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Abstract

The increasing demand for electric vehicles EV in recent years has led to a growing need
for advanced BMS that can accurately estimate the state of health SOH of batteries. The
SOH is a critical parameter that determines the performance and lifespan of batteries,
and accurate estimation of these parameters is essential for optimizing battery utilization
and improving the overall efficiency and reliability of EV. Accurately estimating the SOH
of batteries in real driving conditions is a challenging task due to the dynamic nature
of driving cycles, which can cause significant variations in battery behavior. Moreover,
the accuracy of existing estimation techniques is often affected by factors such as battery
degradation, temperature variations, and non-linearities in battery behavior.

To address these challenges, researchers and engineers have developed a wide range of
techniques and algorithms for estimating the SOH of batteries in real driving conditions.
These techniques include model-based approaches, data-driven methods, and hybrid tech-
niques that combine both model-based and data-driven approaches. The objective of this
master thesis is to critically review the existing literature on estimation techniques for
SOH in real driving cycles, identify the strengths and limitations of different approaches,
and propose a novel estimation technique that can overcome the limitations of existing
approaches. The proposed technique will be evaluated using real-world data obtained
from a test vehicle.

It is vital to do a precise assessment of the condition of these batteries in order to guarantee
that they can be used safely and to prevent explosions that may possibly be catastrophic.
The challenges that were discussed before could be solved with the assistance of prediction
models. The purpose of this research is to evaluate the accuracy of predictions made by
a variety of machine learning algorithms on the state of the battery. In order to achieve
this result, time series forecasting techniques are used to data metrics. It was shown that
Long Short-Term Memory LSTM models perform very well when it comes to the creation
of forecasts that can be relied upon. An accurate forecast made with the aid of machine
learning models may assist in increasing sales of electric vehicles and ensuring that these
batteries are used in a secure manner.
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1. Introduction

The demand for power lithium batteries will continue to develop rapidly on a global scale
in the coming years as traditional fuel vehicle manufacturers expand their presence in
the new energy vehicle market. Concurrently, the cost pressure on power lithium battery
firms has steadily grown due to the new energy subsidy policy. In response to the rapidly
evolving new energy industry, mainstream power lithium battery companies both domes-
tically and internationally have announced a major expansion of their production in an
effort to increase their production and sales scale, increase the scale effect, and lower their
production costs per unit of product. Lithium-ion batteries appealing properties—such as
a large energy storage capacity, rapid charging, and little loss of charge over time, make
them ideal for usage in electric and hybrid cars.Manufacturers of parts for new energy cars
are beginning to view lithium batteries as essential products, and many major automak-
ers have boosted their research expenditure in this field as the government continues to
support the development of these vehicles. A new energy electric vehicle’s battery life
range and cost are two factors that many buyers will carefully evaluate before making a
purchase[39].

There are primarily two aspects to battery aging: calendar aging and cycle aging. The
term "calendar aging" describes the long-term impacts of battery storage. Cycle aging, in
contrast, is linked to the effects of charging and discharging cycles on battery utilization.
Problems with the chemical composition of batteries, such as high temperatures, might
arise from time to time. Events of a hazardous nature may result from these conditions.
Consequently, in order to reduce hazards, it is crucial to track the age of batteries and
evaluate the state of charging and discharging procedures. We can keep potentially dis-
astrous events from happening by examining the battery’s health and age on a regular
basis[7].

The State of Health (SOH) of these batteries determines their performance and longevity,
and it is a crucial parameter for battery management systems. The SOH is a measure of
the battery’s capacity, internal resistance, and other physical and chemical characteristics,
which degrade over time due to use and aging. The estimation of the SOH is challeng-
ing, especially in real driving cycles, where the battery experiences different current and
temperature conditions, and its performance may vary significantly. This thesis aims to
develop a methodology for estimating the SOH of lithium-ion cells in real driving cycles
using a Battery Testing System (BTS)[65]. The BTS is a versatile tool that can simu-
late different driving scenarios and measure the battery’s response in terms of voltage,
current, and temperature. The data obtained from the BTS can be used to model the
battery’s behavior and estimate its SOH. However, this requires a thorough understanding
of the battery’s electrochemical and thermal properties and the development of accurate
models to predict its performance. This thesis will review the existing literature on the
SOH estimation of lithium-ion batteries and identify the gaps and challenges in this field.
Then, it will propose a methodology based on the BTS and the electrochemical-thermal
model to estimate the SOH in real driving cycles. The proposed methodology will be
validated using experimental data obtained from a real electric vehicle. The results of
this thesis will contribute to the development of reliable and accurate methods for the
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SOH estimation of lithium-ion batteries, which can help to optimize their performance
and reduce their environmental impact. The proposed methodology can also be extended
to other types of batteries and applications, such as stationary energy storage systems
and portable devices[65].

1.1. Motivation

Electric vehicle sales have increased significantly during the past years, setting a new high
of 6.6 million in 2021. The mainstream marketing of electric vehicles is heavily dependent
on the development of lithium-ion battery energy storage technology. According to esti-
mates, between 2022 and 2030, the world’s demand for lithium-ion batteries will increase
by more than five times, reaching 2000 gigawatt-hours (GWh), depicted in Figure 1[90].
To make the electric market expand, the government’s continuing assistance, as well as
ongoing research into Electric Vehicle (EV) batteries, charging networks, and design to
decrease the initial cost of electric cars, will be required. Increasing vehicle range, low-
ering charging time, and adding technology features to EV are other important reasons
for quicker EV industry growth. A thorough understanding of the battery’s health pro-
gression derives from analyzing SOH characteristics such as capacity fading, impedance
increase, and internal resistance fluctuations over time and number of cycles. This empir-
ical understanding serves as the foundation for modeling, forecasting, and extrapolating
degradation trajectories, allowing for the prediction of future performance deterioration,
degradation rates, and eventual end-of-life scenarios for battery systems in a variety of
operating environments. Accurate state-of-health SOH prediction of lithium-ion batteries
is required to increase performance and ensure the safe operation of the battery energy
storage system[29].

Figure 1: Global lithium-ion battery demand and sales [90]
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Over time, minor flaws and problems in battery cells can develop into major failures,
therefore precise prediction is essential for dependable and long-lasting performance. It
is still difficult to anticipate battery system development based on time-sensitive sensor
data, despite advances in our knowledge of failure processes. Due to different aging and
failure processes, dynamic operating circumstances, and data-related problems including
noise, incompleteness, and variability among cells and batches, this task is made even
more difficult in large-scale EV applications[91].

There are still significant concerns about the safety of commercial lithium-ion batteries
due to flaws and failures in real-world applications. After a lengthy period of incubation,
even a slight increase in risk throughout the battery’s operating lifespan might develop into
a safety hazard—a fire and explosion known as thermal runaway. Nonlinear multi-scale
electro-chemical systems are difficult to model and forecast because of uncertainties in the
materials and manufacturing processes, changing operating and ambient conditions, and
lack of reliable dataset. Solving real-world physical problems with noisy and incomplete
data and ambiguous boundary conditions complicates this problem[18].

The SOH of the Lithium Ion Battery (LIB) is often determined using the direct measure-
ment method, the Open Circuit Voltage (OCV), coulomb counting, and Electrochemical
Impedance Spectroscopy (EIS) approaches. For instance, the correlation between the
OCV curves and the battery capacity is used to evaluate the SOH of LIB. However, due
to the restrictions associated with the aforementioned methodologies, the direct measure-
ment method is difficult to use for online SOH calculation. For example, in order to
measure an accurate OCV curve, the LIB needs to be in equilibrium, which means that
the OCV technique requires a considerable relaxation time. On the other hand, the EIS
approach requires installing additional gear.A potential strategy to improve the forecast
accuracy of SOH of LIB has been the use of data-driven strategies, which get beyond the
drawbacks of both model-based and direct measurement approaches. Numerous kinds of
Artificial Neural Network (ANN), Deep Learning (DL), Gaussian Process (GP), Support
Vector Machines (SVM), and linear regression[29].

1.2. Thesis Objective

1. Gather and compile a superior dataset from battery testing that provides insight
into the aging processes that occur in Lithium Ion Phosphate (LFP) cells in practical
application scenarios.

2. Perform a thorough analysis of the gathered data to find trends, correlations, and
important variables affecting the State Of Charge (SOC), temperature, and cycle
conditions of LFP cells.

3. Investigate and contrast various machine learning methods and algorithms to create
precise prediction models that estimate the SOH of LFP cells.

4. To learn more about the degradation processes and how they affect the SOH of LFP
cells, look at the connections between battery performance, aging mechanisms, and
important components.

Rupen Ashokbhai Sarvaiya Master thesis
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5. Compare the anticipated and actual measured SOH levels from LFP cell testing to
assess the precision and dependability of the created prediction models. The best
prediction model architecture for LFP cell SOH prediction should be identified by
analyzing the effectiveness of various machine learning methods and algorithms.

6. Discuss the viability and efficiency of data-driven methods for forecasting the SOH
of LFP cells, taking into account possible real-world applications.

7. To guide the study, enhance the data analysis, and address the particular goals
and difficulties related to the prediction of the LFP cell SOH, review the relevant
scientific literature and research findings.

1.3. Thesis Contribution

Assessment of the best model architecture’s accuracy for SOH prediction in LIB, yield-
ing important insights into the efficacy of data-driven methodologies. The development
of battery health estimation methods and their possible real-world applications across
a range of sectors would benefit from this conclusion. Evaluation of the effects of vari-
ous charging and discharging profiles on LIB SOH, allowing for the development of ideal
charging plans that reduce battery deterioration and increase usable life. This result will
assist optimize LIB operating conditions and have consequences for battery management.
Examining the connection between LIB SOH and environmental variables including hu-
midity and temperature. The results of this research will make it easier to create efficient
environmental control and thermal management systems that will reduce battery aging
and enhance overall battery performance. Proof of the feasibility of using data-driven
models to forecast LIB SOH, hence minimizing reliance on expensive and time-consuming
physical testing methods. This result will aid in the creation of practical and affordable
battery health monitoring methods.

Creating prediction models especially for LFP cells using the data set and modeling strate-
gies established. This will enhance the prediction models’ precision and suitability for this
particular battery chemistry and yield important insights into the aging processes of LFP
cells. Using actual LFP cell data, prediction models are validated to determine their ac-
curacy and dependability in forecasting the SOH of LFP cells. This result will showcase
the prediction models’ potential for real-world use in battery management systems and
help to improve LFP cell characterisation and maintenance techniques. Comparing and
assessing various machine learning models or algorithms for LIB SOH prediction. This
result will shed light on the advantages and disadvantages of different modeling strategies
and assist in determining the best methods for precise and trustworthy SOH estimate.

Working together with industry partners to confirm that the prediction models built in
real-world settings are feasible and scalable. This result will demonstrate the research’s
business applicability and make it easier for data-driven methods for SOH estimate in
commercial battery systems to be adopted. Addition of derived knowledge in battery
research and formulation of suggestions for further study in the area of battery health
assessment. This result will aid in directing and stimulating more study and developments
in the comprehension of and management of LIB aging.
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1.4. Thesis Outline

• Chapter 1 This chapter sets the stage for the thesis by outlining the motivations
behind the research, the objectives of the thesis, the contributions it seeks to make
to the field, and an overview of the thesis structure.

• Chapter 2 This chapter delves into the technical aspects of lithium-ion batteries,
including their composition, characteristics, the types found in electric vehicles EV,
different cell types, and battery management systems. It also introduces the con-
cepts of Recurrent Neural Networks RNN and Long Short-Term Memory LSTM
networks.

• Chapter 3 A comprehensive review of existing models for battery aging, methods
for predicting battery health, and machine learning approaches for battery state
prediction, highlighting the various algorithms and their comparative performance.

• Chapter 4 This chapter describes the experimental approach, including the test
methodology, description of the test bench, test configuration, and detailed infor-
mation on feature engineering and machine learning models used for State of Health
SOH prediction.

• Chapter 5 Analysis and visualization of the data collected from cycle aging tests
are presented, followed by the implementation details and performance evaluations
of LSTM, GRU, and Regression models.

• Chapter 6 The final chapter summarizes the findings of the thesis, discusses the
implications of the research, and proposes directions for future studies to expand on
the work presented.
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2. Theoretical Background

The theoretical framework, outlined in Section 2, is developed through a sequence of
specific subjects, each contributing to a thorough comprehension of lithium-ion batteries
(Li-ion) and their practical uses. Section 2.1 commences the investigation by conduct-
ing a thorough analysis of Li-ion batteries, including their composition and fundamental
attributes. The following part, 2.2, focuses on the widespread use of Li-ion batteries in
Electric Vehicles EV, specifically differentiating between cobalt-containing and cobalt-free
variations, and exploring the various cell types—cylindrical, prismatic, and pouch cells.

In Section 2.4, the focus of the discussion turns to Battery Cell Parameters and Spec-
ifications. This section explains the measurements that determine battery performance
and introduces techniques for predicting Remaining Useful Life (RUL). Section 2.5 of
the document introduces Background Research, which provides context by emphasizing
the increasing need for batteries in Electric Vehicles. This helps to place the theoretical
debate within the wider context of battery consumption.

The investigation concludes in Section 2.6, where the pivotal significance of Battery Man-
agement System (BMS) is examined. Section 2.6.1 elaborates on the diverse capabilities
of BMS, which encompass the supervision of charging and discharging operations, ongo-
ing monitoring of cell conditions, and the assurance of overall safety. This theoretical
framework provides a thorough understanding of Li-ion batteries, covering its fundamen-
tal composition, several applications in Electric Vehicles, and the crucial role of Battery
Management Systems.

Finally, Section 2.7 provides a comprehensive introduction to advanced neural network
models, namely Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM).
The section concludes by implementing LSTM into recurrent neural network structures
after thoroughly examining the structures and functionality of these models. This theoret-
ical framework provides a thorough comprehension of lithium-ion batteries and serves as
a foundation for future research. The objective of this research is to utilize these insights
to investigate battery degradation and optimize performance.

2.1. Li-Ion Battery

Batteries are an essential means of electricity storage. The Li-ion battery, a rechargeable
battery, was invented in 1912 by American physicist Gilbert Lewis. These batteries have
a high power density and energy density, are ecologically benign, have a long life, and are
widely utilised in electronic devices. However, for high-power applications such as energy
storage systems and electric vehicles, a large number of batteries are linked in parallel
to form a battery pack. This causes problems with stability, coherence, cost, and safety.
Because of these issues, the use of Li-ion batteries is restricted. Because of the impacts
on charge rate, voltage range, and temperature, the operating system of Li-ion batteries
should be kept within the boundaries. If these limits are exceeded, battery performance
may suffer and security issues will arise. To ensure the safe functioning of the Li-ion
battery, the capacity of the battery and its overall service life must be evaluated[75].
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2.1.1. Lithium-ion Battery Composition

Lithium-ion cells consist of two electrodes. The positive (cathode) is cast on the alu-
minium current collector and the negative (anode) on a copper current collector. The two
electrodes are separated by a thin electron-insulating layer (called separator) soaked with
the electrolyte (liquid or solid ionically conducting media). During the charge (i.e., upon
application of an anodic current) lithium ions are extracted from the lithium-containing
cathode, shuttled through the separator/electrolyte, and intercalated into the anode host
structure. Simultaneously, the electrons are flown through the external electric circuit in
the same direction. This process spontaneously progresses in the reversed direction on
discharge, thus providing the electrical power as shown in Figure 2[75].

