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1 Introduction

1.1 Motivation

Hardware and software components of Unmanned Autonomous System (UAS), like self-
driving cars or robots, are continuously gaining complexity due to increasing demands
in their operational fields. With more elaborate perception algorithms, behavioral pat-
terns, and increasing autonomy, they need to be carefully tested and evaluated. In the
early development stages of an UAS, doing so in real-world scenarios can be risky and
inefficient. For obvious reasons, self-driving cars, which are still unfinished or unsafe,
can’t be tested in real-life traffic. Simulations and virtual 3d environments pose a safer,
cheaper, and more reproducible method for analyzing or prototyping new algorithms or
behaviors for such systems. Because the reliability of such simulations is linked to the
realism of its employed virtual worlds, their requirements also increase. Domain-specific
open-source software solutions exist for this purpose: CARLA and LGSVL employ traf-
fic simulations and are popular tools for evaluating and training autonomously driving
vehicles. Another tool called Gazebo is heavily used in robotics for the same purpose [11].

Due to its technical background, missile engineering faces similar challenges. Defense
systems, such as self-navigating cruise missiles or drones equipped with swarm intelli-
gence, are constantly increasing the need for validation and evaluation. Since real-world
missile tests are very costly, simulations in virtual worlds are indispensable. However,
there is little to no publically accessible market for simulation tools for such a niche as
guided missiles yet. Therefore, MBDA started developing its own tools for validating the
perception of developed seekers, algorithms, and the behavior of systems in various mis-
sion scenarios. Their software architecture is usually monolithic and runs only on a single
machine. Distributed computing could be helpful in enabling virtual environments, also
known in this field as synthetic environments, with higher fidelity, accuracy, and realism.
However, this approach requires a new, non-monolithic software architecture that is more
scalable, extendable, and adaptable to future use cases. This work aims to offer such an
architecture for distributable synthetic environment generation.

1.2 Research Questions

The aim of this thesis is to evaluate ways of improving future missile simulations at
MBDA by optimizing the process of generating synthetic sensory data. It is largely
based on the hypothesis that distributed computing might achieve this goal. Conditions
and constraints must be determined and taken into account to apply this concept suc-
cessfully. This step is essential to narrow down meaningful use cases for this approach.
Furthermore, a software architecture that enables such distributed simulations has to be
proposed and implemented. Current tools at MBDA focus on real-time image generation.
Thus, distributed real-time rendering for generating sensor images must be clarified and
evaluated. Therefore, this work’s research questions can be summarized as follows:

• How is an extensible software architecture enabling distributed generation of syn-
thetic environments structured, and how can it be applied?

• What are constructive use cases for this distributed approach, and what criteria are
essential? Can every simulation use case be improved by distributing its workload?

• Is distributed real-time image generation such a use case?
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2 Technical Background

Before diving into the theoretical foundation of this work, a technical background and
understanding of synthetic environments is required. This chapter will outline their use
cases and applications in missile engineering and provide background information on the
purpose of this work.

2.1 Introduction to System Validation in Missile Engineering

2.1.1 Missiles as Unmanned Autonomous Systems

Although human personnel can be part of the overall system, UAS accomplish their
mission goals with different levels of autonomy, ranging from remote control to fully au-
tomated decision-making. They can adapt to changing operational fields and must be
able to operate under uncertain or extreme environmental conditions [17].

Due to their fire-and-forget mechanic, missiles for military and defense applications are
such UASs. After its operator locks onto a target and fires the missile system, it has to
function independently. During its mission, the missile must navigate its airborne envi-
ronment, make decisions, and sometimes adapt to changing tactical conditions. It must
maintain these capabilities under challenging environmental conditions, such as rough
weather, and its behavior must stay stable even in extended or unexpected scenarios.
This requirement poses a challenge to engineers during missile development.

2.1.2 Validation Difficulties of Missile Systems in the Real World

UASs must be capable of operating under uncertain environmental conditions without
failing their mission or task. This requirement demands extensive testing and validation
of the system’s behavior in different extended scenarios to establish operational trust. In
the missile domain, these scenarios range from challenging weather conditions that re-
duce sensor quality to particular combat scenarios in which the system must still be able
to operate successfully. Engineers must validate, analyze, and challenge the developed
missile’s perception, decision-making, and guiding algorithms in various testing scenarios
to guarantee a stable product and rule out possible side effects [9, p. 18-22].

Real-world testing of missiles requires extensive resources:

• Vast testing ranges of different biomes and vegetation, like deserts or forests.
• Employment of personnel for operating missile platforms, like aircraft or control

centers.
• Realistic models for ground, naval, or airborne targets.
• Setup of complex combat scenarios in diverse field conditions for various testing

cases.

Therefore, real-world testing is very costly in both money and time, increasing the mis-
sile’s price and its time-to-market. Furthermore, it can only be applied at the end of
the UAS’s development life-cycle when a physically constructed prototype exists. Both
reasons render frequent real-world testing during the missile’s development life-cycle un-
practical. Therefore, modelling and simulation (M&S) techniques enable testing of UASs
even during early phases in the development life-cycle [9, p. 18-22].
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2.1.3 Modelling and Simulation in the Autonomous Systems Domain

M&S techniques do not always require physical prototypes or hardware for testing UASs.
Engineers can study and optimize the behavior of their algorithms and sub-systems or
evaluate different design choices on a simulated model in the pre-deployment phase using
M&S [6, p. 617]. It renders validating and testing missile systems in diverse operational
field conditions more affordable and frequently repeatable.

Figure 2.1: Components of Closed-loop simulations, as shown in [14, p. 11]

Closed-loop simulations enable testing, validating, and analyzing missile systems, robots,
or other autonomous systems. As depicted in figure 2.1, the closed loop consist of two
major components:

• The UAS model: It contains sensors, actuators, and algorithms for input processing,
guidance, decision-making, and various other functions based on sensory data from
its environment.

• The environment model in which the UAS operates generates sensory stimuli for
the UAS model and simulates interactions caused by actuators.

A closed-loop simulation models the interaction between the UAS and its environment,
like a self-driving car participating in road traffic or a cruise missile navigating toward
its mission target. The environment model generates synthetic sensory data for the UAS
model, which computes actions and decisions based on it. The UAS model executes
these actions using its actuators, updating the environment model. This cycle of gener-
ating and processing stimuli repeats, creating a closed loop. When simulating a missile
equipped with an infra-red (IR) sensor, the environment model will generate synthetic
IR images from the view of the missile’s camera. Based on its image processing and guid-
ance algorithms, the missile’s model adjusts its current trajectory using its fins [14, p. 11].
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A closed-loop simulation in which the environment and the UAS models are purely
virtual, using M&S, is called a Mathematically Digital Simulation (MDS). They enable
testing without a physical prototype or its hardware. Engineers can use MDS to validate
and analyze their algorithms and sub-systems, like a cruise missile’s IR image recognition
or navigation, early in development [14, p. 11].

Figure 2.2: Hardware-In-The-Loop (HIL) simulations for the Taurus KEPD cruise
missile. Generated infra-red images are fed into the seeker hardware using a heat

projector.

When hardware components, such as sensors, seekers, actuators, or onboard computers,
are available, a Hardware-In-The-Loop (HIL) simulation can replace the purely digital
MDS. The UAS’s hardware replaces parts of its digital model in the simulation loop,
allowing for more accurate validations and stress tests [14, p. 12]. The closed loop of
HIL simulations of the Taurus KEPD Cruise missile is depicted in figure 2.2. Synthetic
IR images generated by the environment model are fed into the seeker hardware using a
heat-projector. The seeker’s image-processing and the missile’s guidance computer react
to their sensory inputs using its virtual fins, acting as feedback to the simulated environ-
ment model.

While an MDS is not required to run in real-time because the simulation loop controls
the UAS’s update rate, a HIL simulation is. The environment model must adapt to the
UAS’s hardware, which operates at its own processing rate. This real-time constraint
in HIL simulations challenges complex environment models with high fidelity [14, p.
14]. Producing synthetic sensory data for IR or radar seekers, primarily used in mis-
sile systems, requires computationally expensive calculations that are challenging to run
synchronously to the hardware’s relatively high processing rate.

2.2 Synthetic Environments for Modeling and Simulation

2.2.1 Missile Simulation using Synthetic Environment Generation

Synthetic environments are digital environment models used in MDS and HIL simula-
tions. They represent the natural environment with high realism at a given geographical
location. As shown in figure 2.3, they can contain:
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• Both man-made and natural structures
• Terrains
• People and animals
• Dynamic models, such as weather models or others for simulating various physical

processes

Due to their versatile capability of modeling, simulating, and visualizing environmen-
tal processes and elements, synthetic environments are not only used for validating the
behavior of UASs. Applications range from traffic simulations, video games, and manu-
facturing to flight simulations [24, p. 2].

Figure 2.3: Synthetically generated infra-red images for validating missiles equipped
with infra-red seekers using closed-loop simulations and synthetic environments.

MBDA, for instance, uses synthetic environments to generate IR images, as shown in
figure 2.3, for validating missiles equipped with IR seekers. It allows observation of the
missile’s behavior in various synthetic environments, i.e., representing different tactical
scenarios.

To ensure reliable validation results, synthetic environments must replicate reality as
closely as possible to minimize the difference between simulations and actual field tests
in the real world. Therefore, their development must aim at the highest possible fidelity,
being the degree of accuracy of a model compared to its real-world counterpart [32, p.
9].

2.2.2 Distributing Synthetic Environments

Often, single computers cannot provide the fidelity, scale, and realism required for com-
plex synthetic environments [29, p. 19]. For instance, generating synthetic IR sensory
data requires costly thermal calculations to determine the emitted and reflected heat
radiation of every surface in the scene. For flights of short duration, these calculations
can be pre-computed without reducing the synthetic environment’s fidelity considerably.
On the other hand, simulations of longer duration can require thermal re-calculations at
runtime. Carrying out all computations on a single machine will become inefficient in
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such a scenario.

Distributing the synthetic environment to multiple machines can be a practical approach
to achieve larger scale and higher complexity in simulations through workload-sharing [6,
p. 618]. However, distribution is only a valid solution for some performance problems.
It shifts performance bottlenecks from the processing units to their communication net-
work. No advantage is gained if the created communication bottlenecks are worse than
the old ones. This correlation implies that synthetic environment simulations that are
perfectly running on a single machine do not benefit from distribution but rather suffer
from it [32, p. 12]. Nevertheless, this approach can still benefit some use cases and
applications.

Figure 2.4: Dome projector of the WTD-81 (German Defense Technology Center for
Information Technology and Electronics) located in Greding (Germany) from the

outside (left) and the inside (right).

Another possible application of distributable synthetic environments is the projector
dome in Greding shown in figure 2.4. The German Defense Technology Center for In-
formation Technology and Electronics (WTD-81) conducts HIL target simulations in the
optical and IR spectral range for various systems. The dome is equipped with several
projectors that illuminate the inside with synthetic images. It serves as an environ-
ment for various HIL simulations of optical and optronic components and systems [34].
Instead of using a single computer to supply all projectors with synthetic images, the
image generation process can be distributed. Each projector’s image can be generated
on a dedicated computer for more complex synthetic environments. To implement this
architecture, the synthetic environment itself must be distributable.
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3 Fundamentals and Theory

3.1 Employed Software Architecture Styles

The following section will introduce software architecture styles that greatly influenced
the final hybrid architecture of this work.

