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ABSTRACT One of the challenging problems in sensor network systems is to estimate and track the
state of a target point mass with unknown dynamics. Recent improvements in deep learning (DL) show
a renewed interest in applying DL techniques to state estimation problems. However, the process noise
is absent which seems to indicate that the point-mass target must be non-maneuvering, as process noise
is typically as significant as the measurement noise for tracking maneuvering targets. In this paper, we
propose a continuous-time (CT) model-free or model-building distributed reinforcement learning estimator
(DRLE) using an integral value function in sensor networks. The DRLE algorithm is capable of learning
an optimal policy from a neural value function that aims to provide the estimation of a target point mass.
The proposed estimator consists of two high pass consensus filters in terms of weighted measurements and
inverse-covariance matrices and a critic reinforcement learning mechanism for each node in the network.
The efficiency of the proposed DRLE is shown by a simulation experiment of a network of underactuated
vertical takeoff and landing aircraft with strong input coupling. The experiment highlights two advantages of
DRLE: i) it does not require the dynamic model to be known, and ii) it is an order of magnitude faster than

the state-dependent Riccati equation (SDRE) baseline.

INDEX TERMS Aecrospace, consensus filters, deep learning, distributed filter, dynamical system model,

neural dynamic programming, sensor networks.

I. INTRODUCTION

In nonlinear control theory, distributed estimation and track-
ing target dynamics is a fundamental task and challenging
due to the unobservable estimation errors for hidden states in
such loosely coupled sensor networks. If the sensing model
and the target dynamics are known and linear in the states,
the distributed Kalman Filtering (DKF) algorithm [1] can
be realized. For instance, for a linear time-invariant (LTI)
sensing model and the target object observed in additive
Gaussian noise, the DKF comprises two dynamic consensus
problems when the target object is estimated. Then, solving
two dynamic consensus filters (i.e. a low-pass filter and a
band-pass filter). The published approaches on this subject can
roughly be separated into two complementary categories: (A)
derivative-building filters focusing on the use of Jacobians [1],

which are the truncated first-order Taylor series of the non-
linear functions, and (B) derivative-free filters focusing on
avoiding the use of Jacobians [2], [3]. While both concepts are
generally justified for heterogeneous multi-sensor fusion. The
task becomes more intriguing for target dynamics that cannot
be easily modeled or that are unknown. In such a case, a learn-
ing mechanism turns out to be an attractive solution to control
and estimate dynamic systems interacting with a physical
environment to do more demanding tasks like autonomous
flying [4], solving decision-making problems [5], [6], etc.
Recent improvements in deep learning (DL) show a re-
newed interest in applying DL techniques to state estimation
problems [7], [8]. The authors assume that the process noise
is absent and propose a neural network trained trying to do
state estimation directly via supervised learning. In practical
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implementations, both process and measurement noises ap-
pear in the dynamical system models, and it is crucial to
consider the effect of measurement noise.

Adaptivity and optimality are central elements combined
to control unknown dynamical system models. Reinforcement
learning (RL) refers to a class of such methodologies [9]. In
a standard RL setting, the dynamical system model is un-
known, and the optimal control mechanism is learned through
the interaction with the system. The key idea is to learn
and solve the value function to satisfy the Hamilton-Jacobi-
Bellman (HJB) equation [10]. The celebrated policy iteration
(PI) algorithm belongs to this class. The PI algorithm starts
by considering the admissible average cost setting for a given
control policy and uses this data to obtain an improved con-
trol policy. These two steps of policy evaluation and policy
improvement are repeated until convergence to the optimal
control is achieved [11]. Another closely related approach to
learn continuous-time (CT) nonlinear systems is the neural
network (NN) structure [12] which can be trained to yield
an approximate solution of the value function at the policy
evaluation step. This category of solutions is called model-
building or model-free RL, and the term model-free is used
to emphasize that no knowledge of the dynamical system is
assumed.

