
Technische Hochschule Ingolstadt

Fakultät Informatik
Fachgebiet Bildverstehen und medizinische Anwendung der

künstlichen Intelligenz

On Neural Compression using
Diffusion Autoencoders

Bachelor Thesis

Dominic Rampas

Supervisor: Prof. Dr. Marc Aubreville

Date: January 18, 2024

04.03-8 F.8.12.1. Muster für die Erklärung nach §30 Abs.4 Nr.7 APO THI eng.

Service Center Studienangelegenheiten Seite 1 von 1 Stand 02.10.2023

Speciment for declaration in
Accordance with § 30 Abs. 4 Nr. 7 APO THI

Declaration

I hereby declare that this thesis is my own work, that I have not presented it elsewhere
for examination purposes and that I have not used any sources or aids other than those
stated. I have marked verbatim and indirect quotations as such.

Ingolstadt, ___________
 (Date)

(Signature)
First name, Surname

Dominic Rampas

Abstract

This work presents an examination of using diffusion models to achieve efficient data com-
pression. As diffusion models have become more dominant in areas such as generative
modelling, this work shows that they achieve a strong performance on the task of image-,
and video-compression and outperform classical algorithms, as well as established neural
compression algorithms. This type of model, referred to as Diffusion Autoencoders, is able
to achieve spatial compression factors of 32x, while achieving high quality reconstructions
that even maintain fine details of the input. The bachelor thesis presents a thorough
analysis of individual components of the diffusion autoencoder through extensive exper-
iments, while undermining the solidness of the approach by numerous comparisons and
ablation studies. Additionally, an in-depth overview of related work for classical-, and
neural-compression, diffusion models and evaluation methods is given.

On Neural Compression using Diffusion Autoencoders

Contents

1 Introduction 1

2 Related Work 2
2.1 Compression . 2
2.2 Classical Compression . 4
2.3 Neural Compression . 7
2.4 Diffusion Models . 13

2.4.1 Viewing Diffusion Models through Differential Equations 16
2.4.2 DDPM / DDIM . 17
2.4.3 EDM . 18
2.4.4 Sampling Methods . 19

2.5 Evaluation Metrics . 19
2.5.1 Analytical Evaluation . 20
2.5.2 Neural Evaluation . 21
2.5.3 Human Evaluation . 22

3 Method 23
3.1 Introduction . 23
3.2 Architecture . 24
3.3 Image Compression . 25

3.3.1 Architecture . 25
3.3.2 Diffusion Setup . 26
3.3.3 Training Details . 26
3.3.4 Data . 27

3.4 Video Compression . 28
3.4.1 Architecture . 28
3.4.2 Diffusion Setup . 30
3.4.3 Training Details . 30
3.4.4 Data . 31

4 Evaluation 31
4.1 Image Compression . 31

4.1.1 Hyperparameter-Evaluation . 32

Dominic Rampas Contents 2

4.1.2 Evaluation against other Methods 35
4.1.3 Further Studies . 38

4.2 Video Compression . 39
4.2.1 Hyperparameter-Evaluation . 40
4.2.2 Evaluation against other Methods 41

5 Discussion 43

6 Conclusion 47

A Appendix 48

Literaturverzeichnis 58

On Neural Compression using Diffusion Autoencoders

1 Introduction

This bachelor thesis investigates the topic of data compression from a machine learning
perspective. The key idea being the usage of modern machine learning methods to learn
an efficient method of representing data with less information. This topic has a broad
application spectrum. With the ever-increasing amount of data produced, efficient storage
is important as never before. A typical way to solve the problem of exponential data
growth is to increase the storage capacity by vertical or horizontal scaling. However, this
is an expensive solution, even with the huge price decreases per kilobyte over the last
decades [1]. A more sustainable approach would be to find a way to use the available
space more efficiently and store more information with less space. This is the field of data
compression and has seen uncountable research activity for years. Initially, as with many
other fields, human ingenuity and intuition was used to construct algorithms that compress
data. Until today, these still represent the standard approaches that are widely used
everywhere. However, with the emerging progress in the field of artificial intelligence, more
and more research delves into automating the process of finding good ways to compress
data. This field is coined Neural Data Compression and has seen big breakthroughs. This
work focuses on the neural aspect and examines current approaches that work well for
representing data in smaller spaces than their original ones. Beforehand, an overview
of Classical Data Compression is given, which serves as a benchmark to compare neural
approaches later on.
Furthermore, over the last years a novel promising class of machine learning methods
has evolved, called "Diffusion Models" [2] [3] [4] [5]. This approach has replaced many
long-established methods, such as Generative Adversarial Networks in image modeling,
by delivering better conditions and results. This work focuses on a type of diffusion model
termed Diffusion Autoencoder to approach the task of data compression. In the following
sections, this thesis delves into the theory behind diffusion models and specifically examines
diffusion autoencoders, conducts experiments, evaluates the models, investigates their
usability in the real world and gives a future outlook into their potential. While there are
many data modalities, this work specifies into investigating visual data. Precisely, diffusion
autoencoders for the modality of images and videos are explored. The goal of this work is
to give an overview of the field of data compression and to show a new promising way of
learning such using state-of-the-art methods from the field of machine learning. Improving
neural mechanisms is of great interest, as current state-of-the-art methods have limits in

Dominic Rampas 1. Introduction 1

On Neural Compression using Diffusion Autoencoders

their compression factors and only enable small compressions. Increasing the amount of
compression in existing methods leads to poor results that make it unusable in practice
with these settings. For this reason, methods that built upon neural compression in
any way, usually only make use of small, well working compressions. Enabling larger
compression ratios stays an open research gap and therefore is of obvious importance and
applicability. Concretely, established methods perform well up to a spatial compression
factor of 8 and quickly degrade above that. With the idea of the diffusion autoencoder
however, faithful reconstructions of spatial compressions going up to 32× can be observed.
To give an example, encoding a 512×512 image with a spatial compression of 8, results in
a representation of 64 × 64, while a 32× spatial compression encodes it to 12 × 12. This is
a large increase, making further applications building atop this method cheaper and more
efficient. The research questions of this work therefore are the following:

1. What are the current limitations of prior neural compression work?

2. How can diffusion models be used to learn efficient neural compression mechanisms?

3. What settings and training setups work best for diffusion autoencoders with a focus
on images and videos?

2 Related Work

This section will explain & summarize methods and theories relevant to the discussed
work of diffusion autoencoders. Firstly, an overview of classical compression will be shown,
followed by an outline of the neural counterpart. Afterwards, an introduction to diffusion
models is given and eventually a rundown of applicable evaluation metrics is presented.

2.1 Compression

Data Compression is one of the most important applications in our world in order to meet
the needs of our digital age. Compression originates from the Latin word "compressare"
and means "to press together". The goal is to take some form of data and represent it
with less total information than it originally had, after applying various transformation
steps to it. This assumes that the data has some form of redundancy. Example types of
data that are suitable for compression are visual data, such as images and videos. Here
compression methods rely on the fact that there is a large redundancy present in the

Dominic Rampas 2. Related Work 2

On Neural Compression using Diffusion Autoencoders

data. Digitised images can be represented using a H × W matrix, where H and W stand
for the height and width, respectively. Each element in that matrix is referred to as a
pixel. Natural images have a strong tendency to have a lot of similar neighbouring pixels.
Even stronger tendencies can be seen in videos, where subsequent frames usually contain
related information. Pixels are represented as integers which themselves are represented
by a number of bits. The amount of information each pixel requires is measured in bits-
per-pixel (bpp). The standard for most applications is 8 bpp. This means each pixel can
take 28 = 256 different values. This is the case when representing images with a single
channel only. However, only gray-scale images can be expressed this way. Coloured images
can be simulated by linear combinations of three primary colours [6], most commonly used
Red, Green and Blue. This requires three channels, resulting in 3 ∗ 8 = 24 bits-per-pixel.
The total amount of storage needed to store a coloured raw image can be calculated with

bits = H × W × 2L × C

where L refers to the amount of bits used to represent a single pixel. In our case L = 8.
Furthermore, C stands for the number of channels needed, C = 3 for coloured images.
Compression tries to reduce the total bits needed to store a piece of data, while maintaining
a way of reversing this procedure. Thus we divide this process of compression into two
essential steps, the "compressor" (aka. encoder) and the decompressor (aka. decoder). The
following formula, which will be used extensively in this work, describes the compression
ratio that a given method achieves.

cr = bitsprior

bitsposterior

There are two distinct types of compressions: lossless and lossy compression. The advan-
tage of lossless-compression is that no information is lost during the process of encoding
and decoding data.

x = d(e(x))

However, this means that cr is limited and high compression rates can not be achieved. On
the other hand, lossy-compression achieves much higher ratios, but the encoded data will
have differences compared to the original data when decoded and will only approximate
it.

x ≈ d(e(x))

Dominic Rampas 2.1 Compression 3

On Neural Compression using Diffusion Autoencoders

Although information is lost during this process, it is still widely used and popular in
many application, especially in visual data, like images and video. This stems from the
fact that the human visual system does not perceive certain manipulations to data. They
can be easily detected by computer programs, but usually are imperceptible to humans.
[7]

2.2 Classical Compression

In the following section we will discuss widely used standard compression algorithms for
both image and video. We will focus on the following: JPEG, PNG, VQ and AVC.

1. Joint Photographic Experts Group (JPEG): The original JPEG algorithm
was published in 1992 [8] and was a mix of many popular and well working methods
at that time. It is a lossy compression method specifically designed for digital
photography. It achieves good-looking reconstructions with compressions up to a
cr = 15. Compression is achieved by a number of consecutive steps. First the
image, which typically lies in the RGB colour space, is converted into the YCbCr
colour space. This separates the image into luminance (Y) and chrominance (Cb &
Cr). The human visual system is more sensitive to changes in the luminance, while
differences in the chrominance are harder to spot for us. Usually, an additional
step of down-sampling the chrominance channels follows, due to the aforementioned
reason. Next the luminance and chrominance parts go through a block-splitting
phase, where they are split into N × N blocks (N = 8 typically). The next step
is about separating the low-frequencies and high-frequencies in the channels. Low-
frequencies contain most of the information (shapes, edges, corners, etc.), while high-
frequencies contain finer details. This separation is achieved using a Discrete Cosine
Transform (DCT), which is applied to each block. This results in DCT-transformed
matrices of the same shape, which now represents the different frequencies, starting
with low-frequencies in the top-left and becoming smaller towards the lower-right.
Afterwards, the main step responsible for the compression is employed: quantization.
The JPEG standard introduced different quantization-matrices which are used to
divide the DCT-transformations of all 8x8 blocks. There are different quantization
matrices for different cr, however they all follow the same pattern of containing
smaller values in the top-left and larger values in the bottom-right. After the division,
the values are rounded to the nearest integer, where many of the high-frequencies

Dominic Rampas 2.2 Classical Compression 4

On Neural Compression using Diffusion Autoencoders

become zero. This rounding operation, is the only place in the entire algorithm where
a lossy-compression happens (next to the optional chrominance down-sampling), as
this step can not be reversed. Following this, the resulting rounded matrix is ordered
in a zig-zag pattern, starting from the top-left towards the bottom-right. Essentially,
this groups together many of the zeros that are now present in the high frequency
details. Differential encoding [9] is used to efficiently compress the data, for example
by representing 0,0,0,0,0,0 as 6x0. Finally, Huffman encoding is used to represent
the data in a better way while additionally compressing it further. Decoding a JPEG
compressed image happens by executing the aforementioned steps in the reverse and
inverse order.

2. Portable Network Graphics (PNG): Published in 2004 [10], PNG was meant
to be a free and open alternative to GIF [11]. It is a lossless compression format
for RGB (24-bit) or RGBA (32-bit) colour spaces, and widely used for computer
graphic elements. PNG being lossless, means that it’s potential cr is smaller than
that of JPEG for photographic pictures, however for images with a lot of uniform
colours and plenty of redundancy in general, such as object-centric images with plain
backgrounds, PNG can outperform JPEG [12]. Considerably better reconstructions
can also be achieved on images with a lot of sharp edges and corners, such as text
renders. The algorithm can be desribed by looking at its different intermediate
steps: Filtering, LZSS & Huffman Coding. Filtering looks at each row of pixels
individually and applies one of 5 filters to it, based on a metric to predict the lowest
redundancy after using each filter. These filters can be either None, Sub, Up, Avg
or Paeth. For example Sub replaces each element by the difference of the current
byte-value of the pixel and its predecessor. Filtering is applied to transform the data
to a format that can be better encoded by the subsequent steps. LZSS is a type of
compression algorithm that works by back-referencing. This means that whenever
elements in a data-stream appear that have been seen previously, a reference to this
initial position is made. The third and last step is Huffman Coding which creates a
tree of data, using fewer bits to represent elements that occur more often and vice
versa. All of these steps are reversible, indicating that no information is lost. This
makes PNG a good candidate for high-quality compression. Decoding a PNG file is
done by simply reversing and inversing the encoding steps.

3. Vector Quantization (VQ): This type of quantization became very popular in

Dominic Rampas 2.2 Classical Compression 5

On Neural Compression using Diffusion Autoencoders

the field of deep learning [13], where it was used in an adapted form. However, this
method found its origin in the classical area of compression algorithms [13]. The VQ
method is a lossy-compression method which is not as popular as the aforementioned
methods for image compression like JPG and PNG. However, it’s functionality and
idea will play an important role later in this work. The essential idea behind Vector
Quantization is to replace blocks of pixels by codes from a learnt codebook. This
algorithm requires two steps: training & inference. Initially, a block size of m × m

pixels is chosen (m ∈ {2, 4, 8} is common), which are flattened into a vector. A
clustering algorithm is used to determine k centroids. A centroid is a central point in
a cluster of data-points. All centroids will be stored in a codebook Q of length k. At
inference time, an image is taken and each block of pixels is flattened and replaced
by the closest centroid from the codebook given some metric like the euclidean
distance. In order to store a representation of an image, only the sequence of indices
of codes from the codebook is stored. This way, an image can be represented as
(H ÷ m) + (W ÷ m) integers. Decoding of an image can be achieved by looking up
the centroid vectors in the codebook based on the indices and reshaping them back
into m × m blocks. Storing compressed images additionally requires to store the
codebook. While depending on many factors, a cr between 10 and 50 is typical. [13]

4. Advanced Video Coding (AVC): AVC [14] is a codec for video compression that
was released in 2004. It has become the most popular used video codec with more
than 90% of the video industry using it [15]. The algorithm compensates for both
spatial and temporal redundancy. It is a lossy-compression method, with possible
extensions to make it lossless. Typical lossy compression ratios are between cr = 50
and cr = 100 for 720p videos (720×1280). The codec defines 3 different frame types:

(a) Intra-Coded-Frames: Frames that are stored entirely without temporal com-
pression, only spatial compression. They can be decoded individually.

