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Abstract

This thesis explores the effectiveness of training the deep-learning-based 6D pose estima-
tion algorithm, GDR-NPP, for the detection of automotive industrial parts using a photo-
realistic synthetic dataset generated from digital simulation, in comparison to a structured
domain-randomized dataset in an industrial context.

In the realm of industrial robotics, accurately detecting 6D poses of objects, essential for
tasks like pick-and-place operations, presents significant challenges. Notably, GDR-NPP,
an open-source deep-learning-based 6D pose algorithm highlighted in the BOP bench-
mark [40], has shown fast and robust results using single RGB camera inputs. However,
collecting and annotating precise 6D pose data from RGB images is a daunting, time-
consuming, and costly process, particularly for planned use cases that do not yet phys-
ically exist. Leveraging simulations from photorealistic, physically accurate engines like
Nvidia IsaacSim, it is possible to realistically simulate the specific objects of interest and
their environments.

This research establishes a pipeline for generating synthetic 6D pose data from such sim-
ulations, aiming to make data collection more cost-effective and efficient. The study
involves creating and evaluating models trained on both digital twin datasets and struc-
tured domain-randomized datasets [37] within an industrial context. The findings reveal
that while digital twin datasets offer accuracy benefits over industrial randomized datasets
in the 6D pose estimation pipeline (Mask R-CNN + GDR-NPP), the integration of real
images with synthetic data, as suggested in [45] and [38], enhances accuracy. Within the
scope of this study, it was observed that models trained on industry domain-randomized
datasets, when augmented with real images, exhibited the highest level of accuracy. De-
spite these advancements, the current state of the trained models necessitates further
research to reach the reliability required for consistent industrial robotic applications.
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Glossary

abs Absolute operation.

Acronyms

6D Six Degree-of-Freedom.

ADD Average Distance Difference.

AI Artificial Intelligence.

AP Average Precision.

AR Average Recall.

BOP Benchmark for 6D Object Pose Estimation.

CAD Computer-aided design.

COCO Common Objects in Context.

D Dimensions.

FPS Frames Per Second.

GDR-NPP Geometric Deep Learning Network for 6D Pose Prediction.

ICP Iterative Closest Point.

IoU Intersection over Union.

MDD Mean Distance Difference.

RGB Red Green Blue.

RGB-D Red Green Blue - Depth.

ROS Robot Operating System.

SLAM Simultaneous Localization and Mapping.

STL Stereolithography.

ToF Time of Flight.
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1 Introduction

6D pose estimation refers to determining the six degree-of-freedom (Position - x, y, z and
Orientation - rotation along each of x, y, z axis) to accurately locate an object in world
space. This is a relatively simpler task than 3D object detection, as the latter not only
requires detecting the position and orientation of objects but also their size. 6D pose
estimation is widely employed in the field of robotics, particularly for precise tasks such
as object picking and placement, and also plays a crucial role in augmented and virtual
reality applications. This section outlines the motivation behind this research, the specific
research questions it addresses, and provides a structured overview of the thesis.

1.1 Motivation

In BMW factories, the use of robots is becoming more prevalent, particularly in internal
logistics and on assembly lines. Many challenges arises in such situations - ranging from
a large number of different parts present in a cluttered fashion within - in robotics sense
- not very well defined environments. Due to highly optimized manufacturing processes
used in the factories, there is no room for error and any small downtime for the robots
can result in enormous financial losses. This particularly applies to the perception system
as well, where the system is not only meant to be fast, scalable and maintainable, but
also be robust against occlusions and errorneous sensor data [38].

Current state-of-the-art computer vision algorithms are based on deep-neural networks
(especially open-source models) and significantly outperform traditional algorithms based
only on hand-crafted features [40]. Training deep neural networks requires diverse and
large quantities of labelled data. Collecting data inside a running factory and labelling
them is a time, money and human -intensive task, especially for 6D pose estimation as
the labels are in 3D world space and not in 2D image space like bounding box or semantic
mask annotation. To tackle this problem, synthetic data generation provides the capacity
to generate unlimited amount of data but with limitations of initial setup cost, availability
of computational resources and a gap between rendered images with respect to real world
(commonly referred to as Sim2Real gap). To this extent, many common synthetic image
generators are available: 3D modelling software Blender based BlenderProc [13], realistic
game engine based generation tools like Unity Perception package [43] or physically accu-
rate simulation engines like Nvidia Omniverse based IsaacSim(Replicator plugin), among
others.

Creating a digital twin of factories is becoming a common practice to simulate a planned
logistic process, trying out multiple configurations for optimizing the efficiency and re-
duce costs while ensuring high-quality output [14]. Given a precisely modelled scene
of a planned usecase in simulation (essentially a digital twin), a very realistic synthetic
data - exactly replicating the poses of the industrial parts could be generated. Com-
mon approach with synthetic data generation [42], [9], [44] involves generating domain-
randomized dataset to provide significant variability in the data that the model learns
to generalize effectively across a range of scenarios, even to those it has not encountered
before.
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1.2 Research objectives

The core research objectives of this thesis are listed below:

• The primary objective of this thesis is to evaluate the necessity of using physically
accurate digital twin based synthetic dataset in comparison to industrial domain
randomized synthetic dataset for training GDR-NPP 6D pose estimator. Digital
Twin dataset here refers to the actual replica of the factory scene along with realistic
physics and similar object poses as observed in the real world. Industrial domain
randomized dataset refers to data generated in a industrial warehouse with standard
industrial assets like barrels, forklifts, cones, boxes as distractors with completely
randomized lighting and textures on the background wall and floor. The evaluation
of the accuracy of the trained models are done on a subset of real labelled images.

• The secondary objective is to evaluate the accuracy gain by mixing real annotated
images with each synthetic dataset. It is a proven theory that mixing real images
with synthetic images helps in increasing accuracy of computer vision models [45]
and [38] - This theory is specifically evaluated for our 6D pose estimation pipeline.

1.3 Outline

The present thesis is structured as follows:

• Chapter 2: Background
This chapter provides an overview of the theoretical background relevant to 6D pose
estimation and synthetic data generation. It also reviews previous work in the field,
focusing on methods and technologies that have informed the current research.

• Chapter 3: Methodology
This chapter details the methodology adopted in this research. It includes the
process of generating synthetic data, real data collection and annotation, and the
description of the training tools used for the 6D pose estimation models.

• Chapter 4: Experiments
This chapter describes the experimental setup, including data processing, training
details, and the specific experiments conducted to evaluate the effectiveness of the
synthetic and real data integration.

• Chapter 5: Results
This chapter presents the results of the experiments. It discusses the findings in
detail, comparing the performance of models trained with different datasets and
analyzing the effectiveness of mixing synthetic with real-world data, and highlights
the limitations encountered.

• Chapter 6: Conclusion
The final chapter summarizes the key findings of the research and suggests potential
areas for future work.
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2 Background

This chapter explains the theoretical background required to understand this thesis.

2.1 6D Pose estimation

6D pose estimation refers to the task of detecting the six-degrees of freedom of the object
in 3D world space. This entails estimating the accurate translation vector (x, y, z) and
rotation vector (indicates the orientation around three axes - x, y, z) of the object (See
figure 1). This is a fundamental task in computer vision and robotics. In robotics, this
is done using RGB or RGB-D (with depth) cameras to precisely identify the object of
interest and to interact with them - in tasks like picking/placing, grasping and accurate
semantic scene understanding.

Figure 1: 6D pose estimation - Translation and rotation vector [32]

Depth information of the scene has proven to massively improve the accuracy of 6D
pose estimations, it can be captured by specialized hardware like LiDAR, ToF sensors,
structured light- or stereo- cameras [2]. Since these hardware are expensive, have highly
specific depth operating window and a lower resolution than RGB cameras, the latter
is preferred for common computer vision tasks like classification, object detection and
segmentation. RGB cameras are affordable, widely available and capture data at high
detail. Inspired by human binocular vision, where two eyes provide slightly different
perspectives of the same scene to perceive depth, stereo cameras extend normal RGB
cameras by adding one more camera to allow for depth perception. By comparing the
images from the two cameras, the system can estimate the depth of various points in
the scene. This process is known as stereo matching and is a computationally expensive
process (see figure 2). Since stereo cameras are based out of normal camera sensors, they
are relatively cost-effective and provide depth accuracy comparable to alternative depth
sensors. The main weaknesses of stereo cameras arises due to the challenging task of
stereo matching, especially in scenes with low light, repetitive patterns, lack of texture,
or occlusions.
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Figure 2: Stereo matching [1]

2.1.1 BOP Challenge

Benchmark for 6D Object Pose Estimation (BOP) challenge is continuously conducted
every year to measure the progress in the field of pose estimation, with an implicit goal of
finding the best synthetic-to-real domain transfer techniques [40]. In 2023, BOP challenge
had 6 tasks: Model-based 6D localization, 2D segmentation and 2D detection of each
seen and unseen objects. In this context, "seen" objects refers to class categories whose
instance have the identical shape and form - like a scissors whose color and form always
remain the same, while "unseen" objects refers to class categories whose instance have
the different fixed shape and form - like cars. Each car might have different color and
form, but they are still "car". The difference in technicality of them is similar to that
of 6D pose estimation and 3D object detection, "unseen" object detection may usually
need to also infer the size of the instances. Since "unseen" 6D pose localization is a
more complex task, accuracy of models in this category are consistently less than those
of "seen" categories [40]. The data used for training and evaluating the pose estimators

Figure 3: BOP datasets [25]

in the BOP challenge consists of seven core datasets: LM-O, T-Less, TUD-L, IC-Bin,
ITODD, HB, YCB-V [40] (See figure 3). These datasets are highly varied in content and
include 3D object models and annotated training/test RGB-D images with ground-truth
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6D poses, 2D segmentation and detection data. The results from the BOP Challenge
2023 were instrumental in selecting a high-performing pose estimator for this bachelor
thesis’s specific use case. The object that the robots are designed to grasp is known and
a 3D CAD model is available, categorizing it as a "seen" object. Additionally, given that
the application is intended for a fast-paced automotive industrial factory, rapid inference
times are crucial, ideally less than 1 second per detection of a single part. The 6D pose
estimation model that best met these criterias, balancing high accuracy with the required
swift inference time, is GDRNPP-PBRReal-RGBD-MModel-Fast - a derivative of
GDR-Net pose estimation model.

