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ABSTRACT

In the realm of prognostics and health management (PHM),
it is common to possess not only process data but also do-
main knowledge, which, if integrated into data-driven algo-
rithms, can aid in solving specific tasks. This paper explores
the integration of knowledge graphs (KGs) into deep learn-
ing models to develop a more resilient approach capable of
handling domain shifts, such as variations in machine operat-
ing conditions. We present and assess a KG-enhanced deep
learning approach in a representative PHM use case, demon-
strating its effectiveness by incorporating domain-invariant
knowledge through the KG. Furthermore, we provide guid-
ance for constructing a comprehensive hierarchical KG repre-
sentation that preserves semantic information while facilitat-
ing numerical representation. The experimental results show-
case the improved performance and domain shift robustness
of the KG-enhanced approach in fault diagnostics.

1. INTRODUCTION

Methods for machinery fault diagnostics can be broadly cat-
egorized into two types: knowledge-based and data-driven
approaches. Knowledge-based approaches rely on system-
specific knowledge to identify and diagnose faults, while
data-driven methods utilize previously observed data for clas-
sification purposes. Knowledge-based models are easily in-
terpretable and can accurately represent a system when the
underlying physical and logical relationships are well under-
stood. However, they require in-depth knowledge about the
specific system and are often designed for a single, isolated
case, making generalization difficult. On the other hand, data-
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driven models can be applied to different systems if suffi-
cient data is available. They offer flexibility but are reliant
on the availability of data, which can often be expensive to
obtain. Furthermore, their performance may decrease signif-
icantly when confronted with scenarios that deviate too far
from the training data distribution.

While these two categories traditionally had little overlap,
there is a growing development of hybrid approaches that
aim to combine the strengths of both methods and miti-
gate their respective limitations (Hagmeyer, Zeiler, & Hu-
ber, 2022). In a general PHM setting these hybrid ap-
proaches are mainly about combining data-driven approaches
with physical knowledge. For instance, (Jadhav, Deodhar,
Gupta, & Runkana, 2022) use physics informed neural net-
works (NNs) for monitoring the health of an air preheater,
(Deng, Nguyen, Gogu, Morio, & Medjaher, 2022) inform
an NN with the stiffness of the bearing it aims to model,
and (Chao, Kulkarni, Goebel, & Fink, 2022) extend the fea-
ture space with physical properties of the underlying sys-
tem. However, the knowledge-driven category encompasses
a broader range of approaches. These methods rely on the
symbolic representation of domain-specific knowledge, such
as the knowledge representation-based approach proposed by
(Cao, Samet, Zanni-Merk, de Beuvron, & Reich, 2019) or
other approaches based on KGs summarized in (Xia, Zheng,
Li, Gao, & Wang, 2022).

In the following discussion, we focus on the integration of
knowledge representation and data-driven deep learning to
develop a more resilient model capable of handling domain
shifts, e.g., a machine that functions under different operat-
ing conditions. Domain shifts are not only an issue in PHM
applications but are a common challenge in deep learning.
Models tend to overfit on the domain they are trained on and

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

do not generalize as well to closely related domains. Differ-
ent approaches have been proposed to deal with this and have
been applied to PHM applications. For example, (Zheng et
al., 2020) use signal processing techniques guided by a priori
knowledge to create a domain invariant feature representa-
tion, (Rahat et al., 2022) apply domain adversarial NNs, and
(Peng, Liu, & Gryllias, 2022) align the different domains with
cyclic spectrum correlation analysis.

An alternative approach is to incorporate domain-invariant
knowledge, represented by a KG, into the modeling pro-
cess. This type of approach has been applied mostly to com-
puter vision tasks, e.g., (Jayathilaka, Mu, & Sattler, 2021) in-
form their model with n-ball concept embeddings and (Gebru,
Hoffman, & Fei-Fei, 2017) use the WordNet KG for improv-
ing fine-grained image classification. An extensive overview
of this topic is given by (Monka, Halilaj, & Rettinger, 2022).

In contrast to computer vision tasks, a fault diagnostics case
typically has fewer classes and general KGs like WordNet are
not appropriate since they contain no relevant information for
the problem at hand. By adopting the overarching method-
ology presented by (Monka, Halilaj, Schmid, & Rettinger,
2021), we address common challenges encountered in fault
diagnostics scenarios, offering a two-fold contribution:

• Application and evaluation of a deep learning approach
enhanced by a KG in a representative PHM use case.

• Guidance for creating a general hierarchical KG, which
can be easily represented numerically while preserving
its semantic information.

The remainder of the paper is structured as follows. We
start by clearly formulating the discussed problem in Sec. 2.
Next, we introduce the proposed approach in Sec. 3, describe
the experimental setup in Sec. 4 and discuss our results in
Sec. 5. The paper closes with conclusions and an outlook on
future work. The code used for the experiments is available at
https://github.com/AImotion-Bavaria/FaultDiagnosticsKG.

2. PROBLEM FORMULATION

Our goal is to train a classifier for the task of fault classifi-
cation that has a consistent performance across changing do-
mains. A domain D is composed of a feature space X and a
marginal distribution P (X) over X , where X is a set of in-
stances X = {x1, ..., xN}. A task T consists of a label space
Y and a decision function f , which is to be learned from the
sample data. For the task of fault classification we call Y the
condition space of the observed system. We assume that Y
has some kind of structure, which we have knowledge about,
and which can be encoded in a KG. We will look at two
scenarios, where we have a source domain DS for which we
have data, e.g., vibration data under certain operating condi-
tions of a machine, and a target domain DT for which no data
(scenario 1) or very little data (scenario 2) is available. The
goal is to be able to solve one task T on both domains, i.e.,

train one decision function f : XS ∪ XT → Y . The difficulty
of this task depends strongly on the difference between the
domains’ marginal distributions. Both scenarios are special
cases of the more general transfer learning framework (Pan
& Yang, 2010; Zhuang et al., 2020).