3.1.1 Micro-Kernel Architecture

Micro-kernel architectures, or plugin architectures, are used by many commercial and
open-source software products, like web browsers or software development tools [23, p.
158]. They are also widely applied in the domain of 3D software: Game Engines like
Unity [31] or 3D modeling suites such as Blender [30] employ this architecture to ensure
extensibility and maintainability of their product.

Figure 3.1: Components and structure of a micro-kernel architecture [23, p. 150]

As depicted in figure 3.1, this architecture consists of two basic component types:

• A single core system containing the minimum functionality required for execution.
It only provides essential services and the fundamental structure of the overall
application, like a framework.

• Multiple plugin components providing additional functionality and services to
the core. They are built upon its foundation and contribute specific services and
features to the end-user’s application.

Depending on their implementation, plugins can be created locally or remotely.
Remote plugin components can be distributed to other machines and accessed
using network protocols. Local plugins, on the other hand, are usually loaded into
the core as shared libraries or scripts.

The main thought behind such an architecture is to move the system’s complexity from
the core to its plugins. Therefore, it is split into smaller, more manageable chunks that
can be maintained, tested, and deployed independently. This division inherently isolates
application features into loosely coupled components, increasing the system’s maintain-
ability and possibly reducing development times. End-users can leverage this architecture
by loading plugins provided by the core-developer team, independent third parties, or
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themselves and tailoring the application to their individual needs. Third-party contribu-
tions can ease the burden on small core-developer teams. Users can develop their own
plugins for specific use cases and do not depend on the core-developers’ support. Addi-
tionally, unloading unneeded features and adapting to specific use cases can improve the
system’s overall performance [23, p. 149-161].

In conclusion, this architecture is suited for software that must remain adaptable and
extensible by various parties during its lifetime due to uncertain or rapidly changing use
cases.

3.1.2 Service-Oriented Architecture

As its name implies, the Service-Oriented Architecture (SOA) is centered on loosely cou-
pled components providing services to each other. These services can be requested using
a shared communication protocol and contracts. Distributed systems commonly use this
architecture to distribute their workload onto several machines acting as service providers
[16, p. 351].

A service in the SOA has four properties:

• It represents a business activity with a defined outcome,
• is self-contained,
• is opaque to its users,
• and may be composed of other services.

Similar to micro-kernel plugins (⇒ Section 3.1.1), Services can be maintained, developed,
and tested separately through their self-contained, opaque, and reusable nature. This
approach splits the overall complexity of the system into loosely coupled components.
Engineers can focus on single business activities by working on isolated services rather
than considering all possible tightly coupled interactions within a monolith. This can
reduce development times and help to tame the overall system’s complexity [16, p. 358f].

Services can be located and called both locally and remotely, rendering this architecture
suitable for distributed software projects. The SOA does not specify the service’s im-
plementation, but some layer providing communication between parties for calling and
providing services is required. Furthermore, routing, translating, or validating service
requests and responses is often necessary. This can be implemented using the following
technologies:

• An Enterprise Service Bus (ESB) is one of the oldest approaches for implement-
ing SOA. As a separate, event-driven hardware or software component, it allows
heterogeneous services to collaborate via its bus infrastructure [16, p. 351-353].

• Web-services provide communication using World-Wide-Web protocols, such as
HTTP. Although open standards are preferred, implementations can also use pro-
prietary solutions [16, p. 353f].

• Using a Message-Oriented Middleware (MOM) that is usually a part of an ESB’s
implementation directly. It utilizes message queues, streaming protocols, and bro-
kers to communicate messages between recipients [16, p. 354-356].
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This communication layer introduces costs regarding resource consumption and the time
required to establish it. In practice, SOA also lacks uniform testing frameworks and
homogenous tooling. In some cases, updating the services’ platform can lead to high
maintenance costs because developer teams have to adapt their services to changes [16,
p. 360].

3.1.3 Event-Driven Architecture

Another architecture achieving extensibility and loose coupling is the event-driven ar-
chitecture. It revolves around decoupled components firing and processing events prop-
agated through so-called channels. The event processors are responsible for reacting to
them and triggering appropriate actions or consecutive events asynchronously. A chain
of events is called a workflow. Although this architecture shares many similarities with
the SOA (⇒ Section 3.1.2), it differs by only reacting to events instead of responding to
them. In comparison to service requests, events are fire-and-forget in their nature [23, p.
179, 204f], [16, p. 42-46].

Figure 3.2: Broker topology of the event-driven architecture [16, p. 44]

This architecture differentiates two topologies. The broker topology, depicted in figure
3.2, employs the name-giving central component responsible for passing events to event
processors. The broker maintains channels containing events of a certain type, also called
a topic. Processors register their interest in a specific topic by subscribing to its desig-
nated channel. The broker broadcasts fired events through their topic’s channel directly
to event processors. They are responsible for handling their occurrence by triggering
appropriate actions or subsequent events. The advantages of this topology are highly de-
coupled components because event producers and processors do not need to know about
each other. It also provides scalability and high extensibility. New components can seam-
lessly integrate and contribute to the system by processing and triggering events. On the
other hand, error handling and workflow control are difficult using the broker topology.
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Event chains can be very dynamic and difficult to predict, test, and debug. For instance,
in case of an event processor’s crash, the system is fault-tolerant, but workflows can get
stuck due to incomplete event chains. The broker cannot resolve such incidents or coor-
dinate the workflow in any way [23, p. 180f]. For the same reason, it cannot detect cyclic
event chains and prevent them from invoking themselves indefinitely. Event processors
that cause chains of events that inevitably lead to their own invocation can cause faulty
behavior or even crash the system.

Figure 3.3: Mediator topology of the event-driven architecture [16, p. 43]

The mediator topology, as shown in figure 3.3, addresses some weaknesses of its bro-
ker counterpart. In contrast to a broker, the mediator has knowledge of the system’s
workflows, is responsible for coordinating them, and keeps their overall state. Events
do not uncontrollably spread through the system but are processed in a controlled and
orderly manner. Event processors respond to the mediator after completion and report
if the event has been handled successfully to avoid incomplete workflows and allow error
handling. They cannot broadcast events to other processors but only to the mediator for
coordinated execution. The main intent behind a mediator is to render event processing
more deterministic and enable better error handling, recovery, and control capabilities
than a broker can offer. However, it comes at the cost of higher coupling and coordina-
tion overhead. Additionally, the mediator can only work with well-defined and modeled
workflows [23, p. 185-195].

Although both are event-driven approaches, their conceptual understanding of events
differs. The broker topology thinks of an event as some occurrence or happening in
the system that needs to be handled. Its mediator counterpart treats them like com-
mands or actions that an event processor must execute. The decision on which topology
should be used depends on what the event should represent in the underlying use case.
Furthermore, the mediator’s strengths revolve around well-defined workflows, like busi-
ness transactions that require execution in a more orderly step-by-step manner. The
choice between both variants is basically a trade-off between the mediator’s control and
error-handling capabilities and the broker’s performance and scalability [23, p. 195].
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3.1.4 Architecture by Example: Robotic Operating System (ROS)

All previously discussed software architecture styles can be combined seamlessly to form
practical synergies in complex software projects. An example is the Robotic Operating
System (ROS) project. It employs a hybrid architecture, providing a framework for dis-
tributed robotic applications. Despite its name, it is not an operating system (OS) in the
traditional sense but a communication layer for heterogeneous computing clusters. High
complexity, daunting amounts of code, and extensive integration efforts are impeding
challenges in robotic software engineering. ROS aims at solving these by decomposing
complex software into smaller, more manageable, and reusable components that can be
distributed across different computing devices [12].

ROS software architecture introduces the following concepts and terms [20], [12]:

• Nodes are processes performing computations. They are connected in a peer-to-
peer manner using a communication protocol. ROS 1 and ROS 2 utilize TCP/IP
and the Data Distribution Service (DDS) protocol respectively.

• Messages pass strictly typed data structures between nodes. The interface defi-
nition language (IDL) can be used to define message types and their contents.

• Topics implement a publish-subscribe method for passing messages asynchronously
between nodes.

• Services are analog to web services and provide synchronous request-response
message passing. Their name references them, comparable to a URL.

The presence and influence of previously discussed architectural styles are undoubtedly
noticeable. ROS utilizes a micro-kernel architecture (⇒ Section 3.1.1). The core provides
various generic services like its communication layer and domain-specific functionality for
its distributed tools, which act as plugins in the reference architecture [20]. The SOA (⇒
Section 3.1.2) enables nodes to offer and consume distributed services inside a ROS clus-
ter. Its publish-subscribe mechanism resembles the broker topology of the event-driven
architecture (⇒ Section 3.1.3). Therefore, ROS employs a hybrid architecture based on
the previously discussed styles to enforce its design principles: Scalability, modularity,
distributivity, and asynchrony in complex robotic projects [12].

The combination of these three styles creates a symbiosis of their strengths that the
framework profits from:

• The cooperation of the micro-kernel and SOA facilitates the overall development
complexity of robotic software by splitting it into smaller chunks that can be dealt
with separately. It enforces isolation and loose coupling, increasing maintainability
and possibly reducing development times. Above all, they provide extensibility and
versatility for various robots and their operational fields.

• The SOA encourages distribution of isolated components. Some robots utilize off-
board computation for heavy calculations that the on-board processor struggles
with [20].
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• The interplay of the micro-kernel and event-driven architectures enables tools to
integrate into the system seamlessly by contributing and processing events. Fur-
thermore, it allows for global state updates across distributed software components.

These architectural strengths of ROS do not only apply to robotic use cases. As will be
demonstrated in the following sections, such a hybrid architecture is beneficial for the
purpose of this work as well.

3.2 Required understanding of Computer Graphics

Synthetic environments often utilize image-generation techniques to synthesize realistic
sensory data. Therefore, some basic knowledge in the field of computer graphics is
required. This section will briefly introduce relevant topics for generating images of
Synthetic Environments.

3.2.1 Rendering Taxonomy

Although it is out of this work’s scope to present a deep dive into computer graphics and
rendering techniques, the primary taxonomy and basic concepts must be introduced to
understand the image generation part of this work.

Rendering processes come in many different shapes and use cases. At first, it is essential
to understand the fundamental trade-off between the generated frames’ quality and their
throughput. Realtime rendering focuses on the latter and is suited for interactive
applications like games or training simulations. A HIL Simulation also requires synthetic
image generation in real-time adapted to the hardware’s update rate. Its counterpart
is non-realtime rendering, which prioritizes quality above throughput. It allows for
more costly and time-consuming computations and rendering techniques, like raytracing
or radiosity calculations, but does not guarantee stable or intractable frame rates. An
MDS does not require real-time image generation and can benefit from higher-quality
rendering results [15, p. 25f].

Rendering processes also differ in their so-called render targets and how their image
results are used. Onscreen rendering usually stores its outcome in a frame buffer
accessed by a window of the host OS to display it on screen. However, not every use
case of computer graphics aims to show rendered outcomes on a screen. Some of them
include:

• Image generation for non-human consumers which are not supplied via screens,
like digital UAS models in MDS or sensor hardware in HIL simulations employing
special heat-projectors.

• Remote image generation that must transfer its results via some network or bus to
its target.

• Rendering on embedded systems or OSs that do not support graphical user inter-
faces or screens.