2.1.2 GDR-Net

GDR-Net [46] is a novel deep learning framework for 6D pose estimation from single RGB
images. GDR-Net stands for Geometric Distance Regression Network, and it consists of
three main components (See figure 4): a feature extraction module, a geometric distance
regression module, and a 6D pose regression module. The feature extraction module is

Figure 4: GDR-Net network architecture [46]

based on a convolutional neural network (CNN) that extracts high-level features from the
input image. The CNN is pre-trained on a large-scale image classification dataset, such
as ImageNet, and then fine-tuned on a specific object category for 6D pose estimation.
The feature extraction module is responsible for capturing the appearance and texture
information of the object, as well as its context and background.

The main idea of the geometric distance regression module is to use dense correspondence-
based geometric features, such as the Dense Correspondences Map (M2D-3D), the Surface
Region Attention Map (MSRA) and the Visible Object Mask (Mvis), to guide the direct
regression of 6D object pose from a zoomed-in region of interest (RoI) of the input image.
The final pose estimation module is based on Patch-PnP, which directly regresses the 6D
object pose from the feature maps. The GDR-Net is inspired by CDPN [28], a state-of-
the-art dense correspondence-based method for indirect pose estimation, but differs from
it in several aspects. First, the GDR-Net does not require a disentangled translation
head, which reduces the complexity and improves the efficiency of the network. Second,
the GDR-Net introduces a new Surface Region Attention Map (MSRA) that encodes the
surface region information of the object, which helps to filter out outliers and improve the
accuracy of the pose estimation. Third, the GDR-Net employs a simple yet effective 2D
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convolutional Patch-PnP module that directly regresses the 6D object pose from M2D-3D
and MSRA, without relying on RANSAC or other post-processing steps.

One of the main advantages of GDR-Net is that it does not require any depth information,
unlike many existing methods for 6D pose estimation. This makes it more suitable for
scenarios where depth sensors are not available or reliable, such as outdoor environments
or low-light conditions. Moreover, GDR-Net can handle occlusions, clutter, and varying
lighting conditions, thanks to its robust feature extraction and pose refinement modules.
GDR-Net can also handle multiple objects in a scene by applying a region proposal net-
work (RPN) or any multi-object detector to generate candidate regions for each object
category, and then applying GDR-Net to each region independently.

Metrics To evaluate the performance of GDR-Net, the common metric for 6D pose esti-
mation: the average distance error (ADD) [18] is used. The ADD measures the average
euclidean distance between the ground truth and the estimated object model points pro-
jected in 3D space. Lower values of ADD indicate higher accuracy. A more intuitive to
measure this accuracy is by setting distance thresholds (usually in m) and verifying the
percentage of all estimated poses that have an ADD value under this given threshold. In
addition to ADD, this study incorporates the Maximum Distance Error (MDD) to ensure
consistent detection and grasping accuracy. The thesis evaluates both ADD and MDD
at thresholds of 0.7cm, 1cm, 2cm, 5cm, and 10cm. The thresholds of 0.7cm and 1cm
are specifically selected for precise grasping tasks related to hinges, while the 2cm, 5cm,
and 10cm thresholds align with the standard error benchmarks used in the Benchmark
for 6D Object Pose Estimation (BOP) toolkits. Errors exceeding these thresholds are
indicative of highly inaccurate pose estimations, rendering them unsuitable for industrial
applications.

GDRNPP-PBRReal-RGBD-MModel-Fast [30] is a modified version of GDR-Net
with the following changes:

• Advanced Network Structure: The usage of the more robust ConvNext as the
backbone, replacing ResNet-34, coupled with the integration of dual mask heads for
distinct predictions of amodal and visible masks.

• Enhanced Data Augmentation: Training incorporated more intensive domain
randomization techniques compared to the initial configuration.

• Diverse Refinements: Precise adjustments in key hyperparameters like learning
rate, weight decay, visible threshold, and the types of bounding boxes.

In the model name, "Fast" denotes a streamlined pose refinement stage that utilizes
a depth map. Traditional pose refinement methods employ the Iterative Closest Point
(ICP) algorithm [24] [41], which aligns three-dimensional ground truth and estimated
poses. This process is computationally intensive and slow. However, in this model, refine-
ment is limited to adjusting the translation vector, particularly in the z direction. This
approach provides a quicker approximation compared to full ICP methods, trading some
accuracy for speed. Consequently, it better meets real-time latency requirements, unlike
comprehensive ICP-based refinement techniques. From this point onwards in this thesis,
this modified version of GDR-Net would be abbreviated and addressed as GDRNPP.
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2.1.3 Mask R-CNN

GDR-Net network inherently detects the poses of only one object at a time, but images
usually contains multiple objects that needs to be detected. As a result, the GDR-Net
pose estimation pipeline employs an object detector in the beginning, crop on to each
detection’s bounding box individually and then estimate the poses for them. For this
specific research work, Mask R-CNN segmentation network is used - Bounding boxes
are derived from min-max coordinates of the segmentation masks. This study forms a
segment of a larger project, wherein the Mask R-CNN is employed for additional objectives
pertinent to the perception system. These aspects, while not central to the scope of this
thesis, necessitate the use of Mask R-CNN over the YOLO-X detection network used by
GDR-NPP.

Mask R-CNN [16] is a robust network for object instance segmentation. It is an extension
of Faster R-CNN, a popular object detection model, that adds a branch for predicting an
object mask in parallel with the existing branch for bounding box recognition.

The basic idea of Mask R-CNN is to use a ResNet based Region Proposal Network (RPN)
to generate regions of interest (RoIs) that may contain objects, and then apply a RoIAlign
layer to extract features from each RoI using bilinear interpolation (See figure 5). The
features are then fed into two separate branches: one for classifying the RoI and re-
gressing the bounding box, and another for producing a binary mask for each RoI. The
mask branch is a small fully convolutional network that outputs one mask for each class
output. The final mask for each RoI is obtained by selecting the exact slice of the ten-
sor corresponding to the predicted class. Mask R-CNN is suitable as an object detector

Figure 5: Mask R-CNN network architecture [16]

because it can efficiently detect objects in an image while simultaneously generating a
high-quality segmentation mask for each instance and inference speed is fast enough for
industrial applications. Since its debut in 2018, Mask R-CNN has been widely embraced,
with an abundance of pretrained models on comprehensive datasets such as ImageNet
readily available [49].

Vishal Balaji Bachelor thesis



8

2.1.4 Data labelling

For training any DNN (deep neural network), large quantities of labelled data is required -
GDR-NPP is no different. Human based labelling of 6D pose estimation data has following
challenges:

• High precision requirement: 6D pose estimation demands highly accurate la-
beling of both orientation and position in 3D space. Even minor errors in labeling
(See figure 6) can significantly affect the performance of the pose estimation model.

• Complexity in annotation: Unlike 2D labeling, which involves drawing boxes
or segmentation masks on images, 6D pose annotation requires determining the
object’s exact world position and orientation relative to the camera - aligning in 3D
space, which is inherently more complex.

• Variability and occlusions: In real-world scenarios, objects can appear in various
orientations and can be partially occluded, complicating the annotation process.

Figure 6: Average label error of 3.4% has been discovered across 10 most-cited datasets
in a study led by computer scientists at MIT [34]

The complexities involved in 6D pose annotation make it a time-consuming, error-prone,
and costly endeavor. This reality underscores the significance of employing synthetic data
generation tools. Nonetheless, for the experiments as mentioned in this thesis, a modest
amount of accurately labeled real data is essential. For this purpose, Labelfusion [31], a
specialized tool for 6D pose annotation, has been utilized.

Labelfusion is an open-source research tool for generating high-quality ground truth
labels for real RGB-D data of cluttered scenes, developed by the Robot Locomotion
Group at MIT CSAIL. It can produce pixelwise labels and 6D object poses for multiple
objects in scenes with occlusions and varying lighting conditions.

Labelfusion is specifically used for 6D pose estimation by leveraging dense RGB-D recon-
struction to fuse together RGB-D images taken from different viewpoints, and labeling
with ICP-assisted fitting of object meshes (see figure 7).

Labelfusion works as follows:

1. Raw data is initially collected using a RGB-D sensor. The raw data consists of RGB
and depth images from an RGB-D sensor (such as Kinect or RealSense).
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2. The raw data is processed by ElasticFusion [48], a dense SLAM method that recon-
structs a 3D point cloud of the scene from the RGB-D data.

3. The reconstructed point cloud is annotated by a human using a graphical user
interface (GUI) that allows the user to select and align object meshes to the point
cloud. The GUI uses ICP algorithm to assist the user in fitting the meshes to the
point cloud.

4. The annotated point cloud is then used to automatically generate per-pixel labels
and object poses for each RGB-D image by projecting the object meshes back into
the 2D images. The labels and poses are stored in appropriate format that can be
used for training various computer vision algorithms.

Figure 7: Labelfusion pipeline [31]

A notable advantage of the tool is that annotation with the object meshes has to be done
only once per scene and then it is automatically reprojected back to every captured image
- This approach effectively removes the need for the laborious and time-consuming process
of manually annotating each individual image.
Some important observed drawbacks of the tool are:

• The efficacy of ElasticFusion’s dense reconstruction, relying on simultaneous local-
ization and mapping (SLAM), is closely tied to the quality of depth maps and the
accuracy of visual feature matching. However, when recording RGB-D data man-
ually, rapid movements and jerks often introduce blur, leading to inaccuracies in
the SLAM algorithm. This can result in misaligned point clouds, causing improper
ICP matching and, consequently, erroneous reprojection of poses. To mitigate these
issues, employing smoother motion techniques, such as using a stabilizer or a robotic
arm, is advised.