(b) Predicted-Frames: Frames that are decoded using previous P-Frames and I-
Frames.

(c) Bidirectional-Frames: Similar to P-Frames with the difference of using future
frames as well for compression.

Classifying which frames fall into which category depends on various factors. The
simplest approach is using predefined patterns of the frame types. This is known

Dominic Rampas 2.2 Classical Compression 6

On Neural Compression using Diffusion Autoencoders

as Group-Of-Pictures (GOP), which for example determines that an I-Frame is fol-
lowed by a specific number of P-Frames and B-Frames. This pattern is intrinsically
influenced by the specified bitrate and quality targets of the desired compression. A
smaller compression may allow for seeing I-Frames more frequently, thus improving
the reconstruction quality. More sophisticated encoders [14] use advanced mecha-
nisms to determine the best possible arrangement of the frame types by analysing
the frames themselves. Next, block-splitting is applied to P-Frames and B-Frames
and motion-estimation [16] is used to predict how the current frame changes from
the previous (and subsequent in the case of B-Frames). The resulting motion-vector
does not suffice and leads to undesired reconstructions. As a result, the difference
(residual) between the original block and predicted block is stored as well. If the
motion prediction performs well, the residual consists mostly of zeros which can
be compressed efficiently. This procedure is similar to JPG compression as dis-
cussed in Section 1. A modified DCT is applied to the residual, separating low-
& high-frequencies, which is followed by a quantization. This quantization can be
more aggressive as there are typically only few high-frequencies. Motion-vectors and
quantized residuals are encoded using entropy-coding, as also done in the JPG algo-
rithm, followed by methods to reduce blockiness-artifacts. These steps are applied
to the entire video. The final output is stored in container formats like MP4, MKV
or AVI.

In summary, it can be concluded that the classical compression algorithms are very sophis-
ticated and a lot of work has been going into them over the past decades. However, this
also comes with the consequence of rising complexity and additional human bias, which
will be discussed in the next section.

2.3 Neural Compression

Neural Compression is the field of using deep learning methodologies to compress data.
The crucial key-idea in comparison to the classical methods discussed above, is to take out
the "human in the loop" and reduce human-crafted solutions which may not be optimal,
while additionally being biased by our intuition. The goal of neural compression is to
provide the neural network with as much freedom as possible in making "choices" how to
compress data. Similar outcomes can be observed in various fields of neural network engi-
neering. A good example are the convolutional neural networks (CNN). At the beginning,

Dominic Rampas 2.3 Neural Compression 7

On Neural Compression using Diffusion Autoencoders

humans tried to craft convolutional filters manually or with engineered heuristics [17] [18],
to achieve various kinds of image processing tasks such as image classification etc. When
convolutional neural networks [19] were introduced, these filters were learned via gradient
descent through backpropagation. And until today, CNNs are the chosen standard for
such tasks, because the neural network can adjust the filters in a much more sophisticated
way than humans could potentially understand, let alone come up with. This philosophy
and its benefits of giving the neural model as much freedom as possible can also be seen in
neural compression. Furthermore, there exists not only the possibility of achieving higher
quality results, the approaches themselves could eventually be easier to understand as well.
Of course, a distinction between methodologically understanding something and actually
having an in-depth understanding of a method has to be made. While it is possible to
learn the fundamental ideas behind neural networks, such as forward- & backpropagation,
neural network architectures, optimizers and related parts that belong to the training pro-
cess, it seems magnitudes more challenging, if not impossible to "read" a neural network
and understand the parameters as a whole. Visualizations, theories and experiments can
be made, but truly understanding a multi-million dimensional space is simply beyond our
capabilities. On the other hand, this is not true for classical approaches where each step
in the pipeline can be understood to its fullest. This also resembles the classical black-
& white-box idea [20]. However, when only speaking about the methodology side, neural
algorithms can be easier and faster to learn than classical algorithms. Many fundamen-
tal concepts appear in vastly different tasks and improvements can usually be made by
simply "making things larger", like increasing the data-pool or the neural network size.
On the classical side, improvements often come from either rethinking entire solutions or
building on top of existing frameworks, increasing its complexity. The aforementioned
AVC 4 algorithm consists of an extreme amount of little pieces that all contribute small
improvements [14] to earlier algorithms.

Neural algorithms can potentially provide two things: higher-quality results compared
to classical algorithms, while being easier to understand. Most neural compression meth-
ods follow the same concept of having a compressor and decompressor, however these are
more often referred to as encoder and decoder. However, while the encoded data of the
compressor in a classical setting can still be interpreted, in a neural case this usually is
much harder and requires additional methods to get an overview. For this reason, this

Dominic Rampas 2.3 Neural Compression 8

On Neural Compression using Diffusion Autoencoders

space is called "latent space".

Moreover, the goal of neural compression is not always the same as in classical com-
pression. While in the latter case, the goal always is to represent the given data in the
smallest possible way without losing the essence of the information, in neural compression
there is an increased interest in the properties of the emerging latent space. Specific prop-
erties will be discussed in the following sections. One key reason for this is the fact that
those latent spaces are increasingly more often used to train models on separate tasks.
Such tasks involve any kind of image recognition challenges [21] [22]. One motivation for
this is the assumption that the latent space has richer features and can be learnt faster
by a model than the original pixel space (in the case of images and videos). Furthermore,
also generative models are often learnt in latent spaces. One crucial reason for that is the
memory consumption. Generative models are usually parameter-heavy, reaching into the
billions [23] [24] [25] [26], which naturally makes them expensive to train. Especially when
these trainings are running at a high resolution. Training a model at a spatial resolution
of 1024 × 1024 is quadratically more expensive than training it at 32 × 32. Thus, it is
highly desirable to make use of a compressed latent space, where data can be decoded
back to a high resolution space afterwards.

The following section will explain various popular neural compression algorithms that
have been released and explored in the last years. Specifically, a detailed summary of
Autoencoder, Variational Autoencoder, Vector-Quantized Variational Autoen-
coder and Vector-Quantized Generative Adversarial Networks will be given.

1. Autoencoder (AE): Autoencoders [27] present the fundamental framework most
consecutive methods build upon. The idea is straightforward and draws from classi-
cal methods. The AE is a neural network which consists of an encoder and a decoder.
The encoder projects the input to a latent space, thereby loosing information in the
process of doing so. The compressed representation is fed to the decoder which
projects it back into the original space. Encoding and decoding are achieved by us-
ing mathematical transformations common to neural networks such as convolutions,
feed-forward mappings, activations, normalizations and poolings. These are gener-
ally referred to as layers and multiple layers form a block. Downsampling the inputs
in the encoder is typically done by either using convolutions with a stride greater

Dominic Rampas 2.3 Neural Compression 9

On Neural Compression using Diffusion Autoencoders

than 1 or pooling layers (average-pooling [28], max-pooling [29]). On the other side,
the decoder up-samples the low-resolution embeddings by either transposed convo-
lutions [30] or standard interpolation. The neural network’s weights are randomly
initialized and learnt with gradient descent through backpropagation. The signal of
error is usually a pixel wise metric between original data and the reconstructed data.
Standard error signals are the L1-Error or the L2-Error. As mentioned before, these
mappings are not easily understandable by the naked human eye.
This approach faces two major problems that make its application limited in the real
world. The first issue is that the latent space does not embody any semantics from
the original space. Two semantically and visually similar images can be mapped to
very different places in the latent space. This does not result in a feature rich latent
space. The second problem is that the latent space is not bounded. Encoded images
could be mapped to very large ranges. This can result in training instabilities and
make it impossible for subsequent models relying on that latent space to learn any-
thing. As a result, a successor of the standard autoencoder approach was proposed,
called Variational Autoencoder.
Compression Ratio: Depending on the number of downsampling layers f and
precision p of the latent space, the total compression can be calculated as:

cr = H × W × C × bpp

h × w × c × p

where h = H/f , w = W/f and c is the number of hidden dimensions. In a typical
setup with bpp = 8, p = 32, f = 8, c = 16, W = H = 512, C = 3 the total
compression amounts to cr = 3.

2. Variational Autoencoder (VAE): The VAE [31] approach extends the classi-
cal autoencoder framework. The main difference is about regularizing the latent
space to resolve the aforementioned problems of the AE. The encoder’s output is
changed from predicting the latent vectors directly, to predicting the mean and co-
variance matrix of a normal distribution. The decoder samples latent vectors from
this distribution and subsequently decodes it. The loss is adapted from a simple
element-wise difference to also include a regularisation term, that aids in aligning
the latent space. This regularisation is expressed as the Kullback-Leibler divergence
(KL divergence) between the predicted parameters of the encoders distribution and

Dominic Rampas 2.3 Neural Compression 10

On Neural Compression using Diffusion Autoencoders

a standard-normal distribution.

LVAE(x, x̂, µ, σ) = MSE(x, x̂) + KL(N (µ, σ)||N (0, 1))

The Kullback-Leibler divergence is a measurement of how unlike two distributions
are. The higher the value, the less similar. Minimizing L(x, x̂, µ, σ) ensures that
reconstructions are as close as possible and latent vectors are centered around the
origin. This way the model can not use the latent space arbitrarily and needs to
organise it better, letting the previously missing properties emerge. Both additions
are crucial and need to be present. Only introducing the encoder distribution, with-
out the KL divergence, could lead to the same behavior as discussed above, where
the predictions of the mean µ could fall anywhere and the covariance σ could shrink,
resulting in point-like predictions [32]. Note that the VAE itself can function as a
generative model to some extend. After training, it is possible to sample new latent
vectors from the standard-normal distribution and decode them back to the original
space.

x̃ = d(z), where z ∼ N (0, 1)

Compression Ratio: The calculation for the compression ratio is the same as for
the standard autoencoder.

3. Vector-Quantized Variational Autoencoder (VQ-VAE): The VQ-VAE [33]
adds vector-quantization to the framework of the AE. Unlike in the classical ap-
proaches where the vector-quantization is pre-defined, like the quantization tables in
the JPG compression 1, the quantization is learnt during the training as well. This
is called the codebook Q and contains K vectors, also called codes q. The encoder
and decoder follow the same structure as in the AE. After encoding the input data
z = e(x), the resulting latent vectors will be replaced by their nearest counterparts
from the codebook.

zq = q(z) = (arg min
q∈Q

||zij − q||2) ∈ Rh×w×c

This will be given to the decoder x̂ = d(zq) which projects the compressed & quan-
tized latents back into the original space. Note that although this method contains
"VAE" in its name, the original paper [33] neither let the encoder predict a distri-
bution, nor regularise the training with the KL divergence. However, technically

Dominic Rampas 2.3 Neural Compression 11

On Neural Compression using Diffusion Autoencoders

it can still be interpreted as variational, since the latent space is well defined and
it is possible to sample from it. While in VAE the latent space approximates a
standard-normal distribution, in a VQ-VAE the latent space approximates a dis-
crete distribution provided by the codebook. This is enforced by an added loss term
to the standard MSE.

LVQ-VAE(x, x̂, z, zq) = MSE(x, x̂) + ||sg[z] − zq||2 + ||z − sq[zq]||2

where sg[·] denotes the stop-gradient operator. This ensures that the codebook
vectors q will be updated towards the encoder output z and vice versa.
Compression Ratio: Given f and the precision of the codebook codes pd, the total
compression can be calculated as:

cr = H × W × C × bpp

h × w × pd

In a typical setup with bpp = 8, f = 8, pd = 16, W = H = 512, C = 3 the
total compression amounts to cr = 96. However, note that the codebook needs to
be stored as well, which adds N × c × p bits to the required storage space. This
becomes less noticeable when storing large amounts of data.

4. Vector-Quantized Generative Adversarial Network (VQ-GAN): The VQ-
GAN [34] method builds upon the VQ-VAE framework and adds a GAN-Loss to the
objective. A GAN, Generative Adversarial Network, is a type of neural network in
which two models compete against each other: the discriminator and the generator.
The rudimentary idea is to have the generator create data, which the discriminator
has to detect given a real example and the generated example. If set up well, this
leads to both models becoming better at their target task. That is, the generator
creates better samples and the discriminator can distinguish real vs. fake better. In
the case of the VQ-GAN, the VQ-VAE is treated as the generator. A discriminator
is trained to detect the reconstructions from the original images. The belief is that
the adversarial loss leads to more visually correct features, because the discriminator
can become a better metric than just the standard element-wise MSE and therefore
give better signals to the generator on how to adjust. The GAN-Loss can be written
as the following:

LGAN(x, x̂) = log D(x) + log D(1 − x̂)

Dominic Rampas 2.3 Neural Compression 12

On Neural Compression using Diffusion Autoencoders

where D stands for the discriminator. This loss is combined with the VQ-VAE loss.

LVQ-GAN(x, x̂, z, zq) = LVQ-VAE(x, x̂, z, zq) + λLGAN(x, x̂)

In this loss function λ is a weighting factor for how much impact the GAN loss has.
Initially, this is set to λ = 0 in order to give the generator some time to learn how
to reconstruct data, otherwise the discriminator would easily dominate the training
and there would be no meaningful signals coming to the generator. Finding the right
hyperparameter choices is a key-factor in training GANs, which makes training them
a lot harder than other methods. However the potential benefit to be gained in the
outcomes can be worth to use them.
Compression Ratio: The calculation for the compression ratio is the same as for
the VQ-VAE.