These use cases utilize offscreen rendering that targets buffers instead. Their re-
sults can be stored on disk, transmitted over a network, or shared across processes.
However, this approach often introduces additional overhead compared to its onscreen
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counterpart. It involves performance-critical operations, such as passing buffers between
Graphics Processing Unit (GPU) and host memory, applying compression, or performing
transportation over networks and busses [5].

3.2.2 Comparison of Graphics APIs

As already shown, this work requires 3D computer graphics for synthetic sensory image
generation. Graphics Application Programming Interface (API)s allow the integration of
GPU hardware and provide access to its functionality. OpenGL and Vulkan are the two
major graphics APIs that qualify for this work’s purpose. DirectX is not considered be-
cause it is only supported by the Windows OS and therefore conflicts with cross-platform
requirements (⇒ Section 4.3.1) [15, p. 42].

OpenGL 1.0 was released in 1992 and has since become the most widely used graph-
ics API of 2019. Purely specialized in computer graphics applications and rendering, it
is actively maintained and governed by the Khronos Group. Known for its high com-
patibility, OpenGL operates independently from its underlying graphics hardware and
platform. It supports most major OS, like Windows and many UNIX derivatives. Further
implementations for web browsers and embedded systems, called WebGL and OpenGL
ES, respectively, are also available. OpenGL delivers a powerful programmable 2D and
3D graphics pipeline using so-called shaders, programs executed on the GPU itself. The
OpenGL API was designed as a central state machine. Buffers containing geometry
data, textures, or other stateful attributes are bound to the current OpenGL context,
embodied by the state machine, and thereupon rendered. However, this design does not
leverage multi-core processing and introduces some bottlenecks, leading to Vulkan’s new
API design [15, p. 39-46].

In 2016, the Khronos Group released Vulkan, a relatively new graphics API compared to
OpenGL. It is not solely specialized in computer graphics but can be employed seamlessly
in various other parallel computing applications involving the GPU. Vulkan’s distinct de-
sign aims for a more adaptable and multi-threading-friendly API. It strips away much of
the graphics driver’s overhead and gives that control directly to the developer. Although
its minimalism renders Vulkan more flexible and performant in specific use cases, addi-
tional implementation efforts are required to substitute missing procedures. It also avoids
a central state machine and employs more parallel data structures. Its computational
model revolves around individual GPU commands that can be recorded in command
buffers and pushed into a collection of queues for processing on the GPU device. This
design aims to avoid driver bottlenecks on the host side and to leverage its multi-core
processors [1, p. 40f], [27, p. 2f], [15, p. 75-80].

Although Vulkan avoids the bottleneck and overhead of the OpenGL driver, it does not
automatically guarantee better or faster rendering results. In certain scenarios, Vulkan’s
flexibility can force some extra grains of performance out of the GPU, but that’s not al-
ways the case. Furthermore, programmers must implement procedures that other APIs,
like OpenGL, take care of automatically, like memory management or command syn-
chronization. Also, considering that OpenGL is still actively maintained by the Khronos
Group, these APIs are not replacing each other; they co-exist.
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3.2.3 Scene Graphs

The following section is based on [8, p. 693-697] and [15, p. 574f].

To leverage the power of graphics APIs in 3D environments, they must be represented by
a data structure that allows the application of various algorithms and rendering opera-
tions. A scene graph is such a structure. It hierarchically manages geometry, attributes,
and other scenery information for efficient rendering. Usually, it is implemented using a
tree structure. It employs various types of nodes. Leaf nodes usually contain geometry,
while internal nodes allow for more elaborate organization and behavior, like Level-Of-
Detail (LOD) switching or transformation. Algorithms are applied by traversing the
scene graph from its root node down to its leaves and performing operations on each
passed node. One example is the culling process, in which the three-dimensional space is
partitioned to discard regions invisible to the camera’s frustum. Using a tree-like scene
graph, this algorithm can be optimized from O(n) to O(log n), saving rendering time.
Besides altering its structure, traversals can also query a scene graph. Collision detec-
tion and raytracing, for instance, use intersection queries to find possible collision points
between geometry nodes.

A scene graph’s structure can be manually created or generated procedurally using some
subdivision algorithm. An octree, for instance, subdivides the scene’s three-dimensional
space recursively into quadrants. Each recursive subdivision is added as a node to the
graph containing further subdivisions as its children. This procedure aims to distribute
the amount of renderable primitives among leaf nodes equally. It results in more sub-
divisions in geometry-dense quadrants. The frustum culling algorithm can be further
optimized using this scene graph type.

Other types of procedurally built Scene Graphs include:

• Bounding-Sphere Trees (BST): Same concept as applied in octrees, but using spher-
ical quadrants and subdivisions.

• Binary Space Partitioning (BSP): Recursive subdivision using a plane results in a
binary search tree. This is heavily used in collision detection and constructive solid
geometry.

3.2.4 Distributed Rendering

The main objective of distributed rendering is the visualization of synthetic environ-
ments of higher complexity and fidelity than a centralized rendering process on a single
computer can deliver [29, p. 19], [21], [7]. A selected distribution strategy splits the
rendering process into multiple tasks and assigns them to different machines responsible
for execution. These so-called agents are running on different but interconnected host
machines communicating through a network [6, p. 618]. Therefore, multiple computing
resources split and carry out the overall rendering workload instead of a single powerful
one. This can reduce execution times and hardware costs [21].

However, the load-sharing argument only wins in certain scenarios. Physically distribut-
ing computational tasks means moving the bottleneck from the processors to their com-
munication network. It is essential to apply loose coupling to limit the message traffic
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between agents. If the relocated communication bottleneck is worse than the old one,
no advantage is gained [32, p. 12]. This relation limits the set of use cases in which
distribution yields benefits and fulfills its purpose. If a single machine effortlessly carries
out a computational task, i.e., the rendering process, there is no advantage gained by
distributing it onto multiple hosts. Therefore, distributed rendering targets synthetic
environments of the highest fidelity or very costly rendering techniques a single machine
struggles with. A good indicator for expedient distribution is when the task’s nature is
easily decomposable [32, p. 12f].

Although many strategies can be applied to distributed rendering, three abstract steps
can be identified. They always involve a central agent splitting the workload, delegating
it to other agents, and collecting the partial outcomes to assemble the final result [7]:

1. Task Distribution: A central agent splits the overall rendering process into
smaller tasks using a strategy selected for the underlying use case. These tasks
are then assigned to agents. Popular strategies and distribution approaches are
discussed further in this section.

2. Distributed Rendering: Agents execute their rendering tasks. This can either
be initiated by a request of the central agent or automatically based on a fixed time
interval, depending on the chosen approach.

3. Result Composition: The produced fragments are then returned to the central
agent responsible for assembling the final rendering result.

As already mentioned, there are multiple strategies for distributing the rendering work-
load. The two main approaches applicable in real-time rendering are the distribution of
the synthetic environment at an object level of the render surface, also known as tiling.

When distributing the synthetic environment, the central agent assigns others a distinct
subset of its objects. Each agent is responsible for managing their state and rendering
them. As depicted in figure 3.4, one agent might render armed forces, like aircraft, while
another generates realistic clouds. Each image and its z-buffer, which holds depth infor-
mation of the rendered outcome, is then passed to the central agent. It assembles the
final result containing all objects by overlaying them in the correct order, determined by
their depth information. Using this approach, only the environment’s global time must
be synchronized between agents, not each object’s states. Furthermore, this approach
integrates well with inherently distributed synthetic environments where, for instance,
the behavior and state of armed forces are already simulated on dedicated computers [21].

When tiling a target image, the central agent subdivides its surface area into smaller
tile fragments and distributes them among agents. As depicted in figure 3.5, each agent
renders the identical synthetic environment but from a slightly different view angle. The
camera’s frustum, defining its perspective, must be calculated to arrange the resulting
image fragments back together like puzzle pieces. All states of dynamic objects must
be synchronized, and all agents need to know the entire synthetic environment because
it must not vary across tiles. Otherwise, each tile would display a different state, and
they would not fit together [28]. Although this approach may sound more costly than
its object-based counterpart, it can increase performance by utilizing its agents more
effectively. Some tiles may contain more detailed objects and require more expensive
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Figure 3.4: Object-based distributed rendering: Agents manage and render different
objects of the same synthetic environment.

computation. By dynamically sizing tiles based on performance statistics from previous
frames, the overall workload can be distributed more equally [35, p. 2].

Figure 3.5: Tile-based distributed rendering: Tiles are supplied by agents and
assembled to the final image.

Further approaches, which are worth mentioning but do not apply to this work, include:

• Distributing samples of the same frame: Some rendering techniques generate
multiple samples for a single frame. A sample is the resulting image of a rendering
iteration. In raytracing, for instance, light is simulated by rays bouncing non-
deterministically through the scene. In a single sample, this leads to randomized
noise scattered across the image. Combining multiple samples reduces this effect.
Because an individual sample can be independently rendered from all others, they
can be distributed among multiple agents. This approach is not inspected further
in this work because it is more suited for non-realtime techniques [28].

• Distributing different frames of an image sequence: Looking at real-time
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rendering and the closed simulation loop (⇒ Section 2.1.3), it becomes apparent
that its frames can only be rendered sequentially. They depend on the UAS model’s
feedback and, thereby, each other. However, in non-realtime rendering, it is possible
to know the contents of future frames beforehand, like in 3D animations. All frames
can be theoretically rendered in parallel because they do not depend on each other
and can, therefore, be distributed [7].

• Distributing images of different perspectives: As mentioned in the projector-
dome example (⇒ Section 2.2.2), rendering from different perspectives is a practical
application of distributed rendering. Each perspective can be generated indepen-
dently from the others and qualifies for distribution [10, p. 247].

After rendering tasks have been assigned to agents, two methods, as already mentioned,
exist for invoking their execution for each frame. The request-based approach requires
a central process to order its agent to render each frame. This approach is comparable
to a service request in the SOA. Additional information, like the scene’s current state or
rendering parameters, can be passed along with this request. In terms of performance,
this approach causes further delay due to request transmissions before every frame. On
the other hand, including the scene’s overall state in the rendering requests reduces syn-
chronization efforts beforehand. Furthermore, consistency between rendered fragments
is guaranteed if the same request parameters are sent to all agents. Its counterpart,
the polling-based approach, does not require a request. The agents invoke themselves
at fixed time intervals and push their rendered frames automatically to buffers of the
central composition process. While this approach avoids repeated request transmissions
to achieve better performance, it can cause inconsistent results. If the agents’ states
or rendering intervals are even slightly unsynchronized, they capture the same scene at
different points in time or at incompatible states. In this case, the generated image
fragments do not fit together. Additionally, when an agent does not deliver its frame on
time, the final image may be incomplete or inconsistent after composition. More effort
and demanding procedures must be spent on synchronization to avoid these scenarios
[21]. Therefore, the choice between the request-based and polling-based approach is a
trade-off between consistency and throughput.
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4 Requirements

This work considers requirements of different categories [4, p. 139-149]:

• Mission/business requirements are high-level goals or objectives that the sys-
tem must achieve. They hint at the underlying business needs that the result must
meet.

• Functional system requirements describe the behavior of the system and what
results it should attain or exhibit.

• Non-functional system requirements expose constraints, conditions, and qual-
ity measures. It describes how the system achieves its functional system require-
ments and greatly influences the software architecture design.

This work does not consider the so-called user & stakeholder requirements. They
describe the users’ point of view and their inputs/outputs in concrete use cases. These are
future requirements bound to a specific application that will emerge after the completion
of this work.