Figure 2: Lithium-ion battery Basic Structure and Internal Detailed Structure [75]

2.1.2. Characteristics of Lithium-ion Battery

A battery is composed of five crucial elements: the anode, cathode, current collectors,
electrolyte, and separator. The anode and cathode, acting as the positive and negative
terminals, are made from materials specifically designed for electrochemical processes.
The current collectors, which round them, serve to give structural reinforcement and
enable the effective transmission of electrical charges. The electrolyte, usually in a liquid
or gel state, functions as a conductive medium, allowing the migration of ions between
the anode and cathode, thereby facilitating the passage of electric current. The separator
serves as a physical barrier that prevents direct contact between the anode and cathode.
Its purpose is to maintain the battery’s structural integrity and prevent the occurrence
of short circuits.

A lithium-ion battery consists of several essential components that form its fundamental
structure:
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Anode: The anode, usually composed of graphite, serves as the electrode responsible for
collecting lithium ions during the charging process. Discharging the battery results in the
release of lithium ions from the anode.

Cathode: The cathode is an electrode that accepts lithium ions during the discharge
process. It is typically made of lithium transition metal oxides, such as lithium cobalt
oxide, lithium manganese oxide, or lithium iron phosphate.

Separator: The separator is a porous substance that is placed between the anode and
cathode. Its purpose is to facilitate the movement of lithium ions while also preventing
direct contact between the electrodes, which could lead to a short circuit.

Electrolyte: The electrolyte is a conductive solution that consists of lithium salts, such
as lithium hexafluorophosphate (LiPF6), dissolved in an organic solvent. It facilitates the
transfer of lithium ions between the anode and the cathode during the process of charging
and discharging.

During the charging process of a lithium-ion battery, lithium ions move from the cath-
ode to the anode via the electrolyte, where they are then stored in the graphite anode
material.The process is followed by the movement of electrons across an external circuit,
enabling the battery to store electrical energy.

Electrons, which are liberated during the oxidation process, traverse the external circuit
in accordance with Equation (1), where as Li+ ions navigate within the cell. Upon the
electrons becoming available, these ions undergo a transformation into lithium (Li), which
is then retained within the electrodes, as illustrated in Equation (2)[3].

LixC6Li+ + 6C + xe → LixMn2O4 + xe (1)

xLi+ + Mn2O4 + xe → LixMn2O4 (2)

During the process of discharge, lithium ions migrate from the anode to the cathode
through the electrolyte, while simultaneously releasing electrons into the external circuit.
These electrons can then be harnessed to provide power to various devices. The flow
of ions and electrons in the battery is responsible for completing the electrochemical
processes and generating the electric current.

Lithium-ion batteries possess numerous benefits compared to alternative rechargeable
battery options. These advantages include a notably high energy density, a lightweight
construction, and a minimal self-discharge rate. Nevertheless, they also possess certain
drawbacks, including susceptibility to elevated temperatures, the potential for thermal
runaway if mishandled, and the likelihood of capacity deterioration with time.

Proper charging and discharging processes, temperature management, and safety mea-
sures are essential for maximising the performance and lifespan of LIB. Continual re-
search and development endeavours concentrate on enhancing its energy density, safety
characteristics, and cost efficiency to satisfy the growing need for energy storage in diverse
industries.
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2.2. Most Common Lithium-Ion Batteries found in EVs

Lithium Nickel Manganese Cobalt Oxide (NMC), possess the second highest energy den-
sity after Lithium Nickel Cobalt Aluminium Oxide (NCA). They are being used in a range
of electric powertrains, electric tools, and recreational vehicles, including escooters and
ebikes. Following the advent of widespread electric vehicle production, the majority of
research and development efforts have been concentrated on NMC [2].

NCA, or lithium nickel cobalt aluminium oxide, is currently one of the most widely used
chemistries in lithium-ion batteries. Tesla was the first to adopt NCA in the cylindrical
18650 cell format, while other companies primarily used prismatic or pouch shaped cells.
Subsequently, Tesla discovered a method to enhance the cells capacity by incorporating
a narrower separator and enlarging the batteries container from 18650 to a 21700 cell in
their US Model 3 [37].

Nevertheless, Tesla successfully launched its Tesla Model 3 equipped with a LFP battery
in China in 2020, and they expressed contentment with the results. Recently, it was
announced that all of their Model 3 and Model Y vehicles will be universally equipped
with this particular type of batteries[78].

2.2.1. Li-ion batteries that do not contain cobalt

Lithium iron phosphate (LFP)

In 1996, JB Goodenough developed Lithium Iron Phosphate as a replacement for lithium
cobalt oxide, which had an unstable structure when subjected to overcharging. Lithium
Iron Phosphate serves as a cathode substitute. LFP has gained significant popularity
since then, mostly because of its exceptional thermal stability, extended cycle life, and
remarkable tolerance. When the LFP is maintained at high voltage for extended periods,
it can withstand full charge conditions and experiences less strain compared to other
lithium-ion cells, making LFP unique. However, the conductivity of this material is
relatively lower when compared to lithium metal oxides[23].

Two effective options for enhancing structural conductivity and surface conductivity are
metal doping and conducting material coating on LFP electrodes. These methods sig-
nificantly increase the achievable capacity while maintaining a reasonable charge and
discharge current density. Furthermore, nanoscale components have the ability to sig-
nificantly reduce transportation distances. So far, numerous battery manufacturers have
effectively promoted carbon-coated nano-LFP materials. Until recently, a significant pro-
portion of electric vehicles, including models such as BYD, Chevrolet Spark, and BMW
Active Hybrid 3 and 5 series, have been utilising the LFP technology. The primary ap-
plication of LFP technology by the Build Your Dreams (BYD) Group is in their electric
vehicles, including electric fork-lifts, buses, and cars, to provide power for their drive-
trains. LFP reduces its nominal voltage by 3.3 volts per cell compared to cobalt-based
cells. Lower temperatures adversely affect the performance of most batteries, while storing
them in hot temperatures reduces their lifespan[16].
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This applies to LFP cells as well. LFP batteries have a higher self-discharge rate com-
pared to other types of lithium-ion batteries, which might result in balance issues. Util-
ising superior cells and advanced electronic control systems can mitigate this issue, while
concurrently leads to increased manufacturing expenses. Despite the implementation of
these solutions, the LFP technology still faces a constraint in terms of energy density,
which is roughly 120 Wh kg-1, in comparison to the maximum value of around 170 Wh
kg-1. The energy density of this figure falls well below the minimum requirement of (>250
Wh kg-1) for the upcoming generation of electric vehicles by the year 2025. Furthermore,
LFP technology is particularly suitable for demanding tasks like trucks and buses, as op-
posed to mobile electronic devices with lesser volumetric density. Due to this defect, the
OEMs are likely to favor NMC, NCA, and the combinations of NMC/ NCA and Lithium
Manganese Oxide (LMO)/ NMC because of their higher specific energy. Due to its af-
fordability and extended lifespan, LFP offers significant potential for market penetration
in the power supply industry, in addition to its existing applications in the automotive
sector[16].

Li-Manganese Oxide (LMO)

In 1983, M. Thackeray and his colleagues initially introduced the spinel LMO. Moli En-
ergy introduced the lithium-ion battery cathodes to the market in 1996. LMO exhibits a
three-dimensional diffusion of lithium ions Li+, in addition to a more robust spinel struc-
ture. Moreover, LMO is more cost-effective and non-toxic compared to Lithium Cobalt
Oxide (LCO). Li+ ions have the ability to occupy [Mn204] polyhedral frameworks, which
enhances their rating capabilities compared to materials with two-dimensional frameworks
for Li+ diffusion[16].

The low capacity of LMO, which is 148 mah g-1, is a significant drawback. In addition,
the electrolyte’s instability results in poor performance, causing degradation of Mn (un-
even conversion of Mn3+ ions to Mn2+ and Mn4+) and reduced capacity.LMO exhibits
moderate safety characteristics and comparatively low specific energy when compared to
the other primary lithium-ion compounds[11].

Despite its drawbacks, LMO possesses the advantage of being the most cost-effective
among numerous electrode materials. This attribute holds significant importance in fa-
cilitating the introduction of electric vehicles into the market. Most LMO batteries are
combined with NMC to enhance the energy density and extend the lifespan of electric
car usage. This mix provides optimal performance for each system, and the majority
of electric vehicles, including the Nissan Leaf, Chevy Volt, BMW I3, and others, utilize
LMO/NMC blends. The LMO component, typically accounting for thirty percent of the
LMO/NMC combo, significantly enhances speed at a high current level, while the remain-
ing NMC portion contributes to a longer range. In the foreseeable future, the demand for
LMO will mostly be influenced by the combination of LMO / NMC in electric vehicles.
This particular combination of cathodes has the potential to replace LFP (Lithium Iron
Phosphate) in electric automobiles and electric buses in China[16].
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Lithium Titanate (LTO)

Batteries using lithium titanate negative electrodes have been in existence since the 1800s.
The negative electrode of a Li-titanate cell contains graphite instead of graphite, and this
material adopts a spinel structure. An alternative electrode option could be lithium
manganese cobalt oxide. Spinel lithium titanate is highly regarded as an advantageous
electrode material because it maintains its size during lithiation, resulting in an impressive
electrode lifespan. Additionally, it offers enhanced safety due to a very stable discharge
plateau at around 1.55 V vs Li / Li+. The inadequate performance at high power levels
can be attributed to the low conductivity of this material and the weak Li+ diffusion
coefficient.

However, this issue can be resolved by reducing the lengths of the li-ion transport paths
by the use of appropriate nanostructures. Additionally, enhancing the electronic con-
ductivity can be achieved by implementing techniques like as doping, surface coating,
and including composites with superior electronic conductors, such as carbon materials.
Due to their exceptional safety standards, these batteries are utilised in portable medical
applications[48].

2.2.2. Li-ion batteries that contain Cobalt

Li Cobalt Oxide (LCO)

LCO is a widely utilised lithium-ion compound. It is represented by the following chemical
symbols: Lithium cobalt oxide (LiCoO2) Li-cobalt is frequently chosen for applications
such as personal computers, mobile phones, and digital cameras because of its elevated
specific energy. The battery consists of a cathode made of cobalt oxide and an anode
made of graphite carbon. During discharge, the movement of lithium ions from the anode
to the cathode is facilitated by the layered structure of the cathode. During the process
of charging, the direction of the flow of electric current is reversed.

Like other lithium-ion batteries with cobalt, these batteries also include a graphite anode,
which results in a limited cycle life due to changes in the electrolyte interface. To enhance
durability, load capacity, and affordability, modern applications use nickel, manganese,
and/or aluminium. Due to the exorbitant price of cobalt and the enhanced efficiency
achieved by combining it with other active cathode elements, Li-cobalt is experiencing
a decline in popularity, primarily in favour of Li-manganese, but also towards Lithium
Nickel Manganese Cobalt and Li-Nickel Cobalt Aluminium Oxide. The drawbacks of
Li-cobalt are its limited lifespan and inadequate thermal stability[8].
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Li Nickel Cobalt Aluminium Oxide (NCA)

Cobalt aluminium oxide has been available for specialised uses since 1999. The battery
possesses both high energy density (the amount of energy stored per unit volume) and high
power density (the rate at which energy is supplied from the battery). Additionally, it has
a long lifespan. These attributes are also present in the NMC battery, so rendering the two
batteries highly comparable. Although NCA batteries, like other lithium batteries, are not
highly safe, certain safety management procedures must be used in electric vehicles[48].

Additionally, the higher production cost of this product limits its applicability for vari-
ous uses. Tesla is now recognised as the sole electric vehicle manufacturer that utilises
NCA chemicals in its battery production. Tesla asserts that its NCA batteries contain a
lower amount of cobalt compared to NMC811 batteries, which consist of 80% nickel, 10%
manganese, and 10% cobalt[48].

Li Nickel Manganese Cobalt (NMC)

A highly successful lithium-ion system is achieved by combining a cathode composed of
nickel, manganese, and cobalt NMC. Like Li-manganese, these systems can be customised
to function as Energy Cells or Power Cells. As an illustration, an 18650 cell including
NMC chemistry has a capacity of approximately 2,800 mAh and can provide a current of
4A to 5A under moderate load conditions. However, if the NMC chemistry in the same
cell is optimised for specific power, the capacity decreases to around 2,000 mAh, but it
can produce a continuous discharge current of 20 A. A silicon-based anode can achieve a
capacity of 4,000 mAh or more, but this comes at the cost of reduced loading capability
and a shorter cycle life. The addition of silicon to graphite presents the disadvantage of
causing the anode to expand and contract during the process of charging and discharging,
hence resulting in mechanical instability of the cell[8].

The key to NMC success rests in the amalgamation of nickel and manganese. Analogously,
the combination of sodium and chloride, which are individually harmful, transforms into
table salt, a substance used as a flavour and food preservative. Nickel is renowned for
its high specific energy but lacks stability. On the other hand, manganese possesses the
advantage of creating a spinel structure, which results in reduced internal resistance, but
it provides a lower specific energy. By combining the metals, their individual strengths
are mutually enhanced[8].

NMC is the preferred battery technology for power tools, e-bikes, and other electric power-
trains. The cathode composition consists of equal parts of nickel, manganese, and cobalt,
sometimes referred to as 1-1-1. Cobalt is both costly and scarce. Battery makers are
decreasing the amount of cobalt used but with slight differences in performance. An ef-
fective composition is Nickel Cobalt Manganese (NCM)532, consisting of 5 parts nickel,
3 parts cobalt, and 2 parts manganese. Additional combinations include NMC622 and
NMC811. Cobalt acts as a stabiliser for nickel, which is a highly energetic and reactive
substance[8].
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2.3. Different Types of Li-ion Cells

Apart from the chemistry of the cell, its shape and size also have significant effects on
its capacity and performance. There are mainly 3 types of cells available on the market:
cylindrical, prismatic, and pouch cell. Here, a brief introduction to these 3 types of cells
is given.

2.3.1. Cylindrical Cells

To fabricate lithium-ion cylindrical cells, anode foil, separator, and cathode foil are rolled
into long segments and inserted into a rigid cell housing or "can" made of aluminium or
stainless steel. Following the positioning of safety discs into the can containing the liquid
electrolyte, the electrodes are attached to the outer battery[64].

terminals, which are the top and bottom of the cell in this instance. To hermetically
enclose the cell, the upper disc assembly is crimped shut. The cylindrical cell design
is economical, long-lasting, and capable of cycling, but it is cumbersome and has a low
packaging density as a result of the presence of space cavities[55].

2.3.2. Prismatic Cells

Prismatic cells share the same structure as cylindrical cells, however, they employ a flat
rectangular casing to reduce the overall thickness of the cell. The electrode/separator
assembly can be either cylindrical, where it is rolled, or rectangular, where it is stacked
like a deck of cards. The battery terminals can be positioned as contact pads either on
the top or on the side of the housing. The prismatic cell’s thin and compact design is
highly suitable for integration into consumer devices, especially in cases where convenient
battery replacement is a need[64].

The use of aluminum or steel housing ensures structural stability, durability, and resis-
tance to dampness. The cells’ slender rectangular form offers excellent spatial efficiency,
adaptability, and thermal resilience. Nevertheless, these cells exhibit several drawbacks,
including inadequate temperature control in comparison to pouch cells, reduced lifespan,
and elevated manufacturing expenses[55].

2.3.3. Pouch cells

Pouch cells are similar to prismatic cells, with a slender rectangular shape. Their struc-
ture consists of rectangular arrangements of separate layers of electrodes and separators.
However, instead of a stiff metal casing, they employ a flexible polymer/aluminum "bag"
that is laminated. The electrodes are equipped with tabs on one side, which are fused
with battery terminal tabs protruding from the top of the bag. The assembly is fully
coated with a liquid electrolyte, and the bag is hermetically sealed using heat[64].
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Pouch cells offer cost, weight, and thickness savings by removing the inflexible housing.
However, the flexible pouch is susceptible to swelling, which can lead to issues with dura-
bility, reduced capacity, and compromised safety. This particular cell has a greater energy
density in comparison to other designs due to its reduced weight[55].