To summarize, introducing inductive biases into simple models can lead to substantial per-
formance gains in the outcomes. Guiding an autoencoder to have its latent space centered
around the origin, forces it to have a better organisation of it, leading to the framework of
the VAE. The specified methods are widely used in different fields of applications. In the
following sections we will see how these approaches can be extended to yield even higher
compression ratios.

2.4 Diffusion Models

Diffusion Models [35] [2] [3] [4] [5] have become the default framework for generative tasks
in recent years in many fields of applications. Their biggest competitor and predecessor
is the Generative Adversarial Network. However, due to many occurring challenges when
working GANs, there is an increased tendency towards employing diffusion models over
a GAN. Fundamentally, diffusion models learn a mapping between two distributions. In
typical setups, one distribution is unknown pdata (data distribution) and the other is prop-
erly defined pnoise (noise distribution). The primary goal is to learn a mapping between
pnoise and pdata. GANs work similarly in theory, however have significant differences.
The mapping of the two distributions is defined by two processes: the forward process
& the backward process. The forward process can best be understood as a continuous
interpolation between pdata and pnoise.

xt = a · x0 + b · ϵ (1)

Dominic Rampas 2.4 Diffusion Models 13

On Neural Compression using Diffusion Autoencoders

Here x0 ∼ pdata, ϵ ∼ pnoise and a & b are defined by a noise-schedule and depend on the
timestep t ∈ [0, 1]. xt lies on the trajectory between x0 and a specific ϵ. Diffusion models
are trained to remove the disturbance introduced in xt from the known distribution and
project it back to it’s origin. The forward process and backward process are commonly
also referred to as "noising" and "denoising", respectively. A diffusion model can be used
to generate new samples from the unknown distribution pdata by iteratively denoising
samples from the known distribution pnoise. By the nature of their training, diffusion
models work best when used iteratively. The exact formulation for the reverse process
is defined by a sampler that defines how to move from xt to xt−∆, where ∆ is the step
size. The number of iterations can be adjusted freely, however usually higher step counts
lead to better results (given some upper limit [3]). This general definition leaves open
many specifications, which differ amongst frameworks. Therefore, the following uses a
unifying framework over which all common frameworks can be defined through, called
GDF (General Diffusion Framework) [36]. We can define a diffusion model training with
the following five components:

1. Schedule: The schedule s(t) defines the log-Signal-to-Noise-Ratio (logSNR) at
each timestep. The timestep is a continuous value between t ∈ [0, 1]. Note that
when t = 0, xt = x0. Likewise when t = 1, xt ∼ pnoise. The noise schedule is a
monotonically decreasing function.

2. Input Scaling: The input-scaler defines a and b given the logSNR returned by
the schedule. The most common input-scaler is called variance preserving [35] [2].
Variance preserving ensures that xt = a · x0 + b · ϵ keeps a variance of σ2 = 1,
assuming both x0 and ϵ have a variance of σ2 = 1 as well. This plays a vital role for
model training, because neural networks work better with normalized inputs, and
simplifies the maths. Another popular variant is variance-exploding [5].

3. Target: The target xtarget stands for the prediction type of the model and is the
main error signal in diffusion models. It is used in the loss function and compared
to the model prediction

Lθ = d(xtarget, fθ(xt, t))

where d(·, ·) is a distance function, typically the MSE. There are three common pre-
diction types used in diffusion models: x0-prediction, ϵ-prediction & v-prediction
[2] [37]. For x0-prediction the model is optimized to predict the noise free input

Dominic Rampas 2.4 Diffusion Models 14

On Neural Compression using Diffusion Autoencoders

x̂0 = fθ(xt, t). On the other hand, ϵ-prediction teaches the model to predict the
noise in the data ϵ̂ = fθ(xt, t). Note an approximation for x0 can be calculated by:

x̂0 = xt − b · ϵ̂

a

Both types of predictions have extreme conditions at both ends of t. While for a x0-
prediction model, t ≈ 0 is easy to learn, the task becomes difficult as t approaches
1. An ϵ-prediction faces the same extreme behaviour just the other way around.
As a result, the v-prediction was proposed by Salimans et al.[37] and defined as:

v = a · ϵ − b · x0

This acts as a challenging in-between of x0-prediction and ϵ-prediction, because
as the noise in xt increases the model needs to predict x0, while for smaller values
of t the model needs to predict ϵ.

4. Noise Condition: It is helpful [38] [2] for the model to have knowledge about
the current timestep t, which can inform the model how much noise is present in xt.
Common choices are to condition the model on the timestep t, which ranges from 0
to 1, as well as the variance σ2 of the noise [5].

5. Loss Weighting: The loss weighting λ(logSNR) defines an importance weighting
for all timesteps and is multiplied onto the loss λ(logSNR)·Lθ. Different theorems [5]
indicate that for optimal training of diffusion models, a model should focus more on
specific ranges of timesteps. For example one popular loss weighting is P2-Weighting
[39] which is defined as:

λP 2 = (k + elogSNR)−γ

where typically k = 1.0 & γ = 1.0. The P2-Weighting increases importance of higher
noise levels. This weighting makes sense when training a model with ϵ-prediction
objective.

These five criteria well-define a diffusion model training and all popular frameworks can
be generalized to it. Note, the main unifying variable is the logSNR. It serves as the
center piece of information over which the schedule, input scaling, noise condition and loss
weighting are defined and the bridge to translate one category to another.
In the following this work will outline to view diffusion models through the lens of dif-
ferential equations and afterwards examine two popular frameworks. Specifically, the key

Dominic Rampas 2.4 Diffusion Models 15

On Neural Compression using Diffusion Autoencoders

ideas will be discussed and a comparison will be made by looking at the five different
categories. Afterwards, a short introduction to sampling methods for diffusion models is
given, which are usually independent of the framework that is used and simply describe
the process of moving from the known distribution towards the unknown distribution via
iterative refinement.

2.4.1 Viewing Diffusion Models through Differential Equations

Diffusion models can be viewed as approximating a data distribution p(x). Due to diffi-
culties in a direct approximation [40], one can rephrase the problem into approximating
the score-function of the distribution p(x) as:

∇x log p(x) (2)

A score-based model fθ(x) is used to approximate the score-function via a neural network.
One can use Langevin dynamics [41] to sample from the data distribution iteratively. The
starting point is randomly initialized from a prior distribution and optimized towards
higher data density. However, the sampling taps into a pitfall when positioned in low data
densities. Those areas were not seen during training and thus gradient approximations
are inaccurate and lead to bad predictions. To overcome this problem, one can extend
the training process and include noise perturbations to the training data via marginal
distributions pt(x). High noise perturbations can cover low data density areas and thus
solve the aforementioned problem. pt can be modeled in the form of a·x+b·ϵ as mentioned
above, where x ∼ p0(x) = p(x). Given that, the noise-conditional score-function can be
approximated by a noise-conditional score-based model.

∇x log pt(x) ≈ fθ(xt, t) (3)

Furthermore, the diffusion process can be modeled as a stochastic differential equation
(SDE) of the general form

dx = f(t) · xdt + g(t)dw (4)

where w denotes the Brownian motion [42] and dw can be viewed as infinitesimal white
noise [43], f(t) is called the drift coefficient and g(t) the diffusion coefficient. When moving
forward in time, dx points towards the prior distribution, while when moving backward
in time (dt is negative), dx points towards the data distribution. Every SDE possesses a

Dominic Rampas 2.4 Diffusion Models 16

On Neural Compression using Diffusion Autoencoders

reverse SDE as found by Anderson [44]. The closed-form solution is given by

dx = [f(t) · x − g2(t)∇x log pt(x)]dt + g(t)dw (5)

It can be seen that the reverse process involves the score function of pt(x). As discussed
before, we can approximate this by fθ(xt, t). After training, we can use fθ(xt, t) as a proxy
for ∇ log pt(x).

dx = [f(t) · x − g2(t)fθ(xt, t)]dt + g(t)dw (6)

This reverse SDE can now be solved with numerical SDE solvers to generate new data
samples. Those will be discussed later. Moreover, one can also solve a probability-flow
ODE [5] that takes the form of

dx = [f(t) · x − 1
2g2(t)fθ(xt, t)]dt (7)

which is equivalent to 6 without the stochastic noise component. One of the benefits of this
is that this allows for exact log-likelihood calculations. Moreover, often times numerical
ODE solvers, can sample in fewer steps than their SDE counterparts [45].

2.4.2 DDPM / DDIM

Denoising Diffusion Probabilistic Models (DDPM) [2] & Denoising Diffusion Implicit Mod-
els (DDIM) [3] are widely used frameworks for working with diffusion models, which define
the same training process and only differ in the sampling mechanism. The forward process
is defined as the following:

q(xt|xt−∆) = N (xt;
√

1 − βtxt−∆, βtI) (8)

Interestingly, a one step forward which mimics 1 can be derived as:

q(xt|x0) = N (xt;
√

αtx0, (1 − αt)I) (9)

Moreover, the corresponding SDE for the DDPM formulation takes the following form:

dx = −1
2β(t)x(t)dt +

√
β(t)dw

This can be derived from equation 8 by making βt be dependent on N (N stands for the
number of timesteps), letting N → ∞, taking the Taylor expansion, dropping the higher

Dominic Rampas 2.4 Diffusion Models 17

On Neural Compression using Diffusion Autoencoders

order terms and rewriting the equation.
In equation 9, αt stands in direct correlation with with the logSNR.

αt = sigmoid(logSNR) (10)

Therefore, the noise schedule can be defined in logSNR space, while the actual forward
process uses the variance αt. The most popular noise schedule is the cosine schedule
introduced in iDDPM [38]. It can be approximated by

αt = cos (t · π · 0.5) (11)

and resembles a slowly changing schedule at both ends of t = 0 and t = 1, while quickly
decreasing in the middle part. Note that q(xt|x0) is variance preserving by it’s definition.
DDPM and DDIM can be used with any of the aforementioned targets. Most commonly
chosen is the ϵ-prediction, as it usually gives better results [2], however only marginally,
than other objectives. Moreover, this gap of performance can be closed by using different
loss weightings as shown by Hang et al.[46]. The noise condition used in this framework
is a Fourier timestep embedding [47], that uses a sinusoidal embedding of t to create an
easy-to-understand relative information of the timestep. There are many different loss
weightings in existence that are commonly used with this framework, such as SNR-, P2 -,
-, TruncatedSNR-Loss-Weight.

2.4.3 EDM

The paper "Elucidating the Design Space of Diffusion Models" (EDM) [5] introduces a
framework in which the forward process is defined as

q(xσ|x0) = N (xσ; x0, σ2I) (12)

which yields a sample of variance ασ = 1 + σ2. For this reason an input scaling of
cin(σ) = 1√

1+σ2 is multiplied to xσ, to ensure a variance preserving process over σ. The
denoising model is reformulated to predict a dynamic residual over σ.

fθ(xσ, σ) = cskip(σ) · xσ + cout(σ) · Fθ(xσ, σ) (13)

While fθ(xσ, σ) predicts x0, the actual neural network predicts a σ-dependent residual for
x0. Moreover, it can be seen that, since everything is built around σ, the score-model

Dominic Rampas 2.4 Diffusion Models 18

On Neural Compression using Diffusion Autoencoders

is conditioned on σ as well. The function fθ(xσ, σ) approximates the score function of
pdata(x).

∇x log pdata(x) ≈ (fθ(xσ, σ) − xσ)
σ2 (14)

EDM approaches the problem from the PF-ODE perspective and reparameterizes it to be
a function of σ(t), instead of the drift coefficient f(t) and diffusion coefficient g(t).

dx = −σ̇(t)σ(t)∇x log p(x; σ(t)) dt.

The noise schedule is defined as σ2 = smax
1
p + t · (smin

1
p − smax

1
p)p. The logSNR can be

calculated from σ2 as logSNR = log 1
σ2 . Finally, the loss weighting used in EDM can be

defined as σ2+1
σ2 .

2.4.4 Sampling Methods

Samplers are crucial as they determine how to approximate the underlying trajectory and
thus have a large impact on the quality of the sampling. Taking too large steps, using
bad heuristics etc. will significantly contribute to make the outputs worse than they could
potentially be. Any sampling method defines a discretized process to approximate the
continuous differential equation (SDE or ODE). The most straightforward sampler is the
Euler-sampler [48] which is defined as the following:

xt = xt+1 + dt · d

where dt stands for the step size and d = x−x̂0
t is the derivative of the trajectory. The

Euler-sampler is a first order sampling method. There are numerous other and more
sophisticated samplers [5] [2] [3] [49], often of higher order, that try to provide a better
approximation. Since sampling methods are not a direct focus of this work, the reader is
referred to the literature.

2.5 Evaluation Metrics

This section investigates different categories of evaluation metrics that can be used to
assess the quality of reconstructions. Measuring the differences between separate methods
is crucial, but also a non-trivial task as many objective measurements do not align with
subjective human measurements and opinions [12]. As a result, over the years many dis-
tinct evaluation metrics have been proposed, in order to have a standard way of deciding

Dominic Rampas 2.5 Evaluation Metrics 19

On Neural Compression using Diffusion Autoencoders

on the superiority of a method and to make decisions on standard algorithms. Further-
more, it is important to note that the process of evaluation should be executed with great
care, as deviations in the setup or the test data can lead to misleading results (when
compared to other studies), followed by wrong interpretations. Additionally, evaluation
using metrics should always make sure that enough test data is available in order to cover
a fair representation of the data manifold. Using only a small number of test data points
can lead to wrong estimates. In the following, a closer look will be taken at a few of
such metrics, ranging from simplistic and intuitive to more sophisticated ones. There are
three types of evaluation metrics that are going to be discussed: analytical-, neural-, and
human-evaluation.

2.5.1 Analytical Evaluation

1. Mean Squared Error (MSE): The most basic evaluation metric is simply com-
paring all individual pixels between two images. Usually the L2-Loss is used as a
standard, in order to punish higher deviations from the original, but options such
as L1-Loss are also common. When using the L2-Loss, one sums up all squared
distances between all pixels in an image over each channel.