4.1 Mission/Business Requirements

The target system’s underlying business needs and high-level objectives are formulated
in table 2. Although they can’t be clearly evaluated or tested due to their high-level
nature, they are listed to reveal expectations and the underlying purpose of this work.

ID High-level Objective
MB1 Shall provide a framework for developing further synthetic image generation

tools for M&S in the future.
MB2 Shall reduce maintenance costs and enable faster development cycles of M&S

tools.
MB3 Shall adapt to future technologies and use cases that are yet unconsidered or

unknown.
MB4 Shall be scalable enough to support future synthetic environments of higher

fidelity and complexity.

Table 2: Mission/business requirements

4.2 Functional System Requirements

Functional system requirements are listed in table 3. This work evaluates them by
employing automated unit tests in its implementation. Compared to other projects, not
many functional requirements are provided for this work because it is merely a framework
for satisfying future ones.



4.3 Non-Functional System Requirements 19

ID Description Priority
F1 Shall provide an on-screen image generation pipeline that ren-

ders to a native window.
High

F2 Shall provide an off-screen image generation pipeline that ren-
ders to a buffer.

Medium High

F3 Shall load scenes from the following file formats: osgt, osgb, and
obj.

Medium High

F4 Shall provide a scene graph to apply operations and queries at
loaded scenes.

High

F5 Shall be accessible through REST requests for remote operation. Medium

Table 3: Functional system requirements

4.3 Non-Functional System Requirements

Non-functional system requirements can be subdivided into further categories [4, p. 143f].

• Quality requirements prioritize a specific subset of the entire spectrum of qual-
ity measures. Because they can be mapped to the strengths and weaknesses of
architectural styles, their prioritization greatly influences the final architectural
design.

• Constraints and assumptions define the project’s legal, physical, and environ-
mental boundaries to which the system must adhere.

• Performance requirements define timing boundaries and deadlines.

4.3.1 Quality Requirements

The sole purpose of quality requirements in this work lies in supplying preferences and
priorities for designing the software architecture. Since their evaluation proves diffi-
cult because their achievement and impact are difficult to measure, their effectiveness
is only demonstrated by example (⇒ Section 7). The full list of quality measures that
were considered for prioritization extends to maintainability, availability, reliability, ac-
cessibility, visibility, testability, complexity, interchangeability, sustainability, flexibility,
portability, manufacturability, usability, learnability, error tolerance, efficiecy, accuracy,
capacity, adaptability, survivability, fault isolation, and manageability [4, p. 145-146].

A single system can’t possibly achieve every quality measurement in this list. Trade-
offs are inevitable, especially due to conflicts between measures, like maintainability
and complexity. Different operational fields and use cases cause the priorities of these
requirements to shift. While there are many more to consider, this work focuses on the
ones comprised in table 4.
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Name Description Reason for Prioritizationn
Maintainability Formally, a measure for how

easily the system can be re-
turned to operational status
once a maintenance action is
required.

Frequently changing engineers
and students contribute work to
this project. They want to be
able to quickly familiarize
themselves with the system in
order to make productive
changes in short development
cycles. Components, especially
delivered by students and
graduates, must have good
testability.

Accessibility Determines how easily com-
ponents or subsystems can be
accessed for maintenance or
changes.

Testability Describes how easily faults
can be detected and isolated
in the system.

Interchangeability Determines how easily com-
ponents and subsystems can
be replaced without extensive
calibration.

Various areas of application and
future use cases can cause
components to become obsolete.
Engineers must be able to
replace or remove them
effortlessly.

Adaptability The ability to adapt to a
range of capabilities without
major changes to the design
or implementation.

Portability The system’s ability to be
transferred between systems
and platforms.

Supported platforms range from
popular OS, like Windows and
Linux, to possibly embedded sys-
tems.

Scalability The system’s ability to grow
in its capacity to meet in-
creasing demands.

Future simulations require higher
fidelity. When this system can
scale, developing a new one after
some years is unnecessary.

Accuracy Required precision of the re-
sult that the system must
meet.

Accuracy of generated sensory
data is more important than its
throughput, i.e., determined by
the system’s efficiency.

Table 4: Subset or prioritized quality requirements

4.3.2 Performance Requirements

Obviously, a software architecture for real-time synthetic environment generation is
bound to performance constraints. They are compiled in table 5.

ID Description Reason
PR1 Synthetic sensory data and images

shall be generated with at least 21
frames/samples per second.

HIL Simulations require steady frame
rates at this rate.

Table 5: Performance requirements
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4.3.3 Constraints and Assumptions

This work’s purpose is based on a few assumptions that might improve how simulations
are carried out at MBDA Germany. Table 6 lists them. On the other hand, the con-
straints of table 7 limit and influence design decisions.

ID Assumption
A1 Distribution of synthetic environments could enable higher fidelity and more

accurate results.
A2 Distribution of rendering tasks could decrease the maximum frame rate, but still

to a usable degree.

Table 6: System Assumptions

ID Constraint
C1 The system must run on Windows 8, 10, and 11.
C2 The system must run on Linux-based OS.
C3 The rendering pipeline must run on platforms without a window manager or

screen.
C4 The Vulkan Scene Graph (VSG) library should be used for the scene graph and

graphics implementation for evaluation purposes.

Table 7: System constraints
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5 High-level Design

Using the requirements of section 4, the high-level architecture takes shape. Considering
that it is optionally distributable, two aspects emerge:

• The hybrid architecture of an individual node’s core enables them to communicate
and collaborate in distributed simulations.

• Distribution topologies describing a cluster’s structure, organizational hierarchy,
and how its nodes collaborate to share their work.

5.1 Hybrid Architecture

As mentioned in section 4.3, quality requirements greatly influence the software design
by matching the strengths and weaknesses of various architecture styles. Since a single
architecture style does not satisfy all quality requirements (⇒ Section 4.3.1), a hybrid
one similar to the ROS project (⇒ Section 3.1.4) represents the most practical solution.

The following section mostly focuses on the architectural structure employed inside in-
dividual nodes and how it grants them distributive capabilities.

5.1.1 Plugin-centered Design

The micro-kernel architecture (⇒ Section 3.1.1) yields technical and organizational ad-
vantages for this work. As shown in future 5.1, a running instance of the system can
be subdivided into two types of components: The core embodies the underlying infras-
tructure required for running and integrating plugins. In return, they equip the system
with capabilities and features. A standalone core without any plugins can barely exhibit
useful functionality.

Figure 5.1: A single process running the system core and its loaded plugins.

First of all, utilizing a micro-kernel in the final architecture brings organizational ad-
vantages during development. Engineers can integrate features more easily and remove
or replace them more effortlessly. In a monolithic architecture, this could require var-
ious changes across components. Due to their isolated nature, they rate high in this
work’s quality requirements maintainability, accessibility, testability, and interchange-
ability. Furthermore, other departments or users are not bound to the relatively small
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core-developer team’s support at MBDA Germany. They can create their own plugins
and customize the system to fit their individual needs. Multiple tools can emerge from
the same core system using a different set of plugins, reducing development times and
avoiding a total rewrite each time. The main technical advantage is the ability to in-
crease the system’s performance by disabling unnecessary features. It can specialize in a
specific use case and discard superfluous routines and calculations.

However, since abstraction almost always comes with costs, there are disadvantages to
consider. If plugins are loaded at runtime, the compiler must employ runtime constructs,
like so-called v-tables in C++ for virtual function calls of code unknown and unresolvable
at compile-time. They introduce overhead and fixed performance costs when calling a
plugin function because its location has to be determined at runtime before the actual
call [16, p. 17]. Furthermore, the fragile base problem can arise when the core’s API is
altered in isolation, not considering how plugins use it. They may break as a result [22,
p. 36f].

5.1.2 Service-driven Distribution

Services are a common method to distribute the overall workload in a network of service
providers (⇒ Section 3.1.2). A single running instance of the core system with network-
ing capabilities and its loaded plugins is called a node. A set of interconnected nodes
forms a cluster.

Figure 5.2: Service Communication Interface supports a range of communication
protocols and hides their implementations from both service-caller and provider.

Now that the basic terminology is set, methods and approaches to providing and access-
ing services can be discussed. They can be called locally if provided by the same node
or remotely. This calls for a communication layer between nodes used for request and
response propagation. Due to many possible implementations (⇒ Section 3.1.2), services
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should not depend on underlying network protocols, infrastructures, and transmission
formats. Thus, it is important to hide these details from service implementations. Oth-
erwise, when the underlying protocol is changed from REST to gRPC, for instance, all
service implementations would be broken and need an update. This would result in bad
maintainability and must be avoided due to this work’s quality requirements (⇒ Section
4.3.1). The solution is an interface wrapping supported protocols, infrastructures, and
transmission formats. The service communication interface, depicted in figure 5.2, ren-
ders these implementation details, which the core system must provide, exchangeable. It
can also provide a multitude of protocols for different callers and, therefore, even inte-
grate external clients or foreign infrastructures, like ROS or message brokers.

Figure 5.3: Newly loaded plugin registers a service on its node. The core informs
another one about its availability and calls the service.

While the core provides the infrastructure and communication network, plugins supply
services that members in the cluster can call. It requires a discovery mechanism to locate
services in the network. There are multiple possible methods for nodes to know which
services others provide. In figure 5.3, for instance, the node sends a service registration
message to other connected ones. After they have been notified about the newly available
service, they can call it using a service request, containing parameters. After the service
has finished, the called node returns a service response containing the result, if any. This
example further demonstrates how well the SOA and plugin architecture integrate for
this use case.

This part of the overall architecture creates useful synergies with distributed rendering
(⇒ Section 3.2.4). Image generation can be provided as such a service. The central
composition node can request this rendering service for different perspectives, scenes,
image resolutions, or other parameters. By establishing some load-balancing mechanism
in the service infrastructure, rendering requests can be equally distributed among nodes.
Nonetheless, it generates some overhead like the plugin-centered design (⇒ Section 5.1.1).
Although its complex infrastructure is wrapped by the service communication interface,
it still requires implementation efforts and maintenance. Furthermore, loosely coupled
service requests introduce performance costs compared to direct function calls. Thus,
not every routine should be implemented as a service, but only those possibly called by
remote nodes. The paradigm Everything-as-a-Service is ineffective and should be avoided.
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5.1.3 Event-Driven Synchronization and Communication

When multiple interconnected nodes share parts or replicas of the same synthetic environ-
ment, a synchronization problem arises. When a change to the environment or another
crucial event occurs inside a node, the others must be notified to keep its parts or replicas
consistent. Therefore, they must interchange event messages over their communication
network. For this purpose, the event-driven architecture (⇒ Section 3.1.3) can employ
event brokers passing these events to their designated subscribers. If the subscriber is
located at a connected node, it can use the same messaging infrastructure used by the
SOA for passing service requests and responses.

The broker topology is more applicable to this use case than its mediator counterpart.
Events represent happenings and occurrences in the system that must be handled in-
stead of commands that require processing. Furthermore, a simulation does not provide
well-defined workflows essential for the mediator topology. Instead, events can occur in
various simulation components running on different nodes. A dynamic set of subscribers,
extendable through plugins, must be able to process these events. This constraint renders
deterministic and fixed workflows impossible.