Figure 3: Prismatic Cells- Cylindrical Cells- Pouch Cell [42]

2.3.4. Characterization of a LiFePO4 battery

This work describes and analyses experimental results gained from a thorough evaluation
of a Lithium Iron Phosphate LFP-based Lithium-ion Battery LIB. The experimental tests
done specifically examine the electrical properties of the battery while excluding the re-
search of its temperature features. In addition to the standard experiments conducted on
lithium-ion batteries, such as rate capability, energy capability, and impedance behavior,
the focus here is on investigating the unique attributes displayed by LFP cells. Explicit
protocols have been implemented to carefully examine and understand the reported be-
haviors.

The analysis primarily focuses on battery degradation, aiming to comprehend the effects of
examined events on battery performance and how these aspects are modified by the aging
process. The study surpasses simple observation by utilizing modeling tools to illustrate
and authenticate the occurrences witnessed during experimentation. The research seeks
to enhance comprehension of the complex interaction of elements that result in battery
degradation using these techniques.

The primary goal of this research is to understand the complex behavior of batteries,
providing a detailed understanding of their strengths and weaknesses. These insights
are crucial in optimizing battery performance and extending their operating lifespan.
Moreover, the obtained knowledge aids in the creation of advanced diagnostic algorithms,
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facilitating precise evaluations of a battery’s condition. Consequently, this enables the
development of efficient battery designs that are based on a comprehensive comprehen-
sion of their operational dynamics. This study adopts a comprehensive strategy that
establishes the foundation for progress in battery technology, offering useful insights for
both practical implementation and theoretical frameworks.

2.4. Battery Cell Parameters and Specifications

This section will examine different criteria and aspects that impact battery technology,
specifically focusing on factors associated with battery aging.

SOC and SOH are crucial factors in battery management, representing the present charge
level and the overall health condition of the battery, respectively.

SOC =
Cc

Cf

× 100% (3)

where:

• SOC is the state of charge of the battery

• Cc is the current capacity of the battery

• Cf is the full capacity of the battery

SOH =
Cf

Cn

× 100% (4)

where:

• SOC is the state of charge of the battery

• Cf is the full capacity of the battery

• Cn is the normal capacity of the battery

The variable "Ccurr" denotes the present battery capacity, "Cfull" denotes the battery
capacity when it is completely charged, and "Cnom" is the capacity of a new battery[40].

Two methods can be used to quantify the capacity of a battery: the state of charge SOC
and the state of health SOH[40]. Equation 3 defines SOC as the ratio of the current capac-
ity of the battery to its maximum capacity when completely charged. As demonstrated
in Equation 3, State of Health SOH, on the other hand, represents the current maximum
capacity of the battery in relation to its original capacity. The battery has reached its
End Of Life (EOL).

when it reaches 80% of its maximum capacity. The remaining useful life RUL of a battery
refers to the number of charge/discharge cycles it can undergo before reaching its end of
life EOL. Battery Management Systems BMS can precisely ascertain the State of Charge
SOC of Lithium-ion batteries with an accuracy ranging from 0.6% to 6.5%. Nevertheless,
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their existing capabilities do not extend to reliably forecasting the State of Health SOH
and Remaining Useful Life RUL of batteries[13][79].

Capacity or Nominal Capacity (Ah for a specific C-rate): - The total amp-hours
are available when the battery is discharged from 100% SOH to the cut-off voltage with
a specified discharge current, expressed as a C-rate. A device’s capacity is calculated
by multiplying the discharge current in amps by the discharge time (in hours), and it
decreases as the C-rate increases[51].

C- and E- rates: - The discharge current is commonly expressed as a C-rate in battery
specifications to standardise it with respect to battery capacity, which can vary signifi-
cantly across different batteries. A C-rate is a quantitative measure of the rate at which
a battery is discharged relative to its maximum capacity. A discharge rate of 1C signifies
that the current will deplete the battery entirely within one hour. This amounts to a dis-
charge current of 100 amps for a battery with a capacity of 100 amp-hours. This battery
would have a 5C rate of 500 amps and a C/2 rate of 50 amps. Similarly, the amount
of electricity released is denoted by an E-rate. The discharge power necessary to fully
deplete a battery within one hour is referred to as a 1E rate[49].

Charge Current (Recommended): - The optimal current at which the battery is
charged under a continuous charging strategy is around 70% SOC after which it transitions
to a constant voltage charging method[49].

Cycle Life (a number for a specific DOD): - The maximum number of discharge-
charge cycles that a battery may experience before falling short of specified performance
requirements. cycle life is estimated for a given charge and discharge circumstances. The
actual operating life of the battery is dependent on temperature, humidity, cycle depth,
and other factors. As the Depth Of Discharge (DOD) rises, the cycle of life falls[27].

State of Power (SOP): - State Of Power (SOP), is a metric that signifies the present
state of charge or discharge of a battery at a particular instant. Typically, it is quantified
as a percentage relative to the overall battery capacity. Standard Operating Procedure
SOP is used to ascertain the residual charge or the amount of energy now accessible in
the battery[73].

Self-Discharge Rate: - The self-discharge rate relates to the speed at which a battery
depletes its charge while it is not being utilized. Batteries exhibiting low self-discharge
rates possess the ability to maintain their charge for extended durations, making them
ideal for applications resulting in extended shelf life[63].

Efficiency: - Efficiency quantifies the capacity of a battery to convert stored chemical
energy into electrical energy and inversely[38]. It denotes the proportion of output energy
to input energy and is typically stated as a percentage. Greater efficiency implies less
energy loss throughout the process of charging and discharging[19].

Internal Resistance: - The resistance within the battery, which normally changes for
charging and discharging, is also affected by the state of charge of the battery. The battery
effectiveness reduces as internal resistance rises, and thermal stability is adversely affected
because more of the charging energy is transferred to heat[49].
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State of Charge (SOC, %): - The current battery capacity is expressed as a percentage
of the highest capacity. To estimate the change in battery capacity over time, SOC is
usually determined using current integration[40].

Voltage, Cut-off: - It is defined as having the lowest voltage that can be used. The
"empty" state of the battery is commonly defined by this voltage[49].

Voltage, Nominal: - It is defined as the battery’s reference or describing voltage, some-
times referred to as the "normal" voltage of the battery[49].

Voltage, Charge: - It is the voltage at which a battery is fully charged. Charging
systems often include constant current charging until the battery voltage reaches the
charge voltage, followed by constant voltage charging, which allows the charge current to
reduce until it is extremely low[49].

Voltage, Terminal: - With a load applied, the voltage connecting the battery terminals.
SOC and discharge/charge current influence terminal voltage[49].

Energy Density (Wh/L): - The “normal” energy density of a battery per unit volume
is often known as the volumetric energy density. The specific energy of a battery is
determined by its chemistry and manufacturing. It determines the battery size necessary
to accomplish a specific electric range, together with the vehicle’s energy utilisation[88].

Power Density (W/L): - The highest amount of electricity available per unit of vol-
ume. The specific power of a battery is determined by its chemistry, composition, and
production procedure. It calculates the battery size needed to meet a specific performance
goal[88].

Beginning of Life (BOL): - which denotes the initial condition of a battery when it is
initially utilised. It indicates the beginning of the battery’s operating lifespan. Typically,
the state of health SOH and state of charge SOC of the battery are regarded as 100% at
this point[72].

End of Life (EOL): - EOL, refers to the stage when a battery is deemed to have
exhausted its usable lifespan or is unable to achieve the necessary performance standards.
At the end of its lifespan, the battery experiences a considerable decrease in capacity,
resulting in a loss of intended performance[72].

Remaining Useful Life (RUL): - The Remaining Useful Life RUL of a battery is the
projected duration during which the battery is anticipated to function adequately before
its performance decreases to an unsatisfactory level. Accurately predicting the Remaining
Useful Life RUL is of utmost importance to enhance battery management systems, partic-
ularly in domains like electric vehicles, renewable energy storage, and portable devices.

Multiple methodologies and models exist for forecasting the Remaining Useful Life RUL
of batteries, typically involving the analysis of the battery’s progressive deterioration
during its lifespan. An established method involves the use of mathematical equations
to represent the decline in capacity or other forms of degradation. Below is a concise
derivation of a universal Remaining Useful Life RUL equation:
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is the rate of change of capacity with respect to time. Practically, the prediction of Re-
maining Useful Life RUL is a more intricate task that necessitates the consideration of
multiple parameters. Several models integrate various characteristics, including temper-
ature, charge/discharge cycles, and operational conditions. Machine learning methodolo-
gies, such as regression models and neural networks, are frequently employed to forecast
the Remaining Useful Life RUL by leveraging past data.

Battery producers and researchers frequently design specialized models that are cus-
tomized to the unique properties of the battery chemistry and intended use. The models
are trained using empirical data to enhance precision in forecasting the Remaining Useful
Life RUL.

It is crucial to acknowledge that forecasting the Remaining Useful Life RUL is intrinsically
subject to uncertainty, and outcomes can be affected by fluctuations in operational cir-
cumstances and environmental elements. Continuing research endeavours to improve the
precision and dependability of Remaining Useful Life RUL forecasts for various battery
types and applications[24].

RUL(t) =
Ct

dC
dt

(5)

where:

• RUL(t) is the Remaining Useful Life at time(t)

• Ct is the battery capacity at time(t)

• dC
dt

is the rate of change of capacity with respect to time.
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2.4.1. Methods for Forecasting Remaining Useful Life

Indeed! Researchers have devised two primary methodologies, namely model-based and
data-driven methods, to forecast theRUL of lithium-ion batteries. Model-based proce-
dures involve creating electrochemical models, which are made up of specific mathematical
models that accurately show how chemical processes work inside the body. This facili-
tates an exact depiction of internal variables within the model, resulting in a high level
of accuracy in forecasting[83]. Nevertheless, these models are exceedingly intricate and
necessitate an extensive prior understanding of the batteries under investigation[57].

Indeed, the disassembly of the battery may be necessary for parameters, which poses chal-
lenges in incorporating these technologies into practical applications. Predictive mainte-
nance is an anticipatory maintenance approach that seeks to forecast and avert equipment
malfunctions through data analysis. An essential goal of predictive maintenance is to ac-
curately estimate the remaining useful life RUL of equipment. There are three prominent
approaches to accomplishing this: similarity, survival, and degradation models. The se-
lection of each model is determined by the available data, and similarity models prove to
be especially valuable when complete histories from similar machines are accessible[46].

Their functioning involves training a model by utilising degradation profiles of comparable
machines to predict the Remaining Useful Life RUL of the specific equipment. This
prediction is based on the similarity between the degradation profiles of the equipment
in question and those of similar machines. Conversely, data-driven methodologies do not
prioritise the examination of the battery’s intrinsic electrochemical reactions or failure
reasons. Alternatively, they regard the internal functioning of a battery as an unknown
entity and utilise past data to construct models that can directly comprehend the decline
in battery performance based on the monitoring data. Subsequently, these models undergo
further refinement and optimisation to attain elevated levels of precision[36]. While data-
driven methods may not attain the same degree of accuracy as model-based methods,
they are more straightforward to deploy in practical scenarios.

Figure 4: RUL Estimator Models [46]
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2.5. Background Research

2.5.1. Battery demand for Electric Vehicles continues to rise

Figure 5: Battery demand by mode, 2016-2022 [22]

The demand for lithium-ion (Li-ion) batteries in the automotive industry grew by around
65% to reach 550 GWh in 2022, compared to 330 GWh in 2021. This increase was mainly
driven by the rise in sales of electric passenger cars Light Duty Vehicle (LDV) Light blue
in the graph, with new registrations experiencing a 55% spike in 2022 compared to the
previous year[22].

In China, the demand for batteries used in vehicles had a growth of over 70% in 2022
compared to 2021. Similarly, the sales of electric cars increased by 80% during the same
year. However, the growth in battery demand was significantly reduced due to the rising
popularity of Plugin Hybrid Electric Vehicle (PHEV). The United States had about 80%
surge in battery demand for vehicles, even while electric car sales only experienced a
modest growth of around 55% in 2022. In 2022, the average battery size for battery electric
cars in the United States increased by approximately 7%. However, the average battery
size for battery electric cars in the US is still about 40% larger than the global average.
This is partly because there is a higher proportion of Sport Utility Vehicle (SUV) in the
US electric car market compared to other major markets, and also because manufacturers
are focusing on providing longer all-electric driving ranges. The sales of Battery Electric
Vehicle (BEV) and Plug-in Hybrid Electric Vehicles PHEV are surpassing the sales of
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Electric Vehicle (HEV) worldwide. This trend is driven by the fact that BEV and PHEV
have bigger battery capacities, which in turn leads to a higher need for batteries[22].

2.6. Battery Management Systems (BMS)

The Battery Management System BMS is a crucial component of an Electric Vehicle EV
as it prevents the batteries from being overcharged or depleted beyond safe limits. Engag-
ing in such behavior can lead to battery degradation, a rise in temperature, diminished
longevity, and potentially jeopardize the safety of individuals. The BMS can enhance
the vehicle’s range by optimizing energy utilization[1]. Figure 6 depicts the conventional
block diagram of the Battery Management System BMS.

Figure 6: BMS block diagram [1]

The battery management system is essential for the following reasons

1. Maintain the safety and the reliability of the battery

2. Battery state monitoring and evaluation

3. To control the state of charge

4. For balancing cells and controlling the operating temperature

5. Management of regenerative energy
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2.6.1. BMS Functionalities

There is a wide variety of Battery Management Systems BMS available in the market.
You have the option to either create your own BMS or purchase an Integrated Circuit
(IC) that is readily accessible. From a hardware point of view, there are three differ-
ent kinds of Battery Management Systems BMS based on their topology: Centralised
BMS, Distributed BMS, and Modular BMS. Nevertheless, the functionality of these Bat-
tery Management Systems BMS is the same. Below is a depiction of a generic Battery
Management System[58].

Figure 7: BMS Functionalities [58]

Battery numbers are calculated and standard measurements are taken for the voltages of
the individual cells, as well as the current, voltage, and temperature of the battery pack.
The BMS utilizes these readings to compute the essential operational parameters of the
cells and battery packs, including the SOC, SOH, and DOD. Adaptable These techniques
also help to prolong battery life and meet the requirements of the basic power network[58].
An energy management system equipped with a user interface can be utilized to regulate
and observe the efficiency of battery systems in various system blocks, hence enhancing
the longevity of the batteries. Effective management of the charging and discharging
process greatly influences the longevity of a battery. Battery Management Systems BMS
offer economic advantages including increased battery longevity, enhanced precision, and
reduced costs[69].
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2.7. An Overview of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM)

The human brain-like algorithms of neural networks detect patterns. A machine perceives
sensory data and labels or clusters it. They can recognize vectors of numerical patterns,
which must be converted into real-world data like images, sounds, texts, and time series.
Artificial neural networks use many densely coupled neurons to solve a problem. A huge
number of parallel processors in tiers make up an ANN. The first tier gets raw input, like
human optic nerves. In the same way, neurons far from the optic nerve receive signals
from those closer to it, each tier receives output from the previous one. The final tier
generates system output[52][17].

2.7.1. What is Recurrent Neural Network (RNN)?

A Recurrent Neural Network RNN is an extension of a feedforward neural network that
includes an internal memory component. An RNN is characterized by its recurrent nature,
meaning that it carries out the same operation for each input of data. However, the
output of the current input is influenced by the previous computation. Once the output
is generated, it is duplicated and returned to the recurrent network[50]. To make a
decision, it takes into account both the current input and the output it has acquired from
prior inputs.