• Labelfusion does not effectively manage occlusions around the labelled objects.
While it successfully reprojects poses and their associated mask labels onto the
scenes, it fails to conceal parts of the mask that are not visible from the camera’s
perspective. It’s important to note that while this limitation does not impact the
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pose labels, it does affect the mask labels. Given that this research also incorporates
the use of the mask-based object detector Mask R-CNN, training and evaluating it
with such data could potentially compromise the accuracy of the results.

2.2 Synthetic Data Generation

This section describes the challenges faced with real world data collection and therefore,
the necessity to generate synthetic data. It also explores the limitations of synthetically
generated data and common tools used for this, specifically in computer vision.

2.2.1 Challenges with data collection

The importance of data in training machine learning (ML) or deep learning (DL) algo-
rithms cannot be overstated. Data is fundamental to the functionality and effectiveness
of these algorithms, as it directly influences their ability to learn, generalize, and perform
tasks across various domains. Here’s an overview of why data is crucial:

• Learning from examples: ML and DL algorithms learn by example. They require
data to identify patterns, make decisions, and predict outcomes. The quality and
quantity of this data significantly impact the learning process and the performance
of the algorithm.

• Generalization ability: The primary goal of ML and DL models is to generalize
well from the training data to unseen data. A diverse and representative dataset
ensures that the model can handle various real-world scenarios and doesn’t just
memorize the training examples; essentially not overfitting.

• Bias mitigation: The data used in training can contain biases, which the model
can inadvertently learn. Having a comprehensive dataset that accurately represents
various facets of the problem domain is essential for mitigating biases in model
predictions.

As such, meticulous attention to data collection, preparation, and augmentation is vital
in the development of robust and reliable ML/DL models like the ones used in this the-
sis. In the previous section 2.1.4, it has been explained why human 6D pose estimation
annotation is a very challenging and error-prone task. Collecting the real world data for
this annotation also has many challenges:

• Scalability:
Manual data collection processes are inherently slow and labor-intensive. Achieving
the necessary scale for training 6D pose estimation models, which requires capturing
a wide variety of objects in numerous poses and environments, is impractical and
often impossible due to these limitations.
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• Diversity:
Manually collecting data that covers all possible variations in object poses, lighting
conditions, backgrounds, and occlusions is challenging. This diversity is crucial for
training robust pose estimation models, but predicting and replicating every possible
variation manually, especially in planned or hypothetical scenarios, is exceedingly
difficult.

• High cost and resource intensive:
The process involves significant expenses, including equipment, manpower, and
time. In industrial environments, the cost of manual data collection is not just
financial but also includes the potential for expensive downtime. Every second of
operational pause to collect data can lead to significant revenue loss. Moreover,
these environments can be hazardous, posing safety risks to personnel involved in
data collection. The need to ensure uninterrupted and safe operations makes manual
data collection in such settings exceptionally challenging and often unfeasible.

• Inaccessibility of future or hypothetical scenarios:
In scenarios where the use case is still in the planning phase and has not yet ma-
terialized, manually collecting relevant data is impractical, if not impossible. This
research aligns with the development of such a project, focusing on the develop-
ment of a new automated logistics process for a certain automotive component.
The project entails designing a robotic system for this purpose, equipped with a 6D
pose estimation-based perception system, relying entirely on detailed, predefined
plans rather than existing, tangible environments.

Given these challenges, especially the impossibility of collecting manual data for planned
or hypothetical scenarios, synthetic data generation emerges as a necessary and effective
solution. Synthetic data can be generated to represent any number of scenarios, objects,
and environments, irrespective of whether they currently exist or are in the planning
stages. This approach offers scalability, diversity, and the ability to create data that can
closely mimics real-world complexities with precise labels. Additional benefits encom-
pass include reduced privacy concerns, ability to prototype swiftly and with meticulous
designing, the possibility of eliminating any inherent biases in the generated data.

2.2.2 Limitations of synthetic data generation

This form of data generation also presents its unique challenges, including the gap to
realism (commonly referred to as Sim2Real gap), constrained diversity, and significant
computational demands. The realism gap arises from the inherent differences between
synthetic and real-world data in aspects like textures, lighting, and sensor noise, leading
to data that may poorly reflect actual environments (see figure 8). Moreover, while syn-
thetic data allows for controlled scenario creation, it often lacks the unpredictability and
variability found in real-world settings, potentially compromising the robustness of data.
Furthermore, the creation of high-quality synthetic data, particularly for intricate envi-
ronments, demands extensive resources. This involves not only significant computational
power and time for precise rendering and simulation, but also substantial human labor is
needed to lay the groundwork for the initial setup essential for the data generation.
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Figure 8: Sim2Real gap - Simulated (left) vs real (right) image [20]

2.2.3 Common synthetic data generation tools

This research work focuses on using such photorealistic synthetic data generation tool
for generating ground truth data for training the pose estimation model. Here is a brief
overview of popular tools used for this purpose:

BlenderProc2:

BlenderProc2 [13] is a procedural pipeline designed by DLR-RM (Deutsches Zentrum für
Luft- und Raumfahrt - Institute für Robotik und Mechatronik) for generating photoreal-
istic annotated images. The entire code is released open-source [12] and uses the popular
open-source 3D graphics software Blender as it’s simulation engine. It supports various
label formats like bounding box, segmentation masks, depth maps, normal, and pose esti-
mation. A key feature is its easy-to-use Python API, which is extendable and compatible
with public datasets like 3D FRONT, ShapeNet and BOP. Furthermore specifically for
BOP benchmark, joint team between BlenderProc team and BOP organizers resulted
in BlenderProc4BOP, an open-source, light-weight, procedural and photorealistic (PBR)
renderer. The renderer was used to render 50K training images for each of the seven core
datasets of the BOP Challenge 2020 [12].

NViSII:

NViSII [33] is a python scriptable photorealistic rendering engine built by Nvidia Research
for research in computer vision. This utilizes Nvidia’s OptiX hardware-accelerated path
tracing and AI denoiser C++/CUDA backend to generate high-quality synthetic data to
reduce the sim-to-real transfer in situations that are challenging for traditional renderers.
This tool facilitates the creation and modification of intricate dynamic 3D environments,
encompassing elements like object meshes, materials, textures, and lighting, as well as
complex features such as volumetric data. Additionally, it can generate various annotation
types, including 2D and 3D bounding boxes, segmentation masks, depth and normal maps,
material characteristics, and optical flow vectors (see figure 9).
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Figure 9: NViSII sample rendering [33]

Despite having very realistic rendering possibilities, to model different sensors and get
annotated 6D label data with the above mentioned two tools, they are only renderers
with very limited object manipulation capabilities. They cannot be used to build full-
fledged simulations to create a digital twin, along with the necessary functions to interact
with robots mimicking real world physics. This research works is based on concept of
building the digital twin simulation and exploring if the data directly from the digital
twin is enough for training pose estimation models. For this purpose, we are using the
new and shiny simulation engine from Nvidia, the Isaac Sim.

NVIDIA Isaac Sim:

NVIDIA Omniverse Isaac Sim (hereby referred to as Isaac Sim) is an advanced robotics
simulator that offers seamless integration with NVIDIA hardware and software, providing
robust support for high-speed, GPU-accelerated simulation and AI training. Isaac Sim is
based on NVIDIA Omniverse engine - A platform strongly connected with Pixar’s open-
source Universal Scene Description, or USD for short, to build virtual environments. This
engine inherently provides realistic physics and photorealistic simulations that closely
reflect the properties of the real world, and has software integration with popular robotic
libraries like ROS1 and ROS2, making it an ideal simulator for the development of AI-
enabled robotics applications.

There are three main ways of working with Isaac Sim: Standalone scripting using Python,
Extensions or using the graphical interface. Graphical interface is the most convenient
and intuitive way to interact with the simulation. One can create scenes, shapes, meshes,
cameras and visually observe the changes that are being made. For more complex actions
or behaviors, Isaac Sim provides a node based visual programming framework called
OmniGraph. It provides a lot of pre-built nodes for many functions, like simulation
timeline control, robotics controlers, sensor capture, among others. Custom nodes could
be built as well, using the graphical interface or with Python. While this GUI and
node based editing can tackle a lot of complex functions, not every possible function can
be easily developed this way and there is no way to separate the code logic from the
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Figure 10: Nvidia Isaac Sim - Replicator visualization [35]

actual assets, since they are all combined in one, typically big, .usd file - This is not
version control (like Git) friendly and hinders the collaborative working between different
software developers working on the same scene.

As a result, Isaac Sim also provides an Python/C++ API (Application Programming
Interface) called Omniverse Kit to script scenes and interact with objects, sensors as
well extract properties from them during simulation. This is useful for moving object,
cameras, changing lighting in the scene, change materials on objects and also log data
from simulations robot’s position or orientation. If required, every aspect of the simulation
can be completely controlled via API alone.

The last but most essential workflow are extensions. All widgets and tools for Isaac Sim are
built as extensions and they provide both scripting as well as GUI functionality to access
Omniverse Kit API. They are inherently asynchronous and can run without blocking
physics or rendering timelines. Every extension could designed with user-interfacebale
widgets like checkboxes, buttons, dropdown menus or text boxes and are designed to
one specific task only. NVIDIA provides enough sample examples of extensions to know
about it’s working and specifically for robotics and synthetic data generation as well. With
custom extension creator, Isaac Sim automatically generates the basic template files for
further development. Developing logic in extensions is more complex and involved process;
also partly contributed to asynchronous program flow.