Considering a single node, the event-driven architecture is beneficial for some of this
work’s quality requirements (⇒ Section 4.3.1). Its software components can exchange
information by contributing and processing events, creating a communication bus inside
a node. This increases the overall architecture’s maintainability, accessibility, and in-
terchangeability. Plugins, for instance, can integrate more effortlessly with others and
the core system by accessing this communication bus. On the other hand, this approach
inherits all weaknesses of the broker topology. Its highly dynamic event flows are difficult
to predict, debug and test. Additionally, the plugin developer is responsible for avoiding
cycles in event chains if their plugins contribute to them.

5.2 Distribution Topologies

Nodes can organize themselves in a cluster for collaboration in different topologies. This
section discusses possible structures and hierarchies of a cluster. Because the core does
not enforce concrete topologies and only provides a basic messaging infrastructure, they
can be implemented using plugins. For instance, for giving a node the ability to contribute
to a Peer-to-Peer (P2P) network. This decision allows the architecture to adapt various
topologies for different use cases and distribution strategies. This section will cover two
possible topologies that could prove useful for distributed simulation and give an example
of the usage of hybrid architecture.

5.2.1 Coordinated Workers

This topology follows the Client-Server-Server (C+SS+) paradigm and was formerly
known as master-slave. Just like in the Client-Server (C+S) paradigm, clients want to
access services provided by servers. However, they do not access these servers directly.
Instead, an intermediate server, the coordinator, is installed and takes organizational
roles. As depicted in figure 5.4, it manages a set of workers, providing fine-grained
services and processing assigned workloads. They are usually unaware of each other’s
existence and only serve the coordinator [2, p. 61f].
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Figure 5.4: A central coordinator node controls its workers to distribute workload.

Other simulation participants, like UAS models or human operators, act as clients and in-
terface with the coordinator node for interacting with the synthetic environment. Based
on their plugins, workers can provide various services to the coordinator or process generic
units of work, called jobs, distributed between them. They can join the cluster by reg-
istering themselves at the coordinator. It could also be useful to give it the ability to
spawn new workers dynamically with certain capabilities as required.

As for most centralized organizational structures in distributed computing, the central
coordinator can become a bottleneck or a single point of failure [33, p. 13]. Although
this might be a relatively simple method for splitting the overall workload, compared to
P2P related approaches, its scalability is limited and always bound to the coordinator’s
capacity. On the other hand, it allows a central state of the synthetic environment,
possibly reducing synchronization costs between nodes. Distributed rendering (⇒ Section
3.2.4) can utilize this topology. The coordinator can represent the central rendering node
and assign rendering tasks to its workers.

5.2.2 Grid Computing

Grid computing is derived from the P2P approach. In contrast to the C+SS+ hierarchy,
they differentiate themselves through their symmetry. Every peer in these networks acts
as both client and server, consuming and providing services, computational resources,
or memory storage. There is no need for a central server in P2P and grid computing
networks. Due to the absence of this central bottleneck and the network’s self-organizing
nature, they allow for higher scalability than their client-server counterpart. Their ap-
plications range from digital content sharing to scientific computations, where expensive
calculations run on a set of computing resources instead of a single supercomputer. The
difference between the P2P and grid computing approach lies in their contributors and
their trust. While the former is highly dynamic and volatile because peers can leave
and join anytime, grid computing is more stable and well-structured in this aspect. It
focuses on pricier high-end computing resources and is more exclusive by only allowing
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a certain set of dedicated peers to contribute to the network. On the other hand, P2P
barely restricts member access and is more open to cheaper but also possibly malicious
edge devices. Therefore, security and trust measures have higher significance and require
more effort in P2P approaches. Grid computing peers can collaborate in good faith due
to their mutual trust. Challenges in both approaches are data consistency and integrity
across peers, routing and resource discovery, and security [33, p. 2-9].

Employing grid computing instead of P2P is more practical for this work’s purpose. Mis-
sile simulations require dedicated computers and servers equipped with pricy graphics
hardware instead of weaker edge devices. Given the assumption that simulation comput-
ers are running in an isolated environment, this choice also allows the neglect of costly
security measures due to their shared trust. For instance, encryption and decryption of
every passed message between peers can be omitted to save computational costs. Ob-
viously, this decision is based on assumptions and increases the security risk. However,
this tradeoff can improve the cluster’s performance and efficiency in real-time simulations.

Figure 5.5: Nodes collaborating in a grid computing scenario. Every node acts both as
a client and a server.

As depicted in figure 5.5, there is no central node in a grid computing cluster. In this
scenario, nodes only run on dedicated servers equipped with costly graphics hardware
instead of weaker edge devices, like workstations or mobile devices. This could increase
the performance of the overall distributed simulation because services can be requested
directly without a central instance acting as a relay. On the other hand, it inherits weak-
nesses of the P2P approach and grid computing. This approach requires more complex
service discovery and routing algorithms than its client-server alternative [33, p. 39ff].
Additionally, the absence of a central instance increases the synchronization efforts of
the synthetic environment’s state.

A central database is an alternative for managing the global state of the environment.
The Common Data-Base (CDB) is an open database specification of the Open Geospatial
Consortium for synthetic environments. It is specialized in storing geospatial information
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for high-performance M&S applications. Supporting a wide variety of NATO standards
and protocols, tiling, and level-of-detail interpolation, it can stream the current environ-
ment’s state to cluster members [24]. Obviously, a new bottleneck and single point of
failure can emerge by installing such a central component.
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6 Core Design and Implementation

6.1 Subsystem Overview

As depicted in figure 6.1, the core system consists of multiple modules, also called sub-
systems, subdivided by their purpose and technical domain. The implementation of a
subsystem is hidden behind its API and can only be accessed through it. It enforces
loose coupling and allows exchanging implementations without affecting other modules
[22, p. 1-7]. For instance, the same job system API, providing functionality for schedul-
ing routines to other modules or plugins, has both single-threaded and multi-threaded
implementations that can be interchanged or extended by new ones in the future.

Figure 6.1: Modules of the core system

Before this section discusses each subsys-
tem’s implementation and technical back-
ground, their coupling and collaboration must
be clarified. Often, they depend on oth-
ers further down the stack, but there is
no guarantee that an implementation is al-
ways provided. For instance, the network-
ing module only exists if the core was con-
figured for operating in a cluster. Oth-
erwise, the compiler will skip this mod-
ule, or the configuration will deactivate it
at runtime. Therefore, the existence of
each subsystem is optional and must be
queried before use. The subsystem man-
agement layer governs implementations for
subsystem APIs and couples them loosely.
Using this component, other modules can
query, load, or replace them if neces-
sary.

The programming language of choice for the
core implementation is C++ because the cen-
tral library used for 3D Vulkan graphics only
provides a C++ API (⇒ Section 4.3.3). Es-
tablishing library compatibility for other lan-
guages by wrapping them or generating interfaces would require a significant development
overhead in this bachelor thesis and was therefore omitted. More high-level languages,
like Rust or C#, are worth considering in the future when necessary bindings or library
alternatives are available. Script bindings are often used in game engines for convenient
access to features and faster development cycles for rapid prototyping due to a simplified
language design [8, p. 1135f], [22, p. 329-359]. The core API can provide such a scripting
API in the future for the same purpose.

The software architecture of game engines inspires some subsystems discussed in this
section. In computer science, games are soft, real-time, agent-based interactive computer
simulations [8, p. 9]. From this perspective, the generation of synthetic environments
for real-time simulations is highly related to interactive video games. For this reason,
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the software architecture of game engines, acting as frameworks for game development,
inspired this work.

6.2 Job System

Plugins contribute their own functionalities, services, and routines to the system (⇒
Section 5.1.1). Therefore, the core must provide an extensible way for scheduling and
processing arbitrary units of work accessible by plugins and subsystems. For instance,
the Naughty Dog game engine employs a so-called job system for this purpose. It allows
game developers to divide game logic, rendering tasks, and input-output operations into
independent units of work called jobs. Figure 6.3 shows that pending jobs are main-
tained in a queue and scheduled for concurrent execution in a thread pool. Operations
on native threads provided by the OS’s kernel require the running process to switch from
user space to kernel space. This switch consumes many CPU cycles and introduces per-
formance costs when done for every job. For this reason, a set of threads is kept and
re-used for processing instead of costly spawning a new one for each job. Otherwise, the
job system would be more busy creating and cleaning up threads than following its main
purpose of executing jobs. This way of processing work in the engine enabled significant
speed-ups in the transition to newer-generation gaming consoles [8, p. 253f, 549–558].
A job system also proves very useful for this work’s purpose. Like video game routines,
developers can decompose the entire simulation logic into finely granular jobs and hand
them to the job system for execution, following a Everything-as-a-Job paradigm.

Figure 6.2: Plugins and subsystems can schedule jobs for concurrent execution.

There are multiple approaches for implementing the job system’s execution component.
Besides simple worker threads, so-called fibers are applicable as job executors and can
bring some performance benefits. The main goal of the job system revolves around
keeping its worker threads busy and their utilization as high as possible. Thus, idle
or blocking operations reduce efficiency by occupying processing resources, like threads,
without using them to capacity. There are multiple occasions in which jobs could block a
thread, such as waiting on the completion of others or pending input-output operations.
To ensure the highest processor utilization, it is essential that the job execution can put
waiting or blocking jobs aside and resume when they are ready. In the meantime, it can
start or continue the execution of others. Ideally, switching jobs avoids blocking a thread
or keeping it busy waiting, essentially increasing the utilization of processing resources.
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However, it requires exchanging the current call stack and register values, known as a
thread’s context, at runtime. Ordinary threads are not capable of doing so. Fibers, on
the other hand, are specialized threads that can schedule their contexts cooperatively
and switch between them as needed. Therefore, the job system of this work employs
fibers instead of ordinary worker threads. It provides a performance benefit due to the
parallelized processing of jobs and allows plugins to schedule their own routines, increas-
ing the system’s overall extensibility. However, its concurrent processing requires locks
for synchronization in all higher-level components. Otherwise, jobs executed on different
fibers could cause data races and non-deterministic behavior [8, p. 553ff].

Figure 6.3: Software component design of the job system module.

As shown in the component diagram in figure 6.3, the job system essentially consists of
the following components:

• Implementations of the IJobExecution consumes jobs and processes them. It re-
ceives them by the JobManager and acts as a central processor for the system.
The main implementation uses fibers and context switching provided by the Boost
library, but there is also a single-threaded alternative.

• The JobManager is responsible for maintaining job queues, passing jobs to the job
execution in an orderly manner, and coordinating their execution. In the imple-
mentation of this work, the manager keeps three queues for different phases of the
execution cycle: Initialization, processing, and cleanup.
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• A Job contains workload, usually as lambda functor, and can be specialized to
serve specific needs. For instance, a TimerJob executes not every cycle but only in
timed intervals.

• A JobCounter tracks the completion of jobs and can be used for their synchroniza-
tion. Jobs can be assigned to counters so that others can wait until they have been
completed.