RNN, in contrast to feedforward neural networks, can utilize their internal state (memory)
for processing sequences of inputs. These capabilities make them suitable for jobs such as
unsegmented, continuous handwriting recognition, or speech recognition. In alternative
neural networks, each input is considered to be mutually independent. However, in a
Recurrent Neural Network RNN, all of the inputs are interconnected[17].

Figure 8: An unrolled recurrent neural network. [52]

Initially, the algorithm extracts the value of X(0) from the input sequence and then
generates the output h(0), which, in conjunction with X(1), serves as the input for the
subsequent iteration. The values h(0) and X(1) serve as the input for the subsequent
phase. Likewise, h(1) obtained from the previous phase serves as the input for X(2) in
the subsequent step, and this pattern continues. By doing so, it maintains the ability to
retain the context during the training process[50][52]. The formula for the current state
and after applying the activation function is shown in equations 6 and 7.
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ht = f(ht−1, xt) (6)

ht = tanh (Whhht−1 +Wxhxt) (7)

W is weight, h is the single hidden vector, Whh is the weight at the previous hidden
state, Whx is the weight at the current input state, tanh is the Activation function, that
implements a Non-linearity that squashes the activations to the range[-1.1]. The output
is shown in equation 8 where Yt is the output state. Why is the weight at the output
state[50].

Yt = Why.ht (8)

Advantages of Recurrent Neural Network

• Recurrent Neural Networks RNN have the ability to represent a series of data in
such a way that each individual data point is considered to be influenced by previous
ones.

• In order to expand the effective pixel neighbourhood, convolutional layers are also
incorporated into recurrent neural networks.

Disadvantages of Recurrent Neural Network

• Gradient vanishing and exploding problems.

• Training an RNN is a very difficult task.

• It cannot process very long sequences if using tanh or relu as an activation function.
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2.7.2. What is (LSTM) and How it Works

It is even possible to employ recurrent neural networks in conjunction with convolutional
layers to expand the successful pixel LSTM networks, which stand for long-term short-
term memory and are a modified version of recurrent neural networks. These networks
make it simpler to remember information from the past. In this case, the vanishing
gradient issue that RNN was experiencing is fixed. When given time lags of uncertain
duration, LSTM is an excellent choice for classifying, processing, and making predictions
about time series. The model is trained through the utilization of backpropagation. There
are three gates present in an LSTM network to be found[52][17].

Figure 9: LSTM Gates. [52]

Utilizing a cell state, which is depicted by a horizontal line in the LSTM diagram, is
the fundamental concept that underpins long short-term memory LSTM systems. The
state of the cell functions like a conveyor belt, enabling information to move along it
without undergoing substantial changes. The integration of gates, which regulate the
flow of information into and out of the cell state, is the most important characteristic of
long short-term memory LSTM devices[50]. An input gate, a forget gate, and an output
gate are the three primary components that makeup LSTM cells. This is a high-level
overview of the structure. A corresponding weight matrix and bias term are connected
to each gate in the system. The LSTM is able to keep or discard information from prior
time steps thanks to these gates, which govern the transmission of information and allow
it to do so[17].
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The key equations involved in an LSTM cell are the following:

1. Forget gate:

Determine which specific details should be eliminated from the block. The sigmoid func-
tion determines it. The process examines the prior state (ht-1) and the input content
(Xt) and generates a numerical output ranging from 0 (excluded) to 1 (included) for each
number in the cell state Ct-1[17][50]. The equation for the forget gate is as follows:

ft = sigmoid(Wf .[ht−1, xt] + bf ) (9)

Figure 10: LSTM forget gate. [52]

2. Input gate: Determine the specific value from the input that should be utilized to
alter the memory. The sigmoid function determines which values to allow between 0 and
1. The tanh function assigns weights to the input numbers, determining their level of
significance on a scale from -1 to 1[50]. The equation for the input gate is as follows:

it = sigmoid(Wi.[ht−1, xt] + bi) (10)
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Figure 11: LSTM input gate. [52]

3. Output gate: The output is determined based on the input and the memory of the
block. The sigmoid function determines which values to allow between 0 and 1. The
tanh function assigns a weight to the input values, determining their level of significance
on a scale from -1 to 1. This weight is then multiplied with the result of the sigmoid
function[17][52][50]. The equation for the output gate is as follows:

ot = sigmoid(Wo.[ht−1, xt] + bo) (11)

Figure 12: LSTM output gates. [52]
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2.7.3. Implementation of a recurrent neural network using Long Short-Term
Memory (LSTM)

Machine Learning (ML) models are innovative tools that are transforming the field of
data analysis and decision-making in different areas[5]. Their importance stems from
their capacity to tackle intricate issues and their adaptable use in vital industries such as
healthcare, banking, image identification, and natural language processing. These mod-
els facilitate the process of computers acquiring knowledge from extensive information,
revealing concealed patterns, and generating precise forecasts or choices. Choosing the
right machine learning model that is specifically suited to the situation at hand is cru-
cial, highlighting the significance of a careful and deliberate decision-making process in
selecting a model[45].

Machine learning plays a crucial role in addressing complex challenges characterized by
extensive amounts of data and sophisticated patterns. The ability of this technology to
enable computers to learn from data and uncover hidden insights is especially useful.
Within this particular context, the section explores the Long Short-Term Memory LSTM
model, which is a specific sort of Recurrent Neural Networks RNN. This exploration
highlights the importance of LSTM in capturing long-term relationships in sequential
data, providing a detailed knowledge of its ability to handle temporal features. Moreover,
this section delves into the practical implementations of LSTM in many fields, providing
insights into its versatility and efficacy in real-life situations[6].

The section offers a concise introduction to how to put LSTM models into practice, moving
from theoretical talks to practical applications. This feasible observation helps to connect
the divide between theoretical comprehension and practical implementation, providing
useful perspectives on the utilization of LSTM in data analysis and decision-making pro-
cedures. The threefold investigation in this section together presents a complete depiction
of the transformation potential of ML models, highlighting their ability to adjust, their
versatility, and their crucial function in tackling the complexities of intricate problems
across various fields[52].
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3. Literature Review

This chapter explores the ageing models utilised in electrochemical cells, focusing specif-
ically on the most recent advancements in machine learning models designed for prog-
nostication. To acquire a thorough comprehension of the topic at hand, an exhaustive
and methodical review of the literature was conducted. The principal objective of this
study was to investigate the applicability of recent developments in ageing models to the
prediction of LIB degradation. Through a comprehensive search of these databases, our
objective was to identify the most recent and pioneering research in the respective field.

In the context of electrochemical cells, the importance of ageing models cannot be over-
stated. Batteries experience a progressive deterioration in performance as a result of
enduring numerous charge and discharge cycles; this degradation affects their capacity, ef-
ficiency, and overall lifespan. Comprehending and precisely forecasting the ageing process
holds significant significance across diverse sectors, including renewable energy systems,
portable electronics, and electric vehicles, wherein the dependable and extended func-
tionality of batteries is essential. Battery ageing prediction has witnessed the emergence
of machine learning models as potent instruments owing to their capacity to manage in-
tricate data patterns and nonlinear associations. These models use previously collected
information during training on battery performance to identify the fundamental ageing
patterns and generate dependable forecasts regarding subsequent deterioration. The in-
corporation of machine learning methodologies has created novel opportunities for the
precise evaluation of battery conditions and the enhancement of battery management
tactics.

The objective of this literature review is to examine the latest and most auspicious ad-
vancements in ageing models that utilise machine learning. Different approaches, such as
support vector machines, random forests, neural networks, and recurrent neural networks,
which have shown a lot of promise in predicting how batteries will break down, will be
looked at. Furthermore, we shall deliberate on the obstacles and prospects associated with
the implementation of these models in practical situations, taking into account variables
including the accessibility of data, the interpretability of the models, and the computa-
tional intricacy. Through an in-depth review and integration of relevant literature, the
objective of this chapter is to impart significant perspectives on the present condition
of battery ageing prediction. The insights derived from this exhaustive examination will
form the foundation for the forthcoming sections of this thesis, in which we shall put forth
and assess our model for predicting ageing, which is constructed using machine learning
methodologies.

3.1. Battery Aging Modelling

Battery ageing is one of the most important factors that must be taken into consideration
for a successful Li-ion battery application. However, the performance of lithium-ion bat-
teries will progressively deteriorate owing to the effects of working conditions and usage
duration, which restrict the battery’s use to a certain degree. Ageing processes have an
impact on battery capacity and resistance, which are the key components of a battery
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electrical model, as well as battery longevity, which is directly related to the system’s
profitability[9].

In addition, the overall operation mechanism of lithium-ion batteries is rather intricate,
including electrochemical reactions, energy transfer, charge transfer, heat dissipation,
and various other processes. Furthermore, internal characteristics and external factors
actively interact when the battery system is working. Hence, constructing a collaborative
simulation test platform for electro-thermal and ageing is highly significant to enhance
the investigation of the ageing properties of lithium-ion batteries[66].

Generally, battery models fall into the following primary classifications:

• Physics Based Models (PBM)

• Empirical/Semi-Empirical Models

• Equipment Circuit Models (ECM)

• Electrochemical Models (EM)

• Data Driven Models (DDM)

• Hybrid Models (HM)

3.1.1. Physics-Based Models (PBMs)

Physics-based models can be categorised into two distinct categories. Certain of them
are considered "phenomenological" because ageing sources, such as an aside reaction that
results in the formation of a Solid Electrolyte Interphase (SEI), appear explicitly in the
set of governing equations and interact directly with the other model characteristics. The
second group compiles mathematical models that are nearly identical to those for a pris-
tine cell, with the addition of isolated empirical relations or curve-fitting procedures to
update model parameters such as SEI film resistance or thickness, volume fraction of ac-
tive material, and so forth. Phenomenological physics-based models represent the most
advanced and intricate approach due to the necessity for a comprehensive comprehension
of the mechanisms of ageing. After undergoing validation, the model becomes capable
of analysing an extensive range of operating conditions and control strategies. Moreover,
battery manufacturers may employ this information to enhance the design of their bat-
teries. To date, the majority of physics-based models have incorporated a single ageing
source. This is primarily due to the exceedingly complex nature of real-world systems and
the limited theoretical foundation that exists in simulating certain ageing sources, such
as the structural degradation of active materials[62].
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3.1.2. Empirical/Semi-Empirical Models

Empirical models rely solely on data and are constructed using experimental observa-
tions. They create correlations between battery performance and degradation character-
istics without taking into account the underlying physical and chemical mechanisms[14].
These models are generally uncomplicated to create and execute, rendering them valu-
able when intricate data regarding the battery’s internal functioning is missing or hard to
get. Semi-empirical models integrate empirical and physics-based elements. They could
integrate certain physical concepts or information regarding the battery’s behaviour while
still depending on experimental data for certain components of the model. Semi-empirical
models provide a compromise between accuracy and complexity and are frequently em-
ployed when a comprehensive physics-based depiction is not required, but some scientific
understandings are still sought[14].

Empirical and semi-empirical models are highly valuable for making rapid estimations,
doing preliminary research, and implementing applications that prioritise simplicity and
demand less computational power. Additionally, they may be used for real-time monitor-
ing and regulation of battery systems without necessitating an extensive understanding
of the battery’s underlying mechanisms[76]. These models frequently include regression
analysis or curve fitting techniques to establish correlations between input factors (such as
current, voltage, and temperature) and battery performance parameters (such as capac-
ity decrease impedance increase, and cycle life). The efficacy and accuracy of empirical
models are significantly influenced by the quality and amount of the dataset employed for
training and validation[14].

3.1.3. Equivalent Circuit Models (ECMs)

The equivalent circuit model ECM is commonly employed in various battery applications
due to its rapid execution time, simplicity, and relatively high level of accuracy. Neverthe-
less, the ECM suffers from the drawback of limited model extrapolation when the battery
is pushed to its operational limits, resulting in reduced performance. Consequently, this
battery model is not frequently employed in applications that need high current rates or
operate at extremely low temperatures. Accuracy and complexity are crucial considera-
tions when simulating the dynamic behaviour of a battery. The ECM has the capacity
to efficiently fulfil these factors. The model comprises three primary components: one
component that represents the thermodynamic characteristics of the battery chemistry,
including the open-circuit voltage OCV as a function of the state of charge SOC; another
component that represents the kinetic behaviour of the cell’s internal impedance; and a
source or load that completes the circuit for the charging or discharging processes[74].

ECM parameters commonly consist of internal ohmic resistance, succeeded by one or
more Resistor Capacitor (RC) pairs. The most basic model just considers the internal
ohmic resistance, failing to adequately depict the battery’s dynamics during operation.
Therefore, the Thevenin Equivalent Circuit Model ECM, which includes an extra RC
pair to be combined with the internal ohmic resistance, is commonly employed due to its
favourable trade-off between precision and simplicity. The estimation of ECM parameters
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is commonly performed through a Hybrid Pulse Power Characterisation (HPPC) test
conducted at various state of charge SOC levels. Temperature and state of charge SOC can
influence these parameters. For example, a rise in temperature can result in an elevation
of Open Circuit Voltage OCV in specific Lithium-Ion Battery LIB compositions, while
a decrease in state of charge SOC can lead to a reduction in charge transfer resistance,
ultimately impacting the ECM parameters[74].

3.1.4. Electrochemical Models (EMs)

Electrochemical models are a type of physics-based model that especially aim to repre-
sent electrochemical reactions and transport processes occurring in batteries [76]. These
models utilise mathematical equations based on battery physics, namely Butler-Volmer
kinetics, to accurately depict the electrochemical events occurring at the electrode in-
terfaces [60]. Electrochemical methods offer a more comprehensive knowledge of battery
behaviour in comparison to Equivalent Circuit Models. This is due to the ability of EM
to provide deep insights into electrode kinetics, concentration gradients, and reaction
overpotentials. The use of these models enables researchers and engineers to investigate
the impact of various operational parameters, electrode compositions, and temperature
on the efficacy of battery performance [4]. While EM provide more precision, they can
be more computationally intensive compared to ECM. The computational complexity es-
calates when incorporating intricate reaction kinetics, multiscale modelling, and spatial
dispersion of species [76]. Electron microscopes EM are highly valuable for conducting
detailed investigations into specific degradation mechanisms and analysing the properties
of materials [60].

3.1.5. Data-Driven Models (DDMs)

Data-driven models depend on empirical data and statistical analysis [47]. They avoid the
fundamental principles of battery physics and prefer using machine learning algorithms,
such as Neural Network (NN) and other Artificial Intelligence (AI) methods, to establish
connections between input data (such as operating conditions, temperature, and state of
charge) and battery performance or degradation measurements [25].

DDM are useful in situations when there is a lack of comprehensive physical knowledge
or where the underlying degradation mechanisms are complicated to explain analytically
[77]. By being exposed to extensive quantities of experimental data, these models can
acquire the ability to comprehend intricate patterns and correlations that might be a
challenge for traditional physics-based models [25][77].

DDM are frequently used in state-of-health SOH estimation, where they anticipate the
battery’s health or remaining useful life using real-time readings [81]. Furthermore, DDM
can enhance battery management techniques and control algorithms by taking into ac-
count actual operating conditions and variability [41].
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3.1.6. Hybrid Models (HMs)

Hybrid models HM are highly beneficial in battery modelling because they may effectively
combine several modelling techniques, providing a flexible way to accurately represent
intricate electrochemical behaviours [80].

The process of amalgamation frequently entails the integration of physics-based models,
which explore the complex electrochemical processes at the electrode level, with corre-
sponding circuit models that offer a broader perspective of the complete battery system.
Hybrid models achieve a fine equilibrium between computational accuracy and processing
efficiency by combining both approaches [82].