For the specialized task of generating synthetic data tailored to robotics, NVIDIA offers an
array of extensions, Python APIs, workflows, and tools, collectively known as Replicator,
as illustrated in figure 10. This tool allows to generate high-quality production ready
synthetic data with structured domain randomization from multiple sensors and label
formats. Replicator is the most vital tool from Isaac Sim used in this research work. This
has been used extensively to load the object of interest, modify the position of cameras,
lighting, adjusting the label format to our desired format, among others, completely
through it’s python API (see figure 11)
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Figure 11: Sample workflow with Replicator [8]

2.3 Related works

Domain gap or realism gap, is a very well known problem with synthetic only simulations
and computer vision models trained from purely synthetic data faces significant challenges
adapting to realworld data. This section discusses the existing researches in these fields,
with specific focus on industrial use cases.

2.3.1 Domain randomization

Domain randomization (DR) stems from the idea that training models on synthetic data
with enough variability that the real world may appear to the model as just another
variation. Extensive research has been conducted in this field, specifically for robotics.
According to this paper from Tobin et al. [42], the important factors that help improve
accuracy of object detection models trained purely from synthetic data are:

1. Using distractor objects

2. Significant number of different textures

3. Randomization in camera positions

4. Usage of pretrained backbone

5. Having more than 5000 images

Vanherle et al. [45] supplements the above findings and further establishes that having
randomized lighting and poses of the objects help improve the object detection’s accuracy,
and including real labelled images along with synthetic data helps in improving the overall
accuracy. Sundermeyer et al. [41] used a similar DR approach with Autoencoders for
training object detection and 6D pose estimation models, achieving competitive results
in T-LESS [21] and LineMOD [17] datasets. Quentin et al. [38] also utilized DR to train
the GDR-Net 6D pose estimator for identifying automotive industrial parts, noting the
approach’s promise but also its current shortfall in meeting industry standards. One basic
aspect of the above mentioned domain-randomized paradigms depends on using a lot of
data to have sufficient variety for the model to learn from, and doesn’t account for any
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known aspect of the required scene. Shrinking the DR variety based on the structure
and context of the scene, known as structured domain randomized (SDR) was introduced
by [37] and performed better than techniques that only used DR synthetic data, and in
some cases, techniques that utilized real data from a different domain. This research also
established that amount of data to achieve good accuracy is significantly less than DR and
most important factors that affect the accuracy are contrast, saturation and context.

Following these footsteps, the industrial domain-randomized dataset is based on the con-
cept of SDR, whereby the distractors and the base environment resembles the expected
industrial setting. The only deviation from [37] is the completely random poses used in
the dataset, but all the other important observations from the above research findings are
incorporated in generating this dataset.

2.3.2 Photorealistic rendering

In contrast to DR, photorealistic rendering strives to closely mimic real-world environ-
ments, with limited randomization in parameters such as lighting and the virtual camera’s
position. According to Hodaň et al. [22], using highly photorealistic Physically Based
Rendering (PBR) technique and producing realistic object poses, has been validated as
an effective method for training object detectors - Hodaň is also a leading contributor
of BOP challenge and used similar methodology as mentioned in the above paper with
BlenderProc for generating PBR images for the BOP dataset. This approach demon-
strates a significant enhancement in performance compared to the baseline established
by Hinterstoisser et al. [19], who utilized OpenGL for rendering objects onto cluttered
real background images. Specifically, the use of realistic scenes resulted in an up to 24%
improvement in mean average precision (mAP). Additionally, the role of contextual rele-
vance was assessed: placing objects in a scene that accurately reflects the test data setup
yielded up to a 16% improvement in mAP, compared to scenarios where the context was
misaligned with the test setup.

Focusing on industrial object detection, Eversberg, L et al. [15] conducted a comparison
between Domain Accurate (DA) PBR dataset and Domain Randomization (DR) dataset
in the context of a Faster R-CNN based detector. Their research indicated that while
DR’s randomized backgrounds and distractors significantly outperformed DA, suggest-
ing that realistic backgrounds or distractors might not be essential, the realistic object
textures and lighting conditions in DA were impactful. However, they also found that
random textures in DR yielded similar results, highlighting the significance of variability
in datasets. Ultimately, they concluded that datasets rendered with photorealistic DA do
not show marked advantages over DR.

Conversely, Weisenböhler et.al [47] systematically demonstrated the superiority of scene
engineered (or digital twin) dataset, specifically in industrial use cases with well known and
comparatively static properties, in comparison to completely DR datasets across multiple
known and unknown scenes for object detection. Significant gain in accuracy was observed
by using realistic textures, realistic camera poses, physically plausible item placements.
Furthermore, they observed the importance of having strong randomizations in lighting
conditions, which resulted in gain in accuracy across all their evaluated datasets.
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Building upon the findings of [47], the digital twin dataset developed in this research
incorporates critical elements such as realistic textures, object poses, placements, and
notably, randomized lighting intensity.

2.4 Research gap

Drawing insights from leading research in synthetic data generation, as outlined in section
2.3, there appears to be a gap in studies specifically exploring the use of digital twin
datasets with realistic textures and objects for 6D pose estimation tasks. While [15]
suggests that such datasets offer no significant advantage for industrial object detection,
both [47] and [22] demonstrate notable improvements from these datasets. Although
these findings were not exclusively for 6D pose estimation, they share core similarities
with this task, being grounded in CNN-based computer vision networks and standard
training methodologies. Leveraging the learnings and optimized parameters from these
studies, this research utilizes an existing digital twin to generate a 6D pose estimation
dataset, featuring realistic camera poses and randomized lighting intensity. The impact
of this dataset is evaluated with our 6D pose estimation pipeline (Mask R-CNN + GDR-
NPP), following the approach of [38]. Additionally, this study compares a semi-structured
domain randomized (SDR) dataset, proven by [37] to outperform DR datasets, against
the digital twin dataset in an industrial context with relevant distractors. As [45] and
[38] indicates the potential of mixing a small number of real images with synthetic data
for enhanced performance, a similar approach is adopted in this research. However, there
remains a research gap in comparing the impact of real images between structured domain
randomized and digital twin datasets. This work aims to fill that gap, developing a setup
to evaluate and answer the above questions.
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3 Methodology

This chapter delves into the systematic approach employed in this research. It starts by
providing an in-depth description of the specific industrial use case under consideration.
The chapter comprehensively outlines the processes involved in synthetic data generation,
including the creation of an industrial domain randomized dataset and a digital twin
dataset. It also covers the aspects of real data generation, highlighting the methods of
data collection and labeling. Additionally, the chapter elaborates on the training tools
utilized, specifically Mask R-CNN and GDR-NPP, and concludes with a section on the
experiment setups designed to investigate the research question.

3.1 Usecase

The 6D pose estimator investigated as part of this research work is intended to be used a
specific logistics usecase inside BMW factory and this section gives brief overlook about
it. The perception system is a part of internal robotics platform based on ROS2 for
colloborative robots specifically focussing on picking-placing and palletizing application.
There are multiple modules covering different aspects of robots: Motion planning, grasp-
ing, connectivity, decision making, perception, among others. All the modules should be
generic - it should be able to work with wide variety of hardware and industrial parts. As
a result, the 6D pose estimator should also be developed in a way that it can be trained on
new objects with relative ease. This entire stack is run on custom built PC with industrial
housing with a higher-end Intel CPU and a powerful RTX 40 series graphics card.

This research work involves itself with a specific usecase utilizing this robotics platform
to achieve the following goal: Grasp an automotive part from a sliding flowrack and
place it on a conveyor belt. This automotive part is a rear door hinge found in certain
BMW models and it is asymmetrical for left-side and right-side of the door (see figure
12). The hinge weighs around 2.5kg measuring 36.7 cm end-to-end. In it’s entirety has 11
unique parts but could be grouped into two distinct groups: Body and the head. Body is
fully cast iron with slight shade of blue and the head is shiny metallic part that rotates
along a pivot - Allowing the rear door to close and open (see figure 13). Apart from
the structural difference between left and right hinges, all their material properties are
completely identical to each other - and identical between the hinges themselves. These
hinges are loaded into a custom designed flowrack by humans at one end and there are
steel rods located in a inclined orientation facing downwards, so that the hinges naturally
slide down one-after-another. At the end of the rods, there are brackets to hold the final
hinge in position suitable for grasping by the robot. Each flowrack holds equal number
of left and right hinges (see figure 14).

A 6-axis colloborative robot (abbreviated as "cobot") from Universal Robots URx series
[3] is being used with a custom gripper to grasp on the holes present on the lower body of
the hinge. A Framos D435e, a Intel Realsense D435 based camera with industrial housing
(see figure 15), with a custom mounting bracket is attached to the last joint of the robot
(end-effector). This camera consists of an IR (Infrared) active stereo imagers for depth
sensing and a separate RGB camera for capturing color data. The robot is placed within
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Figure 12: Left and right hinge

one meter distance to the flowrack.
The robot is required to operate in sync with the high-speed cycle typical of logistics
and factory settings. Consequently, detection of the part must be completed within one
second or less. This constraint emphasizes the critical need for a fast and precise 6D pose
estimation algorithm.

3.2 Synthetic data generation

This section explains the generation of Industrial domain randomized dataset and Digital
twin dataset using Nvidia Isaac Sim.

A basic setup of the above mentioned scene was already developed in Isaac Sim and
made available prior to the beginning of this research work (see figure 16). This setup
was intended to create a digital twin for testing various pipeline aspects. It featured a
simulated warehouse environment, including a conveyor belt with industrial fencing and a
UR10 robot model atop a base column. The scene additionally included basic, unshaded
models of the flowrack and the hinges.

3.2.1 Base setup

A local workstation with i9 13900K CPU, 128GB RAM and state-of-the-art machine
learning GPU, RTX 6000 Ada graphics with 48GB VRAM, running on Linux (Ubuntu
20.04) is primarily used for this thesis. A standard version of Nvidia Isaac Sim (Version:
2023.1) was installed [5] and used. Isaac Sim comes with it’s own packaged version of
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Figure 13: Open hinge

python and Visual Studio Code (VSCode) was chosen as the code editor to work with the
python files.