1 // get current job manager subsystem
2 auto job_manager = subsystems ->Require <JobManager >();
3

4 // create a counter for synchronization
5 auto cntr = std:: make_shared <JobCounter >();
6

7 // create a job loading something (blocking) with counter
8 auto loading_job = std:: make_shared <Job >([&]( JobContext *ctx) {
9 // wait for future inside job

10 std:: future fut = load_something ();
11 ctx ->GetJobManager ()->WaitForCompletion(fut);
12 LOG_INFO("loading job completed");
13 return JobContinuation :: DISPOSE;
14 }, "loading -job");
15 loading_job ->AddCounter(cntr);
16

17 // create a job waiting on the other one’s completion
18 auto waiting_job = std:: make_shared <Job >([ cntr]( JobContext *ctx) {
19 ctx ->GetJobManager ()->WaitForCompletion(cntr);
20 LOG_INFO("waiting job completed");
21 return JobContinuation :: DISPOSE;
22 }, "waiting -job");
23

24 // job executing every second for 5 times
25 std::atomic <int > repetition = 0;
26 auto interval_job = std:: make_shared <TimerJob >(
27 [& repetition ]( JobContext *) {
28 if(repetition < 5) {
29 repetition ++;
30 return JobContinuation :: REQUEUE; // re-queue for next cycle
31 }
32 return JobContinuation :: DISPOSE; // don’t re-queue job again
33 },
34 "timed -job", 1s); // set time interval to 1 second
35

36 // kick jobs and start cycle
37 job_manager ->KickJob(waiting_job);
38 job_manager ->KickJob(loading_job);
39 job_manager ->KickJob(interval_job);
40 job_manager ->InvokeCycleAndWait (); // Starts execution of kicked jobs

Listing 1: Usage of the Job System and its API

Jobs are accumulated in the job manager’s queues until a new execution cycle is invoked.
A cycle is divided into three phases: Initialization, main processing, and cleanup. Many
resources, like plugins or services, need to be initialized before their usage and are un-
usable after their clean-up. Otherwise, unwanted behavior or crashes can occur in the
same cycle. To avoid such conflicts and overly complicated synchronization efforts, the
manager maintains three separate queues for each cycle phase, which are executed ex-
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clusively in order. Code snippet 1 demonstrates the job systems’s API usage.

After implementing all modules in a way that they are based on the job system, further
benefits and obstacles become apparent. On the one hand, the ability to execute jobs in
timed intervals reduces complexity and implementation efforts in higher-level modules.
For instance, the graphics subsystem (⇒ Section 6.8) can implement its rendering loop
by simply scheduling a timed interval job executing 60 times per second for this purpose.
On the other hand, the inherently concurrent fiber implementation requires the wise in-
stallation of locks in all higher-level modules. This can become a real challenge, leading
to grueling, non-deterministic bugs during development due to racing conditions.

Although the coordinated-worker topology (⇒ Section 5.2.1) suggests the distribution of
jobs to workers, this is not a capability implemented in this job system. It would require
methods for encapsulating the workload of a job in a transferrable or serializable format.
Otherwise, participants of the cluster cannot share their jobs with others. Lambda
functors, which are essentially pointers to local functions, do not qualify for this use
case. In contrast, small routines written in scripting languages do because they can be
transmitted in their text format. However, the core does not yet employ a scripting API
and cannot share jobs with other nodes for this reason.

6.3 Event Subsystem

Game engines use event systems, sometimes also called messaging systems, to transmit
interesting changes in the environment or the game’s state [8, p. 531]. The same principle
can also be useful for distributed missile simulations. Components, subsystems, plugins,
and other nodes can listen to events of certain types and get notified about changes in the
synthetic environment. As mentioned in section 5.1.3, events can be used to exchange
information between components of the same node and inside a cluster. Furthermore,
they carry global state changes to interested parties for synchronization.

Figure 6.4: Software component design of the event system.

The component diagram shown in figure 6.4 is kept as extensible as possible. The current
implementation of the event broker is very minimalistic and utilizes the job system to
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propagate events to their listeners. Other modules supply these listeners acting as call-
back routines in case of an occurring event of a certain type. Event types are represented
by a string value for loose coupling between the triggering party and their listeners. An
event’s arguments contain context information and additional parameters that listeners
could require for processing. A use case for this subsystem is an event that triggers when
another node has established a connection. Its hostname, IP address, port, and other
information can be attached to the fired event. The service module is interested in new
connections to consider them for future service requests. For this purpose, it implements
and registers a listener for this event type to process new connections to other nodes in
the cluster.

As mentioned in the previous section, event systems often maintain queues, temporarily
storing events before processing. They allow deferred event handling in future cycles or
phases. Like timer jobs, timed events can be realized this way [8, p. 1124-1129]. The job
system renders the broker’s implementation very lightweight. It simply has to schedule
a job that notifies the listener and executes its callback routine. By doing so, it uses the
job system’s queue instead of providing its own one.

However, the event subsystem itself does not provide the networking functionality re-
quired for transmitting events to other nodes in a cluster. It only supports instance
internal event propagation. A dedicated subsystem adding networking capabilities to
the event flow is discussed in the next section (⇒ Section 6.4).

6.4 Networking

The networking subsystem is responsible for establishing and managing connections to
other nodes. It supplies them to higher-level subsystems or plugins, creating a unified
communication layer for sending and receiving data in a cluster. Other facilities use this
layer to satisfy their external communication demands, like the Service Communication
Interface (⇒ Section 5.1.2) sending service requests and responses. Hiding implementa-
tion details, like the underlying protocol or message format, is essential. This communi-
cation layer must not bind to specific protocols or other implementation details because
there might be alternative protocols to evaluate and consider in the future. Furthermore,
other components are not concerned with them but only interested in passing messages
to other nodes. Furthermore, the implementation of concrete topologies is avoided in this
subsystem. It focuses on point-to-point connections, which can be established and used
from either side. Every node must be able to initiate connections and listen for incom-
ing ones. Therefore, concepts like clients or servers are avoided at this level. They are
implementable in higher-level components using point-to-point communication as their
basis.

The first implementation of the communication layer utilizes so-called web-sockets. They
are suited for real-time data exchange and specialize in low latency by reducing com-
munication overhead, like repeated handshakes before every message. Based on HTTP,
Web-Sockets provide full-duplex bidirectional communication and outperform traditional
approaches using polling [18]. This means both endpoints can send and receive mes-
sages through a single persistent connection with low latency. This protocol was chosen
since generating synthetic environments in real-time requires quick transmission of state
changes or binary data, like images in distributed rendering (⇒ Section 3.2.4). Obvi-
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ously, there are alternative protocols to evaluate in the future. The ROS project (⇒
Section 3.1.4), for example, employs the DDS protocol [25] for this purpose. Another
interesting approach, especially for real-time image streaming in distributed rendering, is
WebRTC: Google’s former cloud platform Google Stadia offered users to play demanding
video game titles over the internet at a fixed monthly rate instead of investing in an
expensive gaming console. User inputs, sounds, and rendered frames were streamed in
real-time between the user’s end device and the remotely running game using WebRTC.
Unfortunately, this protocol is fairly complex and requires cumbersome facilities provided
by default in web browsers, but it would have to be manually implemented at great ex-
pense for this project [3]. Therefore, web-sockets were chosen due to time constraints.
As already mentioned, the networking subsystem is designed so that engineers can add
support for such protocols in the future.

Figure 6.5: Comparison of transfer times of generated frames in different sizes based on
their encoding.

To transmit information to other nodes, messages act as envelopes and central entities
of the networking subsystem. Each message contains a payload organized in key-value
pairs carrying the information to its recipients. Serialization is necessary to transform
message objects into a format transportable by the underlying protocols. At first, JSON
was considered as the transmission format. It worked fine for numeric or string payloads
but not for binary data, like images or files. Serializing raw bytes can result in special
characters or bit sequences corrupting the JSON string and its UTF-8 encoding. To avoid
this corruption, binary data must be encoded using an algorithm like Base64. The result
is a string containing a file’s or image’s bytes that must be decoded at the receiving end.
However, as the benchmark shown in figure 6.5 reveals, this approach does not scale well.
Generated frames were transferred using web-socket messages using Base64 encoding to
another node running on the same host. The recipient then decoded the received frames
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and copied them into a buffer. The elapsed time of this entire process was measured for
different frame sizes to evaluate the performance footprint of the Base64 algorithm (red).
For reference, the transfer time of raw bytes without any encoding was captured as a
baseline (blue). Introducing the Base64 algorithm to message serialization causes signif-
icant overhead and performance losses in use cases like distributed rendering. Therefore,
JSON does not represent a viable solution for messages containing binary data because
it requires the costly encoding of raw bytes. Another approach is to send the message in
multiple parts, like attachments, which can contain raw binary data and omit additional
encoding. Multipart Form-Data is such a format. As its name implies, it allows a single
message to carry multiple contents or files by sectioning it using boundaries. Every part
is assigned a name and content type in the new implementation [13]. Every message’s
first part carries meta information in JSON, like its unique identifier or topic. Similar to
attachments of an e-mail, the succeeding parts contain the message’s payload and binary
data.

Figure 6.6: Software components of the networking subsystem (blue) and their
web-socket implementation (orange) using the Boost library.

Figure 6.6 shows the main components of the networking subsystem.

• An EndpointMessage encapsulates sent or received information. This subsystem
revolves around transmitting and handling instances of this component. Every
message belongs to a type that describes its purpose and contents.

• The IEndpoint interface defines functionality for sending and receiving messages.
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As discussed earlier, there are many possible implementations. The BoostWebSock-
etEndpoint uses the Boost library to provide web-socket connections transmitting
EndpointMessages using Multipart Formdata.

• The NetworkingManager starts implementations of the IEndpoint interface and
configures them.

• Higher-level components want to receive EndpointMessages of a certain topic. They
can implement IMessageConsumers and register them for incoming messages. For
instance, the service subsystem (⇒ Section 6.6) registers the ServiceRequestCon-
sumer to process incoming messages of this topic.

This module integrates with the event subsystem to inform interested components about
established or closed connections, like the service infrastructure. Therefore, it requires
an event broker. Although this module integrates well with the event architecture, this
implementation is incompatible with the job system. Theoretically, jobs can execute
sending and receiving actions of web-sockets. In practice, however, Boost’s web-socket
implementation spawns and maintains its own threads under the hood, breaking the
Everything-as-a-Job paradigm.

6.5 Property Management

Components, subsystems, or plugins all rely on and operate on data. It can act as their
configuration or state and is usually maintained by the component itself. This decentral-
ized approach works fine until these components need to access or modify each other’s
data. Due to their loose coupling, information is not always available. An example
should clarify this constraint: A plugin that renders water surfaces in the scene, like
an ocean, depends on the lighting information of another plugin managing the sky and
atmosphere. Calculating the ocean’s shading might require the sun’s position and the
atmosphere’s ambient color. Both plugins are loosely coupled and are not guaranteed to
be loaded simultaneously. Furthermore, dynamic data like the sun’s position can change
over time. In this case, the ocean plugin must also be notified to adjust its shading.
This example shows that data management can get messy and difficult to maintain if
components implement it on their own in an isolated manner.

Properties are information that can be accessed and modified by multiple parties. This
subsystem manages them centrally and notifies dependent components when their value
changes. This notification is an event thrown by the property provider and handled by
listeners. It forms a data layer between different subsystems and plugins, increasing the
system’s overall accessibility and maintainability. Using the networking subsystem, it
can also synchronize properties between nodes in the cluster. The component design is
shown in figure 6.7.

6.6 Service Infrastructure

As covered in section 5.1.2, considering the following constraints is essential in the service
infrastructure implementation.

• Multiple nodes in the cluster can provide the same service. A caller must alternate
between providers to balance the workload.
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Figure 6.7: Software Component Design of the property management subsystem.

• A requested service can be located on the same node or on another one in the
cluster. Therefore, a method for informing a cluster’s members about currently
available services and their providers must be established.