Hybrid models have the advantage of adaptability, enabling researchers and engineers to
customize the level of intricacy to meet unique needs. This flexibility becomes especially
advantageous when examining extensive battery packs or intricate systems, where the
computational expense of constructing intricate physics-based models for each cell may
become excessively burdensome. Hybrid models are particularly effective in situations like
this, as they are able to provide accurate forecasts while also reducing the computational
load [81]. Hybrid models are highly important in enhancing our comprehension of battery
behavior and maximising their efficiency in many applications, such as electric automobiles
and grid-scale energy storage systems.

3.2. Approaches to Predicting the State of Health

A lithium-ion battery’s state of health SOH is usually found by comparing the actual
values to the initial values of performance parameters that have been calculated directly
or indirectly during the battery’s operational life. These parameters include internal
resistance and battery capacity[32].
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Figure 13: SOH ESTIMATION METHOD [32]

An extensive body of literature has described the various SOH classifications and their
attributes. As an illustration, classify the estimation methods for battery SOH into
experimental methods and model-based estimation methods. The primary branches and
prevalent methodologies are illustrated in Figure 8. Among these, data-driven methods,
electrochemical models, indirect analysis methods, and empirical models have been the
most developed in recent years [86][87].

By employing data fitting to summarise the correlations between different parameters
(e.g., temperature, cycle number, charging/discharging current, etc.) and battery SOH
from experimental data, an empirical model for estimating battery SOH can be derived.
An approach called "Battery SOH estimation Method Combined Online Model-Based
Capacity Estimation and Routine Calibration" was introduced by Han [26].

According to Sebastian, the hold stage temperature, time, and state of charge SOC influ-
ence battery life. These three parameters are governed by the renowned Arrhenius rule.
In contrast to alternative battery models, empirical models possess more succinct model
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structures and greater adaptability in practical implementations. Nevertheless, they con-
tinue to rely on experimental data collection methods and the configuration of working
conditions significantly affects estimation outcomes[53].

Figure 14: Sorting battery SOH prediction techniques [32]

A variety of methodologies have been employed to evaluate the degree of degradation
in lithium-ion batteries. Filter-based approaches, including the equivalent circuit model
ECM and electrochemical model EM, have been widely implemented. Approaches such as
the equivalent circuit model ECM, Single Particle Model (SPM), and Pseudo 2D Model
(P2D) are frequently implemented[84]. Data-driven models DDM that utilize machine
learning have emerged as a potentially effective approach for making accurate and timely
predictions of battery states, bringing forth a novel viewpoint. The prevalent categories
and methodologies are depicted in Figure 14. In recent times, significant progress has
been made in the areas of data-driven strategies, electrochemical models, indirect analysis
techniques, and empirical models[32].

Several studies have examined the analysis of indirect tests and the electrochemical per-
formance of lithium-ion batteries to get insight into the dynamics of battery capacity
variations. To estimate the capacity of onboard batteries approaches such as Capacity In-
cremental Analysis (CIA) and Differntial Voltage Analysis (DVA) have been devised[32].
Moreover, the commonly used method of ampere-hour (Ah) integration requires fully
draining the battery after a complete charge using a constant current-constant voltage
(CC-CV) protocol. This enables the estimation of the drained capacity by integrating
the Ah data. Together, these methods enhance our comprehension of battery capacity
patterns and enable precise capacity assessments[85][70].

3.3. Machine Learning for Predicting Battery State

One intriguing approach that has the potential to improve battery management and per-
formance assessment is the incorporation of machine learning techniques into the estima-
tion of battery states, particularly the state of health SOH. These techniques effectively
handle large amounts of battery data by utilizing the computing power of algorithms,
providing valuable insights for accurate state forecasts.
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3.3.1. Overview of Machine Learning Approaches

supervised learning, unsupervised learning, and reinforcement learning are the three main
categories of machine learning approaches used in battery state prediction[56]. To enable
algorithms to relate input properties to corresponding desired output properties, such as
battery states like SOH, supervised learning involves training models using labeled data.
Unsupervised learning explores the structure and patterns in unlabeled data, frequently
leading to the discovery of new information. Reinforcement learning focuses on teaching
models to make sequential decisions based on interactions with an environment, although
it is not generally used in battery state prediction[56] [54].

Figure 15: Overview of machine learning approaches [54]

3.3.2. Machine Learning Algorithms for Battery State Prediction

Numerous machine learning methods provide advantageous tools in searching for precise
and effective battery health prediction. These algorithms handle various elements of
battery behavior and accommodate different data profiles; they range from feedforward
neural networks to probabilistic approaches [68].
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Figure 16: Classification of ML-based SOH prediction algorithms [68]

Feedforward Neural Network Algorithms:

In order to reduce predicted mistakes, Back Propagation Neural Network (BPNN) ap-
proach iteratively refines weights while embracing supervised learning. Gradient de-
scent is used in backpropagation to optimize network parameters and increase predicted
accuracy[68][61].

The Radial Basis Functions (RBF)-Neural Network, which is based on radial basis func-
tions, excels at approximating complex functions, making it a strong candidate for battery
state prediction tasks[67][68].

Extreme Learning Machine (ELM) is a single-layer network that fits well with large battery
datasets due to its simplicity and quick training. It has randomly assigned input weights
and analytically derived output weights[21].

Elman Neural Network: Elman networks combine recurrent connections with hidden layer
links to provide temporal dependency modeling in sequential battery data[67].

Recurrent Neural Network Algorithms:

LSTM and Gated Recurrent Uint (GRU) represent two types of Gated Neural Network
(GNN), which are particularly good at solving vanishing gradient problems in conventional
recurrent neural networks RNN. Capturing long-term temporal dependencies in battery
time series data is their area of expertise[68][67].

RNN: Because of problems with gradient vanishing, RNN which have been embedded in
feedback connections for processing sequences, struggle to handle long-term relationships[67].

Long-Short-Term Memory RNN LSTM: By adding memory cells and gating mechanisms
to regular RNN, LSTM overcome the shortcomings of its predecessors and adeptly handle
the complexities of sequence data[52].
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Classification and Regression Algorithms:

Relevant Vector Machine (RVM): This Bayesian variation, which excels in both classifica-
tion and regression, is modeled after SVM. Its resistance against noise and probabilistic
results are its important advantages[68].

Support Vector Machine SVM: SVM is an expert at both classification and regression,
even when it comes to battery state prediction. It does this by identifying the best
hyperplane for data classification [68][34].

Random Forest: A Random Forest is created by combining many decision trees. Its
ensemble method offers significant prediction accuracy and resilience to overfitting[34].

Probabilistic Algorithms:

Gaussian Process Regression: This technique skillfully handles tiny datasets and offers in-
formative uncertainty estimates by adding a probabilistic foundation to predictions[21].

Because every machine learning algorithm has unique benefits and drawbacks, the choice
of which one to use depends on the type of data, the need for accuracy, and the require-
ments for computing efficiency. Understanding the subtleties of these algorithms enables
the development of effective battery state prediction models, advancing the field of energy
storage management[68].

3.3.3. Comparison of ML algorithms in SOH estimation (LSTM),(GRU) and
Regression

In accordance with the introduction of more sophisticated topologies like LSTM and
GRU networks, the field of recurrent neural networks RNN has undergone a revolutionary
transformation. Traditional recurrent neural networks RNN have limitations that prevent
them from efficiently capturing temporal dependencies and long-range patterns within
sequential data[61].

These new neural architectures have taken advantage of these limitations and revolu-
tionised the field. More specifically, the combination of these two methods with regres-
sion analysis has opened up new dimensions of predictive modeling. This has resulted in
the creation of a dynamic toolset that can be used to unravel complex relationships and
forecast numerical results.
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Method Advantages Disadvantage

BP_NN
Provides reasonable accuracy while
providing flexibility and ease in ex-
ecution

When compared to other approaches,
operating efficiency is lower

RBF-NN Shows strong performance and global
approximation ability

Operating efficiency is reduced, and
there is a proclivity for local optimal-
ity.

ELM It requires less computing and learns
faster

The amount of buried neurons is sen-
sitive

Elman-
NN

Has a quick-approaching speed and
adapts effectively to time-varying
properties.

The training process is slow. and
there is a risk of settling for local op-
timality

RIN Efficient for data with a sequential
nature.

Gradient disappearance or explosion
is possible.

LSTM Tracks long-term dependencies and
saves data selectively.

Training execution is tough, and
training acceleration is challenging.

LSTM Tracks long-term dependencies and
saves data selectively

Training execution is tough, and
training acceleration is challenging.

GRU
Captures long-term sequential de-
pendencies and resolves the LSTM
gating mechanism.

Requires a huge amount of training
data and a large storage tool.

RVM
Better sparsity and no Mercer re-
striction, avoiding overfitting and un-
derfitting.

High computational load with huge
datasets, incompatible with long-
term prediction. A lack of stability
is also a source of concern.

SVM
Allows for quick and precise estima-
tion and provides adequate accuracy
in high-dimensional systems.

It is computationally complex and
lacks sparsity.

RE Increased robustness and efficiency in
the processing of complicated data.

Not appropriate for high-dimensional
systems, and highly dependent on
the amount of random trees.

GPR

Allows for the easy development of
uncertainty estimation through the
use of covariance. The characteris-
tics are simple to understand.

It is sensitive to kernel functions and
has a high computational cost.

Table 1: Vehicle Data sheet [26]

Long-Short-Term Memory (LSTM):

LSTM networks are revolutionary in the field of artificial intelligence due to their amazing
capacity to retain knowledge over long periods, making them highly effective at modeling
sequential data[61]. The fundamental components of the LSTM architecture include spe-
cialized memory cells that are intimately linked to input, forget, and output gates. The
unique design of LSTM allows them to effectively capture complex temporal patterns,
demonstrating their ability to learn and interpret long-term dependencies present in data.
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The key difference between LSTM and regular RNN is that LSTM are skilled at selec-
tively preserving or rejecting information. LSTM are particularly suitable for activities
that require a sophisticated comprehension of complicated sequential intricacies[89].

The effectiveness of LSTM networks is seen in research efforts where individuals have
utilized their skills to develop models for accurately predicting battery degradation. By
utilizing a sophisticated understanding of extended relationships throughout time, Long
Short-Term Memory LSTM models demonstrate exceptional proficiency in predicting real-
world occurrences that involve intricate temporal connections. Significantly, they establish
connections between the aging properties of batteries and the various operational condi-
tions they experience. LSTM networks demonstrate their versatility and serve as useful
instruments in predictive modeling. They can be applied in various domains, such as
battery technology and the complex dynamics of temporal event forecasting[52].

Figure 17: LSTM [59]

Gated Recurrent Unit (GRU):

A Gated Recurrent Unit GRU is a modified version of the Recurrent Neural Network RNN
structure that incorporates gating mechanisms to regulate and oversee the transmission
of information among the network’s cells. GRU were first introduced in 2014 by Cho, et
al[12]. and can be regarded as a relatively recent design, particularly when contrasted to
the widely-accepted LSTM[31].

The architecture of the GRU enables it to dynamically capture interdependencies from
extensive data sequences while retaining knowledge from preceding segments of the se-
quence. This is accomplished by utilizing gating units, like to those found in LSTM, which
effectively address the issue of vanishing or bursting gradients in conventional RNN. These
gates have the function of controlling the information that is retained or deleted at each
time step. In this post, we will explore the intricacies of how these gates operate and how
they effectively address the aforementioned challenges[52].

In addition to its internal gating mechanisms, the GRU operates similarly to an GRU,
where the GRU cell processes sequential input data at each time step along with the mem-
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ory, also referred to as the hidden state. Subsequently, the concealed state is reintroduced
into the recurrent neural network RNN cell alongside the subsequent input data in the
sequence. This process operates sequentially, functioning as a relay system to generate
the intended outcome.

Figure 18: GRU [44]

Regression: Predictive Insights Unveiled

Regression, a fundamental aspect of predictive modeling, holds great importance in nu-
merical prediction tasks. Regression involves creating a mathematical link between input
data and a continuous target variable[34].

The primary goal is to obtain a regression function that minimizes the discrepancy between
the predicted and actual target values. Regression is widely used in different forms, such
as linear, polynomial, and time series regression[35].

Significantly, the combination of LSTM, GRU networks, and regression has fundamentally
transformed the process of modeling sequential data. Both LSTM and GRU networks
possess an intrinsic ability to comprehend the complexities of time, which makes them
particularly skilled at numerical prediction tasks. The study undertaken underscores the
effectiveness of LSTM in accurately predicting battery capacity and remaining useful life
RUL several steps ahead[28].
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4. Methodology

This chapter’s primary goal is to give a summary of the master’s thesis’s methods and
research aims. The chapter also outlines the study approach that was used, covering sev-
eral topics including feature engineering, data collection, data description, experimental
setup, cell description, and the creation of data-driven models to forecast LIB health.

4.1. Test Methodology

The setting up of meticulous testing procedures to gather important experimental data on
LIB frequently found in EV is the first step in the study process. These test procedures
have been carefully planned out and carried out to guarantee the precision and depend-
ability of the data gathering. The collected data, which serves as a vital basis for the
prediction of SOH, may initially include missing values. These are methodically resolved
using the proper imputation techniques in order to preserve the dataset’s integrity. The
data also goes through a rigorous cleaning procedure that removes errors, inconsistencies,
and outliers to guarantee that high-quality data is available for further analysis.

4.1.1. State of Health (SOH) Prediction Using Machine Learning
Algorithms

Figure 19, which offers a step-by-step breakdown of how ML algorithms are employed
for the prediction of SOH, summarizes the complexities of the SOH prediction process.
This general implementation flowchart explains the sequential steps in the SOH prediction
pipeline and provides thorough visual guidance. Data preparation, feature engineering,
method selection, model training, performance evaluation, and prediction are among the
phases shown.

Figure 19: Generic implementation flowchart for SOH prediction using ML algorithms
[68]
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• Data Preprocessing:
Data preparation is the first step in the process, when battery testing data is care-
fully collected, cleaned, and arranged. This initial data refinement involves filling in
missing numbers and cleaning the data to remove mistakes and abnormalities. This
procedural step guarantees that the data set is consistent and devoid of anomalies
that might interfere with further research.

• Feature Engineering:
The next step, feature engineering, is carefully choosing relevant attributes from
the data collection that have significant influences on the SOH prediction. Further-
more, domain knowledge could lead to the development of additional features that
improve the prediction power of the model. Certain features are undergoing scaling
or normalization procedures in order to preserve homogeneity of the data.

• Model Selection:
The choice of an appropriate machine learning algorithm is the important step
in the forecasting process. The flow chart highlights several possible algorithms,
such as support vector machines, complex neural networks, and linear regression
and decision trees. The decision is based on a number of variables, including the
computational complexity, interpretability, desired predicted precision, and data set
characteristics.

• Model Training:
The preprocessed dataset is used to rigorously train machine learning algorithms
selected in the preceding phase. Usually, the dataset is divided into subsets for
testing, validation, and training. The model optimizes its internal parameters to
reduce prediction errors as it attempts to identify and internalize patterns from the
training data.

• Model Evaluation:
The trained model’s effectiveness is measured by means of rigorous evaluation meth-
ods. The correctness of the model is evaluated using a variety of performance in-
dicators, including as Mean Absolutr Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and R-squared (Coefficient of Determination)
(R²). Methods like cross-validation evaluate the model’s flexibility over a range of
datasets.