Updating hinge model
3D CAD file for the hinge model (both left and right) was readily made available in STL
file format, a common file format for saving 3D models [7]. Even though this file format
could be directly loaded into Isaac Sim, there were number of challenges:

• Incorrect origin: The STL CAD file’s initial origin point wasn’t located at the
geometric center, leading to an offset during hinge movement. Subsequently, when
local rotations are applied, the hinge rotates about this off-center point, resulting
in abnormal rotations. This situation is both undesirable and counterintuitive.
Solution: Using the open-source 3D modelling software Blender [10], the entire
mesh of the model was easily centered to it’s geometry.

• Incorrect rotation: The STL CAD file for the right hinge had a default rotation
of 90 degree along x-axis (essentially lying on the x-y plane surface) while left hinge
didn’t have this. This is also undesirable, as the pose writer (later explained) relies
on the data from the CAD model, and applies an offset of 90 degree to right hinge
while saving the data, even though it looks perfectly fine in the camera images.
Solution: Again using Blender to apply the counter-rotation along x-axis to match
the left-hinge.

• Lack of materials: STL format only stores the surface geometry of 3D dimensional
objects - No color or texture information are stored as part of it. The exact materials
for the hinge were roughly known but no information was available about the exact
color of the parts. The color information was approximated with the help of image
color picker from pictures of the hinge. The STL file contains a lot of submeshes -
As mentioned previously, the hinge is made up of 11 unique parts - including many
invisible screws, nuts, bolts and washers between them. When inspected from all
the different angles, only 6 visually distinct parts are observed (see figure 17):
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Figure 14: Partial flowrack with few hinges

Figure 15: Framos Realsense D435

– Blue iron-cast hinge body

– Chromic reflective bob on the hinge body

– Shiny hammered metallic hinge head

– Pivot bolt between the hinge head and hinge body

– Golden translucent plastic tape on the hinge’s head

– Screws holding the plastic tape to the hinge’s head

All the submeshes are grouped into these 6 parts alone and the remaining meshes
are not visible and hence merged with next closest meshes. After this, realistic ma-
terials were added to the submeshes. In the world of 3D rendering, PBR materials
are a complex combination of multiple properties like color, reflectivity, roughness,
texture, displacement maps, among others. Different 3D softwares have their own
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Figure 16: Initial usecase scene in Isaac Sim

Figure 17: Different parts of the hinge

interpretations of material properties. The material properties were initially metic-
ulously modelled in Blender but when exported as .usd and loaded back into Isaac
Sim, these materials were not accurately reflected. Isaac Sim has a plugin for Blender
to export materials properly in OmniPBR format (Isaac Sim’s internal material rep-
resentation) but this plugin was not available for Linux at that time. As a result,
materials were once again applied in Isaac Sim itself. Here, thanks to the VRay
Material library (see figure 18) - Available as a part of Isaac Sim’s readily available
Assets - had lot of realistic metal materials like cast iron, chrome, among others
which closely reflected the hinge properties. Following numerous experiments with
various materials from the VRay library, we ultimately achieved a highly realistic
representation of the hinge (see figure 19).

• Lack of physics: As mentioned earlier, Isaac Sim has advanced physics capabilities
and can reflect real world friction, weight, collisions, among other properties. Having
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Figure 18: Different PBR materials in VRay material library

Figure 19: Hinge CAD model vs Final hinge with all materials

accurate physics is important for digital twin simulation and consequently for data
generation out of this simulation. When objects are added to Isaac Sim simulation,
they are only visual objects and no physics properties are associated with them.
These properties must be explicitly defined for our custom object - Hinge. Through
the object properties panel, "Rigid body physics with colliders preset" is added
to the hinge. "Rigid body" refers to objects in simulation that have mass and
are affected by external forces like gravity. "Colliders" adds collision meshes to
the hinge and allow it to properly collide/interact with other objects it comes in
contact with. They are multiple types of collider meshes available with varying
degrees of precision. The more precise the collider meshes, the more accurate the
collision behavior but at a significant computational cost. Due to the very unique
and branch-like structure of the hinge, simple triangular mesh approximation is
not accurate enough for precise collisions. As a result, more accurate SDF (Signed
Distance field) meshes are being used. The mass of the object is set to 2.5 kg and
since only the body part of the hinge will be sliding on the rods and interacted while
grasping, material friction is only assigned to this submesh.

Apart from left-right asymmetric structures, both the hinges are identical in all the prop-
erties. Hence, this research work focuses only on using the right hinge (this will be referred
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to simply as "hinge" for the remaining research work) data generation and testing pur-
poses, with the understanding that all the below findings should similarly apply for the
left hinge as well.

Updating flowrack model
The flowrack model present initially in the scene was originally imported from a STL
CAD file and lacked any material information or physics, just like the hinge. Following
the same process of adding material to hinge, the original flowrack was inspected visually,
all the visually relevant parts (The frame, the steel rods, the holding brackets and their
bolts) were assigned to the materials from the VRay library (see figure 20). For physics,
the only interacting part with the flowrack are the steel rods and the final holding bracket
at the end - Collision meshes and appropriate friction values were assigned only to these
parts to reduce unnecessary computational overhead.

Figure 20: Flowrack with PBR materials

Replicator pipeline
The data generation for both the datasets takes place through offline scripts that inter-
face through Isaac Sim’s inbuilt python and not through any asynchronous extensions.
To generate photorealistic images, the Path-traced Renderer is utilized, processing 40
subframes for each image. Although this renderer is slower compared to the standard
real-time renderer, it excels in producing more realistic lighting effects within the scene.
Subframes serve as a technique to aggregate multiple frames over time, which enhances
the overall image quality. This accumulation method effectively reduces noise and arti-
facts, and contributes to achieving a more accurate representation of lighting. Scripts for
generating Industrial domain randomized dataset and Digital twin dataset have slightly
different program flow but overall follow the standard structure:

1. In the first part of the script, the Isaac Sim software is started and the necessary
python libraries are loaded. This includes omni.Kit, openUSD and replicator library.

2. Then, all the necessary assets are loaded: The environment and required objects.
The path of .usd files for the assets are given and then loaded through Isaac Sim’s
API.
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3. Afterwards, a replicator camera with explicit camera properties (focal length, aper-
ture, look-at points) is created. This is just like any other camera in the simulation
but with an replicator wrapper. Multiple cameras can also be initiated. Once the
cameras are initiated, they are assigned as render_product along with desired res-
olution - in our case 1280x720 (or commonly referred to as 720p) with focal length
equivalent to the Realsense D435 camera. This signifies to the replicator the re-
quirement for data generation using this particular camera, and hence, integrates
the camera into the replicator’s OmniGraph.

4. Once all the necessary items are created, a replicator pipeline (a type of OmniGraph)
has to be initialized. In this pipeline, all the relevant parameters for synthetic
data generation are defined: Number of frames, different types of randomizations
and data writing format. Replicator’s "Randomizers" offer multiple off-the shelf
functionality to randomize the basic properties like position/orientation of an object,
material properties, textures, lighting in the scene and any custom randomization
could be written. With replicator group API, multiple objects could be grouped
on the basis of their name or properties and these randomizations could be applied
to all of them at once. These randomizations are especially useful for Industrial
Domain Randomized dataset.

5. For saving the labelled data, replicator provides the "Writer" functionality. A writer
specifies the format of data storage and what labels should be generated - RGB,
semantic segmentation, instance, depth map, among others. There are multiple
standard writers existing as part of replicator - BasicWriter, KiTTiWriter, YCB-
VWriter and DOPE Writer. Creating custom writers to output data in arbitrary
types are also supported. YCBV Writer outputs data in YCB 6D pose estimation
dataset format and it is one of the datasets used in BOP challenge. A modified
version of this writer to including the following changes were used in this research
work:

• Inclusion of instance segmentation maps : The original writer had only semantic
segmentation annotation data and this is not enough to uniquely identify the
individual hinges. Consequently, Instance segmentation annotation format was
added to the writer.

• Unnormalized depth maps : The original writer output depth maps that were
normalized between 0 to 255 for easy visualization purpose. However, the
pipeline used in this research work requires depth values in millimeters. Con-
sequently this normalization is removed and scaled from meters to millimeters.

When these randomizers and writer are defined in the code, they are registered indi-
vidually into an OmniGraph. The number of frames to be generated is input as a CLI
(Command line-input) argument and the OmniGraph is iterated in a loop accordingly.

3.2.2 Industrial domain randomized dataset

This dataset, as mentioned before, contains the hinges in an industrial background with
industrial distractors randomly placed through the environment. Generation of dataset
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was heavily inspired from Nvidia AI-IOT pallet-jack synthetic data generation tutorial
[4]. The industrial background is "Warehouse with forklifts" (see figure 21) - One of the
sample environments available as part of Isaac assets.

Figure 21: Warehouse with forklifts base environment

In this scene, the following distractors are spawned and randomly placed on the ground
surface: Palletjacks, cones, wet floor signs, barrels, bottles, cardboard boxes, pushcarts,
crates and rackpiles (see figure 22). No flowrack or robots are spawned in this specific
scene.

Figure 22: Sample random assets spawned in the scene [4]

Furthermore, the materials for the floor and wall surfaces are randomly generated from a
new OmniPBR material, featuring varying levels of roughness, metallic properties, diffu-
sion, and emission characteristics. Additionally, the image textures for these surfaces are
randomly selected from the Isaac Materials library. The entire warehouse is illuminated
by one invisible rectangular light source - Color and intensity of this light source is also
completely randomized. 5 hinges are spawned in the center of the warehouse in a square
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region of 0.6x0.6m with height varying from 0.3 to 0.5m with random rotations between
0 and 360 degree (on all axes). The camera’s position is randomized to be also within the
center square region of 0.8x0.8m with it’s orientation always pointing towards the center
of the warehouse. This ensures that the camera is at maximum 1.4m from the hinge,
similar to the planned usecase and it sufficiently focuses on the 5 hinges in most of the
images.