• A node should be able to function offline, outside of a cluster, only calling locally
available services.

• Service implementations must not depend on the underlying details of the commu-
nication infrastructure.

As shown in figure 6.8, the main component provided by this subsystem is the service
registry. This module uses the implementation capable of remote service calls by default,
but a simpler local-only alternative is also available. To understand the purpose of caller
components, like the RoundRobinServiceCaller, the concept of executors must first be
discussed. They represent a service’s implementation, which can either be located lo-
cally on the same node or a remote endpoint. A LocalServiceExecutor directly calls the
service implementation, which is essentially an ordinary function call wrapped by a job.
RemoteServiceExecutors use the networking subsystem’s communication capabilities to
perform remote service calls. A ServiceRequest wrapped in a message is sent to another
endpoint. Its registry receives the request and performs the service execution. Since ser-
vices are request-response oriented, in contrast to events, the requesting endpoint awaits
a ServiceResponse message containing the ordered results. Due to the job system, this
can be done without blocking a worker thread, allowing an arbitrarily high amount of
pending services.

As mentioned, multiple executors in the cluster can provide the same service. A caller,
like the RoundRobinServiceCaller, is an intermediate handler containing all known ex-
ecutors of a distinct service in the cluster. The requesting party is only interested in
having its service request processed. It does not care which specific executor takes on
this responsibility. The task of selecting an executor using some strategy and criteria
is delegated to the IServiceCaller. The registry collects all known executors associated
with the requested service’s name in a caller instance and returns it. Listing 2 shows this
in line 6. When the service is called, the used IServiceCaller selects a IServiceExecutor
from its list. This selection can be made using various strategies. For instance, the
RoundRobinServiceCaller tries to alternate between executors every call to balance the
workload among them. More complex strategies considering runtime statistics and more
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Figure 6.8: Software component design of the service infrastructure. This
implementation provides both a service registry capable of remote service
calls and an offline alternative (orange). Components needed for other
subsystems, like implementations of message consumers for the networking
subsystem, were omitted in this diagram.

effective load-balancing are implementable in the future.

Yet, an endpoint can’t call a remote service if it does not know exactly which node
provides it. It is mandatory that nodes can offer their services to others or discover
them in the cluster. Different cluster topologies require different approaches to service
discovery. A client-server environment, for instance, can provide a central service registry
that other nodes can query, while a pure P2P topology requires more advanced and
decentralized algorithms [26, p. 213f]. In this implementation, the foundation for many
approaches is the service registration message that offers a service to another node. With
this basic building block, other discovery methods can be realized. A central node acting
as the server could offer a cluster-wide registry service to recently joined nodes. They
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1 // get registry implementation as subsystem
2 auto registry = subsystems ->Require <IServiceRegistry >();
3 auto job_manager = subsystems ->Require <JobManager >();
4

5 // represents all executors known to the registry
6 auto caller = registry ->Find("my -service -name");
7

8 // perform service request inside a job
9 ServiceRequest req; // contains parameters

10 std::future <ServiceResponse > res = caller ->Call(request , job_manager);
11

12 job_manager ->WaitForCompletion(res);

Listing 2: Service request using callers

could use this service to locate other services, using it as a centralized registry.

6.7 Scene Graph and Management

A scene graph (⇒ Section 3.2.3) can hierarchically organize objects of a synthetic en-
vironment. Special types of scene graphs can optimize use-case-dependent rendering
techniques, like raytracing. In theory, it would be beneficial to make their implemen-
tations interchangeable for different types of scene graphs. The open-source OGRE 3D
rendering engine demonstrates this interface abstraction [8, p. 38f] by providing an in-
terchangeable scene graph and graphics API.

Looking at this work’s requirements, the implementation’s library is already determined
(⇒ Section 4.3.3). Vulkan Scene Graph (VSG) is the successor of the Open Scene Graph
(OSG) library, which is used in other simulation tools at MBDA. As its name implies, it
comes with a Vulkan (⇒ Section 3.2.2) rendering component.

Figure 6.9: Theoretical software component design of the scene subsystem.

However, the interchangeable design shown in figure 6.9 is difficult to apply in practice.
The ISceneGraph interface for such a complex library is difficult to construct. It has to
abstract the functionality of various scene graph types. Additionally, its implementation
would have to wrap VSG’s API and all its objects. This is not feasible to accomplish in
the time frame of this bachelor’s thesis. Furthermore, such a big and complex interface is
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difficult to maintain. Although this decision reduces the scene graph’s interchangeability,
this implementation omits the interface. The result is a more practical component design
tightly coupled to VSG, shown in figure 6.10.

Figure 6.10: Practical software component design of the scene subsystem omitting the
interface.

The SceneManager can also integrate with the property system (⇒ Section 6.5). Prop-
erties can store states of the scene’s objects, like positions or orientations. Thus, it can
synchronize these states across nodes in a cluster or make them accessible to other com-
ponents. This feature has not yet been implemented but can be added in the future when
required.

6.8 Graphics and Rendering

The graphics subsystem aims to generate sensory data for image-based sensors like IR
cameras or radar seekers. Both an onscreen and offscreen renderer must be functional
to supply images to human and non-human operators alike. A service for this purpose
must be established to enable remote image generation and distributed rendering.

Two graphics APIs, Vulkan and OpenGL, have been discussed before (⇒ Section 3.2.2).
Looking at this work’s constraints (⇒ Section 4.3.3), VSG was already selected as the
library for the scene graph implementation. Therefore, this subsystem employs Vulkan
for image generation instead of OpenGL. The basis for this decision consists of multiple
advantages for this use case. The same Vulkan API runs on all supported platforms, like
embedded systems. There is no need for portations to more lightweight implementations,
like OpenGL ES, for this purpose. Additionally, Vulkan’s computational model is more
open to non-graphical use cases, like thermal calculations, making their implementation
easier than OpenGL. Another important reason is its multi-threading capability, which
could improve the performance in future use cases.

As the component diagram in figure 6.11 shows, this subsystem provides the IRenderer
interface implemented for onscreen and offscreen applications. Another implementation
is contributed by the distributed rendering plugin (⇒ Section 7.1). All implementations
use VSG as an abstraction layer for Vulkan. As already mentioned, its API is very com-
plex, low-level, and verbose. VSG wraps commonly used procedures and API calls in
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Figure 6.11: Software component design of the graphics subsystem.

objects, simplifying their employment and reducing development times. The onscreen
renderer was not difficult to implement. Creating windows for various platforms and dis-
playing rendered frames on them is the library’s go-to behavior. The OncreenRenderer
implementation contains only about 120 lines of code. On the other hand, the Offscreen-
Renderer is more cumbersome and comprises about 800 lines. It requires the setup of
image buffers, custom commands for copying the frame buffer’s contents to them, and a
custom render pass for Vulkan’s rendering pipeline.

Figure 6.12 shows the extraction process of rendered images. The OffscreenRenderer cre-
ates a new render pass, including a custom frame buffer for Vulkan’s rendering pipeline
during its setup. After a new frame is rendered to the frame buffer, its contents are copied
to a separate image buffer in step 1 using custom commands. Before this can happen,
Vulkan requires transitioning the layout of the source and destination image buffers to
one optimized for efficiently performing copy operations. The first copy step is embedded
into the command buffer of the render pass and executed for every frame. Therefore, the
image buffer always holds the last generated image of the OffscreenRenderer. A similar
process is performed for the depth buffer’s extraction. Yet, the copied image remains on
the GPU, called device memory in Vulkan terms. In step 2, the renderer transfers its
contents to host memory, which is a byte array on the node’s heap. This is essential for
accessing the image’s bytes and using them outside the rendering pipeline, like sending
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Figure 6.12: Buffers used for capturing rendered frames for offscreen rendering.

them to other nodes in the cluster. The second step is only carried out when a com-
ponent requests the RenderResult to save significant delays caused by transferring the
image from device memory to host memory.

When a node needs to generate images continuously without a preceding request to the
rendering service, it can schedule a job timed at fixed intervals for this purpose. For
instance, a job executed every 16 milliseconds limits the rate to 60 frames per second.
The other alternative, as already mentioned, is requesting the rendering service. Due
to the networking subsystem’s capability to transmit raw bytes, no additional encoding,
like Base64, must be applied to the image buffer. However, the IRenderResultEncoder
interface can support compression algorithms for faster network transfer of large images,
such as gzip or other post-processing methods in the future.

6.9 Plugin Management

The plugin-centered design (⇒ Section 5.1.1) requires a separate subsystem for load-
ing, unloading, and managing plugins. In contrast to subsystems or modules, which
are linked at compile-time, plugins are loaded at runtime. It must be the highest-level
module on top of the subsystem stack to provide access to all others. There are multiple
ways of implementing plugins. Scripting languages, like Python or Lua, are commonly
used to extend a core’s functionality. Scripted plugins are cross-platform and written in
higher-level languages, reducing their development complexity and rendering the API’s
usage more convenient for developers unfamiliar with the core [22, p. 329f]. However, it
requires a binding wrapping of the C++ core to establish compatibility in such a lan-
guage. Due to the time constraints of this thesis, this relatively complex method was
avoided. Instead, as shown in figure 6.13, the PluginManager loads compiled C++ code
as dynamic libraries at runtime. They contain implementations of the abstract base class
IPlugin that the manager instantiates and operates. As demonstrated in code snippet
3, it must override an initialization and shut-down routine that the manager calls when
loading and unloading the plugin, respectively.

However, the chosen approach also has some downsides. First of all, C++ does not pro-
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Figure 6.13: Software component design of the plugin management subsystem.

vide a unified Application Binary Interface (ABI). Artifacts, such as dynamic libraries
of plugins, created using different compilers or other versions than the core system may
be incompatible. In this case, the core fails to load them. Therefore, the core and its
plugins should share the same compiler and version. A script binding would circumvent
this issue and simplify the plugin distribution process. For the same reason, throwing
exceptions or using the standard library across artifacts generated by different compilers
is not guaranteed to work. Furthermore, memory management should not be mixed be-
tween the core and a loaded plugin. A plugin allocating a block of memory must also be
the one to free it [22, p. 366f].

1 class SomePlugin : public plugins :: IPlugin {
2 // used as unique identifier of the plugin
3 std:: string GetName () override { return "some -plugin"; }
4

5 // called once the plugin has been loaded from a library
6 void Init(plugins :: SharedPluginContext context) override {
7 auto subsystems = context ->GetCoreSubsystems ();
8 /* Schedule jobs , register event listeners , provide services ,
9 add properties , register network message consumers , ... */

10 LOG_INFO("SomePlugin has been initialized");
11 }
12

13 // called before the plugin will be unloaded
14 void ShutDown(plugins :: SharedPluginContext context) override {
15 LOG_INFO("SomePlugin has been shut down");
16 }
17 }

Listing 3: Plugin implementation that can be exported to a dynamic library and loaded
by the core at runtime.
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7 Evaluation by Example: Tile-based Rendering Plugin

To evaluate the core system and the framework it’s providing, it must be put to use.
A plugin using nearly all APIs provided by the infrastructure has been developed and
allows for stress tests. Therefore, the target plugin should incorporate rendering tasks,
the service infrastructure, scheduling jobs, connecting to other nodes, and contributing
to the event flow. Distributed rendering (⇒ Section 3.2.4) is an ideal use case for this
hybrid architecture. This plugin’s main purpose is to demonstrate the core frameworks’s
flexibility and extensibility, not necessarily to be used in production.