• Prediction:
After all of these steps are completed, the trained and validated model is ready for
practical use, which is the predictive phase. The model can be fed new and unknown
battery data, which will produce an expected SOH value. This provides important
information about the state of health and anticipated performance of the battery.
Through the use of this flowchart as a framework, we hope to shed light on the
intricate combination of approaches that go into SOH prediction. This acts as a
guide that directs our empirical investigation and supports the analytical story that
will be revealed in the upcoming chapters[68].
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4.2. Test Bench Description

The Neware Technology Limited BTS-4000-5V6A cell tester was used for the measure-
ments in this master’s thesis. Bidirectional energy transport is made possible by the
charging/discharge unit included with this cell tester. Individual battery cells are tested
and cycled with the aim of simulating their service life and offering insights into their
performance that go beyond battery capacity. The Neware BTS unit consists of an inter-
nal server that runs predetermined procedures, an auxiliary channel cabinet with battery
or alligator connectors, and the tester itself with an integrated middle machine. Graphi-
cal presentation of channel data is possible with the manufacturer’s BTS 7.6.1 software,
and graphical examination of raw data generated during testing is possible with the BTS
application.

The BTS unit’s test channels can function within the current and voltage ranges of 0-
6 A and 0-5 V, respectively, with a maximum power delivery of ±30 W per channel.
Within the prescribed range, the measurements of voltage and current have an accuracy
of ±0.05%. The tester comes with universal holders that firmly hold each cell, adapting
to the size of the inserted round cells (type 18650, especially). To operate the test bench,
process the collected data, and send it to the host computer, and industrial servers are
used. This test bench is ideal for the tests that were conducted since the voltage range of
2.5 to 3.6 V corresponds well with the safe operating range of the cells that were utilised.
Automation is the most commonly used approach to recording raw data and is heavily
utilised to control test profiles.

The development of a frequency scanning approach that maximizes measurement time
and information density is required since, as the frequency decreases, the measurement
length increases. Because it provides specific parameter settings for steps per frequency
decade, frequencies below or above 66 Hz, and the measurement period, which defines the
number of averaged sine periods per measurement point, the single-sine mode gives the
maximum precision and quality of impedance data. After the measurements are finished,
the data collected can be kept and examined.

All tests were performed in the laboratory of the Carrissma Institute Of Electric connected
And Secure Mobility (C-ECOS) department of the Research and Test Facility in the
Centre of Automotive Research on Integrated Safety Systems and Measurement Area
(Carissma). The ambient temperature during the cyclic aging tests can be assumed
to be relatively constant with ’T = 26.5 ± 1.5 °C (room temperature) due to external
temperature control in the laboratory.

4.3. An explanation of the test configuration

The individual lithium iron phosphate cells used are clamped between the two battery
terminals of the “BTS-4000-5V6A” cell tester test bench and remain there during the
subsequent aging tests. For the polarity arrangement, the upper connection is considered
positive and the lower connection is negative. Furthermore, there are test bench voltage
measuring lines on the battery connection terminals or on the alligator terminals to record
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the current battery voltage. Since line and connection resistances would produce too
high a resistance value when connected in series with the measuring resistor and thus
distort the measurement result, a four-wire measurement is used. Using a four-wire circuit
allows negligible resistance through the power lines, meaning the measurements taken are
significantly more accurate than with a two-wire circuit.

Overall, it should be noted that good contact must be ensured at all times between the
cells and the battery connection terminals for optimal measurement results. A total of 45
individual cells are used for the test series, of which 39 individual cells are attached to the
five main modules (06–10) with the associated server 1, and the remaining nine individual
cells are attached to two further main modules (01–02) with the associated server 2. In
addition, the current temperature within the test laboratory used is recorded with the
associated date and time to monitor the room temperature during the tests. This can be
used to show that the temperature is in the defined temperature range during the aging
tests.

The cell tester monitors the charging/discharging current and the voltage of each cell
and can switch off at critical operating points such as Undervoltage or overvoltage, or
charging or discharging current that is too high, thereby protecting the individual cells
from destruction or damage. To obtain a more precise overview of the real structure of
the overall test setup and the integration of the individual cells into the test setup, the
following Figures 20 and 21 show the front view. The individual cells shown are tested
and aged at room temperature.
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Figure 20: Diagram of the Individual Cell Arrangement and Experimental Test Setup.
[44]

Figure 20 shows the experimental setup of the cyclic aging tests. On test module 9 with
the measuring channels 01 - 08 and on test module 10 with the measuring channels 01 - 04,
the alligator clips with the extension leads are located in the temperature test chamber,
with a set temperature of T = 0 °C. For safety reasons, these test channels on the cell tester
itself are taped with Kapton tape to prevent accidental insertion of another single cell
and thus destruction of the test channel as a result of excessive voltage. The connecting
cables are sealed with a sealing compound in the side opening of the temperature chamber
to ensure airtight operation within the temperature chamber and to guarantee that a
constant temperature is maintained in the temperature chamber
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Figure 21: Diagram illustrating the Configuration of a Controlled Temperature Chamber
for Cell Testing [44]

Figure 21 describes the integration of the wooden frame, including the cell holders and
individual cells inside the temperature test chamber. The temperature test chamber is of
the "VT 4011" type from Vötsch Industrietechnik, in which the temperature is set to T =
0 °C for the cyclic ageing tests on the touch panel. The temperature is constantly set to
T = 0 °C, with a maximum spatial deviation of ± 0.5 K to ± 1.5 K. In addition, the inner
walls of the temperature test chamber are lined with Kapton tape to prevent potential
short circuits. In order to position the test holders of the individual cells well in the
climate chamber, a wooden frame is used into which the cell holders are hung. The data
sheet for the temperature test chamber described can be found in the appendix. All cells
are labeled before the start of the test and coded with the corresponding test locations on
the test bench for better clarity. In addition, an incoming inspection is carried out before
the LFP cells are installed on the test bench. This consists of a visual inspection for
external damage or abnormalities and an incoming inspection using a "UT 139C" digital
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multimeter to check the voltage level. All LFP cells meet these quality requirements and
have the same initial average voltage level of 3.30 V.

The temperature in the test lab is continuously tracked and recorded, along with the
corresponding date and time, for both testing configurations. This rigorous recording
procedure makes it possible to monitor room temperature precisely throughout the aging
tests and offers solid proof that the temperature regularly stays within the permitted
range.

4.4. Description of the LFP single cells

Specification Characteristics
LiFePO4 Cell chemistry
3,2 V Nominal voltage
1,5 Ah Nominal capacity on discharge
4,5 A (3 C) Max. continuous discharge current
1,5 A (1 C) Max. continuous charging current
3,6 V End-of-charge voltage
2,5 V Final discharge voltage
0 °C bis +60 °C Temperature range during charging
-30 °C bis +60 °C Temperature range during unloading
-50 °C bis + 60 °C Storage temperature:
1550mAh - 0.5C (current value of
1500mA at 1C°) Standard Capacity

40 g ± 4 g Weight
18,35 mm ± 0,15 mm Diameter
65 mm ± 0,2 mm Height

Table 2: Data sheet of the LFP cell used

This study investigates LFP (Lithium Iron Phosphate) single cells produced by the man-
ufacturer "i-tecc+." Examining these cells in low-voltage applications within car electrical
systems is particularly intriguing. Table 2 provides a comprehensive summary of the es-
sential parameters of the cell, presenting the detailed technical specifications. The LFP
single cells have a nominal capacity of 1.5 Ah and their cyclic operation follows the volt-
age restrictions set by the manufacturer, which range from 2.5 V to 3.6 V. The study
constantly standardizes the C-ratios to the nominal capacity to ensure uniformity and
comparability. All the LFP single cells used adhere to the cylindrical 18650 design, which
is a well-used and commercially available standard in battery technology. This selection
guarantees uniformity and harmony with existing battery setups, enhancing the depend-
ability and significance of the research results.
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Figure 22: LFP CELL [44]

4.4.1. Selecting the charge/discharge current for capacity and energy
measurements

Lithium iron phosphate LFP cells, along with lithium titanate cells, are notable for their
extended cycle service life compared to other rechargeable lithium-ion cells. Within this
framework, the investigation of the ageing processes of LFP cells under high current loads
emerges as a particularly captivating area of study, with a specific emphasis on the currents
involved in charging and discharging during cyclic ageing. As per the manufacturer’s
datasheet, the LFP cell has a maximum charging current of 1.5 A (1 C) and a maximum
discharging current of 4.5 A (3 C).

This study focuses on purposely accelerating the cyclic ageing process by using LFP cells
at higher currents and discharge depths. The reason for adopting this strategy is based on
the recognition that inadequately chosen currents can lead to a higher margin of error in
the final estimation of the maximum error in the cell test bench. Thus, to reduce errors in
capacity and energy measurement, the continuous charge/discharge currents of the LFP
single cells are intentionally selected to be as high as feasible.

The primary rationale behind this decision is based on the observation that measurement
inaccuracies tend to increase when the measuring current diminishes. The main cause
of this increase is generally ascribed to mistakes in voltage and current measurements.
Therefore, the study seeks to reduce potential errors and improve the accuracy of the
results by using stronger currents during testing. This research endeavor seeks to enhance
the overall understanding of lithium-ion cell behavior and optimize their performance.
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4.4.2. Loading Procedure

The process of loading lithium-ion single cells typically involves a Constant Current-
Constant Voltage (CC-CV) charging method. This method involves charging the cell
with a constant current up to a predetermined voltage level, then proceeding to a constant
voltage charging stage with a reduced current until the current reaches a predetermined
threshold. A CC-CV charging method is typically used. During the process of charging,
it is of the utmost importance to make certain that the charging current and voltage are
kept within the limits that have been established.

This is done to prevent irreversible reactions and the breakdown of the electrolyte. It is
common for the manufacturer to establish the maximum voltage that a lithium-ion cell
is capable of being charged to. Should this voltage be exceeded, the cell may sustain
irreparable damage, which may include a reduction in its capacity as well as potential
safety issues. In addition, excessive charging can result in the development of lithium
metal on the anode of the cell, which can cause the cell to short-circuit and lead to
thermal runaway. It is possible to adhere to standardised protocols, such as ISO 12405-4,
to guarantee that the testing procedure is accurately and consistently carried out. To
accomplish this, you will need to make use of an apparatus that is capable of controlling
and monitoring the charging parameters, as well as terminating the charging process once
the cell has reached the limitations that have been defined.

To summarise, the loading technique for lithium-ion single cells entails charging the cell
using a CC-CV approach while ensuring that the charging current and voltage remain
within the limitations that have been established. It is of the utmost importance to avoid
overcharging cells since this can result in irreversible damage to the cell as well as safety
hazards. It is possible to utilize standardized protocols in order to guarantee that the
testing technique yields accurate and consistent results.

4.4.3. Test Plan and Cyclic Aging Data Collection

Under this part, we will cover the test design as well as the tests that were carried out to
obtain data on the cyclic aging of the cell.

The plan for the test was developed with the purpose of determining the effects of cyclic
ageing on the performance of cells and collecting data that is pertinent for analysis. For
the purpose of ensuring that the measurements were accurate and consistent, a method-
ical methodology was utilized. During the course of the experiment, the cell in question
was subjected to a sequence of charge and discharge cycles, during which variables such
as current levels, discharge depths, and temperatures were varied. Both the simulation of
real-world working conditions and the induction of accelerated aging effects were accom-
plished through the careful selection of these factors.

The tests were carried out with the assistance of a specialized testing apparatus. It was
possible to exercise exact control over the current levels, discharge depths, and tempera-
ture conditions during the test cycles because the cell was attached to a testing device that
was able to manage and monitor the charging and discharging processes. In the course
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of the charge and discharge cycles, several performance characteristics, including voltage,
current, capacity, and energy levels, were measured and recorded at predetermined inter-
vals. It is possible that further measurements, like impedance spectroscopy, were carried
out to get more depth of understanding regarding the electrochemical behavior of the
cell. Extensive analysis was performed on the data that was gathered in order to evaluate
the deterioration of cell performance over the course of time as a consequence of cyclic
aging. For the purpose of determining the level of aging and its influence on the overall
health and performance of the cell, key indicators such as capacity loss, voltage drop, and
impedance changes were analyzed.

The results that were acquired from the experiments contributed to a better understanding
of the elements that influence deterioration by providing significant insight into the cyclic
aging behavior of the cell. To conduct additional research and modeling, the data served
as a foundation.

During the testing process, three specific rates of current discharge (1C, 2C, 3C) are
examined. Each discharge rate is tested at four different depths of discharge (100%
DOD, 75% DOD, 50% DOD, 25% DOD). The tests are conducted at a constant room
temperature of T = 26.5 °C ± 1.5 °C. Furthermore, a cyclical aging investigation is
conducted for the three existing rates (1 C, 2 C, 3 C) within a temperature chamber, with
the battery being fully discharged and maintained at a temperature of T = 0 °C ±1.5 °C.
A total of 27 LFP single cells were included in the cyclic aging research. The utilization
of different discharge rates and the grouping of cells aimed to investigate the impact
of current rates on aging behaviour and performance degradation. By maintaining a
controlled room temperature, the study provided a stable testing environment for accurate
data collection and analysis.

4.5. Feature Engineering

In this section, we will examine, describe, and put into practice several data aggregation
and data cleaning processes for the dataset that was obtained from the test bench.

4.5.1. Data Description

As part of the examination of the aging process, the data obtained from the test bench
is collected. For the purpose of obtaining the data set, forty-five LIBs were subjected to
three various current discharge rates (1C, 2C, and 3C), each of which had four different
depths of discharge (100% DOD, 75% DOD, 50% DOD, and 25% DOD).

These LIBs were then illuminated and analysed at a room temperature of 26.5 °C 1.5°C.
In addition, a cyclic ageing research is conducted in the temperature chamber at full
depth of discharge and a temperature of T = 0 °C ±1.5 °C. This study is conducted for
the three current rates, which are 1 C, 2 C, and 3 C.The detailed description of the data
is presented in Figure 21, which can be found here.
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Cycle data, which includes information pertaining to cycles as well as the number of cycles
that are executed throughout the test, the number of lines that are formed in this sheet,
and finally statis data, which will present the instructions in a step-by-step fashion. Last
but not least is the data detail, which displays the entire record of the data.

Figure 23: Detailed description of cyclic aging data
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For a more detailed overview of the dataset and experimental setup, refer to Figure 24

Figure 24: Dataset

4.5.2. Data processing and Analysis

This subsection will present a summary of the selected data used for constructing a data-
driven model and describe the approaches used for cleaning and aggregating the data.
The battery degradation data, as provided in the dataset, was chosen for utilisation in
the machine learning model. In order to prepare the data for analysis, engaging in feature
engineering, a process that entailed converting and deriving significant characteristics
from the raw data.

This subsection describes the thorough methodology that was applied to the subfolders
containing the Excel files containing the raw cell testing data in order to process, clean,
and analyse it. The set of data consisted of 36 cells, with each cell providing 50 cycles of
testing information. Multiple sheets in an Excel document, including "Cycle," "Statis,"
and "Detail." The aim of this methodology was to extract relevant information from the
"Cycle" and "Detail" sheets, with that exception only 19 cells were utilised for additional
testing and training due to missing cycles. The extracted data was then consolidated into
19 distinct Excel files to facilitate further analysis. Insights were generated through the
visualisation of critical parameters and statistical metrics.
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In the course of my research, I developed a customised Python script to simplify the
process of extracting and analysing data from many Excel files. This script played a
crucial role in efficiently navigating a complicated structure of subfolders and retrieving
information from 36 specific cells. By utilising the functionalities of established libraries
like ’os’ for navigating the file system and ’pandas’ for efficient data management, the
script effectively processed every subfolder and Excel file.

The main emphasis of the script was on two crucial worksheets within every Excel file: the
"Cycle" and "Detail" worksheets. From the "Cycle" sheet, it carefully retrieved crucial
parameters that are necessary for comprehending the battery cycles. The parameters
encompassed the initial and final voltages, currents, and different time intervals, such as
periods of rest, charging, and discharging. Simultaneously, the script accessed the "Detail"
tab to collect additional specific data, recording details about the charging, discharging,
and resting phases at intervals of one second. The systematic extraction technique led
to a thorough consolidation of data. The data from each cell’s cycle was meticulously
organised into a structured style, facilitating a more thorough and detailed study.