MSE = 1
C × H × W

C∑
c

H∑
y

W∑
x

(x̂(c)
x,y − x(c)

x,y)2

Here x̂ represents the reconstructed image and x the original. It is worth mentioning,
that a condition for a lossless-compression has to ensure an MSE = 0, while for a
lossy-compression this condition is loosened to MSE >= 0.

2. Signal-to-Noise Ratio (SNR): Originally coming from telecommunications to
quantify how well a signal was transmitted, it found wide adoptions in many different
fields of applications. It can also be used to quantify how well data is reconstructed
through measuring the artifacts in an image. The SNR can be calculated by tak-
ing the ratio of the mean of the signal (the original image) and the MSE between
the original image and the reconstructed image. In the context of images, signal
represents the original image and noise stands for the error in the reconstruction.

SNR = 10 log10
µ2

x

MSE
= 1

C × H × W

C∑
c

H∑
y

W∑
x

10 log10
(x(c)

x,y)2

(x̂(c)
x,y − x

(c)
x,y)2

Dominic Rampas 2.5 Evaluation Metrics 20

On Neural Compression using Diffusion Autoencoders

This metric is useful because it takes the range of the data into account. Given two
types of data that both have very different scales, for example between 0-10 for the
first type and 0-256 for the second, even if the relative error is the same, the MSE will
be higher for the second image because its range is greater. The SNR compensates
that by taking into account the range of the data and acts as a normalization.

3. Peak Signal-to-Noise Ratio (PSNR): Instead of taking the ratio between the
mean µx of the signal and the MSE, the PSNR takes the ratio between the largest
possible signal, 28 − 1 in the case of an 8-bit pixel, and the MSE. This puts more
focus on the peak error of the reconstruction. It’s formula can be written as the
following [12]:

PSNR = 10 log10
(2L − 1)2

MSE

Here L stands for the general case of how many bits are used to represent a pixel.
PSNR emphasizes the worst-case scenario and if it is high, it ensures with more
certainty that the reconstructed image quality is high.

It is worth mentioning why the aforementioned metrics are modelled on a logarithmic
scale. According to the Weber–Fechner law [50] the human perception of sound and sight
is more logarithmic than linear. This means, visual changes and auditory differences do
not seem linear to us and are better approximated by taking the log of a changing signal.
For example, we perceive a sound as twice as loud not when the sound energy doubles,
but when it increases by a factor that is logarithmic.

2.5.2 Neural Evaluation

Neural evaluation aims at improving the alignment between metric and human judgement
through machine learning. There are many well-established metrics that make use of
neural networks. The following examines two very popular methods for image-, and video-
evaluation, which will also be extensively used later.

1. Fréchet inception distance (FID): The Fréchet Inception Distance (FID) [51] is
a measure to assess the quality of generated images. It compares the distribution of
generated images to that of real images using deep learning features extracted from
an Inception-v3 [52] network. Specifically, FID calculates the Fréchet distance (also
known as the Wasserstein-2 distance) between two multivariate Gaussians fitted to

Dominic Rampas 2.5 Evaluation Metrics 21

On Neural Compression using Diffusion Autoencoders

feature representations of the generated and real images. Lower FID scores indicate
smaller distances between the generated and real image distributions, and hence,
better quality of the generated images. The formula for FID is given as:

FID = ∥µr − µg∥2 + Tr(Σr + Σg − 2(ΣrΣg)1/2) (15)

where µr, Σr and µg, Σg are the mean and covariance of the real and generated
image feature distributions, respectively. FID is preferred over previous metrics like
the Inception Score as it considers both the quality of generated images and the
diversity of generated samples.

2. Fréchet Video distance (FVD): The Fréchet Video Distance (FVD) [53] is an
extension of the FID for evaluating the quality of generated videos. It addresses the
additional complexity present in videos, such as temporal coherence and motion dy-
namics. FVD uses a similar approach to FID by comparing the feature distributions
of real and generated videos, but it incorporates temporal information by using a 3D
Convolutional Neural Network (3D-CNN) [54] to extract features from video clips.
This method captures both spatial and temporal aspects of the videos, allowing for a
more comprehensive assessment of the quality of generated video content. The calcu-
lation of FVD involves fitting multivariate Gaussians to the feature representations
of real and generated videos and then computing the Fréchet distance between these
Gaussians. The formula in its general form is the same as the FID in equation 15.
Like FID, a lower FVD score indicates a closer resemblance between the generated
and real video distributions, signifying higher quality of the generated videos.

2.5.3 Human Evaluation

Obviously, the evaluation method that aligns best with human judgement, is to collect
human judgement. This is a common approach done by many researchers and gives a solid
foundation for comparing models. However, due to the subjective opinion of humans, it
is necessary to have a representative group of people. For example, if the research team
of a method would do the evaluation, there is a high chance that the outcome would
be biased towards their own model. Therefore, it is best to choose a random sample of
people. If additionally, the number of participating people is large, the evaluation results
can be interpreted as faithful and accurate. However, human evaluation is an expensive
and time-consuming process. Contrary to analytical-, and neural-evaluation, which is a

Dominic Rampas 2.5 Evaluation Metrics 22

On Neural Compression using Diffusion Autoencoders

rather cheap and fast process. When questioning people, a significant amount of time is
already devoted into finding participants, followed by explaining the process, execution
and collecting the results. There exists a clear trade-off between quality and time, which
needs to be chosen based on the given resources. Furthermore, some tasks are easier to
evaluate by numerical metrics, like reconstructions, where even element-wise metrics can
give insights into the performance of a model. However, for example evaluating generative
tasks is naturally harder to do with simple metrics. This represents another factor to
consider.

3 Method

Due to the rapid improvements and widened range of applications of diffusion models, it is
natural to explore their capabilities in neural compression tasks. One obvious advantage
is the iterative refinement process. Methods that exhibit only a single inference step (VAE
etc.) might have a hard time decoding all potential available information at once and thus
the decoding process does not reach its full potential. In theory, diffusion models could
use different parts of the sampling process to focus on different frequencies, starting with
decoding the low frequency information and later refining these by adding high frequen-
cies. This main part of the underlying work will investigate how a Diffusion Autoencoder
(DiffAE) can be formulated. Specifically, the idea will be described and the architecture
will be explained. Moreover, a closer look at the diffusion process (both forward and re-
verse) will be taken, how DiffAEs perform, the benefits and disadvantages, results will be
shown, followed by an extensive evaluation study.

3.1 Introduction

The diffusion autoencoder follows the same idea as a regular autoencoder. It consists of
an encoder and a decoder. The encoder can be any kind of model and is only used to
encode the data once. On the other hand, the decoder is the model that will be used
iteratively during inference to reconstruct data from the latent space. The reason is that
encoding data is much simpler than reconstructing it, thus giving more capacity to the
harder task is logical. The encoder will encode the data to a small latent space z = e(x).
During training, data x is noised and denoised by the decoder. Contrary, to other works
for generative image models based on diffusion [55] [24], the main source for conditioning

Dominic Rampas 3. Method 23

On Neural Compression using Diffusion Autoencoders

the model, does not come from text. The encoded data features are used as the primary
condition for the diffusion model. After training, aforementioned numerical SDE and ODE
solvers can be used to approximate the reverse SDE. The condition is very information rich
and the goal is to create a bijective mapping between condition and output of the sampling
process, which is significantly different from other common types of diffusion models where
outputs usually follow a one-to-many mapping (e.g. generative text-to-image).

3.2 Architecture

There are numerous ways of constructing the encoder and the decoder of the DiffAE. This
work will define one possible and working architecture, suitable for multiple modalities.
As mentioned above, encoding is a task much simpler than decoding. As a result, the
capacity for the encoder can be kept small, while giving more parameters to the decoder.
Therefore, an EfficientNet [56] [57] will be used as a main feature extractor for the entirety
of this work. Specifically, an EfficientNet-2 in its small (S) variant. This model counts
21 million parameters in total. Note, that the EfficientNet is already a trained neural
network for the task of image classification on ImageNet [58]. Thus it can be assumed
that the encoded features are already meaningful and can speed up the learning process.
Table 2 shows a comparison of using a pretrained EfficientNet and a randomly initialized
one for the task of image compression. This work chooses to use the ultimate features,
which result in a spatial compression of f32. For example a 3 × 384 × 384 image will be
encoded to 1280×12×12. Afterwards, a projection layer is used to map the 1280 channels
to 16.
The decoder specifies a UNet [59] architecture. A UNet itself is made up of an encoder,
a bottleneck and a decoder and returns outputs that have the same spatial dimension as
the input. This is different from other neural compression methods, in which the decoder
takes in the low-resolution latent and returns a decompressed, higher resolution, output.
In order to train diffusion models properly, both input and output must have the same
dimensions. Otherwise the loss calculation could not work correctly. The encoded latents
need to be injected into the model therefore. There are many possible ways to do so.
Two primary methods are cross-attention [47] and concatenation. Pernias et al.[60] tried
cross-attention but encountered complications when trying to decode different resolutions
or aspect ratios than shown during training. This work exclusively uses concatenation
as a conditioning mechanism, due to its simplicity, minimal extra parameters needed and

Dominic Rampas 3.2 Architecture 24

On Neural Compression using Diffusion Autoencoders

its ability to generalize better to unseen resolutions and aspect ratios. Moreover, another
required choice is the place of injecting the condition. The models discussed in this work
will solely concatenate the condition at the beginning of the decoder. This reduces com-
putational overhead. Finding superior injection-mechanisms is left for future work. The
UNet consists of a number of down-sampling and up-sampling blocks that are surrounded
by residual convolutional blocks, attention blocks and timestep blocks.
The diffusion decoder contains magnitudes times more parameters than the encoder. This
work will show decoders that are between 30x – 300x larger than their encoder counter-
part. Neural network trainings become increasingly more memory demanding with higher
spatial resolutions. Training large diffusion decoders will suffer these problems, especially
when moving to large resolutions. One trick that can be used is to setup a prior neural
compression model. For example, it is possible to use a VQ-GAN or VAE to employ a
first lightweight compression. The diffusion autoencoder then works in the space of the
VQ-GAN or VAE. As discussed earlier, common neural compression methods perform only
well when used at small compression rates. Therefore, a spatial compression of f2 up to
f4 can be used. This results in near perfect reconstructions, while quadratically shrinking
the space that the decoder lives in.

3.3 Image Compression

This subsection will outline the training details for the image modality. It will emphasize
the specific model setup, hyperparameters and data used for training. Additionally, results
will be shown.

3.3.1 Architecture

For all ablation studies we follow a specific setup of model settings, which only vary in a
few chosen categories to evaluate the impact of different hyperparameters. The diffusion
autoencoder will make use of the aforementioned option to use a secondary encoder to
reduce the dimensionality of the training space without sacrificing quality. Specifically,
an f4 VQ-GAN (Section 4) will be used with a hidden dimension of c = 4. The UNet
will consist of 4 downsampling layers and 4 upsampling layers with skip connections in
between. It will contain approximately 280M parameters throughout all experiments.
In order to make training more efficient, a patch size of p = 2 will be used. This is
implemented through the lossless Pixel-Unshuffle and Pixel-Shuffle [61] operations, which

Dominic Rampas 3.3 Image Compression 25

On Neural Compression using Diffusion Autoencoders

move spatial information into the channels axis. The UNet is asymmetrical, containing
twice as many layers in the upsampler part of it. Primarily, three main blocks will be
used: convolutional blocks (with skip connections), attention blocks and timestep blocks.
The first two levels only contain convolution-, and timestep-blocks, whereas the lowest two
levels also include attention blocks. The reason is due to the quadratic memory growth of
attention, therefore only using them in the lowest levels is computationally more affordable.
All convolutions have a kernel size of k = 3 and padding pad = 1. The hidden dimensions
for the levels in descending order are [320, 576, 1152, 1152] and the amount of blocks
per level are [2, 4, 14, 4]. The latter is to interpret such that the second lowest level
will contain most layers, 14 times each block. As mentioned before, the encoded image
features will be projected by a single head with two convolutions and concatenated prior
to the first layer. A visual depiction of the architecture for image compression can be
seen in Figure 1. Weight initialization is applied by using Xavier-initialization [62]. The
described architecture results in a total compression of:

cr = 384 × 384 × 3 × 8
12 × 12 × 16 × 16 = 96.0

3.3.2 Diffusion Setup

As mentioned before, we need to define five ingredients in order to characterize a diffusion
training (Section 2.4): the schedule, the input scaling, the target, the noise condition and
the loss weight. In this work, the schedule, the input scaling and the noise condition will be
kept constant throughout all experiments as further ablations would go beyond the scope
of this work. Only the the target and loss weighting will be used in ablation studies as
they are more directly related with the problem at hand. Specifically, the schedule is fixed
to the cosine-schedule (Equation 11), the input scaling is chosen to be variance-preserving
and the noise condition is done by injecting the timestep t into the model using the Fourier
timestep embedding.
Furthermore, the decoding of images via the reverse diffusion process use the DDPM
sampler exclusively. Evaluating higher-order samplers etc. will be left for future work.

3.3.3 Training Details

It is desired to keep all training hyperparameters constant throughout all experiments. In
order to do so, the following section defines the default parameters used in all training

Dominic Rampas 3.3 Image Compression 26

On Neural Compression using Diffusion Autoencoders

fo
rw

ar
d

pr
oc

es
s

DiffAE
DecoderVQGAN

diffusion loss

DiffAE
Encoder

16 x 16 x 16

3 x 512 x 512

4 x 128 x 128 4 x 128 x 128

Figure 1: Visualization of the pipeline for the image diffusion autoencoder. Moreover,
example shapes are shown for a 512×512 image. The training image is first projected into
the VQGAN space, where the training occurs. Furthermore, the image is also encoded by
the EfficientNet [56] and injected as a condition into the decoder part.

runs, if not specified otherwise. Each run is trained for 200.000 iterations. A base learning
rate of 0.0001 is used with 10.000 warm-up steps. A batch size of 512 utilized. Training is
done on 512 × 512 images. Moreover, it is common to use a copy of the base model that
is updated with an exponential moving average (EMA) of the base model weights. This
usually leads to a more stable model during inference. Each experiment uses 32 A100
40GB GPUs. The experiments were done on the Stability AI [63] cluster.