In all the aforementioned results, assumptions were made
only for availability of the state variable [13]. However, it
is known they may perform weakly when the state variable
is not fully observable and becomes even more challenging
in distributed estimations for sensor networks setups [14].
This is particularly important in target tracking of a net-
work, where only a noisy measurement of the output of each
node is available for the tracking purpose. When a model-
free methodology is engaged, it is not possible to use a
filter, e.g. DKF, to estimate the state variable because the
dynamical system model is unknown. The existing distributed
estimation algorithms for target tracking using sensor net-
works are limited and highlighted by some publications [15],
[16].

In this paper, we derive a CT model-free distributed re-
inforcement learning estimator (DRLE) using integral value
function, based on PI, in sensor networks. A DRLE is a net-
work framework of interacting intelligent microfilters. Each
microfilter is implemented as an embedded component in a
sensor architecture. The DRLE algorithm is capable of learn-
ing an optimal policy from a neural value function that aims
to provide the estimate of a target point mass. We take one
step further and replace the state of the target point mass
with a noisy measurement of the state by each node of the
network. It should be noted that the DRLE algorithm is in
the model-free family of classical RL. The only information
used for the simulation is the outputs of a highly coupled
nonlinear target point mass of known order; no known dy-
namical system model is assumed to generate the data. There
are three contributions to this paper. Our first contribution is
to resolve the limitation of the existing derivative-building
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and derivative-free filters that needs the model dynamics by
introducing a novel model-free microfilter with two identi-
cal high-pass consensus filters. Our second contribution is
to increase the performance by an order of the magnitude.
Lastly, our third contribution is to propose a base performance
standard for distributed estimation and comparison with the
state-dependent Riccati equation (SDRE) algorithm [2], [17]
on target point mass tracking.

The rest of the paper is organized as follows. In Section II,
we describe briefly the motivation and problem statement.
Our main results including the DRLE algorithm with two
high-pass consensus filters are presented in Section III. In
Section IV, we give the simulation result and compare our
proposed DRLE algorithm with the SDRE approach. Finally,
the conclusions are drawn.

Notation: Unless stated otherwise, all vectors in this paper
are column vectors. The state variables are a function of time,
e.g., x = x(t). The trace of an n x n square matrix A, denoted
tr(A), is defined to be the sum of elements on the main diag-
onal of A.

Il. MOTIVATION

We present the motivations behind the need for a novel design
of a model-free distributed reinforcement learning estimator
(DRLE) using an integral value function for the online gen-
eration of an optimal policy. Finally, this policy leads to the
optimal observer gain without knowing the dynamical system
model of the target point mass.

A. PROBLEM STATEMENT

Consider a network topology G = (V, £) with n nodes inter-
connected via an undirected graph. The nodes are denoted
by the set V = {vi, vp,...,v,}, and the set of links & =
{(vi,vj), vi #vj,v;,v; € V) CV x V. The objective is to
perform distributed state estimation of a nonlinear target point
mass. To be more precise, let

X(1) = a(x) + b(x)u(r) + Byw(r) (D
yilt) =hi(x)+v(), i=1,2,...,n 2)

be the dynamics of the target (e.g. a moving point mass) and
the observation model of node i in the considered network.
Here, x(#) € R™ denotes the state of the target, y;(r) € R
represents the r-dimensional measurements vector obtained
by n sensors, u(t) € R™ is the control input, and w(r) and
v;(¢) are white noises with covariance matrices R, and Ry,,,
respectively. We also assume the %;’s are different across the
entire network. The statistics of the target dynamics and the
measurements noise are given by

E[w(t) w(t2) "] = Ry (11)8(t1 — 12), 3)
E[vi(t) vj(t2) '] = Ry, (11)8(t1 — 2)8;j(t1 — 1), (4)

where §(.) is the Dirac delta function.
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FIGURE 1. Network architecture for DRLE. The communication links between two high-pass consensus filters are shown with red arrows. The two
high-pass filters shown in gray rectangles perform with the same frequency as the DRLE component in the green rectangle.