4.5.3. Data Aggregation and Data Cleaning

This subsection of the thesis discusses the critical phases of data aggregation and clean-
ing, which were instrumental in improving the quality and integrity of our analysis. The
preliminary dataset, obtained from the "Detail" and "Cycle" columns of multiple Ex-
cel documents, displayed a diverse array of errors and deviations. In order to address
these challenges and ensure the analysis remained consistent, accurate, and pertinent, a
comprehensive methodology was implemented.

Data Aggregation:

When considering data aggregation, the initial step involved the consolidation of informa-
tion from the "Cycle" sheet pertaining to each cell and cycle. This involved standardising
parameters, including start and end voltages, currents, capacity, and rest intervals, and
incorporating them into a solid structure. This was of the utmost importance in assessing
the collective behaviour of cells during testing. Furthermore, the data obtained from the
"Detail" page, which was recorded at intervals of ten seconds, was carefully synchronised
with the corresponding cycle data. This allowed for a thorough analysis of the charging,
discharging, and resting periods in connection with each cycle.

Data Cleaning:

The procedure of data cleansing comprised two essential stages. We began by identify-
ing and addressing outliers, which had the potential to introduce bias into the analysis.
Sophisticated methodologies such as z-score analysis and visualisation were employed to
identify and examine outliers in the values of current, voltage, and dq/dv. Each outlier
underwent a meticulous assessment to ascertain its influence on the dataset prior to a
determination regarding its inclusion or exclusion. Subsequently, we tackled the concern
regarding absent data, an unavoidable characteristic of experimental datasets. Methods
such as interpolation were utilised to approximate absent values, thereby guaranteeing
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the absence of erroneous conclusions introduced by this strategy. In cases where interpo-
lation was not possible, absent data points were transparently identified and documented.
Adherence to this rigorous methodology for data aggregation and cleansing was critical
to maintaining the dependability and accuracy of our analysis.

4.5.4. Removing Outliers and Handling Missing Values

This section examines the fundamental processes of outlier exclusion and missing value
management, which are indispensable for guaranteeing the precision and reliability of our
analyses. Strict protocols were followed to detect and address missing data and outliers,
so as to prevent any potential misunderstandings regarding the outcomes of cell assays.

Removing Outliers: In order to eliminate outliers, we initially implemented z-score
thresholding on each cycle’s current, voltage, and dq/dv values. By employing this
method, data points that deviated substantially from the mean were identified in accor-
dance with a predetermined threshold. By employing this methodology, a standardised
metric was established to identify data points that may have been outliers, which sim-
plified the exclusion determination process. Then, each identified outlier underwent a
comprehensive validation process. Retained were data points that originated from valid
experimental conditions or that represented crucial aspects of cellular behaviour. On the
contrary, values considered to be artefacts resulting from measurement errors or other
irregularities were eliminated.

Handling Absent Values: With respect to the management of absent values, interpola-
tion strategies were executed carefully. The predominant technique employed was linear
interpolation, particularly in situations where missing data points were surrounded by
legitimate values. In every instance, interpolation was determined following a thorough
evaluation of the characteristics of the data and the interpolation’s applicability to the
particular circumstance. When interpolation was deemed impracticable or unsuitable,
those situations were openly recorded, accompanied by a rationale for the correspond-
ing decisions. This methodology guaranteed that the whereabouts of absent data and
the rationales for their non-appearance were unambiguously conveyed, thereby preserving
complete candour regarding the constraints of our dataset.

4.6. Machine Learning Models

This section provides an in-depth analysis of the complex mechanisms and derivations
underlying the machine learning models and algorithms utilised for capacity prediction. In
particular, we shall conduct a comprehensive examination of the critical dropout technique
and the Long Short-Term Memory LSTM model, all of which contribute to the robustness
and precision of our algorithm for estimating capacity.
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4.6.1. LSTM Model:

An improved version of the recurrent neural network RNN, the long short-term memory
network LSTM not only excels at learning long-term dependent sequence data that RNN is
incapable of processing, but it also solves the gradient inflation and gradient disappearance
issues that plague conventional RNN. Temporal sequences are associated with both the
HI extracted during cyclic charging and battery SOH[43][52]. For precise lithium ion
battery SOH prediction, the LSTM is thus implemented. The LSTM network structure
is illustrated in Figure 25.

Figure 25: LSTM structure [43]

LSTM networks are characterised from conventional RNN by the incorporation of a cell
state, which serves to store data pertaining to long-term dependencies. LSTM networks
regulate the flow of data through the utilisation of three gates: the forget gate, the
input gate, and the output gate. The sigmoid activation function is employed to desig-
nate a value between 0 and 1 to each gate. The formula for these calculations appears
below[52].

ft = sigmoid(Wf .[ht−1, xt] + bf ) (12)

it = sigmoid(Wi.[ht−1, xt] + bi) (13)

ft = sigmoid(Wf .[ht−1, xt] + bf ) (14)

In LSTM networks, which information from the previous node should be retained or
discarded according to its significance is determined by the forget gate. It forgets input
that is considered irrelevant to the task at hand. In contrast, the input gate retains only
those current inputs that are important to the computation at hand. The output gate
subsequently provides the task-required current memory unit value. By utilising these
three gate states to update the hidden state and the cell state, the network is capable of
performing both short-term and long-term memory operations[43][17].

Rupen Ashokbhai Sarvaiya Master thesis



57

4.6.2. Dropout Technique:

The method of dropout, in which a unit in a neural network is briefly removed from
a network, was initially proposed by Hinton [30]. This method was initially prompted
by the role that plays in the process of evolution. Dropout was applied to feed forward
neural networks and RBMs by Srivastava [71], who found that a probability of dropout
of approximately 0.5 for hidden units and 0.2 for inputs performed well for a variety of
tasks.

Figure 26: The schematic diagram of dropout neural network model. (a) standard neural
network with 2 hidden layer; (b) neural network after applying Dropout
technology [20]

Each hidden unit in a neural network trained with dropout must learn to work with a
randomly chosen sample of other units." The hidden units should become stronger and
be pushed to make useful features on their own, without needing other hidden units to fix
their mistakes. "The derivative that each parameter gets tells it how to change so that
the final loss function is lower, taking into account what all the other units are doing."
Because of this, units may change so that they fix what the other units did wrong. All
of this could lead to complicated co-adaptations. This then leads to overfitting because
these co-adaptations don’t work with data that hasn’t been seen before. Srivastava et al.
(2014) think that dropout stops co-adaptation of each hidden unit by making it uncertain
whether other hidden units are present[71].

In particular, the selection of this specific dropout rate is not arbitrary, but is rooted in
thorough consideration and empirical experimentation, all in the pursuit of fine-tuning
model performance for accurate capacity prediction.
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4.6.3. Model performance metrics:

This section discusses objective criteria for evaluating the extent to which a model accu-
rately represents the fundamental patterns in the data and its dependability in making
predictions for the future. Some frequently utilised metrics are Mean Absolute Error
MAE, Mean Squared Error MSE, Root Mean Squared Error RMSE, and R-squared .
Each of these metrics provides a distinct viewpoint on the performance of the model, cov-
ering a range of factors such as the average size of errors and the amount of volatility in
the data that can be explained. In the following sections, we will thoroughly examine each
of these metrics, including in-depth explanations of how they are calculated, interpreted,
and their significance within the framework of regression analysis[15].

Mean Absolute Error (MAE):

• Definition:MAE measures the average magnitude of errors in a set of predictions,
without considering their direction. It’s the average over the test sample of the
absolute differences between prediction and actual observation where all individual
differences have equal weight[33].

• Interpretation:A lower MAE value indicates better model performance. It repre-
sents the average error made by the model in predicting the outcome. It’s particu-
larly useful because it gives a direct idea of the magnitude of error[15].

MAE =
1

n

n∑
i=1

|yi − ŷi| (15)

Mean Squared Error (MSE):

• Definition:MSE is the average of the squares of the errors. It measures the average
squared difference between the estimated values and the actual value[33].

• Interpretation: MSE gives more weight to larger errors, as it squares the residuals
before averaging, making it useful for identifying models that make large errors. A
lower MSE value indicates a better fit[15].

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (16)

Root Mean Squared Error (RMSE):

• Definition:RMSE is the square root of MSE. It measures the standard deviation
of the residuals or prediction errors[10].
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• Interpretation:RMSE is sensitive to outliers and gives a relatively high weight to
large errors. Like MSE, a lower RMSE value indicates a better fit, but it’s in the
same units as the response variable, making interpretation easier[15][10].

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (17)

R-squared (R2):

• Definition:R-squared, also known as the coefficient of determination, measures the
proportion of the variance in the dependent variable that is predictable from the
independent variables.

• Interpretation:R2 values range from 0 to 1 and are commonly expressed as per-
centages. A higher R2 value indicates that more of the variability in the outcome
is explained by the model. However, a high R2 does not always mean a good fit,
especially in non-linear models[15].

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(18)

4.7. Model Running Time

Performance evaluation of machine learning models depends on computational time. Our
work focuses on the Long Short-Term Memory LSTM model, which is noted for its predic-
tive accuracy but computationally demanding. These models require a lot of processing
power and time for training and prediction, making their efficiency a concern.

In our research, we examined the computational time of running the LSTM model. This
included evaluating the models’ hardware and software settings and training and infer-
ence times. The goal was to balance the model’s predicted accuracy and computational
economy so it may be used in real-world situations without compromising performance.

We explored numerous ways to optimise the LSTM model’s running time. These included
parallel computing, model pruning to simplify computations, and hardware acceleration.
We are investigating these ways to improve the LSTM model’s applicability and scalabil-
ity, especially for jobs that demand fast predictions, such as electrochemical cell ageing
prediction. We seek to provide insights on balancing accuracy and computing efficiency
to aid real-time LSTM model deployment decisions.
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5. Results and Discussion

This chapter presents the results obtained from implementing machine learning models
specifically tailored to forecast the State of Health SOH of batteries. Prior to analyzing
the results, we do a thorough data analysis and present important findings using graphs,
as explained in Section 5.1.

In Section 5.2, we thoroughly examine the implementation of three separate models. Long
Short-Term Memory LSTM, Gated Recurrent Units GRU, and regression models. The
models have undergone meticulous design and optimization to generate the most accurate
predictions of SOH. Their performance has been extensively assessed and will be detailed
in the subsequent sections.

5.1. Analysis and Visualisation of Data:

This master’s thesis thoroughly examines the essential characteristics of the model. It is
crucial to assess the impact of these features on the model’s performance, as it allows us to
decrease the complexity of the data and hence minimize the computing burden associated
with the model. This area of data visualisation seeks to examine the efficiency of battery
cells in different operational circumstances and to track the degradation of batteries as
time progresses.

5.1.1. Cycle Aging with Voltage vs Discharge Capacity

The purpose of this data visualisation phase is to examine the performance of battery cells
in different operational scenarios and monitor the deterioration of the batteries over time.
Figure 27 displays the various patterns of battery degradation over time under different
operational conditions.The batteries’ state of health SOH was assessed by testing their
capacity retention over some time. The data indicates a statistically significant linear
correlation between a battery’s health and its charging rate (c-rate) and depth of discharge
DOD.

According to this research, the charging and discharging rate of a battery has a substantial
influence on its overall health. The findings suggest that the construction rate of battery
management systems may significantly impact long-term performance. The subsequent
phase of the investigation involves making a deliberate decision regarding the variables to
extract from the utilized dataset.

The objective of this stage was to ascertain whether pairs of variables exhibit a significant
correlation, either positive or negative, suggesting the presence of a linear association
between the variables. Due to this connection, the model’s input may become repetitive,
leading to a higher computational workload for the model with only a marginal improve-
ment in its discriminatory capacity.The primary goal of the variable selection stage is to
optimize the model’s performance by eliminating unneeded or redundant characteristics
from the dataset.
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Figure 27: Cycling aging of cells for different DOD and c-rates

5.1.2. Discharge Voltage Analysis

A systematic and methodical approach was employed to generate graphs that effectively
illustrate the correlation between Discharge Voltage and Time for each individual bat-
tery cell. The aim was to create comprehensive and easily understandable visual rep-
resentations. To accomplish this, we decided to collect data points at regular intervals,
particularly selecting data from every 100th cycle to create our graphs.

The intentional sampling method offered several significant advantages. Firstly, it signif-
icantly reduced the quantity of data points, which was crucial in preventing the graphs
from becoming excessively crowded and challenging to interpret. By graphing the data
at regular intervals of 100 cycles, we successfully recorded significant variations in the
discharge voltage as time progressed. These alterations often indicate significant shifts
in battery behavior, which are essential for comprehending the overall performance and
condition of the battery.

In addition, the selected intervals enabled us to focus on the most notable trends and pat-
terns in the discharge voltage over time. This level of specificity was crucial in identifying
pivotal points in the battery’s lifespan, such as when its performance starts to noticeably
decline or when the battery undergoes accelerated deterioration.

The application of this technique in graphing produced transparent and instructive visual
depictions of the discharge voltage patterns of individual cells during the cycling trials.
The graphs had a dual purpose: providing a clear visual assessment of degradation trends
and establishing the groundwork for a more comprehensive and analytical comparison
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of performance among other cells. The meticulous methodology employed in data vi-
sualisation played a crucial role in uncovering significant revelations on the degradation
of battery performance over time. This yielded useful insights for comprehending and
perhaps enhancing battery technology.

Here is an example specifically for understanding the discharge voltage behavior of Cell
01 and Cell 25. How it undergoes to a behaviour in proportional to time.

Figure 28: Cell 01

Figure 29: Cell 25
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5.2. Model Implementation

This section focuses on the implementation details and outcomes of our research utilising
three different models to estimate the State of Health SOH of batteries: the Long Short-
Term Memory LSTM Model, the Gated Recurrent Unit GRU Model, and the Regression
Model.

5.2.1. LSTM Model

Our research primarily aimed to forecast the State of Health SOH of batteries by util-
ising an LSTM (Long Short-Term Memory) model, which is a type of Recurrent Neural
Network. The approach we employed encompassed:

Optimising Learning Rates: We conducted experiments with various learning rates
to improve the model’s learning efficiency and performance.

Exploring Different Activation Functions:In particular, the sigmoid and tanh func-
tions were examined in order to enhance the accuracy of SOH predictions.

Adjusting the Number of Hidden Layers:This allowed us to identify the optimal
model architecture, striking a harmonious balance between complexity and learning ca-
pacity.

During the entire procedure, we continuously monitored the model’s performance, thereby
preventing overfitting and assuring dependable learning. The optimal model configura-
tion, determined through thorough experimentation, entailed training for a total of 1000
epochs. This configuration yielded the utmost accuracy in calculating SOH.