3.3.4 Data

Data is one of the most crucial points in machine learning and especially important in
the training of generative diffusion models. A well working setup and model architecture
with bad data will perform much worse than a bad architecture with good data. However,
in the case of the unimodal compression problem talked about in this work, there are
less requirements towards the data. For example, in text-to-image training, it is critical
but also very difficult to obtain high-quality captions for the images, as usually default
captions (e.g. scraped from the web) are bad [64]. Additionally, such training needs

Dominic Rampas 3.3 Image Compression 27

On Neural Compression using Diffusion Autoencoders

aesthetic finetuning data too. On the other side, learning a compression does not need
multimodal data and the visual data suffices. A large training corpus of many images
is only needed. However, it is highly beneficial to have a mix of images from varying
categories like photos, drawings, graphics etc. In the last years, a few large-scale datasets
were released for that matter [65] [66], which can be used for this task. Specifically, the
LAION-5B [66] dataset is used for this work, with aggressive filters (NSFW, watermark,
aesthetic). It offers five billion images scraped from the clear-web, including a variety of
different image types encountered in daily life. This provides a good starting point to
train models from. The images contain captions, however initially these will not be used.
Note, that during training only a small fraction of the available data is used, due to two
major reasons. Firstly, filters are applied to the data that naturally shrink the dataset
size. Specifically, the image-size is filtered to the appropriate training size, watermarked
images and non-aesthetic images are filtered out as well. Moreover, a NSFW filter is
applied to remove inappropriate images too. The second reason for the dataset shrinking
comes from the fact that the total images used during training is far less than what the
dataset contains. Roughly estimating, 200.000 iterations multiplied by a batch size of 512
amounts to 102.400.000 total images. This is approximately 2% of the dataset.

3.4 Video Compression

Video introduces another axis to the data dimensionality and naturally allows for com-
pression along the temporal axis as well. When combined with the spatial compression,
this can lead to larger overall data condensation. This subsection will discuss the possi-
bility of compressing video data using the aforementioned diffusion autoencoders, which
theoretically can also be extended to other sequential 2D data types.

3.4.1 Architecture

The architecture for the video models follows a similar style as the ones for image compres-
sion in Section 3.3.1. The model consists of a stack of 3D residual-blocks and attention-
blocks, with standard timestep-blocks for injecting the current timestep. The 3D residual-
block is identical to the 2D residual-block, except that it uses a 3D convolution. Fur-
thermore, the base video architecture is not using attention layers at all, as it makes the
training faster. This choice will be investigated later. In total, the video diffusion autoen-
coder contains 734M parameters. The architecture is a UNet as well and downsampling

Dominic Rampas 3.4 Video Compression 28

On Neural Compression using Diffusion Autoencoders

and upsampling operations are performed by 3D convolutions and 3D transpose convolu-
tions with a spatial stride of 2. Note that the stride is only applied spatially and there
is no temporal stride in the UNet in this setup. This means, only the spatial size shrinks
during the encoding and decoding, while the temporal is fixed. Exploring the usage of a
temporal stride, is left to future work. The EfficientNet encoder is used for the spatial
compression. However, a subsequent temporal compression is applied to the latent frames.
Depending on the desired temporal compression, a different number of downsampling lay-
ers is employed. For example, for an ft = 4 temporal compression, two downsampling
layers will be used. A downsampling layer consists of a 3D convolution with a kernel size
of 1, mimicking a simple linear projection, followed by an average pooling [19] applied
on the time axis. One such layer transforms a B × C × T × H × W tensor to one of
shape B × C × T

2 × H × W . Note that for image compression, the EfficientNet embed-
dings are concatenated to the input after interpolating it to the appropriate latent size.
A hypothesis this bachelor thesis makes, is that a linear interpolation for the time axis
is sub-optimal and would lead to undesired artifacts, because frames usually do not fol-
low linear changes. However, the number of compressed latent frames (potentially) does
not equal the number of (latent) frames that the diffusion autoencoder takes as input.
Therefore, a learnt projection is used to upsample the compressed latent frames to the
correct (latent) frame number. Specifically, a temporal "deflate" layer, which is simply
the reverse of the temporal compression layer, is added for every temporal compression
layer. For example, when using a temporal compression of ft = 4, two compression and
two deflate layers are used. Note that the bottleneck representing the smallest data size
is after the last compression layer. The feature representation after this projection can be
used for storage and further trainings. Furthermore, as also done in the Section 3.3.1 for
image compression, a VQGAN 4 is used to employ a first-stage compression, in order to
make the learning of the diffusion autoencoder more efficient and less memory intensive.
However, this time the VQGAN enables a light temporal compression of ft = 2 as well.
All in all, depending on the temporal compression factor ft, this architecture employs a
total compression ratio of:

cr = 384 × 576 × 3 × 8 × T

12 × 18 × 16 × 16 × t

where T is the number of frames and t = T/ft. For instance, when ft equals 2, 4 or 8, the
compression ratio amounts to 192.0, 384.0 and 768.0, respectively. Furthermore, Figure
2 shows an outline of the video diffusion autoencoder pipeline, showcasing the individual

Dominic Rampas 3.4 Video Compression 29

On Neural Compression using Diffusion Autoencoders

fo
rw

ar
d

pr
oc

es
s

DiffAE
Decoder

Video
VQGAN

3 x 4 x 512 x 512

4 x 2 x 128 x 128

16 x 1 x 16 x 16

4 x 2 x 128 x 128

diffusion loss

DiffAE
Encoder

Figure 2: Visualization of the pipeline for the video diffusion autoencoder. Moreover, the
example shows a video of resolution 512 × 512 with 4 frames. The video is first projected
into the Video-VQGAN space, where the training occurs. Furthermore, the video is also
encoded by the EfficientNet [56] and injected as a condition into the decoder part. Note,
that the figure shows an example of an ft = 4 temporal compression, as 4 pixel-space
frames are encoded into a single latent frame.

steps during training.

3.4.2 Diffusion Setup

The diffusion setup equals the same as the image compression setup described in Section
3.3.2.

3.4.3 Training Details

Since many ablation studies are conducted on the image compression diffusion autoen-
coders, for video compression, this study chooses to exhibit specific experiments unique to
video compression. Primarily, experiments for evaluating different temporal compressions
are conducted. A constant learning rate schedule of 0.0001 is used with 10.000 warm-up
steps. A total batch size of 128 is employed and a video resolution of 384 × 576 is used
using 16 frames at 16 fps. Each experiment uses 64 A100 40GB GPUs. All models are

Dominic Rampas 3.4 Video Compression 30

On Neural Compression using Diffusion Autoencoders

trained for 500.000 steps.

3.4.4 Data

Data for video training is as important as for working with images. Moreover, video has
many different requirements that make high quality data. For example the fps of the
videos. Low fps videos result in non-smooth transitions between frames. Furthermore,
the motion happening in a video is also of high importance and influence for a model
trained on it. For instance, if a dataset only contains low-motion changes in the videos,
the resulting model will not be able to handle fast-motion videos. This would become
a problem especially in video compression where the model would only be good at com-
pressing low-motion videos and fail otherwise. Therefore, a mix of a broad range of videos
is necessary to achieve good results. The dataset used in this work is a mix of 3 publicly
available datasets: WebVid-10M [67], ACAV100M [68] & HDVila-100M [69]. WebVid-
10M is a collection of 10 million watermarked videos from shutterstock. ACAV100M and
HDVila-100M both contain 100 million ten-second YouTube clips. Except for size and fps
filters, no additional filters are used. Note that the total dataset size of a video dataset
is largely increased by the fact that there are numerous ways to cut a 10 second clip,
contributing to the prevention of overfitting.

4 Evaluation

This section will conduct experiments on the aforementioned modalities and discussed set-
tings, such as architecture, diffusion setup, training details and data. Careful comparisons
will be made between different hyperparameters of diffusion autoencoders, as well as to
other methods.

4.1 Image Compression

Experiments concerning image compression will investigate three hyperparameter evalua-
tions (Section 4.1.1), namely the diffusion target, the diffusion loss weight and experiments
on the choice of the encoder for the DiffAE. Furthermore, one comparison to a method
from classical-, and neural-compression will be made in Section 4.1.2. Finally, further
studies on the scaling behavior of diffusion autoencoders will be shown in Section 4.1.3.

Dominic Rampas 4. Evaluation 31

On Neural Compression using Diffusion Autoencoders

4.1.1 Hyperparameter-Evaluation

Before conducting evaluations comprising other types of models, it is important to evalu-
ate the possibilities of the diffusion autoencoder itself and find well performing setups and
hyperparameters. Thus, this section will explore what works best for the model. Firstly,
one captivating ablation is the target of the diffusion autoencoder. The target was men-
tioned in Section 3. Possible choices for the target are x0-prediction, ϵ-prediction and
v-prediction. Table 1 shows a comparison of a default training, as described in 3.3.3,
with the only changing variable being the target. Furthermore, the other four parts of
the diffusion training are fixed to the cosine schedule as the noise schedule, a variance
preserving input scaling, a Fourier timestep condition and a constant loss weighting. The
metrics used for evaluation are chosen to be part of the analytical and neural metrics as
discussed in Section 2.5. Specifically, the mean-squared-error, peak-signal-to-noise-ratio
and Fréchet inception distance. They are chosen as they comprise a diverse set of different
kinds of metrics and what each metric focuses on. All evaluations of the DiffAE will be
made with the same sampling-parameters if not mentioned otherwise. N = 30 inference
steps will be used to reconstruct images, a classifier-free-guidance [70] value of w = 3. The
training noise schedule is used for sampling as well. Lastly the DDPM [2] sampler is used
for inference. This first experiment indicates that the ϵ-prediction performs best in terms
of FID. Moreover, the x0-prediction performs second best, while the v-objective ranks last.
This is in line with previous research [2] that concludes ϵ-objective to be superior to others.
However, calculating the MSE and PSNR metrics results in a completely different outcome
as Table 1 highlights too. v-prediction suddenly becomes the best and achieves the lowest
MSE and highest PSNR, followed by x0-prediction and lastly ϵ-prediction. This comes to
a surprise since manually looking at reconstructions shows v-objective generates obvious
and dominant artifacts. This is highlighted in Figure 8-11. It can only be concluded that
the MSE and PSNR are very unaligned with human perception and focus on different
parts. Moreover, prior work also highlights the importance of the loss weighting used with
the corresponding target. Therefore, the next experiment investigates the combination of
each target with an empirically well known loss weighting. Precisely, ϵ-prediction will be
combined with a P2 loss weighting which is defined as:

λ(t) = (k + elogSNR)−γ

Dominic Rampas 4.1 Image Compression 32

On Neural Compression using Diffusion Autoencoders

Moreover, a min-SNR loss weight [46] is chosen for a model trained with x0-prediction
which is defined as the following:

λ(t) = min(elogSNR, 5)

Finally, a sech loss weight [71] is used for a v-prediction model:

λ(t) = 1
cosh(elogSNR / d)

In summary, the P2 loss weight amplifies the importance of high noise ranges, while the
min-SNR increases the weight on low noise timesteps and the sech loss weight puts focus
on the middle part of the noising range. The loss weight represents the only variable
change in this experiment. Evaluating the three experiments results in a different picture
than before (Table 1). The x0-prediction training with the min-SNR loss weight achieves
the lowest FID score from all experiments, surpassing even the default ϵ-prediction train-
ing. Moreover, the ϵ-prediction with P2 loss weight performs worse than the training with
constant loss weight in terms of FID. Lastly, the v-prediction model with sech loss weight
only marginally improves the FID score of the default model by a factor of 0.3. However,
calculating MSE and PSNR on the loss weight trainings, stays in line with the default
experiments. v-prediction with sech loss weighting achieves the lowest mean-squared-
error with MSE = 0.1804, while x0-prediction with min-SNR yields MSE = 0.1939 and
ϵ-prediction results in MSE = 0.2182. Furthermore, Figure 6 shows the loss distribution
over the different timesteps during training for each experiment. This visualizes the ex-
treme sides of each target. It can be seen that x0-prediction has the highest loss at t=1.0,
referring to fully noised images. On the other hand, ϵ-prediction performs worst at t=0.0,
because it must predict the noise in an input that barely has any. Furthermore, it can be
seen how the loss weight affects the training. For example, for x0-prediction, the loss is
higher at timesteps close to t = 1.0 when using a min-SNR loss weight, while it is smaller
in timestep ranges closer to t = 0.0, when compared to x0-prediction with constant loss
weight. This work hypothesizes that x0-prediction combined with min-SNR loss performs
best (w.r.t. FID) because of the following: min-SNR loss weighting increases the weight
on smaller noise levels, meaning that the model puts more emphasis on learning the low
noise timesteps, while the larger timesteps receive less focus. As these are naturally harder
and considering the fact that sampling will occur iteratively, it might be beneficial to let
larger timesteps generate only the lower frequencies and let smaller timesteps add the

Dominic Rampas 4.1 Image Compression 33

On Neural Compression using Diffusion Autoencoders

higher frequencies. However, in a training with constant loss weight, the model might pay
too much attention to larger timesteps, resulting in uncorrectable mistakes for the later
sampling steps.
Moreover, two different kinds of experiments are conducted regarding the EfficientNet
image-encoder. As mentioned before, the small version of the EfficientNet-2 is used con-
taining 20M parameters. It is an interesting investigation to consider using more param-
eters for the encoder, aiming for achieving a better encoding representation. Therefore,
a diffusion autoencoder is trained using the large variant of the Efficient-2 with 118M
parameters. The diffusion setup follows the x0-prediction with min-SNR loss weight. The
resulting metric evaluation can be seen in Table 2. The results show that there is no sig-
nificant difference in using a larger EfficientNet. While the FID value is lower by a small
fraction, the MSE & PSNR score is slightly worse. This could be considered to be pure
randomness. The second experiment is using a pretrained EfficientNet vs. a randomly
initialized one. All previous experiments have been using the pretrained weights from
ImageNet training, because of the believe that these weights already result in meaningful
and useful features for the task of image compression and hence serve as a good starting
point.