It is possible to transform (1) and (2) into a state-dependent
coefficient (SDC) form as

X(t) =A@)x(t) + B(x)u(t) + Byw(t) (5)
yi(t) = Hi(x)x(t) + vi(7) (6)

where a(x) = A(x)x, b(x) = B(x) and h;(x) = H;(x)x. Due to
the fact that we are trying to estimate the target point mass
associated with the information data of each node y;(¢) of the
network, we should build the dynamics of the estimator, with
the expression

£(t) = A)R(t) + B)u(t) + Li(t)yi(t) 7
Fi(t) = Hi(x)%(1) (8)

where Ji(1) = yi(t) — Ji(1) = Hi(x)(x(t) — £(t)) = H;(x)X(7),
vi(t) = Hj(x)X(t), L;(¢) is the estimator gain to be computed
online, and X(r) = (A(x) — L;i(t)H;(x))Z(t) is the closed-loop
dynamics of the estimator.

The next step is to minimize the error covariance matrix for
each node of the network

0i(t) = E[x(t) ()" 1. )

Taking the derivative of the error covariance matrix Q;(t) of
each node, we get

0i(t) = (A(x) — Li(t) H;(x)) Qi(r)
+ Qi(t) (A(x) — Li()H;(x)) "
+ BuRuywB,, + Li(tR,L] (1). (10)

Therefore, the optimal estimator gain L} (¢) is the solution of
the following equation:

Qi) _ oy . _
L) 20; (OH; (x) + 2Li(1)Ryy,; = 0, (11D
which gives the optimal gain:
L¥(t) = Qi()H;" ()R, (12)

It remains to determine the update rule for the error covariance
matrix Q;(¢) of each node. Substituting (12) in (10), we have
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the Riccati equation
0i(t) = AX)Qi(t) + Qi()AT (x) + ByRyuB,,
— Qi(OH;" ()R, Hy(x)Qi(1).

The SDRE information filter [2] can be exploited to solve
the Riccati equation (13). However, the SDRE approach suf-
fers from two key weaknesses. First, the Riccati equation
in (10) needs to be solved in real-time, and the solution of
the Riccati equation (if it exists) can be only represented
numerically. Second, the dynamical system model of the tar-
get point mass should be known (e.g. A(x)). The proposed
weaknesses motivate us to develop a novel DRLE for system
networks with a broader range of aerospace applications. Fur-
thermore, analytic closed-form expressions of the estimator
gain L;(t) of each node approximating the numerical solutions
offer several advantages: 1. Oversampling, thus, they provide
a quick methodology to evaluate intermediate points. 2. In
the context of optimal control, they can be used to express
the observer feedback, allowing derivation and integration
for state estimation. 3. They are often smooth functions (e.g.
polynomials) and smoothness in observer feedback is a de-
sired property. Furthermore, they can be easily implemented
in micro-controllers.

13)

lil. DISTRIBUTED REINFORCEMENT LEARNING STATE
ESTIMATION

In this section, we present a novel DRLE that does not rely
on the dynamical system model of the target point mass. Now,
substituting (12) in (7), the state propagation equation can be
expressed as

() = A1) + Bxu(t)

+ L7 (1) (i) — Hy(x)2(1)) (14)
= A)£(t) + B(x)u(t)
+ 0i(t) (H," ()R,yi(t) — H (0)R | Hi(x)%(1))
(15)
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The terms in (15) are two network aggregate quantities
and represent the average measurements and the average
inverse-covariance matrix, respectively. They can be written
as follows:

] n
: = T =1y, = — P
pit) =H; (R, yi(0), plt) = - > pilt), (16)

i=1

Z(@t) = % Z H;" ()R Hi(x).

