-
riday, R., Sullivan, T., Xinyu, W., YuriRibeiro, Refi¢ Claramunt, E., Hopesala, Dave, P., Yzchen, 2020. ultralytics/yolov5: v3.0. Zenodo.
doi:10.5281/zenodo.3983579.

[5] Lai, Z., 2022. Cameras in advanced driver-assistance systems and autonomous driving vehicles, in: Advanced Driver Assistance Systems and
Autonomous Vehicles: From Fundamentals to Applications. Springer, pp. 213-243.

[6] Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A.S., Bethge, M., Brendel, W., 2019. Benchmarking robustness in
object detection: Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 .

[7] Secci, ., Ceccarelli, A., 2020. On failures of rgb cameras and their effects in autonomous driving applications, in: 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), IEEE. pp. 13-24.

[8] Shaout, A., Colella, D., Awad, S., 2011. Advanced driver assistance systems-past, present and future, in: 2011 Seventh International Computer
Engineering Conference (ICENCO’2011), IEEE. pp. 72-82.

[9] Wang, S., Veldhuis, R., Strisciuglio, N., 2023. The robustness of computer vision models against common corruptions: a survey. arXiv preprint
arXiv:2305.06024 .

[10] Willson, R.G., Maimone, M.W., Johnson, A.E., Scherr, L.M., 2005. An optical model for image artifacts produced by dust particles on lenses .
[11] Yu, E, Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Darrell, T., 2020. Bdd100k: A diverse driving dataset for heterogeneous

multitask learning, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2636—2645.