No rigid body physics or collision interactions are enabled for the hinges; instead, they
are positioned to float at randomized heights in various locations. This design choice
stems from the dataset’s primary goal: to enable the pose estimator network(s) to learn
features pertinent to the industrial domain and its inherent randomizations. Enabling
rigid body physics results in hinges frequently falling onto the ground or occasionally
onto distractors. This limits the variety of images, as they predominantly feature hinges
with the ground in the background, leading to an underutilization of the scene’s potential
diversity. Although randomizing ground surfaces introduces new features for the network
to learn, this approach risks reducing the dataset to one with mere background variations
and no occlusions, thereby deviating from this thesis’s core focus.

See figure 23 for sample images from this dataset.

Figure 23: Sample images - Industrial domain randomized dataset

3.2.3 Digital twin dataset

This dataset is designed to closely reflect the real world usecase and consequently, uses the
same digital twin simulation scene with the updated hinges and flowrack model. Rigid
body collisions were enabled to allow the hinges slide into the flowrack naturally and
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have authentic collision with other hinges. Given that simulating physics and collisions
for numerous hinges is computationally intensive and time-consuming, a strategy was
employed to mitigate this. Once the hinges settled into their final positions, these static
locations were captured and saved in a new USD file. This file was then utilized for
subsequent data generation, avoiding the need to repeat the simulation for each new
frame.

All the randomizations were turned off except for the light intensity and camera positions.
Given the inherent unpredictability of real-world lighting conditions, the experiment var-
ied only the intensity of three fixed overhead lights, maintaining a consistent color. For
camera placement, three strategic regions were identified using simulation. These included
two regions to match expected data capture orientations, one at the top and another at
the bottom row of the flowrack, and a third region along the side of the flowrack. Each
region was defined as a 3-dimensional cuboid, characterized by eight vertices with specific
coordinates along the x, y, and z axes. In these regions, a significant number of potential
camera spawn points were generated to simulate a variety of realistic camera positions. To
ensure comprehensive coverage, each region was captured by a separate camera, resulting
in a total of three cameras capturing the scene in each frame. To ensure all relevant
hinges fell within the camera’s field of view, an arbitrary ’look-at’ point was manually
identified and assigned to each camera. During the generation of each frame, cameras
are randomly positioned at one of the pre-determined spawn points, maintaining their
respective look-at points. See figure 24 for sample images from this dataset.

Figure 24: Sample images - Digital twin dataset
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3.3 Real data generation

This section dives into the process of collecting the data from the real world and annotating
it with 6D pose and mask labels.

3.3.1 Data collection

To ensure consistency with the real world usecase, a Framos realsense D435 camera, akin
to the one employed in the use case, was utilized for capturing real-world data. The
resolution used for capturing RGB-D data matches that of the synthetic dataset, set
at 1280x720. The data is captured using a modified version of lcm-logger present in
Labelfusion [38]. This logger works with ROS2 and saves synchronized RGB-D data from
the camera at 30 FPS (Frames per second). To make it easy to carry around and operate,
the Framos camera was attached to a Ubuntu based laptop and the lcm-logger ran in a
docker containerized environment in this laptop for data capture.

Since LabelFusion uses SLAM based reconstruction of the entire scene, it is crucial to cap-
ture smooth, jerk-free and stable footage from the camera. The chosen Framos Realsense
camera, unlike modern smartphones [39], lacks built-in optical or electronic stabilization,
thus requiring external means to achieve steadiness. An attempt was made to use the DJI
Osmo Mobile 3 Gimbal [6], a well-known smartphone stabilizer, for this purpose. However,
the camera’s light weight, combined with disturbances caused by the movement of the
attached USB-C cable, rendered the gimbal ineffective for stabilization in this context.

A total of 6 scenes were recorded. 5 of these scenes were obtained using a hand-held cam-
era, employing slow and steady movements. In contrast, the 6th scene was captured with
the camera mounted on the robot’s end-effector, which enabled precise movements. Each
scene was recorded for a duration ranging from 30 to 60 seconds, yielding approximately
900 to 1800 frames per scene. The captured scenes include:

1. Scene 1: This scene contained one hinge lying on the side on a work desk. The
camera was steadily moved by hand to cover all possible angles of the hinge.

2. Scene 2: This scene contained one hinge placed inverted on custom 3D printed
bracket, replicating the conveyor belt. A smooth motion surrounding all sides of
the hinge was used to capture the footage.

3. Scene 3: This scene had a very basic replica of the flowrack constructed using alu-
minium tubes and steel pipes. This was constructed to have a sample flowrack that
could be used to verify the expected orientation of the robot for possible grasping.
A simple arc-like motion with camera looking on to the hinges from the bottom part
was used for capturing the footage.

4. Scene 4: The flowrack matching the usecase was made available towards the later
part of thesis work and one video capturing the hinges from the various angles were
shot using hand movement. This scene contained 5 hinges in total
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5. Scene 5: 2 footages were captured with camera attached to robot’s end-effector
and controlled to move in-front of hinges in a slow and steady fashion. These scenes
also contained 5 hinges in total.

6. Scene 6 (Test data): This is also a footage from the flowrack but at a different
position/lighting condition captured with hand. This scene also contained 5 hinges
in total. This footage is exclusively used for evaluating the accuracy of the models.

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

(e) Scene 5 (f) Scene 6 (Test data)

Figure 25: Sample images - Collected scenes
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3.3.2 Data labelling

The collected footages (from section 3.3.1) are then trimmed to remove any unwanted or
repetitive sections with no motion. Then, all the steps as mentioned in section 2.1.4 for
labelfusion are followed:

1. The trimmed data is then processed by ElasticFusion, a SLAM-based point cloud
reconstruction algorithm. Smooth motion is crucial for this algorithm as it depends
on consistently tracking distinct environmental features over time to accurately es-
timate the system’s motion and construct a map. Jerky movements disrupt this
process by rapidly altering the camera’s viewpoint, thereby hindering the reliable
tracking of features across successive frames. Moreover, SLAM systems naturally
accumulate errors over time, and abrupt, unpredictable movements amplify this,
resulting in significant deviations from the actual path and map distortions. A crit-
ical component of SLAM is loop closure, which corrects these accumulated errors by
identifying previously visited areas. However, jerky motions can obstruct effective
loop closure by altering the perceived appearance of these locations due to sudden
perspective shifts. In footages captured by hand, even minor jerkiness led to slight
distortions in the reconstructed point cloud. Interestingly, attempting loop closure
in these scenarios often exacerbated the distortion. Consequently, such footage was
selectively trimmed to exclude segments where loop closure occurred.

2. Then the reconstructed pointcloud is loaded into labelfusion. Here, three key steps
are done:

a) Orient the pointcloud: The pointcloud from SLAM is rotated arbitrarily. This
needs to be first rotated so that it faces the right side-up.

b) Segment the pointcloud: When capturing a scene with the camera, all the
background stuff in the scene may also get reconstructed and this makes the
pointcloud cluttered to work with. Hence, only the relevant area of the point-
cloud is segmented

c) Object Alignment: Then the preloaded .stl file of the hinge is available as a
3D model and three distinct points should be matched between a single object
in the pointcloud and the 3D model. After this, ICP algorithm is run in an
attempt to try and fit the model to the pointcloud. This returns an initial 6D
pose of the model which is further refined by manually adjusting the translation
and rotational vectors. This step has to be done individually for every single
object in the scene.

3. Then, the annotated segmentations masks and 6D pose estimation data is exported
into a custom labelfusion data format with the corresponding RGB images and
depth maps. Additionally, to facilitate the visualization of labeled poses, the 3D
CAD model is projected onto these poses and saved for each image (see figure 26).
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(a) Scene 1 labelled image (b) Test data labelled image

Figure 26: Sample labelled images with pose projections

3.4 Training tools

This section describes the setting up of the tools for training the networks. Workstations
with same configurations, as used in the synthetic data generation, were also used for
training and testing these networks.

3.4.1 Data conversion

Since Mask R-CNN requires COCO dataset format and GDR-NPP requires BOP dataset
format, both synthetic datasets were converted through python scripts into both the
formats. Very small or highly occluded objects are harder to detect with simple CNN
based networks and hence, a simple filtering strategy was employed to remove highly
occluded objects from the scene based on their visibility ratio and area of their bounding
boxes. Conversion to BOP format was complicated, due to the generation of visible and
complete masks for each object in the scene, which involves projecting the labelled pose
and comparing with depth maps for possible occlusions. For this purpose, an internally
developed set of tools based on BOP toolkit was utilized for proper conversion into BOP
and COCO formats.

3.4.2 Mask R-CNN

An internally developed code-base was used for training this network [38]. This was based
on the popular deep learning framework PyTorch [36] with COCO dataset format [29] was
required for training the network. The necessary tools for evaluating the network across
the vital COCO metrics and for visualizing the outputs were also available.

3.4.3 GDR-NPP

The GitHub repository for the original GDR-NPP [30] was adapted specifically for the
hinge dataset. This included adding the number of training scenes, testing scenes and
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the specific resolution being used. This code-base was based on openMMLab Computer
Vision toolkit (MMCV) [11] which internally depends heavily again on PyTorch frame-
work and required dataset in BOP dataset format. All required dependencies for the
GDR-NPP model were encapsulated within a Docker image. This image was utilized to
conduct training sessions across multiple workstations, ensuring consistency in the base
environment.