i=1

a7

Both p(7) and Z(#) are time-varying quantities, and there is
a need to solve two dynamic consensus problems that allow
computing the average p(t) and Z(¢). If one can compute the
average p(t) and Z(t), the estimator emerges. This means that
each node in the network calculates its consensus values p(t)
and Z (), respectively. To perform distributed averaging, we
use high-pass consensus filter of [18]. Let N; = {j : (i, j) €
&} be the set of neighbors of node i on graph G. Furthermore,
let L=D — A be the Laplacian matrix of G, A =[a;;] €
R™", a;; # 0 if (Vj, Vi) € £ otherwise a;; = 0 is the adja-
cency matrix, and D denotes the degree matrix. The high-pass
filter is in the following form

Si=y ) (sj—s)+y Yy (@—a); y>0  (I8)
jeN; jeN;

pi = i + i, (19)

Uj = H} (0)R,,) Hi(x), ¥jeN;Uli) (20)

Si=y ) (Si=S)+y ) ;=T y>0 (@D
jEN; JEN;

Zi =S +U 22)

where i; is the input of node i, s; is the state of the consen-
sus high-pass filter, and p; is its output. The inputs of each
node are it; = H;' (x)R,,\yi(t) and U;(t) = H;' (x)R,, H;(x)
with zero initial states 5;(0) = 0 of two filters. The output
of high-pass filters asymptotically converge to p(¢) and Z(t)
in (16) and (17), respectively. Until now, we have described
a formal methodology to estimate the state of a nonlinear
dynamics of a target point mass under the observation of
nodes in a heterogeneous sensor network.

A. MODEL-FREE DRLE USING AN INTEGRAL VALUE
FUNCTION

In this subsection, we propose a model-free DRLE to estimate
the state of a target point mass in a network under two separate
dynamic consensuses in terms of weighted measurements and
inverse-covariance matrices. The objective is to minimize the
error covariance matrix for each node Q;(t) without solv-
ing the Riccati equation (13) (i.e. X(t) = x(¢) Vt > 0). To
proceed, consider the system model (14) and measurement
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model (15), then we define for each node the following in-
tegral value function

Vi()?i(t))=/ ri(&(o), d(0))dr = & ()Q(1)%(0). (23)
t

where r;(X;, ;) = Gi(X) + L_tlTR,‘IZ,‘ with G;(X) positive def-
inite, i.e. VX #£ 0, G;(X) >0 and £ =0 — G;(x) =0, and
R; € R™*™ is a positive definite matrix for each node i. If we
divide the integral in (23) into two terms, then

t+At
Vi(xi(t)) = / ri(%i(t), ai(7))dt
1

o
+ f rGi(o), a(o)r.  (24)
t+At
Considering At — 0 is sufficiently small, the first integral
term is a rectangle with the length of A¢ and the width of
ri(X;(t), i;(t)) and results in

Vi(Ri(1)) &~ Atri(Ri(t), @i (1)) + Vit + A))  (25)
Dividing both side of (25) by At, we get
), BD) + [vl-(xl-(r + At)) — vl-(xl-(r))} _o @6
At
— r(& @), #(t)) + V(&) = 0 27)
d
— ri(&(t), @4(1)) + [vv,-(ae,-(r»ﬂafi(t) =0 (28)
— ri(&i(0), @(1)) + [VVi(Z@ )] %) = 0 (29)

The last (29) is the continuous time (CT) Bellman equa-
tion [19]. Solving the CT Bellman equation requires the full
knowledge of the dynamical system model and yields poor
generalization. To avoid this, we may write

t+T

Vi (5 (1) = Vi (B (z+T>>+/ ri (% (1), @ (7)) dt
t

SO0 =% ¢ +T)0i ()% (t +T)

t+T
+[ i@ e 720 (30)
t
Using the Kronecker product (X) property, we can rewrite (30)
as linear in the parameter vector Q;(¢) = vec(Q;(t)) in the
following form