Additional validation was performed on a separate dataset, which proved the model’s
capacity to apply to fresh data. The model achieved the following performance metrics
on the test dataset: MAE, MSE, RMSE and R-squared (Coefficient of Determination)
(R2). During the evaluation, the RMSE for the test dataset was calculated, and the
results revealed that the LSTM had a mean RMSE of 0.0896.
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Train Cells Test Cells MAE MSE RMSE R2

[2,3] 1 0.011705088 0.000265847 0.016304817 0.903198700

[1,3] 2 0.047639822 0.010119943 0.100597926 0.696146680

[1,2] 3 0.017572331 0.000855068 0.029241543 0.686601076

[5,6] 4 0.015811831 0.000364690 0.019098665 0.922664997

[4,6] 5 0.012040499 0.001532602 0.039148462 0.771259021

[4,5] 6 0.035698464 0.002668902 0.051661419 0.537625133

[8,9] 7 0.314061283 0.137998895 0.371482026 -0.897261660

[7,9] 8 0.066355687 0.009098701 0.095387110 0.912041946

[7,8] 9 0.128806238 0.026127578 0.161642075 0.640511410

[11,12] 10 0.084407611 0.015050414 0.122680127 0.826728163

[10,12] 11 0.024937193 0.001241111 0.035229407 0.985705255

[10,11] 12 0.051666264 0.006176525 0.078590869 0.941595947

[14,15] 13 0.137220526 0.034085341 0.184622158 0.442535299

[13,15] 14 0.057933271 0.008147129 0.090261450 0.911369059

[13,14] 15 0.097966363 0.016151324 0.127078761 0.849168348

[23] 24 0.027544456 0.001284119 0.035834611 0.704191198

[25,26] 27 0.009314132 0.000240842 0.015519085 0.713026930

[26,27] 25 0.056921515 0.012070852 0.109867429 0.887303483

[27,25] 26 0.012529988 0.000342394 0.018503892 0.951855082

Table 3: LSTM Model Result

5.2.2. GRU Model

Our investigations used both the LSTM Model and the GRU Model, a recurrent neural
network variation, for SOH estimation. Implementing the GRU model involves compa-
rable considerations as the LSTM model. To optimize performance, we conducted trials
with various learning rates and activation functions. By experimenting with different hid-
den layer counts, we determined the optimal model depth. Similar to the LSTM Model,
we closely watched the GRU Model’s training performance, observing consistent estima-
tion mistakes without overfitting. After thorough study, we identified the most effective
GRU configuration.
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In Figure 29, the model achieved the following performance metrics in the test data set:
MAE, MSE, RMSE, and R-squared (Coefficient of Determination). The model’s general-
ization ability was tested on a different dataset, demonstrating accurate SOH estimation
for unknown battery cells with a competitive RMSE. Evaluation findings showed a mean
RMSE of 0.8866 for the GRU in the test dataset.

Train Cells Test Cell MAE MSE RMSE R2

[2, 3] 1 0.238085428 0.099259158 0.315054214 0.952187582

[1, 3] 2 0.449058533 0.971038041 0.985412625 0.756601125

[1, 2] 3 1.275124483 4.832380490 2.196196824 -1.353276704

[5, 6] 4 0.239488475 0.102715896 0.320493207 0.958434098

[4, 6] 5 0.226213585 0.620596472 0.787779456 0.782970405

[4, 5] 6 0.500841147 0.817013146 0.903887795 0.706497567

[8, 9] 7 0.917731171 1.154596449 1.074521498 0.130017536

[7, 9] 8 0.293227180 0.177784874 0.421645437 0.876962415

[7, 8] 9 0.511323700 0.414962346 0.644175171 0.687087219

[11, 12] 10 0.224528466 0.110127242 0.331854248 0.945119972

[10, 12] 11 0.102927978 0.022841945 0.151135519 0.986812225

[10, 11] 12 0.229401742 0.108015447 0.328657036 0.950490543

[14, 15] 13 0.560821917 0.520511117 0.721464564 0.462615948

[13, 15] 14 0.239321163 0.153709582 0.392058137 0.894443076

[13, 14] 15 0.447688320 0.313397328 0.559819013 0.807546684

[23] 24 0.358074977 0.259238749 0.509154936 0.930991290

[25, 26] 27 0.514439001 0.494065119 0.702897659 0.931660483

[26, 27] 25 1.233073498 14.888784601 3.858598787 0.909436952

[27, 25] 26 0.938728022 2.688892773 1.639734868 0.956108890

Table 4: GRU Model Result
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5.2.3. Regression Model

To augment our recurrent neural network approach, we also developed a Regression Model
for estimating SOH. This approach enabled us to delve into various regression techniques,
such as Linear regression, Polynomial regression, Regression with decision trees, and Ran-
dom forest regression. Additionally, we employed feature engineering strategies to refine
the input features, thereby improving the Regression Model’s precision in SOH predic-
tion. Similar to our other models, this one underwent extensive training and validation
to evaluate its effectiveness.

Train Cells Cell MAE MSE RMSE R2

[2, 3] 1 0.535928828 0.355938885 0.596660139 0.844199796

[1, 3] 2 0.55188521 1.504879938 1.226735480 0.618026828

[1, 2] 3 0.561883937 1.498163259 1.223994795 0.460869293

[5, 6] 4 0.257916326 0.147528327 0.384094164 0.932677503

[4, 6] 5 0.409104975 3.362550482 1.833752847 0.341491875

[4, 5] 6 0.398978535 2.961144410 1.720776909 0.373509138

[8, 9] 7 0.300391326 0.126114018 0.355152356 0.902430513

[7, 9] 8 0.272264725 0.113018129 0.336186189 0.923608570

[7, 8] 9 0.299819132 0.125837237 0.354735446 0.902592054

[11, 12] 10 0.311906124 0.166598007 0.408164269 0.920823669

[10, 12] 11 0.311183154 0.165973124 0.407399793 0.921050228

[10, 11] 12 0.300380063 0.160714213 0.400891772 0.929501984

[14, 15] 13 0.421253423 0.246648525 0.496637216 0.767898942

[13, 15] 14 0.331158653 0.162306833 0.402940235 0.885467076

[13, 14] 15 0.412809247 0.246998707 0.496989645 0.857444109

[23] 24 0.975903984 1.798043205 1.340911334 0.563011800

[25, 26] 25 5.119517737 32.81997052 5.728871662 0.794935289

[26, 27] 26 3.243908364 17.113854884 4.136889518 0.713661434

[27, 25] 27 1.366522283 2.2540622420 1.501353470 0.738751676

Table 5: Linear Regression Model Result
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Train Cells Cell MAE MSE RMSE R2

[2, 3] 1 0.205569759 0.077508538 0.278403552 0.96607326

[1, 3] 2 0.326281534 1.318692874 1.148354886 0.658974314

[1, 2] 3 0.290988550 1.229121305 1.108657434 0.553785031

[5, 6] 4 0.260738021 0.149172736 0.386228865 0.931927001

[4, 6] 5 0.411862717 3.362304918 1.833658888 0.341539965

[4, 5] 6 0.401742040 2.961026952 1.720763479 0.373533989

[8, 9] 7 0.254546512 0.092390615 0.303958246 0.928520992

[7, 9] 8 0.254345189 0.095064471 0.308325628 0.935743841

[7, 8] 9 0.254318918 0.092159719 0.303578193 0.928661108

[11, 12] 10 0.28998915 0.139811044 0.373913151 0.933554299

[10, 12] 11 0.289730351 0.139501868 0.373499489 0.933642024

[10, 11] 12 0.288026634 0.140842124 0.375289837 0.938218966

[14, 15] 13 0.210109048 0.106182931 0.325857226 0.900079797

[13, 15] 14 0.201312200 0.085320424 0.292069601 0.939318085

[13, 14] 15 0.266856335 0.133991504 0.366046850 0.922666485

[23] 24 0.668170991 1.428292723 1.195112013 0.652874266

[25, 26] 25 2.269723412 10.345779187 3.214685533 0.935357827

[26, 27] 26 2.279664302 10.522807424 3.243887702 0.823938814

[27, 25] 27 0.485051366 0.359617759 0.599681381 0.958319901

Table 6: Polynomial Regression Model Result
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Train Cells Cell MAE MSE RMSE R2

[2, 3] 1 0.071839435 0.02863872 0.169229783 0.987464369

[1, 3] 2 0.181575372 1.23772477 1.112530798 0.679914694

[1, 2] 3 0.179380297 1.167566511 1.080619251 0.580126421

[5, 6] 4 0.087103296 0.256444702 0.504427418 0.883886647

[4, 6] 5 0.238312742 3.615206064 1.901369523 0.292012840

[4, 5] 6 0.227953421 3.203608149 1.789862606 0.322210959

[8, 9] 7 0.002626341 0.000119869 0.010948487 0.999907262

[7, 9] 8 0.005920331 0.002737523 0.052331342 0.998149648

[7, 8] 9 0.002303299 0.000121785 0.011036563 0.999905729

[11, 12] 10 0.002983195 1.837796755 0.001428686 0.999991266

[10, 12] 11 0.002511783 1.334567345 0.003651019 0.999993659

[10, 11] 12 0.004249141 0.000408867 0.020220464 0.999820649

[14, 15] 13 0.095085034 0.068830825 0.262304832 0.935254263

[13, 15] 14 0.103193851 0.036952768 0.192231028 0.973339327

[13, 14] 15 0.133209029 0.067617825 0.260034277 0.960974211

[23] 24 0.108824488 0.422244667 0.649803561 0.897379586

[25, 26] 25 0.203886913 0.236361689 0.486170432 0.998523172

[26, 27] 26 0.149926631 0.089021677 0.298365006 0.998510544

[27, 25] 27 0.086192996 0.049160748 0.22172232 0.994302215

Table 7: Decision Tree Regression Model Result.
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Train Cells Cell MAE MSE RMSE R2

[2, 3] 1 0.06351235 0.016962359 0.130329623 0.992575301

[1, 3] 2 0.235617994 1.421667086 1.193219124 0.632356015

[1, 2] 3 0.175659557 1.160437424 1.07961741 0.58089683

[5, 6] 4 0.065432447 0.112198293 0.334960136 0.948799872

[4, 6] 5 0.216600927 3.424775429 1.850614879 0.329305996

[4, 5] 6 0.206209142 3.016237446 1.737631289 0.361853076

[8, 9] 7 0.005142591 0.000655866 0.025609881 0.999492582

[7, 9] 8 0.006703569 0.001256866 0.035452306 0.99910547

[7, 8] 9 0.004980341 0.000667628 0.025838506 0.999483203

[11, 12] 10 0.00420677 0.916100005 0.008897225 0.999962379

[10, 12] 11 0.003718821 0.7213e005 0.008780709 0.999963271

[10, 11] 12 0.004249141 0.000721707 0.026866461 0.999608342

[14, 15] 13 0.008043257 0.042545245 0.206249488 0.959964097

[13, 15] 14 0.095098394 0.026237174 0.16107983 0.981491717

[13, 14] 15 0.112255765 0.044362926 0.210652084 0.974395832

[23] 24 0.170325659 0.406764704 0.637781078 0.901141766

[25, 26] 25 0.308150381 2.469212483 1.571737202 0.984571944

[26, 27] 26 0.149596505 0.090606992 0.301009953 0.998484019

[27, 25] 27 0.073173988 0.028147822 0.167773126 0.996737636

Table 8: Random Forest Regression Model Result.

The experimental results revealed that the Regression Model used for estimating the
SOH exhibited different performance metrics depending on the specific regression tech-
nique used. The metrics encompassed in this analysis are Mean Absolute Error MAE,
Mean Squared Error MSE, Root Mean Squared Error RMSE, and the Coefficient of De-
termination (R-squared, R2). The findings for each regression procedure are given in a
systematic manner in Figures 30 (Linear Regression), 31 (Polynomial Regression), 32 (De-
cision Tree Regression), and 33 (Random Forest Regression). The diverse performance
observed across these models highlights the versatility and possible practicality of the
Regression Model in real-world State of Health SOH estimate settings.
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Consistent with our methodology for the LSTM and GRU Models, we conducted a thor-
ough assessment of the Regression Model’s ability to generalise. The assessment was
performed on a separate test dataset, guaranteeing an unbiased evaluation of the model’s
ability to handle novel data.

The RMSE values were of special importance during this evaluation phase. The results
showed that Linear Regression had a RMSE of 1.229, Polynomial Regression had a mean
RMSE of 0.934, Decision Tree Regression had a mean RMSE of 0.475, and Random Forest
Regression had a mean RMSE of 0.511. The results yielded a thorough comprehension of
the predicted accuracy and resilience of each algorithm.

To summarise, this research involved a thorough investigation of three separate prediction
models: the LSTM Model, the GRU Model, and the Regression Model. Every model was
rigorously designed with precise architectural concerns and underwent rigorous training
and validation procedures. The combined knowledge gained from these models greatly
enhances the developing field of State of Health SOH estimation for battery health moni-
toring. Together, they exhibit impressive precision and ability to apply to many situations,
making them well-suited for real-world use. However, it is crucial to perform additional
research to assess and enhance the computational efficiency and scalability of these mod-
els, particularly in light of their potential implementation in diverse and ever-changing
real-world situations. Ensuring their practical utility in the broader context of battery
health monitoring systems is of utmost importance.
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6. Conclusion and Future Work

6.1. Conclusion

In addressing the vital need for long-lasting, efficient, and cost-effective battery systems,
the significance of accurate prediction and evaluation techniques for the SOH of these
systems is paramount. A key challenge in this area is accurately determining the SOH
of lithium-ion batteries LIB, particularly given the scarcity of extensive long-term data,
especially for batteries undergoing numerous cycles with limited aging information. This
thesis addresses this challenge by developing a predictive model for assessing the health
of LIB, utilizing data derived from battery cycling experiments. A focal point of this
research is the model’s ability to predict the health of battery cells not included in the
training data set.

Throughout this research, we employed various data-driven models, subjecting them to
extensive testing. The findings demonstrate that LSTM networks are particularly effective
in estimating the SOH of batteries. Remarkably, the model maintained an accuracy level
above 98% in predicting the health status of the batteries tested, highlighting its efficiency
and reliability. However, it’s crucial to note that reducing the sample size needed for
training these models would require more robust testing methodologies. Moreover, the
computational demands of these models pose a significant challenge to their real-world
application.

To sum up, this study makes a substantial contribution to the field of battery mainte-
nance by offering a dependable forecasting model for determining the SOH of LIB. While
the outcomes of this research are encouraging, it’s important to recognize its limitations,
such as the necessity for broader testing and enhancing computational efficiency. Addi-
tionally, this research sheds light on the impact of temperature on battery performance,
presenting new opportunities for future investigations and practical implementations in
battery health management. This finding not only adds to the depth of our understand-
ing but also opens new possibilities for optimizing battery usage and longevity in various
applications.
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6.2. Future Work

The findings from our investigations highlight the presence of discrepancies in data gath-
ering, attributed to the nuances of the experimental setup. To ensure the integrity of
future research, it is crucial to establish protocols that will significantly reduce these in-
accuracies. Our analysis also revealed that health indicators derived during the study
show promising capabilities in mirroring the wear and tear of batteries, thus improving
the precision of SOH estimations. An important avenue for advancing our understanding
of battery health involves adapting our methodologies to accommodate instances where
complete charging data may not be readily available, due to a variety of realistic con-
straints. Crafting strategies to estimate battery health with partial data sets is therefore
an essential step forward.

While the LSTM model has proven its merit in forecasting the progression of battery
health, its applicability is somewhat constrained by its performance over batteries with
extensive cycle histories. For batteries subjected to numerous cycles, incorporating math-
ematical modeling techniques to trace the trajectory of capacity fading could offer a more
nuanced understanding. It’s also pertinent to mention that the current scope of the LSTM
model is primarily centered on estimating a battery’s lifespan rather than providing an
all-encompassing evaluation of its health or its appropriateness for certain uses. Future
research should delve into categorizing and assessing batteries across different stages of
health. This broader approach will likely yield insights that are vital for optimizing bat-
tery management strategies and maximizing their application potential.
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A. Appendix

A.1. System Configuration

A.1.1. Hardware Specifications:

1. Processor: Intel Core i7 8th Generation (8 cores)

2. Operating System: Windows 11

3. RAM: 16 GB

4. Graphics Card: intel iRIS

A.1.2. Software utilized:

1. Jupyter Lab

2. Python
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A.2. Neware Battery Testing System Specification
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