Vishal Balaji Bachelor thesis



34

4 Experiments

In this section, the experiment setup required to answer the relevant questions for this
thesis topics is defined:

1. Evaluate the necessity of using physically accurate digital twin based synthetic
dataset in comparison to industrial domain randomized synthetic dataset for train-
ing GDR-NPP 6D pose estimator

2. Evaluate the accuracy gain by mixing real annotated images with the synthetic
dataset

4.1 Data processing

Using the synthetic data generation pipeline mentioned in section 3.2.1, 25000 samples
(includes RGB, depth maps, instance/semantic segmentation masks and pose data) are
generated for each Industrial domain-randomized dataset and Digital twin dataset. As for
the real labeled dataset, it is bifurcated into two distinct sets: a real training set and the
test set. The real training set comprises scenes 1-4 and a limited subset (approximately
10%) of actual flowrack images (scene 5). The foundational concept of this thesis focuses
on leveraging simulation for a hypothetical use case that does not completely exist. Con-
sequently, the data with actual flowrack is only available in limited quantity during the
training phase, thereby relegating it mostly to the test set. The other scenes (scenes 1 -
4), serving as temporary solutions, can be rapidly prototyped in a factory setting and are
therefore included in the real training set. As mentioned earlier in the section 3.3.1, the
test set includes also images from actual flowrack but viewed from a different position and
lighting condition, making it a viable choice for testing the performance of the networks.
Owing to the minimal relative motion between consecutive frames, a sampling strategy
was adopted where only every 10th frame was selected for further analysis for training
data and every 30th frame was selected for test data. This results in total of 376 images
in real training set and 70 for the test set.

4.2 Training details

To evaluate the first research question, Mask R-CNN and GDRNPP algorithms are each
trained solely on Digital twin dataset, Industrial domain-randomized dataset. Then they
are evaluated individually on the test set. To evaluate GDRNPP separately, the bounding
box priors required for cropping into the objects are loaded from ground-truth annotation
data. Then both Mask R-CNN and GDR-NPP are evaluated jointly together. Similarly,
to evaluate the impact of mixing real world data, a comparable training strategy is used.
The primary distinction in this approach is that each synthetic dataset is augmented by
including the real training set as well. This results in 4 total experiments consisting of 8
trainings (see table 1).
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To train Mask R-CNN, A pretrained ResNet50-FPN (Feature Pyramid Network) was
chosen as the backbone. Since pretrained networks don’t need a lot of training steps to
achieve good accuracy, the network was only trained for 50 epochs with batch size 32 at
1280x720 resolution. This resulted in an average training time of 13 hours.

To train GDR-NPP, A pretrained ConvNext-Base [49] backbone was used. All the vital
hyperparameters: learning rate, batch size, image augmentation, backbone, among others
have been left untouched - The only change being the resolution: 1280x720 (Default:
640x480). Similar to the original repository, the network was trained for 50 epochs at a
batch size of 48. This resulted in an average training time of 14 hours.

Exp. No. Model Train dataset
1 GDR-NPP Digital Twin

Mask-RCNN
2 GDR-NPP Industrial Ran.

Mask-RCNN
3 GDR-NPP Digital Twin + Real training set

Mask-RCNN
4 GDR-NPP Industrial Ran. + Real training set

Mask-RCNN

Table 1: Training experiments
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5 Results

This section discusses the necessary metrics to understand the results from the experi-
ments and then dives deep into the insights about it.

5.1 Metrics

To evaluate Mask R-CNN, the common segmentation metrics Average Precision (AP) and
Average Recall (AR) for bounding boxes are being used. Precision refers to the accuracy
of the positive predictions made by the model and Recall refers to the model’s ability to
identify all instances in the scene. Usually, there is a trade-off between precision and recall
- Improving one of them can result in the degradation of another. For Mask R-CNN, the
average precision is calculated by averaging the precision across different IoU thresholds
(0.5 and 0.5 to 0.95) over all samples. Similarily, the average recall at 0.5-0.95 is average
of recall values for 100 detections across different IoU thresholds (0.5 to 0.95). Detections
with scores below the threshold of 0.4 were excluded, as this value was established as the
minimum acceptable score.

For GDR-NPP, this precision and recall is calculated at the distance thresholds 0.7cm,
1cm, 2cm, 5cm and 10cm for ADD and MDD separately. A detection is considered to
be true positive if distance error is below the threshold and matches with a ground truth
pose. Conversely, if it matches with a ground truth pose and lies above the error threshold
or if it does not match with any ground pose, it is considered false positive. If a ground
truth pose is not matched at all or only match with detections above the error threshold,
it is considered as false negative. These evaluations metrics were directly adopted from
this paper [38].

5.2 Discussion

This subsection discusses the results as observed from the training runs. In each column
of the table, the highest value is highlighted with a pale green background. The name of
the training runs are abbreviated as follows:

Dataset Abbreviation
Industrial domain randomized Ind.DR
Digital Twin Dig.Twin
Industrial Ran. + Real training set Ind.DR + R
Digital Twin + Real training set Dig.Twin + R

Table 2: Abbreviated dataset names
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5.2.1 Only Mask R-CNN

In Table 3, we summarize all accuracy metrics, along with the respective epochs at which
these accuracies were measured. Among the synthetic datasets evaluated, the Dig. Twin
dataset achieves the highest accuracy by a considerable margin. This suggests that the
hinge positions within the Dig. Twin dataset closely reflect those in real-world scenarios,
allowing the Mask R-CNN to learn more representative features effectively. When the
datasets are mixed with real images, the Ind.DR+R dataset exhibits higher accuracy
in AP@0.5. However, for both AP@0.5-0.95 and AR@0.5-0.95 metrics, the Ind.DR + R
dataset shows only a marginal increase in accuracy compared to the Dig.Twin + R dataset.
The distinctions between these datasets in terms of performance can be more clearly
visualized in figure 27. An intriguing observation emerges when considering the number of
epochs required to attain the highest accuracy. For both synthetic datasets, peak accuracy
is achieved as early as the first epoch. This indicates that the pre-trained features of the
backbone contribute significantly to rapid generalization to the given dataset. In contrast,
when the datasets are combined with real images, the network necessitates more epochs to
adapt and learn the intricate features. This distinction is particularly noteworthy, given
the potential for labeling errors in the mixed datasets.

Dataset Epoch AP@0.5 AP@0.5-0.95 AR@0.5-0.95
Ind.DR. 1 0.149 0.044 0.111
Dig.Twin 1 0.199 0.112 0.127
Ind.DR + R 23 0.577 0.429 0.473
Dig.Twin + R 37 0.550 0.425 0.465

Table 3: Mask R-CNN training results

Figure 27: Mask R-CNN evaluation
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However, the accuracy levels obtained from all the datasets currently do not meet the
high standards required for effective and reliable implementation in industrial logistics.

5.2.2 Only GDR-NPP

In tables 4 and 5, the performance metrics for ADD and MDD evaluations at various
thresholds are presented, focusing solely on the GDR-NPP model. As previously men-
tioned, these evaluations utilize ground-truth bounding boxes from the original annota-
tion files to infer 6D poses. When considering results using synthetic datasets alone, the
Ind.DR dataset significantly outperforms the Dig.Twin dataset. This superior perfor-
mance can be attributed to the wider range of poses in the Ind.DR dataset, where hinges
are represented in a broad spectrum of orientations, thereby providing a richer learning
experience for the network. This trend persists when the datasets are mixed with real
data, with Ind.DR + R outperforming Dig.Twin + R, for reasons consistent with the
synthetic data analysis.

The evaluation of the MDD Error, which is inherently more challenging but particularly
important for this usecase, reveals that even the best-performing dataset, Ind.DR+R, falls
short of the required accuracy at 0.7cm and 1cm thresholds for applications in robotic
grasping.

Dataset 0.7cm 1cm 2cm 5cm 10cm
AP AR AP AR AP AR AP AR AP AR

Ind.DR 0.007 0.007 0.014 0.015 0.144 0.242 0.627 0.706 0.877 0.908
Dig.Twin 0.000 0.000 0.000 0.000 0.030 0.047 0.314 0.439 0.679 0.809
Ind.DR + R 0.011 0.024 0.060 0.133 0.387 0.569 0.880 0.934 0.981 0.990
Dig.Twin + R 0.000 0.000 0.000 0.000 0.113 0.208 0.833 0.914 0.946 0.966

Table 4: Only GDRNPP - ADD error threshold evaluation

Dataset 0.7cm 1cm 2cm 5cm 10cm
AP AR AP AR AP AR AP AR AP AR

Ind.DR 0.000 0.000 0.000 0.000 0.017 0.022 0.353 0.487 0.798 0.845
Dig.Twin 0.000 0.000 0.000 0.000 0.003 0.006 0.084 0.131 0.315 0.434
Ind.DR + R 0.000 0.000 0.004 0.007 0.072 0.147 0.632 0.772 0.896 0.950
Dig.Twin + R 0.000 0.000 0.000 0.000 0.000 0.000 0.364 0.520 0.864 0.918

Table 5: Only GDRNPP - MDD error threshold evaluation
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Figure 28: Only GDRNPP - Average precision (AP)

Figure 29: Only GDRNPP - Average recall (AR)

5.2.3 Complete pipeline

In tables 6 and 7, we present the performance metrics for the ADD and MDD evaluations,
specifically focusing on the complete pipeline. In this context, the bounding box priors
for GDR-NPP are derived from the predicted masks generated by Mask R-CNN.
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When analyzing solely the synthetic dataset, it is observed that the Dig.Twin dataset
outperforms the Ind.DR dataset at error thresholds below 2cm for both ADD and MDD
metrics. However, Dig.Twin exhibits lower AR values at error thresholds beyond 2cm.
This trend is consistent across both metrics.

In scenarios where the datasets are combined with real data (Ind.DR + R and Dig.Twin +
R), a distinct pattern emerges. Ind.DR + R demonstrates significantly better performance
than Dig.Twin + R at thresholds under 2cm, and continues to maintain higher AR values
beyond this threshold. The superior performance of Ind.DR + R can be attributed to its
incorporation of fully randomized elements such as lighting and textures, which enhances
the network’s ability to learn a more diverse range of features.

A critical observation is the recording of 0 AP and AR values at MDD thresholds ranging
from 0.7cm to 1cm. This finding underscores a pivotal limitation of the current pipeline’s
applicability in robotic grasping applications; it cannot be reliably employed for precision
tasks. While higher accuracies are noted at larger thresholds (5cm or 10cm), these are not
viable for applications requiring high precision, such as in the case of a hinge measuring
36.7cm end-to-end, where such large errors cannot be deemed acceptable. The AP and
AR data have been clearly visualized in the figures 30 and 31.