t+T
(& O =5 ¢+1))0i @) =f ri (i (0), i (1) dr,

t (31)
where %;(¢) = £;(t) @ £i() is the quadratic polynomial vector
containing pairwise products of the m components of £;(¢).
Since our target point mass in (1) is a nonlinear dynamical
system, the value function of each node V;(X(¢)) requires
higher-order nonlinearities. It is possible to approximate the
proposed value function by a suitable approximator network
in terms of unknown parameters which can be trained to be-
come the approximate solution of the Riccati equation in (13)
at the evaluation step.
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FIGURE 2. Communicating weighted network with four nodes and three links and the target point mass. Sensing appears along the x-axis, y-axis and

rotation ¢-axis. Edge labels indicate exemplary communication link weights.

The rationale behind the proposed integral value function is
formally discussed in the next subsection.

B. CRITIC NEURAL NETWORK

By having an unknown dynamical system model of the target,
a relevant question is the system identification of the plant.
A critic neural network (NN) can be exploited for such a
goal. Interestingly, the value function for each node can be
approximated by a critic NN structure as

Vi) = 5 (1)0i(1) = W, 0;(%), (32)

with unknown parameters (weights) of each node W; =
[wi;, wy, ..., whi]T, the activation functions &;(X) =
[¢1,(X), do,(X), ..., Pp,(®)] : R" — R”, and h is referred
to as the number of neurons in the hidden layer of the NN
topology. Therefore, we can write (32) as

+T
W, (@i (£(1) — ®; (R +T))) = / ri(X%i(7), wi(r))d.
t

(33)

Remark 1: Equation (33) does not require knowl-
edge of the dynamics A(x),B(x). The observed
data at each iteration with fixed time interval 7T is
(F(0), F(+T), [/ rGi(o), a(e)dr)  with  F) =

[)E;r(t) L?iT(t)]T e R™Hm - After convergence of the value
function V;(X(¢)) parameters, the control policy is performed.
This can be accomplished by modifying the value function
Vi(xi(t), ;(t)) containing #;(r) as an argument. Therefore
aVi(X;(t), i;(t))/0i;(t) can be explicitly computed.

From the relation in (33), it is clear that the optimization
problem is quadratic and solvable in real time by a recursive
least-squares (RLS) technique. Note that the DRLE itself is
not enough to perform distributed state estimate for a target
point mass. A distributed computation of p(tr) and Z(¢) is
also required. The proposed approach provides the online
generation of an optimal policy by measuring data by each
node along the point mass system trajectories. To facilitate
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the implementation of the DRLE algorithm, we report the
pseudo-code in Table 1.

Based on Fig. 1 and Algorithm 1, each node sends a mes-
sage with size O(m(m + 1)) to its neighbors. The message
consists of the state and input of its consensus filters (e.g.
si» Siy i, Up).

The proposed DRLE offers a constructive learning method-
ology to design a distributed state estimator in a sensor
network that approaches non-linearity even for unknown dy-
namical system models for which a unique solution for the
Riccati matrix parameters in (13) does not exist. Indeed,
learning involves numerical procedures that may introduce
some challenges. Firstly, a critical aspect is the NN, and it
is well-known that its performance depends on the architec-
ture design, weights analysis, and hyper-parameters tuning.
Secondly, the DRLE converges to the optimal weights by
collecting mostly a low number of data points (Fj(¢), F;(t +
T), ftHT ri(X;(1), itj(tr))d7) for each least-squares problem
with the fixed time interval T'.

IV. SIMULATION RESULTS

The assessment of the proposed DRLE approach without
knowing the system matrix A(x) is done by considering
the following close-to-real simulation scenario: An agnostic
target in a multi-node setup is that each node is a highly
coupled nonlinear dynamical system (see Fig. 2) and in par-
ticular we show a Comparison with the SDRE algorithm
(2], [17].