The following section first discusses how this plugin works and puts distributed rendering
into practice. Afterwards, the performance of the core infrastructure is evaluated using
the plugin.

7.1 Plugin Design and Implementation

As already covered, there are multiple specializations of distributed rendering. This plu-
gin subdivides the render area into a set of tiles and distributes the task of rendering
them to connected nodes. The count of tiles is bound to the count of rendering services
available at any moment. Therefore, the tiling setup is dynamic and must adapt when
a render service joins or exits the cluster. For instance, three connected nodes providing
a render service each will result in three tiles. When two new services join, the tiling
algorithm of the task distribution step (⇒ Section 3.2.4) is repeated. For simplicity, the
employed tiling algorithm simply generates equally sized stripes.

Figure 7.1: Tiled rendering plugin acts as coordinator and central composition agent,
requesting strips of the same frame from different worker nodes.

As shown in figure 7.1, this plugin applies the coordinator-worker topology (⇒ Section
5.2.1). A single node runs the plugin, acting as a central composition agent, and awaits
connections to worker nodes. They don’t have to load the plugin themselves but simply
provide a rendering service for the coordinator. Nodes must render these tiles from
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slightly different view angles to generate images the coordinator can piece back together
into a single frame. Therefore, the tiling algorithm must also re-calculate the perspective
for each tile. Suppose the view of a rendered frame is displayed through a virtual camera.
Its visible area seen in figure 7.2a is called its frustum. It defines the views’ transformation
and perspective attributes required for setting up the virtual camera before rendering [15,
p. 227f].

(a) normal view frustum. (b) view frustum after subdivision.

Figure 7.2: Subdivision of the current view’s frustum for three tiles.

In reality, the view is calculated by matrix multiplications on the GPU every frame. Two
matrices are involved in this process and must be manipulated to achieve the tiling effect
shown in figure 7.2b [15, p. 205]:

• The view matrix defines the virtual camera’s position and orientation in the scene.
It must be rotated to capture a different angle of the image.

• The projection matrix represents perspective attributes, like the view’s field-of-
view. It must be recalculated to scale down the frustum.

When rendering a tiled frame, the coordinator node re-calculates both the projection
and view matrix for each tile. It passes them as request parameters to the designated
worker’s rendering service. Based on these parameters, each worker adjusts its camera,
renders the tile, and sends it back to the coordinator. After it receives all tile images, it
puts them back together by painting them on rectangular surfaces and arranging them
like puzzle pieces. For this purpose, these tile images must be decoded and loaded into
GPU memory as textures. An additional camera captures the rearranged frame and
displays it on screen.

As the component diagram in figure 7.3 shows, his process requires extensive use of the
core’s subsystems:

• The plugin subsystem loads the plugin and installs it.
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Figure 7.3: Software component design of the tiled rendering plugin.

• A new IRenderer implementation, the TiledRenderer, is created and passed to the
graphics subsystem. It queries the count of currently available render services to
tile the render area accordingly.

• The event subsystem notifies the TiledRenderingPlugin about new render services
in the cluster to re-configure the renderer’s tiling layout.

• The service infrastructure provides render services to the TiledRenderer implemen-
tation.

• The scene manager supplies the current scene graph that should be rendered.

7.2 Operation

To create a cluster running and performing tiled-based rendering, the user must first start
the coordinator node using the core’s CLI (Command Line Interface) shown in listing
4. In this example, it listens for incoming connections on port 9000 and automatically
spawns a window because on-screen rendering was requested. This node also provides a
rendering service and should start rendering the scene immediately, as shown in figure
7.4a.

1 ./ standalone # standalone executable of the core
2 -s ./data/models/scene.vsgt # scene file to load (sample scene)
3 -r onscreen # use on-screen renderer; spawns window
4 --enable -render -job # render automatically
5 --enable -render -service # setup render service
6 -p <plugin -dir > # loads plugins in this directory
7 --port 9000 # listen on port 9000

Listing 4: Bash command for starting the Coordinator node using the core’s CLI.
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(a) A single node and tile. (b) Using two nodes and tiles.

Figure 7.4: Tile-based rendered frame displayed on start-up and when connecting
further nodes.

Once the central coordinator is running, worker nodes can join the cluster by connecting
to it. It is important for a worker to load the same scene file as the central node. Oth-
erwise, they would render different environments. An offscreen renderer is sufficient for
these nodes because their image tiles are not displayed on screen. The user must also
ensure that every worker node listens on another port to avoid crashes. Finally, the node
tries to connect to the central coordinator and register its rendering service. When this
operation is completed successfully, the central node will re-configure its tiling setup and
include its new contributor. The cluster produces two tiles like in figure 7.4b. Their seam
is visible sometimes because their frustum might overlap and not fit perfectly together.
This is due to the improvised frustum subdivision algorithm, which is worthy of improve-
ment in the future. However, it suffices to demonstrate the architecture’s flexibility.

1 ./ standalone
2 -s ./data/models/scene.vsgt # loading the same scene
3 -r offscreen # use off -screen renderer; no window
4 --enable -render -service # setup render service
5 --port 9001 # listen on port 9001
6 --connect 127.0.0.1:9000 # connect to coordinator node

Listing 5: Bash command for starting a Worker node using the core’s CLI.

An arbitrary amount of worker nodes can be spawned, as figures 7.5a and 7.5b show.
Therefore, this plugin successfully demonstrates the flexibility and extensibility of the
core framework for distributed computer graphics applications. The final implementation
of this plugin comprises about 320 lines of code. Compared to core components, like the
offscreen renderer, it is relatively small, simple in its structure, and lightweight by cleverly
using underlying core facilities.
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(a) Using three nodes and tiles. (b) Using seven nodes and tiles.

Figure 7.5: Tile-based rendered frame displayed by the coordinator employing varying
counts of workers and tiles.

7.3 Performance Evaluation

To evaluate this plugin’s implementation, purpose, and applicability from a performance-
oriented point of view, various counts of worker nodes were advised to produce frames
of increasing sizes. Their mean frame rate was measured and depicted in figure 7.6 in
comparison to other counts of worker nodes.

Figure 7.6: Frame-rates of different counts of worker nodes for increasing frame sizes
using the tile-based rendering plugin.
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Since there is no reason to embellish the results of this benchmark, it must be clearly
stated that they are very insufficient for this work’s performance requirements (⇒ Section
4.3.2). Additional nodes increase the communication overhead and accumulate network-
ing costs, which is essentially the latency of streaming images to the coordinator. But
considering one of the fundamental laws in distributed computing, which has been briefly
discussed in section 2.2.2, these results are as expected. A bottleneck relocated from the
processors to their communication network can worsen the overall efficiency in some sce-
narios. In this one, there was initially no bottleneck because a single processor can easily
handle the rendering workload of this demonstration scene and produce at least 60 frames
per second. Therefore, the act of applying distribution anyway created unnecessary over-
head. This plugin emphasizes the importance of carefully assessing the underlying use
case before blindly applying distribution. On the other hand, when employing more
costly rendering techniques, like raytracing, this plugin can be more effective.

As already mentioned, the main purpose of this plugin is to demonstrate the flexibility
and versatility of the core infrastructure and its hybrid architecture, not the efficiency of
tiled-based rendering.
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8 Conclusion

8.1 Summary

This work introduced and implemented a hybrid software architecture capable of con-
necting to other running instances. It can form clusters of nodes sharing their overall
workload and distributing the synthetic environment generation process onto multiple
hosts. The service infrastructure allows nodes to outsource their tasks to others and share
their workload. They synchronize shared data and global state by publishing events to
fellow nodes. Clusters are not limited to a single topology but can implement both P2P
and centralized architectures, like the coordinator-worker pattern. This implementation’s
major strength is its ability to adapt to a wide range of use cases or future technologies
by loading specialized capabilities in the form of plugins as needed. This also allows
third-party engineering departments or other organizations to tailor the system to their
individual needs by deploying custom plugins. Although this architecture allows the dis-
tribution of workloads, its target use cases must be assessed and its application carefully
considered. It is not an everything solver, but only brings advantages to scenarios where
the relocated communication bottleneck is a lesser evil and effectively relieves proces-
sors. As the example plugin demonstrates, this architecture fails in all other scenarios,
not meeting this criteria. Due to communication bottlenecks and network latencies, real-
time rendering processes are difficult to distribute onto multiple nodes without violating
their deadlines and frame-rate expectations. However, more costly rendering techniques,
like raytracing, could be promising candidates for this architecture.

8.2 Future Work

The question arises as to which scenarios and use cases this architecture is applicable and
for what it will be used at MBDA. A few example use cases qualify for distribution and
this architecture. The first involves distributed raytracing for generating large synthetic
radar images. The currently used system runs on a single machine and needs almost
half a minute to generate a single frame due to costly rendering techniques, causing a
processor bottleneck. Using the tile-based rendering plugin, nodes can share their ray
tracing workload and generate big images more efficiently. Another application that can
be optimized using this architecture utilizes so-called Monte-Carlo simulations. Sim-
ulation parameters, like weather conditions, target positions, or the missile’s starting
point, are randomly altered and mutated to generate an arbitrary amount of new test
scenarios from an original one. Currently, these outcoming simulation scenarios execute
sequentially on a single machine. Depending on their amount, this process may take
many hours and run overnight. By distributing these simulations onto multiple nodes for
parallel execution, engineers can perform Monte-Carlo simulations in smaller timeframes
and leverage their results sooner. Another use case is provisioning a simulation cluster
in a scalable cloud environment called simulation-as-a-service. Using network protocols,
engineers can request validations of their prototypes, algorithms, and behaviors from a
remote cluster that is able to spawn new nodes and scale on demand.

Besides applying this architecture to specific use cases, its implementation can also be
improved in the future. Further protocols and message formats, besides web sockets
and multipart form data, need evaluation and can potentially contribute to the core
infrastructure. As already mentioned, DDS and WebRTC are promising candidates for
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such an evaluation and may substitute the custom web-socket implementation for inter-
node communication. On the other hand, communication from or to external endpoints,
like web clients, is not properly supported yet. The REST protocol can be included
in the networking subsystem and service infrastructure for this purpose. This is useful
for simulation-as-a-service applications leveraging this architecture. Furthermore, fault-
tolerance measures are required for production-ready solutions but have not yet been
implemented. Handling crashed nodes that were processing pending service requests or
interrupted connections is essential. Such failures could gradually and recursively freeze
the entire cluster when nodes wait indefinitely for unresolvable service responses.

Integration and synergies with other technologies or systems are other means for allow-
ing this architecture to mature. Containerization of nodes can enable the use of orches-
trators like Kubernetes and leverage cloud-native features: An automatically scaling,
self-healing, and zero-downtime simulation cluster. Of course, further evaluation efforts
are required to integrate such a technology successfully. Especially since cloud-native
containers must not maintain an internal state in order to leverage the above-mentioned
capabilities. Instead of repairing, re-using, or moving them, Kubernetes straightfor-
wardly destroys and re-spawns containers elsewhere, rendering them ephemeral. On
everyday operations, like transferring running simulation nodes to other machines for
load-balancing purposes, Kubernetes would also destroy their synthetic environment’s
state [19, p. 3f, 27f]. Adding support for some persistent database, like the CDB (⇒
Section 5.2.2), would transfer state management to a central facility and allow nodes
to leverage cloud-native capabilities. As already mentioned, this assumption requires
further evaluation in future works.
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