Table 1: Diffusion autoencoder target evaluation results. The table shows results for
Fréchet inception distance (FID), mean-squared-error (MSE), peak-signal-to-noise-ratio
(PSNR).

Model FID MSE PSNR

x0-target 13.9484 0.2101 6.7951

ϵ-target 10.6094 0.2165 6.6640

v-target 15.9652 0.2034 6.9365

x0-target (min-SNR) 10.3849 0.1939 7.1434

ϵ-target (P2) 12.0880 0.2182 6.6299

v-target (Sech) 15.6047 0.1805 7.4541

Dominic Rampas 4.1 Image Compression 34

On Neural Compression using Diffusion Autoencoders

Table 2: Diffusion autoencoder evaluation between a pretrained EfficientNet encoder ver-
sus a randomly initialized one and training with the Efficient small versus large. The
table shows results for Fréchet inception distance (FID), mean-squared-error (MSE), peak-
signal-to-noise-ratio (PSNR).

Model FID MSE PSNR

x0-target (min-SNR) (default) 10.3849 0.1939 7.1434

x0-target (min-SNR) (Randomly init. EffNet) 57.0914 0.2025 6.9480

x0-target (min-SNR) (EfficientNet Large) 10.3027 0.2039 6.9223

4.1.2 Evaluation against other Methods

As shown in previous research [34], the VQGAN possesses state-of-the-art capabilities
compared to all other methods discussed in the Section 2.3 for neural compression. There-
fore, in the following, we compare a VQGAN model with a spatial compression of f32
to the explored DiffAE. Specifically, the f32 VQGAN is trained on the same data as
the diffusion autoencoder and has seen approximately the same amount of images. One
unfortunate difference is that the f32 VQGAN was trained prior to the aforementioned
hyperparameter-experiments (Section 4.1.1) and differs in the parameter count and bot-
tleneck dimension. The VQGAN contains 140M parameters and a bottleneck hidden
dimension of c = 36, while the diffusion autoencoders consist of 280M parameters and
c = 16 dimensions. Therefore, another diffusion autoencoder (156M parameters, c = 36)
is retrained that closely mimics the same parameters as the VQGAN. Furthermore, it is
important to keep in mind that the VQGAN reconstructs images in a single inference step.
On the other side, the diffusion autoencoder can use a varying number of sampling steps,
representing a trade-off between latency and quality. In the following we will compare the
reconstructions of different amount of inference steps to that of the VQGAN. Moreover,
this work chooses to continue with the x0-prediction that is trained with the min-SNR loss
weight, because of its good performance. Figure 12-15 shows a visual comparison between
the reconstructions of each method, also depicting different amounts of inference steps for
the DiffAE. It can be seen that the diffusion autoencoder achieves better reconstructions
than the VQGAN when using multiple inference steps. While N = 1 shows clearly that the
VQGAN performs better, it is a satisfying result that compute can be traded for quality,
which outperforms the standard one-step VQGAN method. Furthermore, analytical and

Dominic Rampas 4.1 Image Compression 35

On Neural Compression using Diffusion Autoencoders

neural evaluation is conducted as well. Table 3 shows evaluations for the VQGAN with its
single step inference N = 1, while for the diffusion autoencoder N ∈ [1, 10, 30] is used. It
can be seen that the f32 VQGAN achieves an FID score of FID = 22.2873, MSE = 0.1981
and PSNR = 7.0526. The 30-step inference of the diffusion autoencoder obtains scores of
FID = 8.8549, MSE = 0.1948 and PSNR = 7.1213. This shows a clear advantage for the
diffusion autoencoder in terms of the FID, however only marginal improvement regarding
MSE and PSNR. The similar MSE and PSNR values might be due to the fact that blur-
riness, as often produced by the VQGAN, is on average as correct as detailed generations
by the diffusion autoencoder, which if incorrect, result in larger errors. On the other end,
when using the diffusion autoencoder for single step inference the results are a worse than
those of the VQGAN, as can also be seen in the table. This might be due to the fact that,
firstly the amount of times that the diffusion autoencoder sees full noise, t = 1.0, during
training is much lower than the training steps of the VQGAN, which technically always
performs an equivalent step and secondly the diffusion autoencoder learns various other
tasks as well, denoising images at lower noise ranges, which requires learning and network
capacity as well.

Table 3: Comparison between a VQGAN (f32) and an equally sized diffusion autoencoder
with varying inference steps N ∈ [1, 10, 30]. The table shows results for Fréchet inception
distance (FID), mean-squared-error (MSE), peak-signal-to-noise-ratio (PSNR).

Model FID MSE PSNR

VQGAN 22.2873 0.1981 7.0526

x0-target (min-SNR) (N=1) 38.8347 0.2488 6.0537

x0-target (min-SNR) (N=10) 8.8687 0.1984 7.0446

x0-target (min-SNR) (N=30) 8.8549 0.1948 7.1213

Another important ablation study is a comparison between the considered neural com-
pression method and a method from the classical compression field. As most experiments
have been conducted on natural images, it makes sense to use the JPG compression al-
gorithm (Section 1). The JPG algorithm contains a quality parameter (Q), that also
determines the compression factor cr. Table 4 shows results for FID, MSE and PSNR
calculations on the same dataset as used in the other experiments. While higher numbers
for Q lead to low FID values, they only give a small compression factor. For example, high

Dominic Rampas 4.1 Image Compression 36

On Neural Compression using Diffusion Autoencoders

cr= 15, Q = 50 Diffusion Autoencoder
cr= 96cr= 23, Q = 25cr= 46, Q = 10cr= 93, Q = 5cr= 144, Q = 1

Figure 3: Visualization of different values for the quality parameter Q for the JPG algo-
rithm and its visual effects on images. Also showing the compression ratio and a compar-
ison to the diffusion autoencoder. Zoom in for better experience and noticing artifacts.

quality (Q=50) enables a compression factor of cr = 15 and results in an FID value of FID
= 2.5695. On the other hand, decreasing Q leads to much worse reconstruction quality.
For instance, Q=10 gives a cr = 46, but an FID value of 11.1238. This is already higher
than what the best diffusion autoencoder (x0-prediction with loss weight) achieves (FID
= 10.3849), which additionally has a larger compression factor of cr = 96. Figure 3 shows
a visual comparison between different quality factors (Q) and for reference the diffusion
autoencoder’s reconstruction too. Visual inspection gives notice about the emerging ar-
tifacts as compression increases and it can be seen that the diffusion autoencoder does
not produce similar artifacts and reconstructions primarily lack details. Against expec-
tations, MSE and PSNR values are all very similar, even though there are clear visual
artifacts in the images. This is yet another example that MSE and PSNR differ a lot from
human perception. However, this experiment shows visually and in terms of FID, that
the diffusion autoencoder can achieve superior reconstructions at high compression rates.
However, this comes at the great cost of latency. The JPG algorithm’s execution happens
in near real-time, while the diffusion autoencoder takes numerous times longer.

Dominic Rampas 4.1 Image Compression 37

On Neural Compression using Diffusion Autoencoders

Table 4: Evaluation results for the classical compression algorithm JPG. Experiments used
a varying quality factor when storing JPG images, resulting in different compression ratios.
The table shows results for Fréchet inception distance (FID), mean-squared-error (MSE),
peak-signal-to-noise-ratio (PSNR). Evaluated at a fixed 512 × 512 image resolution.

Model cr FID MSE PSNR

JPG (Q=50) 15 2.5695 0.2141 6.7152

JPG (Q=25) 23 4.3632 0.2159 6.6761

JPG (Q=10) 46 11.1238 0.2137 6.7219

JPG (Q=5) 93 24.5988 0.2091 6.8156

JPG (Q=1) 144 51.9815 0.2163 6.6673

4.1.3 Further Studies

This section conducts further studies into the method of diffusion autoencoders. Specif-
ically, an always-intriguing experiment is scaling laws of models. However, as trainings
require a lot of time and compute, perfect ablations for scaling laws are not feasible for
this work. However, two interesting experiments were done that give some insight into the
behaviour when scaling up this model with the specific architecture and training paradigm.
One model has a total of 700M parameters, while the second model has a total of 3 billion
parameters. The training config is slightly different than the best one found in the previous
section. This is because the training was started earlier than the results of the ablation
were obtained. However, the only difference is that the training uses ϵ-prediction with P2
loss weighting instead of x0-prediction with min-SNR loss weight. Moreover, the training
was started at 512 × 512, but after an initial pretraining phase, moved to 1024 × 1024.
Furthermore, both larger models were trained for more than 1M updates, while all abla-
tion experiments in this work only trained for 200k steps. Another difference is a varying
compression factor instead of a fixed one. During training, images were additionally and
randomly scaled down by a factor of 2, resulting in a possible spatial compression ranging
between f32 and f64. Another difference is that a second conditioning was introduced
along with the EfficientNet embeddings, namely text condition. Because the aforemen-
tioned dataset includes text anyways, it is at no cost to condition the model on it as
well. This change is followed by changing the percentage the EfficientNet embeddings are
shown during training, decreasing it from 95% to just merely 30%. The reason for this

Dominic Rampas 4.1 Image Compression 38

On Neural Compression using Diffusion Autoencoders

choice, is to teach the model to be able to add potentially lost details through the com-
pression. 70% of the time the model will only see text condition, which brings it closer to
the framework of the standard latent diffusion model [55]. Figure 7 shows a comparison
between the ϵ-prediction model for all three different models with 280M, 700M and 3B
parameters, respectively. Furthermore, Table 5 shows a numerical comparison between
the three models.

Table 5: Numerical Evaluation between diffusion autoencoders of various sizes, with one
containing 280M parameters, one 700M and one with 3B. The table shows results for
Fréchet inception distance (FID), mean-squared-error (MSE), peak-signal-to-noise-ratio
(PSNR). Note, metrics for the 700M and 3B model were evaluated at 1024 × 1024 resolu-
tion, while the 280M parameter model was evaluated at 512 × 512.

Model FID MSE PSNR

ϵ-prediction (P2) (280M) 12.0880 0.2182 6.6299

ϵ-prediction (P2) (700M) 1.5236 0.2180 6.6357

ϵ-prediction (P2) (3B) 1.2842 0.2182 6.6318

It can be seen that large improvements can be obtained by upscaling the diffusion
autoencoder. It is specifically noticeable in the FID metric and the visual inspection,
while MSE and PSNR barely change. However, it is important to mention that FID
usually improves at higher resolutions. Therefore, it is possible that the ϵ-prediction
model with 280M parameters would achieve lower scores as well.

4.2 Video Compression

This section details the process of conducting evaluations on three experimental setups,
intended to answer a unique question each, that was not addressed in the same or a similar
way in the experiments on diffusion autoencoder for images. Specifically, ablations on
reconstructions with different temporal compression ratios are done, followed by a training
using higher quality data and lastly evaluating what effects adding more parameters in
the form of attention layers has. These will be discussed in Section 4.2.1. Furthermore,
an ablation to a classical method for video compression will be discussed in 4.2.2.

Dominic Rampas 4.2 Video Compression 39

On Neural Compression using Diffusion Autoencoders

4.2.1 Hyperparameter-Evaluation

Following the first experiment, three different DiffAEs were trained with temporal com-
pression ratios of ft ∈ [2, 4, 8], while all had a fixed spatial compression of f32. All eval-
uation results can be found in Table 6. As mentioned in Section 2.5.2, the FVD metric
is better suited for evaluating experiments involving videos, as it takes into account the
temporal axis as well. Therefore, all video experiments replace FID with FVD in their
evaluation. An unused video data subset is used which was not seen during training. It
can be observed that, as expected, higher temporal compressions result in worse results as
indicated by the FVD. The ft = 2 temporal compression model achieves FVD = 245.7596,
the ft = 4 model FVD = 330.7555 and the ft = 8 diffusion autoencoder FVD = 397.1898.
A visual comparison can be seen in Figure 4 between the different compression ratios.
Interestingly, the MSE and PSNR are in a notable different value range compared to the
image experiments, where the MSE is consistently orders of magnitude smaller, leading
to a higher PSNR too.

ft = 2

ft = 4

ft = 8

Figure 4: Visual comparison between different temporal compression ratios ft ∈ [2, 4, 8].
More compression leads to worse reconstructions spatially and temporally.

The second experiment is about investigating the importance of high quality data. For
that, one video diffusion autoencoder with temporal compression of ft = 4 is trained only
on WebVid-10M, which mostly consists of only low motion stock footage. A second model
is trained using WebVid-10M, ACAV100M & HDVila-100M, which comprises a much more
diverse dataset ranging from aesthetic stock footage to typical videos encountered in an
every-day-life situation. Both models are trained for 500.000 iterations at a resolution of

Dominic Rampas 4.2 Video Compression 40

On Neural Compression using Diffusion Autoencoders

384 × 512 and later finetuned for 100.000 steps at 512 × 704. The results can be seen in
Table 6 too, clearly demonstrating the benefit of using better data when looking at the
FVD value. An improvement of 25.1372 points can be observed. Moreover, also the MSE
and PSNR have improved after training on better data.
The last experiment examines if better results can be achieved by adding more parameters.
Specifically, temporal-, and spatial-attention layers are added. Note that temporal-, and
spatial-attention is not combined into a single layer as this grows the memory requirements
exceptionally high through the quadratic complexity of attention and results in out-of-
memory errors. After adding the attention layers, the model contains 1.3B trainable
parameters compared to 734M as without this change. Note, that this model was trained
on better data as well and finetuned at a higher resolution. It can be seen that, compared
to the diffusion autoencoder that was finetuned and used better data, making the model
larger, results in an improvement of 10.72 points on the FVD, while the MSE and PSNR
slightly worsened.