A. AGNOSTIC TARGET

The target point mass considered in this paper is an under-
actuated mechanical system with degree one which is also a
complex nonlinear system [20]. The proposed novel VTOL
deploys a system of three mass particles with masses my, my
and m3, as shown in Fig. 2 and the dynamics

g1 = —e€1vy sin(gs),
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Algorithm 1: Model-Building Distributed Reinforce-
ment Learning Estimator with Two High-Pass Consensus
Filters.
1: Initialization: s; = 0, Q; = nQq, X(0) = X0, Si = Omxm
2: while new data exists do
3:  Update the state of the average measurements
i = HjT(x)R;vljyj(r), Vj € N; U {i}
si=vy ZjeN,»(sj —si)+vy ZjeNi(ﬁj — i), y >0
pi(t) = si + i
4: Update the state of the average inverse-covariance
Uj = H]T(x)R;Ul Hj(x), Vj € N; U {i}

J
Si=vy ngNi(Sj -S)+y ZjeNi(Uj - Ui)’ y >0
Zit) =S;+U;
5:  Solve RLS online > Choose proper ®;(x)
W (@R, ;) — ©i(R(t + T), 7))
= [T ri(o). i(r)de
6:  Construct Q;(¢) from (% (t) — & (t + T))Q:(t)
7:  Reduce the estimation error of the point mass
ei(t) = Qi(t)(pi(t) — Zi(1)X(1))

8: end while

Go = a(g — ¢3Lsin(q3)) + €1v] cos(q3) — €1€3v2 cos(g3),

Gz = —€av1 + €212, (34)

where €] = %,62 = ﬁ, €3 = 1%, a = —1.0002, and v =

[vi,v21". ¢ =[q1. g2, ¢31" =[x1, y1, 01" are the gener-
alized coordinates.! An external thrust vector fj is ap-
plied to m; in the direction of —x; and y; respectively,
and f3 to m3 in the direction of —x3 and y3 respectively.
For  simplicity, we assume that all representative parti-
cle masses are the same (e.g., my =m for k=1, ..., 3).
The detailed dynamical system model is introduced in [20].
The objective is to track the state of the target point
mass. To proceed, the VTOL dynamical model is used
for nodes, i =1,2,...,4, and also the target point mass.
By defining the state vector x = [q1, ¢1, ¢2, ¢2, q3, ¢3]" =
[x1, x2, X3, X4, X5, xG]T, and u = [vq, vz]—r = [u, uz]T the
system (34) for the target point mass can be transformed into
the SDC form x(t) = A(x)x(t) + B(x)u(t) + B, w(t) with
By = 0.01/.

I The inertial measurement unit (IMU) is installed at the center of the shaft
(e.g., x,y, 6). Therefore, the following shift is desirable x = x; 4+ L cos(f),
y =y1 + Lsin(9).

The network has n = 4 nodes with a topology shown in
Fig. 2 and the Laplacian matrix denoted by

(35)

The nodes (i.e. VTOLSs) of the considered network make noisy
measurement of the target VTOL along the x-axis, y-axis and
rotation @-axis, i.e.

yi(t) = Hi(x)x(t) +vi(t); Hi=1s for i=1,...,4.

Moreover, Ryy, = 3lg, Ryy, = 1.51, Ryy; = 1.51, Ry, =
1.6l6. G; and R; in the value function are

G; = diag(120, 120, 180, 120, 200, 5),
R; = diag(15, 15) for i=1,...,4.