Dataset 0.7cm 1cm 2cm 5cm 10cm
AP AR AP AR AP AR AP AR AP AR

Ind.DR 0.000 0.000 0.004 0.010 0.009 0.030 0.196 0.411 0.408 0.577
Dig.Twin 0.000 0.000 0.024 0.010 0.101 0.040 0.226 0.085 0.369 0.141
Ind.DR + R 0.000 0.000 0.051 0.078 0.281 0.386 0.684 0.858 0.789 0.912
Dig.Twin + R 0.000 0.000 0.008 0.010 0.186 0.252 0.733 0.754 0.892 0.863

Table 6: Complete pipeline - ADD error threshold evaluation

Dataset 0.7cm 1cm 2cm 5cm 10cm
AP AR AP AR AP AR AP AR AP AR

Ind.DR 0.000 0.000 0.000 0.000 0.004 0.010 0.088 0.185 0.288 0.486
Dig.Twin 0.000 0.000 0.000 0.000 0.024 0.010 0.122 0.052 0.256 0.095
Ind.DR + R 0.000 0.000 0.000 0.000 0.040 0.081 0.517 0.655 0.711 0.873
Dig.Twin + R 0.000 0.000 0.000 0.000 0.009 0.011 0.390 0.453 0.809 0.802

Table 7: Complete pipeline - MDD error threshold evaluation
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Figure 30: Complete pipeline - Average precision (AP)

Figure 31: Complete pipeline - Average recall (AR)
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(a) Mask R-CNN predictions

(b) GDR-NPP predictions

Figure 32: Sample visualization - Ind.DR + real

5.2.4 Dig.Twin Mask R-CNN and Ind.DR GDR-NPP

In the analysis of the synthetic datasets as detailed in subsections 5.2.1 and 5.2.2, it was
observed that the Dig.Twin dataset yielded higher accuracy when used with Mask R-
CNN, whereas the Ind.DR dataset showed better results with GDR-NPP. This led to the
hypothesis that combining both networks in a single pipeline might result in enhanced
accuracy, surpassing the performance of each individual pipeline.

To test this hypothesis, a specialized pipeline integrating both networks was developed and
its performance was evaluated (refer to table 8). The results of this combined approach
were intriguing. While the Average Precision (AP) values were higher than those achieved
by the purely Ind.DR pipeline, they consistently fell short of the AP values for the pure
Dig.Twin pipeline. On the other hand, the Average Recall (AR) values were superior to
those of the Dig.Twin pipeline for error thresholds above 5cm.
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This behavior suggests that the networks learn distinct features from each dataset. When
combined, the more accurate bounding box predictions from one network potentially aid
the GDR-NPP in achieving slightly more precise regression. However, the combined
pipeline does not outperform the pure Dig.Twin pipeline, possibly because GDR-NPP is
not as adept at handling the features specific to the Dig.Twin dataset. The analysis here
is that while the integration of these networks leads to some improvements in certain
metrics, it does not universally enhance performance across all parameters

Eval Type 0.7cm 1cm 2cm 5cm 10cm
AP AR AP AR AP AR AP AR AP AR

ADD 0.000 0.000 0.012 0.005 0.074 0.035 0.318 0.117 0.357 0.124
MDD 0.000 0.000 0.000 0.000 0.012 0.005 0.164 0.075 0.333 0.117

Table 8: Complete pipeline - Using Dig.Twin Mask R-CNN and Ind.Dr GDRNPP

5.3 Limitations

During the development and testing of this pipeline, many limitations were discovered
and are summarized as follows:

1. Data labelling errors: As mentioned previously in subsection 2.1.4, the recon-
struction of accurate pointcloud and subsequent reprojection of labelled poses (see
figure 33a), heavily depends on the performance of the SLAM algorithm. This algo-
rithm is prone shaky, blurred images, which are inherently created while moving the
camera with hand. Such pose errors could reach up to 1cm, which compromises the
evaluation of the critical detection threshold range of 0.7cm to 1cm. Furthermore,
the mask projected by Labelfusion doesn’t account for the occlusions caused by the
static unlabelled structures in the environment, as a result parts of the hinge are
marked as visible even though they are slightly occluded by the holding brackets
(see figure 33b).

(a) Pose reprojection error (b) Occlusion error

Figure 33: Labelfusion errors
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2. Variable hinge head position: The hinge’s head is designed to move smoothly
around its pivot, as illustrated in figure 13. Consequently, hinges loaded into the
flowrack may exhibit minor positional variations. The CAD model of the hinge,
used in this research work, represents the hinge in a closed state. This static model
is utilized across various stages: labeling real-world data, generating synthetic data,
and training the GDR-NPP network. Variations in the hinge head’s position, par-
ticularly when it is not fully closed, can introduce discrepancies in both the labeled
data and the predicted poses. The entire hinge, inclusive of its head, was selected
based on the hypothesis that a larger surface area and distinctive colors would en-
hance the pipeline’s ability to accurately detect the hinges. A potential resolution
for these discrepancies is to focus exclusively on the static body of the hinge in
future developments.

3. Sim2Real gap: Isaac Sim stands out as one of the leading simulators, known
for producing photorealistic images and accurately simulating physical interactions.
However, it encounters inherent challenges in perfectly mirroring the complexity and
unpredictability of real-world physics and materials. Moreover, simulating more in-
tricate physics scenarios can become prohibitively computationally demanding. For
instance, in creating the digital twin dataset, computational and time constraints
led us to simulate only one scene. This single scene formed the basis for generating
all images in the dataset. This limitation increases the risk of model overfitting to
the relative poses of hinges, potentially leading to the model learning an undesir-
able bias. With additional time and computational resources, it would be possible
to simulate a greater variety of scenes, introducing subtle positional variations in
the hinges. Such variations could potentially enhance the model’s ability to learn
more robust features. Additionally, real-world sensors, including cameras and depth
sensors, often introduce noise and distortions, aspects that are not consistently
replicated in Isaac Sim simulations. This discrepancy presents further challenges in
bridging the gap between simulated and real-world data.

4. Limited training runs: The training runs for this project were conducted only
once due to constraints in time and computational resources. Notably, despite
initializing with pretrained weights, deep learning implementations often exhibit
inherent randomness due to factors in libraries, software stacks [23], and hardware
variations. Such randomness could potentially lead to fluctuations in accuracy across
different training iterations even under identical parameter settings. This aspect of
variability was not explored in the current research, and therefore, the results should
be interpreted with this consideration in mind.
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6 Conclusion

This thesis investigates the feasibility and challenges associated with employing synthetic
data, derived from a digital twin, for 6D pose estimation. It assesses this approach by
comparing its performance with an industrial domain-randomized dataset, with a specific
focus on utilizing Nvidia IsaacSim. The study examines the 6D pose estimation pipeline
involving Mask R-CNN and GDR-NPP, and additionally explores the accuracy improve-
ments achieved by mixing a small proportion of real data into the synthetic dataset.

The key findings of this research can be summarized as follows:

1. Benefits of using data generated from digital twin: This research work shows
that out of the models trained from only synthetic datasets, digital twin dataset
performs better than just industrial domain-randomized dataset for only Mask R-
CNN as well as for the combined pipeline (as seen in 3, 7 and in figure 34). In
the presented graph, we focus solely on the most relevant MDD error thresholds of
0.7cm, 1cm, and 2cm, as previously stated, since larger errors are unacceptable for
this specific use case. It’s also crucial to note the scale of the y-axis; despite the
apparent steep slope, the top-performing digital twin dataset achieves a maximum
AP of just 2%.

Figure 34: Synthetic dataset only comparison

2. Gain in accuracy by mixing by real images: By mixing only a small quantity
of real images (exactly 1.5 %), a significant improvement in accuracy is noticed
along both the datasets - Especially, Industrial domain randomized dataset mixed
with real images consistently across most of the categories.
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Figure 35: Ind.DR dataset - Synthetic only vs Mixed with real comparison

3. Application to robotic grasping: The study revealed a significant limitation in
applying these models to high-precision tasks such as robotic grasping. The accu-
racy levels at lower error thresholds (0.7cm to 1cm) were not sufficient for reliable
deployment in practical applications, particularly in logistics and manufacturing
environments.

4. Challenges and limitations: Despite the advantages, several limitations were
encountered. The most prominent is the Sim2Real gap, where discrepancies between
the simulated and real-world environments led to challenges in model accuracy and
generalization. Additionally, data labeling errors and the variability in hinge head
positions further complicated the model’s accuracy and reliability.

6.1 Future work

Deriving from the limitations and from general observations made during the research
work, the following aspects could be improved in the future:

1. Using better cameras: The present system performs pose regression exclusively
using RGB data. Due to the suboptimal quality of the stereoscopic depth data
obtained from the camera, this information is not utilized for depth-based pose
refinement. Implementing a superior RGB-D sensor, or employing AI-based stereo
depth estimation algorithms [27, 50], could significantly enhance the quality of depth
estimation - This could then be utilized for precise depth based pose refinement.

2. Reducing the Sim2Real gap: The digital twin of the scene has all the vital
elements of the scene but misses considerable number of environmental assets and
most importantly the accurate lighting information from the scene. Furthermore,
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the Framos camera has an inherent level of noise in it’s RGB sensor and this is not
at all reflected in Isaac Sim. A simple-and-cheap trick to overcome this would be to
augment the RGB data with noise speckle, or more complex but accurate method
would be to replicate the physics based noise characteristic in Isaac Sim.

3. Optimizing the network hyperparameters: In this study, the hyperparameters
for both the Mask R-CNN and GDR-NPP networks were kept constant across all
datasets to ensure comparability. However, fine-tuning key hyperparameters such
as learning rate, batch size, and more augmentations [26], along with experimenting
with newer network backbones and more effective loss functions, could potentially
lead to improvements in accuracy.
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