Table 6: Experimental results for intra-evaluation of video diffusion autoencoders. Specifi-
cally, evaluation for different temporal compression ratios, increasing model size by adding
attention layers, using more diverse data and finetuning at higher resolution. The table
shows results for Fréchet video distance (FVD), mean-squared-error (MSE), peak-signal-
to-noise-ratio (PSNR).

Model FVD MSE PSNR

ϵ-target (f2) 245.7596 0.007497 22.7778

ϵ-target (f4) 330.7555 0.008882 21.7545

ϵ-target (f8) 397.1898 0.008827 22.0215

ϵ-target (f4) (finetuned) 195.1561 0.008483 21.9025

ϵ-target (f4) (finetuned + better data) 170.0189 0.006504 23.5642

ϵ-target (f4) (larger + finetuned + better data) 159.2998 0.006625 23.2281

4.2.2 Evaluation against other Methods

This section examines the quality between the classical compression method AVC and the
discussed video diffusion autoencoder. Similarly, to the comparison between JPG and the
image DiffAE in Section 4.1.2, the common metrics (FVD, MSE, PSNR) are calculated
for video reconstructions using varying compression factors on AVC. While JPG uses the

Dominic Rampas 4.2 Video Compression 41

On Neural Compression using Diffusion Autoencoders

quality parameter Q to indicate the level of compression, AVC features a parameter called
constant rate factor or short CRF. This value ranges between 0 and 51, where lower
numbers indicate a lower compression and thus a higher quality of the reconstruction.
The common standard for the constant rate factor is CRF=18. The Table 7 shows the
metric evaluation for different CRF values. It is recognizable that, as expected, the metric
values decline as the compression is increased. For better comparison to the video diffusion
autoencoder, Figure 5 visualizes the trade-off between the compression ratio cr and the
FVD metric for both algorithms. Specifically, the figure compares the three base models
(ft ∈ [2, 4, 8]) at a resolution of 384×576. It can be seen that for lower compression ratios,
the AVC algorithm achieves lower FVD values than the video diffusion autoencoder, while
as the compression increases, the DiffAE obtains better values. Interestingly, the table
also shows that AVC constantly obtains better MSE and PSNR results than the DiffAE.
Even the highest compression from the AVC table (CRF = 40) results in a better MSE
and PSNR than the lowest temporal compression (ft = 2) of the video DiffAE. The reason
for this is very likely that the blockiness artifacts caused by AVC, are not influencing the
MSE and PSNR, but have a large impact on the FVD.

200 400 600 800 1000 1200
Compression Ratio

0

200

400

600

800

1000

FV
D

DiffAE
AVC

Figure 5: Comparison between AVC and video diffusion autoencoder. The figure shows
the trade-off between the compression ratio and the FVD metric. All results were obtained
on a pixel resolution of 384 × 576.

Dominic Rampas 4.2 Video Compression 42

On Neural Compression using Diffusion Autoencoders

Table 7: Evaluation results for the classical compression algorithm AVC. Experiments used
a varying quality factor when storing videos, resulting in different compression ratios.
The table shows results for Fréchet video distance (FVD), mean-squared-error (MSE),
peak-signal-to-noise-ratio (PSNR). Note, all metrics are evaluated at a pixel resolution of
384 × 576.

Model cr FVD MSE PSNR

AVC (CRF=18) 132 42.54 0.000285 36.1728

AVC (CRF=25) 219 73.30 0.000393 34.8193

AVC (CRF=30) 393 191.18 0.000643 32.7789

AVC (CRF=35) 672 465.69 0.001068 30.6124

AVC (CRF=40) 1159 1039.65 0.001768 28.4644

5 Discussion

Diffusion autoencoders show a promising new direction for data compression, achieving
high quality reconstruction from compression ratios that were neither achieved by classical-
, nor neural-methods before. This bachelor thesis explored the guiding research questions
and discussed the current limitations of prior neural compression methods such as the
VQGAN and found that its capabilities are exhausted for high spatial compressions of
f32. Furthermore, the second research question was answered by showing how it is pos-
sible for diffusion models to learn efficient and high compression ratios for images and
videos. While there might be multiple approaches to do so, this thesis made use of a small
encoder and a large iterative diffusion decoder. It was shown that this works very well
for the image modality. On the other hand, while using a diffusion autoencoder for video
compression works as well, it still lacks behind classical approaches in both quality and
latency. Finally, an in depth hyperparameter analysis was made for answering the third
question, which showed that using an x0-prediction combined with a min-SNR loss works
best out of all examined options in terms of FID evaluation. For video compression the
results also revealed that using a better dataset leads to better reconstructions and, as
expected, choosing smaller temporal compressions, leads to better results as well. How-
ever, there are still possible improvements to be made. Firstly, it was shown that diffusion
autoencoders require more time to reconstruct data because of the large amount of model
parameters, as well as the iterative sampling. This leaves these two bottlenecks as poten-

Dominic Rampas 5. Discussion 43

On Neural Compression using Diffusion Autoencoders

tial starting options for future work. Established methods like knowledge-distillation [72]
can be experimented with, in order to learn a model that contains fewer parameters, while
maintaining the same performance. On the other hand, the number of inference steps
can be reduced by various distillation techniques as well [37] [73] [74]. One promising ap-
proach is called consistency distillation introduced by Song et al.[75]. This method takes a
pretrained diffusion models and makes predictions from different positions on a trajectory
consistent. That means that the model now tries to minimize (f(xt, t) − f(xt+1, t + 1))2,
given that xt and xt+1 are both diffused with the same noise ϵ. This replaces the original
MSE loss between the prediction and the target. Successfully implementing both options
could lead to real-time encoding and decoding, making this option more viable for a larger
crowd of consumers.
Another critical point is the training data distribution and the unknown performance on
different out-of-distribution data points. While methods like JPG perform well on nearly
all distributions of images, it is hard to make similar claims about a neural network ap-
proach. Usually neural networks tend to perform well on data that lies inside of its training
distribution, however performance quickly degrades when moving outside of it. For exam-
ple, the diffusion autoencoder’s ability to reconstruct medical images or cosmic photos of
stars is likely going to suffer important losses in its reconstruction. Those could occur in
the form of wrongly reconstructing the shape of a cell or the location of a cluster of stars.
The importance of these errors highly depend on the context and who is looking at the
images. A person conducting medical analysis should not be dealing with potential errors
from the decoding stage and should be able to rely on the veracity of it. Therefore, when
thinking about deploying such a method it is important to be aware of this weakness and
to also inform downstream users of the problems. It is important to keep in mind that
one is not dealing with a deterministic approach of decoding data. The diffusion autoen-
coder solves a differential equation in the reverse process, which by its nature is stochastic.
Therefore, different initial seeds will lead to different outputs. While these differences will
occur on a tiny scale, the aforementioned example showcases their potential influence.
Evaluation is an important step in the process of developing new methods and aiming
for an objective comparison to others. However, evaluation metrics introduce another
dimension of problems, especially neural metrics. As a result, it is of utter importance
to discuss those and convey realistic expectations to what can be assumed when using
them. The FID metric is a controversial metric in the generative AI field [76] [60]. As

Dominic Rampas 5. Discussion 44

On Neural Compression using Diffusion Autoencoders

mentioned earlier, it’s making use of an Inception [52] network that was trained on Im-
ageNet [58]. The Inception network can only be expected to generate rich features for
photos that are similar to ImageNet. Those are object-centric natural images. Certainly,
this does not represent a large amount of possible images and excludes popular categories
such as paintings, drawings and other kinds of artworks. Moreover, humans pay atten-
tion to specific details in images such as other humans depicted in them. As ImageNet
does not contain many of such photos, expecting truthful feature comparisons becomes
questionable. Another important aspect is the resolution that the Inception network was
trained on. This bachelor thesis was mostly working with high-resolution images starting
at 512 × 512, while the Inception network was trained at a resolution of 299 × 299. This
represents another large bottleneck of this metric, because features at lower resolutions
include less details, hence high frequencies are potentially not being considered properly
by the network as well. The work by Pernias et al.[60] discloses more critics to the metric,
such as investigating the data augmentation that was used to train the Inception network.
It is obvious that the FID metric introduces many problems, and similar conclusions can
be obtained when delving into the FVD metric used for video analysis. However, they are
still widely used metrics and finding better ones is a difficult challenge. As a result, this
bachelor thesis uses them as well, while pointing out their drawbacks and intending to
make the audience aware to critically perceive evaluations using these metrics. Moreover,
this work leaves finding better suited metrics for future work.
Furthermore, numerous times throughout the work it was seen that the MSE and PSNR
metrics were misaligned with the visual appearance of reconstructed data. Also, subtle dif-
ferences for the ranking of different methods compared to the FID / FVD were seen, where
large decreases in performance according to FID / FVD, barely changed the results of the
MSE and PSNR. This highlights the fact that both metrics might not be best suited for
the task of visual compression evaluation, as the element-wise focus accepts and punishes
different aspects compared to a human. However, in other tasks, these metrics might be
very well aligned with human perception. Still, since both metrics are cheap to compute,
it is of no harm to use them in combination with other metrics, while being aware of the
limitations. Furthermore, it has been demonstrated, that reconstructions are not perfect,
and especially high frequencies will persist to be a challenging problem. Scaling up the
models further could improve this. However, another option is accepting the possibility of
generating novel high frequencies on the fly. Potentially, this trade-off could be left to the

Dominic Rampas 5. Discussion 45

On Neural Compression using Diffusion Autoencoders

user to decide how much compression is desired and how much information can be lost.
Moreover, another way of enabling orders of magnitude more compression could be through
quantization, such as vector quantization or lookup-free-quantization [77]. Currently, a
diffusion autoencoder projects an image to a latent representation consisting of multiple
vectors (e.g. 16×16×16×16, given an f32 spatial compression with the dimensions being
c × h × w × p), that each have a dimension c (c = 16 in this work) and that need to be
stored with a certain precision / number of bits (e.g. fp16). Learning a well working quan-
tization would mean that only h×w×p bits are needed for storing a single image, yielding
a 16x higher compression. To put this into context, this would allow for storing a dataset
of 500 million images of size 512 × 512 on a consumer laptop, requiring only 256GB of
space and achieving an unbelievable compression ratio of cr = 1536. For comparison, the
same dataset stored with the JPG algorithm and a compression ratio of cr = 15, requires
26214GB.
Furthermore, the evaluation has shown that the video diffusion autoencoder is outper-
formed by AVC, both in FVD and MSE & PSNR. This work suggests that there is a lot
of potential for improving the reconstruction quality of video DiffAEs as seen by notice-
able improvements by simply using different data. Potentially, improving the compressing
scheme can be one starting point. It could be that the model is not able to learn an optimal
temporal compression due to the nature of convolutions and pooling layers. The investi-
gation of finding better encodings is left for future extensions of this algorithm. Moreover,
the experiment setup considers a very isolated process in which the models were trained
on 16fps with 16 frames at a specific resolution (similar argument holds for image diffusion
autoencoders). Using different settings, such as less fps or lower / higher resolution leads
to out-of-distribution data as well and it is uncertain how the model would react for each
possible setting. On the other hand, AVC is constructed to work with varying fps, lengths,
resolutions etc., which naturally is more attractive for actual usage. However, it is impor-
tant to keep in mind that the diffusion autoencoder is a recent approach that not much
research has been going into and this study showcases its potential and early experiments.
Therefore, it is to be seen if this approach becomes promising to more people, which could
lead to rapid improvements and make the method more generally applicable.
Finally, the scaling ablations in Section 4.1.3 have to be considered with care. As men-
tioned earlier, the evaluations for the smallest model were conducted on a resolution
512 × 512, while the larger models were both evaluated at 1024 × 1024. This does not

Dominic Rampas 5. Discussion 46

On Neural Compression using Diffusion Autoencoders

represent perfect conditions for making conclusions. Furthermore, the larger models had
slightly changed conditions during training and were trained for significantly longer. Clos-
ing this gap, might also result in more similar visual appearance and performance on
metrics. However, it is still very likely that larger models perform better, as also shown
by comparing the results of the 700M to the 3B parameter model.

6 Conclusion

This work extends the research on the diffusion autoencoder, introduced in Pernias et
al.[60]. An in-depth study is presented concerning critical parts of the framework. Specifi-
cally, this bachelor thesis conducts experiments on the modality for image and video. Nu-
merous insights have been gained through the ablation studies, highlighting the usefulness
of the method to the discussed problem of data compression. The diffusion autoencoder
achieves higher compression ratios than previous neural-compression algorithms, while still
maintaining a well defined latent space. It also achieves similar compression and quality in
its reconstructions than classical compression algorithms. This way the diffusion autoen-
coder can be seen as combining the large compression ratios from classical methods and
the good properties of the latent space from the neural methods. This requires less space
for storing data and allows for using the latent space for downstream tasks. Moreover, this
work also hypothesizes more hidden and unexplored potential in this method, specifically
for video compression. Future successful research could enable compression ratios never
seen before and allow downstream technologies to be more accessible to more people, as
training neural networks in a highly compressed latent space can be realized more easily
on consumer hardware, while datasets could be stored on commodity hardware as well.

Dominic Rampas 6. Conclusion 47

On Neural Compression using Diffusion Autoencoders

A Appendix

Epsilon

X0

V V Sech

X0 min-SNR

Epsilon P2

Figure 6: Loss distributions using pie charts for each training experiment regarding the
target and loss weight. A higher area in one part refers to a higher loss in that timestep
range. Depicted here are 10 timestep ranges from t = 0.0 (Range 1) to t = 1.0 (Range 10)
in 0.1 increments. For instance, ϵ-objective has the highest loss in low-noise ranges, close
to t = 0.0.

Dominic Rampas A. Appendix 48

On Neural Compression using Diffusion Autoencoders

300MOriginal 700M 3B

Figure 7: Visual comparison between diffusion autoencoders of varying model sizes (300M,
700M, 3B). Note, the 700M and 3B were trained for longer and trained at 1024 × 1024,
while the 300M model only trained at 512 × 512.