(37)
(38)

Now, for maneuvering of the target point mass, we consider
the following elaborated trajectory

* . t
q) =2.5sin g) 39)
5 t
g7 = - cos (5) , (40)
. t
q, = 2.5cos g 41
N 5 [t
g, = D sin g) 42)

We approximate the value function in (33) as quadratic in
states and inputs. Therefore, it is sufficient to choose the critic
NN basis ®;(X) as the quadratic vector (h = 35) in the state
and input components that is given in (36) shown at the bottom
of this page. The DRLE time interval is set as T = 1 sec, with
the total time of the simulation that is set to 7y = 100 sec. The
nonlinear control of the target point mass u(t) is also based
on the proposed critic NN with the same activation function.
Therefore, the closed-form control policy for the dynamics
of target point mass (5) based on the considered activation
functions is

L{£ £ £ £ £ =6
u) =—z. . . . 0 . |°W, (43)
2% X £ X X5 e

s - 22 nn an an aa aa a2 aa an an aa A2 an an oan A2 aa oan &2 oaa
(X, it) = |: X Xy X1X3 XXy 5185 X1 Xe X5 XXz kg Xof5 BoXe X35 K38y X385 X386 Xy XaXs K4k X5 Xske

T
)?g X1y Xpity X3y Xqity Xsity Xeily IZ% X1ty Xpily X3ty X4ty Xsun Xello IZ% :| fori=1,...,4. (36)
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FIGURE 3. DRLE performance estimation to track the state of the target
point mass by four nodes. Each node and the target is shown in red plus
and blue star, respectively. Evolution of the states of the target point mass
(in blue).

where o is the Hadamard product and

Waa,
Wao,

Was,
Wi,

Waq,
Wiy,

Was,
W3,

Was,
Wi3,
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‘Vt pr—
Wiq,

(44)
A probing noise is added to the control (43) to guaran-
tee persistence of excitation. The initial state of the target
is set as x(0)=1[4, 0, 2, 0, 0, 0]7. The initial estimate
of four nodes are: £;(0) =[3, 0, 6, 0, 0.15, 017, (0) =
[—9, 0, 0, 0, 0.24, 017, £3(0)=[-5, 0, —5, 0, 0.2, 0]"
and £4(0) =109, 0, —3, 0, —0.09, O]T. Fig. 3 shows the
learning performance of the DRLE in the agnostic scenario
and the tracking estimation. After 366 iterations, the control
policy u(r) and the state estimation policies Q;(¢) were ac-
quired. The control policy of the target point mass converges
to

. [ 84.047
W= [—73.1246

20.2438
—70.807

311.512
—288.9513

4.2042
—16.5996

—762.2035 —201.7821:|

811.8681 264.8218

The estimates appear a cohesive set of VTOLs that esti-
mate the trajectory of the target point mass. One can see
that after 10 sec convergence has occurred. After that, the
node’s estimations remain very close to the target’s trajecto-
ries, as required. A good approximation of the value function
is being evolved. The results shows that DRLE can learn
online the Riccati equation (13) without solving the differ-
ential equation and by using data measured along the target
trajectories.

In Fig. 4, we consider the same elaborated trajectory as
before, but now we show the performance of the SDRE. The
estimates of all nodes by SDRE methodology are somewhat
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FIGURE 4. SDRE performance estimation. Each node and the target is
shown in red plus and blue star, respectively. Evolution of the states of the
target point mass (in blue).

TABLE 1. Comparison of the standard deviation between SDRE and DRLE
for 50 times random repetitions of the experiment.

’ Algo ‘ node 14 ‘ oz(m) ‘ oy(m) ‘ og(rad) ‘ Execution time

SDRE | VTOL 1 | 0.6390 | 0.7568 | 0.0472

SDRE | VIOL 2 | 0.6005 | 0.7085 | 0.0447

SDRE | VTOL 3 | 05621 | 0.6920 | Ooanz | 2034 sec
: : : +0.4543

SDRE | VIOL 4 | 05729 | 0.6908 | 0.0409

DRLE | VTOL 1 | 04348 | 09142 | 0.0536

DRLE | VTOL 2 | 04193 | 0.7655 | 0.0498

DRLE | VIOL 3 | 03989 | 07917 | ooas3 | 3000 sec
: : : +0.0766

DRLE | VTOL 4 | 04117 | 0.7782 | 0.0495

dispersed. Also, the results demonstrate the importance of
DRLE which can be used to judge the usefulness of distributed
estimation.