Dominic Rampas A. Appendix 49

On Neural Compression using Diffusion Autoencoders

Figure 8: Visual comparison between diffusion autoencoders trained with different targets
and loss weightings. All models are trained and sampled at an image resolution of 512×512.

Dominic Rampas A. Appendix 50

On Neural Compression using Diffusion Autoencoders

Figure 9: Visual comparison between diffusion autoencoders trained with different targets
and loss weightings. All models are trained and sampled at an image resolution of 512×512.

Dominic Rampas A. Appendix 51

On Neural Compression using Diffusion Autoencoders

Figure 10: Visual comparison between diffusion autoencoders trained with different targets
and loss weightings. All models are trained and sampled at an image resolution of 512×512.

Dominic Rampas A. Appendix 52

On Neural Compression using Diffusion Autoencoders

Figure 11: Visual comparison between diffusion autoencoders trained with different targets
and loss weightings. All models are trained and sampled at an image resolution of 512×512.

Dominic Rampas A. Appendix 53

On Neural Compression using Diffusion Autoencoders

Figure 12: Visual comparison between a VQGAN (f32) a comparable diffusion autoencoder
with different number of inference steps (N ∈ [1, 10, 30]). All models are trained and
sampled at an image resolution of 512 × 512.

Dominic Rampas A. Appendix 54

On Neural Compression using Diffusion Autoencoders

Figure 13: Visual comparison between a VQGAN (f32) a comparable diffusion autoencoder
with different number of inference steps (N ∈ [1, 10, 30]). All models are trained and
sampled at an image resolution of 512 × 512.

Dominic Rampas A. Appendix 55

On Neural Compression using Diffusion Autoencoders

Figure 14: Visual comparison between a VQGAN (f32) a comparable diffusion autoencoder
with different number of inference steps (N ∈ [1, 10, 30]). All models are trained and
sampled at an image resolution of 512 × 512.

Dominic Rampas A. Appendix 56

On Neural Compression using Diffusion Autoencoders

Figure 15: Visual comparison between a VQGAN (f32) a comparable diffusion autoencoder
with different number of inference steps (N ∈ [1, 10, 30]). All models are trained and
sampled at an image resolution of 512 × 512.

Dominic Rampas A. Appendix 57

On Neural Compression using Diffusion Autoencoders

References

[1] F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, “A survey on big data market:
Pricing, trading and protection,” Ieee Access, vol. 6, pp. 15 132–15 154, 2018.

[2] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances
in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[3] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint
arXiv:2010.02502, 2020.

[4] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances
in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.

[5] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design space of
diffusion-based generative models,” 2022.

[6] R. Berns, Billmeyer and Saltzman’s Principles of Color Technology. Wiley, 2019.
[Online]. Available: https://books.google.de/books?id=vEyMDwAAQBAJ

[7] Y. Patel, S. Appalaraju, and R. Manmatha, “Human perceptual evaluations for image
compression,” arXiv preprint arXiv:1908.04187, 2019.

[8] G. K. Wallace, “The jpeg still picture compression standard,” IEEE transactions on
consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[9] W. Weber, “Differential encoding for multiple amplitude and phase shift keying sys-
tems,” IEEE Transactions on Communications, vol. 26, no. 3, pp. 385–391, 1978.

[10] P. N. Graphics, “Portable network graphics,” Overview. html.

[11] J. Eppink, “A brief history of the gif (so far),” Journal of visual culture, vol. 13, no. 3,
pp. 298–306, 2014.

[12] A. J. Hussain, A. Al-Fayadh, and N. Radi, “Image compression techniques: A survey
in lossless and lossy algorithms,” Neurocomputing, vol. 300, pp. 44–69, 2018.

[13] R. Gray, “Vector quantization,” IEEE Assp Magazine, vol. 1, no. 2, pp. 4–29, 1984.

Dominic Rampas References 58

https://books.google.de/books?id=vEyMDwAAQBAJ

On Neural Compression using Diffusion Autoencoders

[14] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h.264/avc
video coding standard,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 7, pp. 560–576, 2003.

[15] “Video developer report 2018.” [Online]. Available: https://go.bitmovin.com/hubfs/
Bitmovin-Video-Developer-Report-2018.pdf

[16] S. Soatto, R. Frezza, and P. Perona, “Motion estimation via dynamic vision,” IEEE
Transactions on Automatic Control, vol. 41, no. 3, pp. 393–413, 1996.

[17] G. H. Granlund, “In search of a general picture processing operator,” Computer
Graphics and Image Processing, vol. 8, no. 2, pp. 155–173, 1978. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0146664X78900473

[18] D. Gabor, “Theory of communication. part 1: The analysis of information,” Journal
of the Institution of Electrical Engineers - Part III: Radio and Communication
Engineering, vol. 93, pp. 429–441(12), November 1946. [Online]. Available:
https://digital-library.theiet.org/content/journals/10.1049/ji-3-2.1946.0074

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
Computation, vol. 1, no. 4, pp. 541–551, 1989.

[20] O. Loyola-González, “Black-box vs. white-box: Understanding their advantages and
weaknesses from a practical point of view,” IEEE Access, vol. 7, pp. 154 096–154 113,
2019.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[22] M. M. Petrou and C. Petrou, Image processing: the fundamentals. John Wiley &
Sons, 2010.

[23] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

Dominic Rampas References 59

https://go.bitmovin.com/hubfs/Bitmovin-Video-Developer-Report-2018.pdf
https://go.bitmovin.com/hubfs/Bitmovin-Video-Developer-Report-2018.pdf
https://www.sciencedirect.com/science/article/pii/0146664X78900473
https://digital-library.theiet.org/content/journals/10.1049/ji-3-2.1946.0074

On Neural Compression using Diffusion Autoencoders

S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models
are few-shot learners,” CoRR, vol. abs/2005.14165, 2020. [Online]. Available:
https://arxiv.org/abs/2005.14165

[24] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour,
B. K. Ayan, S. S. Mahdavi, R. G. Lopes et al., “Photorealistic text-to-image diffusion
models with deep language understanding,” arXiv:2205.11487, 2022.

[25] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-
conditional image generation with CLIP latents,” arXiv:2204.06125, 2022.

[26] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever,
and M. Chen, “Glide: Towards photorealistic image generation and editing with text-
guided diffusion models,” arXiv:2112.10741, 2021.

[27] G. E. Hinton and R. Zemel, “Autoencoders, minimum description length and
helmholtz free energy,” in Advances in Neural Information Processing Systems,
J. Cowan, G. Tesauro, and J. Alspector, Eds., vol. 6. Morgan-Kaufmann,
1993. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/1993/
file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.
Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[30] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional networks,”
in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2010, pp. 2528–2535.

[31] D. P. Kingma, M. Welling et al., “An introduction to variational autoencoders,”
Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.

Dominic Rampas References 60

https://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper_files/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

On Neural Compression using Diffusion Autoencoders

[32] J. Rocca, “Understanding variational autoencoders (vaes),”
2019. [Online]. Available: https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73

[33] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” Ad-
vances in Neural Information Processing Systems, vol. 30, 2017.

[34] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution
image synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2021, pp. 12 873–12 883.

[35] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-
vised learning using nonequilibrium thermodynamics,” in International Conference
on Machine Learning. PMLR, 2015, pp. 2256–2265.

[36] “General diffusion framework.” [Online]. Available: https://github.com/WARP-AI/
gdf

[37] T. Salimans and J. Ho, “Progressive distillation for fast sampling of diffusion
models,” CoRR, vol. abs/2202.00512, 2022. [Online]. Available: https://arxiv.org/
abs/2202.00512

[38] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,”
in International Conference on Machine Learning. PMLR, 2021, pp. 8162–8171.

[39] J. Choi, J. Lee, C. Shin, S. Kim, H. Kim, and S. Yoon, “Perception prioritized training
of diffusion models,” 2022.

[40] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-
based generative modeling through stochastic differential equations,” arXiv preprint
arXiv:2011.13456, 2020.

[41] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient langevin dy-
namics,” in Proceedings of the 28th international conference on machine learning
(ICML-11), 2011, pp. 681–688.

[42] P. Mörters and Y. Peres, Brownian motion. Cambridge University Press, 2010,
vol. 30.

Dominic Rampas References 61

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://github.com/WARP-AI/gdf
https://github.com/WARP-AI/gdf
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2202.00512

On Neural Compression using Diffusion Autoencoders

[43] Y. Song, “Generative modeling by estimating gradients of the data distribution,”
2021. [Online]. Available: https://yang-song.net/blog/2021/score/

[44] B. D. Anderson, “Reverse-time diffusion equation models,” Stochastic Processes and
their Applications, vol. 12, no. 3, pp. 313–326, 1982.

[45] R. Po, W. Yifan, V. Golyanik, K. Aberman, J. T. Barron, A. H. Bermano, E. R. Chan,
T. Dekel, A. Holynski, A. Kanazawa et al., “State of the art on diffusion models for
visual computing,” arXiv preprint arXiv:2310.07204, 2023.

[46] T. Hang, S. Gu, C. Li, J. Bao, D. Chen, H. Hu, X. Geng, and B. Guo, “Efficient
diffusion training via min-snr weighting strategy,” arXiv preprint arXiv:2303.09556,
2023.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Pro-
cessing Systems, vol. 30, 2017.

[48] R. L. Burden, Numerical analysis. Brooks/Cole Cengage Learning, 2011.

[49] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models,” arXiv preprint arXiv:2211.01095,
2022.

[50] G. T. Fechner, “Elements of psychophysics, 1860.” 1948.

[51] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs
trained by a two time-scale update rule converge to a local nash equilibrium,” Ad-
vances in Neural Information Processing Systems, vol. 30, 2017.

[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2818–2826.

[53] T. Unterthiner, S. van Steenkiste, K. Kurach, R. Marinier, M. Michalski, and S. Gelly,
“Fvd: A new metric for video generation,” 2019.

[54] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the
kinetics dataset,” in proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 6299–6308.

Dominic Rampas References 62

https://yang-song.net/blog/2021/score/

On Neural Compression using Diffusion Autoencoders

[55] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.

[56] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in Interna-
tional Conference on Machine Learning. PMLR, 2021, pp. 10 096–10 106.

[57] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” 2020.

[58] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-
lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[59] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. Springer, 2015, pp. 234–241.

[60] P. Pernias, D. Rampas, M. L. Richter, C. J. Pal, and M. Aubreville, “Wuerstchen:
An efficient architecture for large-scale text-to-image diffusion models,” 2023.

[61] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert,
and Z. Wang, “Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 1874–1883.

[62] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010, pp.
249–256.

[63] “Stability ai.” [Online]. Available: https://stability.ai/

[64] J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee,
Y. Guo et al., “Improving image generation with better captions,” Computer Science.
https://cdn. openai. com/papers/dall-e-3. pdf, 2023.

Dominic Rampas References 63

https://stability.ai/

On Neural Compression using Diffusion Autoencoders

[65] M. Byeon, B. Park, H. Kim, S. Lee, W. Baek, and S. Kim, “Coyo-700m: Image-text
pair dataset,” https://github.com/kakaobrain/coyo-dataset, 2022.

[66] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti,
T. Coombes, A. Katta, C. Mullis, M. Wortsman et al., “Laion-5b: An open large-scale
dataset for training next generation image-text models,” arXiv:2210.08402, 2022.

[67] M. Bain, A. Nagrani, G. Varol, and A. Zisserman, “Frozen in time: A joint video
and image encoder for end-to-end retrieval,” in IEEE International Conference on
Computer Vision, 2021.

[68] S. Lee, J. Chung, Y. Yu, G. Kim, T. Breuel, G. Chechik, and Y. Song, “Acav100m:
Automatic curation of large-scale datasets for audio-visual video representation learn-
ing,” in ICCV, 2021.

[69] H. Xue, T. Hang, Y. Zeng, Y. Sun, B. Liu, H. Yang, J. Fu, and B. Guo, “Advancing
high-resolution video-language representation with large-scale video transcriptions,”
in International Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

[70] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv:2207.12598, 2022.

[71] D. P. Kingma and R. Gao, “Understanding diffusion objectives as the elbo with simple
data augmentation,” in Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[72] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[73] A. Sauer, D. Lorenz, A. Blattmann, and R. Rombach, “Adversarial diffusion distilla-
tion,” arXiv preprint arXiv:2311.17042, 2023.

[74] X. Liu, X. Zhang, J. Ma, J. Peng, and Q. Liu, “Instaflow: One step is enough for high-
quality diffusion-based text-to-image generation,” arXiv preprint arXiv:2309.06380,
2023.

[75] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency models,” 2023.

[76] Y. Kirstain, A. Polyak, U. Singer, S. Matiana, J. Penna, and O. Levy, “Pick-a-pic:
An open dataset of user preferences for text-to-image generation,” 2023.

Dominic Rampas References 64

https://github.com/kakaobrain/coyo-dataset

On Neural Compression using Diffusion Autoencoders

[77] L. Yu, J. Lezama, N. B. Gundavarapu, L. Versari, K. Sohn, D. Minnen, Y. Cheng,
A. Gupta, X. Gu, A. G. Hauptmann et al., “Language model beats diffusion–tokenizer
is key to visual generation,” arXiv preprint arXiv:2310.05737, 2023.

Dominic Rampas References 65

	Introduction
	Related Work
	Compression
	Classical Compression
	Neural Compression
	Diffusion Models
	Viewing Diffusion Models through Differential Equations
	DDPM / DDIM
	EDM
	Sampling Methods

	Evaluation Metrics
	Analytical Evaluation
	Neural Evaluation
	Human Evaluation

	Method
	Introduction
	Architecture
	Image Compression
	Architecture
	Diffusion Setup
	Training Details
	Data

	Video Compression
	Architecture
	Diffusion Setup
	Training Details
	Data

	Evaluation
	Image Compression
	Hyperparameter-Evaluation
	Evaluation against other Methods
	Further Studies

	Video Compression
	Hyperparameter-Evaluation
	Evaluation against other Methods

	Discussion
	Conclusion
	Appendix
	Literaturverzeichnis