B. EXPERIMENTAL RESULTS
We now compare DRLE to the SDRE method. The aim
is to assess the ability of DRLE to provide estimates. We
randomize different components of the experiment. The ran-
domization elements in this setup are the initial condition of
the target point mass xop ~ N(0, 01»216) with 0; =2 for j =
I,...,4and o; = 0.5 for j =5, 6, the initial estimates £;, ~
N(O, 0?ls) with oj =3 for j=1,...,4 and o; = 0.5 for
Jj =15, 6, target trajectories, VTOL masses (e.g., my = m for
k=1,...,3), and the lever arm L. A perturbation during the
experiment is applied to VTOL masses my + €¢, and the lever
arm L + ¢; with g = N(0, 0.2%) and €; = N(0, 0.01?).
Table 1 shows, for several simulation tests, a comparison
in terms of standard deviation between the actual state of the
target point mass and the estimated filter (DRLE and SDRE)
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FIGURE 5. The estimation error | e| performance of DRLE vs. SDRE. Each
curve is determined by averaging over 50 random iterations of each
algorithm.

outputs in the network of four VTOLs. As can be seen from
Table 1, both SDRE and DRLE provide good and similar
estimations of the sensor network of VTOLs. However, DRLE
results showed the gain provided by model-building neu-
ral based reinforcement learning estimator over the classical
SDRE without knowing the system dynamics in Table 1.

It is also interesting to see the evolution of estimation error
of the nodes independent of the network topology over time.

Vit e
with ¢; = £; — (% Zi X;). Fig. 5 demonstrates the comparison
of DRLE vs. SDRE. As expected, the DRLE performs signif-
icantly better than SDRE in the asymptotic regime.

As mentioned before, the SDRE method is an online strat-
egy for solving optimal control problems. However, it is
computationally heavier because of the need for solving Ric-
cati differential equations at each iteration. Furthermore, the
dynamical system model of target A(x) and B(x) should be
available. Another interesting fact is that the DRLE methodol-
ogy is less sensitive to perturbation on the physical parameters
of VTOLSs in the network comparing the SDRE approach.

To do so, we define the following measure |e|| =

C. DISCUSSION

The proposed DRLE algorithm offers a constructive learn-
ing methodology to design a distributed estimation in sensor
networks. It approaches collaboratively tracking, even for un-
known target dynamics or for which a physical expression
for the model does not exist. In summary, one may consider
different factors when choosing the DRLE or SDRE approach.
The DRLE and SDRE approaches are pretty much equal in
terms of qualitative behavior. However, there are two advan-
tages of DRLE: i) the DRLE method does not require the
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dynamic model to be known, and ii) DRLE is an order of
magnitude faster.

V. CONCLUSION

In this paper, we have proposed a novel use of reinforcement
learning, the distributed reinforcement learning estimator
(DRLE) that solves the continuous-time model-free estima-
tion problem in a senor network for a dynamic target. The
DRLE allows the learning of an optimal policy from a neural
value function that aims to provide the estimate of a target
point mass. The nodes of the network agree on two cen-
tral consensus sums which are high-pass filters in terms of
weighted measurements and inverse-covariance matrices and
a critic reinforcement learning mechanism for each node in
the network. At the cost of distributed tracking, we gain the
additional benefit of the model-free RL setting in identifying
a complex moving target by each node. The details of the
algorithm from a computational to communication architec-
ture perspective were discussed. DRLE was applied to the
novel network of underactuated VTOL aircraft with strongly
coupled dynamics and simultaneous learning and collabo-
rative estimation of the state of the target point mass, was
accomplished. Our numerical evaluation shows that the DRLE
algorithm produces faster policies over the classical SDRE
approach. In future work, it would be interesting to extend the
DRLE methodology into the direction of explainable machine
learning, in which the learning process is motivated by an
information-theoretic methodology.
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