We approach this task by creating a dE-dimensional feature
representation via an encoding NN Enc : X → RdE , which is
robust with respect to domain changes, i.e., different marginal
distributions P (XS), P (XT ), and can serve as an input to the
decision function f(Enc(x)).

In scenario 1, with no data available on the target domain,
f(·) is trained once on the source domain and directly eval-
uated on the target domain. In scenario 2, where some data
from the target domain is available, f(·) is fine tuned by few-
shot learning, i.e., we take a few samples from the target do-
main to retrain f(·).

3. APPROACH

To train Enc(·) we apply the approach by (Monka et al.,
2021), which combines the supervised contrastive loss with
KGs.

3.1. Supervised Contrastive Loss

The underlying concept of contrastive learning involves se-
lecting a sample as an anchor and then bringing positive sam-
ples (with the same label as the anchor) closer while pushing
negative samples (with different labels) further away in the
embedding space. This process trains an NN to create a fea-
ture representation of the input. Typically, contrastive learn-
ing is applied in a self-supervised setting, where all samples
other than the anchor are assumed to be negative. The pos-
itive samples are generated by applying augmentation tech-
niques on the anchor sample (Jaiswal, Babu, Zadeh, Banerjee,
& Makedon, 2020). However, if we have access to labeled
data, we can take advantage of a supervised formulation in-
troduced by (Khosla et al., 2020). Thus, the loss for training
is given by

LSC =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(d(zi,zp)/τ)∑

a∈A(i) exp(
d(zi,za)/τ)

, (1)

with I = {1, ..., N} the set of indices of samples, A(i) =
I \ {i}, the positive samples P (i) = {p ∈ A(i) | yp = yi}, a
scalar temperature parameter τ , a distance metric d(·, ·), and
the output of the network zk. Empirical evidence suggests,
that using zk = Enc(xk) does not give us the optimal fea-
ture representation. Rather a projection network Proj(·) is
added to the encoder so that zk = Proj(Enc(xk)) ∈ RdP

(Chen, Kornblith, Norouzi, & Hinton, 2020). According to
(Jing, Vincent, LeCun, & Tian, 2022) the projection network
prevents the problem of dimensional collapse, which occurs
when duplicate information about the representation is en-
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coded between different dimensions. Typically, Proj(·) con-
sists of a single layer, or at most a very shallow, multilayer
perceptron (MLP) and is discarded after training. In accor-
dance to the original paper we choose the cosine similarity as
the distance metric d(·, ·) and τ = 0.1.

3.2. Knowledge Graphs and Embeddings

To include domain invariant knowledge into this loss func-
tion, we need a way of representing this knowledge first. This
can be achieved with a KG, which can be defined as “a graph
of data intended to accumulate and convey knowledge of the
real world, whose nodes represent entities of interest and
whose edges represent potentially different relations between
these entities” (Hogan et al., 2021). KGs can be represented
as triples of the form (s, p, o) with subjects and objects from
a set of entities s, o ∈ E and predicates or edges from the set
of relations p ∈ R. An exemplary triple could be (Berlin,
capitalOf, Germany), where the predicate capitalOf
relates the subject Berlin with the object Germany. The
semantics of the triples in a KG are determined by the creator,
allowing for flexibility and customization. However, com-
monly used vocabularies are available to enhance the acces-
sibility and interpretability of KGs, such as the Resource De-
scription Framework Schema (RDFS)1. These vocabularies
provide a standardized framework for organizing and describ-
ing information within KGs. By adopting such vocabularies,
KG creators can ensure that their graphs are more easily un-
derstood and interoperable with other KGs.

Our objective is to leverage KGs for effectively representing
the structure of the condition space Y . Specifically, our fo-
cus lies in modelling the hierarchical structure of various sys-
tem conditions, by modelling all entity relationships using the
rdfs:subClassOf predicate, which relates a subject to an
object entity by stating that all instances of the subject are in-
stances of the object. In a typical scenario, we possess knowl-
edge about general fault types, which can further be divided
into more specific sub-faults displaying variations in size or
severity. For instance, a bearing can either be healthy or faulty
and a faulty condition can further be specified by stating the
position and the size of the defect. By utilizing KGs, we aim
to capture and illustrate this hierarchical relationship among
fault conditions.

KGs are a purely symbolic representation of the domain-
invariant knowledge. For use in combination with an
NN a numerical representation is necessary, i.e., we
need to find a mapping h : KG → R|E|×dKG , where
KG is the space of KGs and dKG is the embedding di-
mension. If no information about the structure of the
KG is available, this is a difficult task and it is un-
clear if current embedding methods even maintain the

1https://www.w3.org/TR/rdf-schema, accessed
16/05/2023

KG’s semantic information (Jain, Kalo, Balke, & Krestel,
2021). But since we only use the rdfs:subClassOf
predicate, which is transitive according to the RDFS
specification, i.e., if (A, rdfs:subClassOf,
B) and (B, rdfs:subClassOf, C) then (A,
rdfs:subClassOf, C), we can embed the complete
KG in a matrix E of size |E| × |E| without loosing any in-
formation. The entries of E are given by Ei,j = 1 if (ei,
rdfs:subClassOf, ej) holds and 0 otherwise. In doing
so, we have an embedding for each condition informed by
knowledge about the condition hierarchy. For condition i we
write this embedding as hKG,i = Ei, with Ei ∈ {0, 1}|E|
being the i-th row of the embedding matrix E.

3.3. Combining Domain Knowledge Graphs and Super-
vised Contrastive Learning

We use this numerical representation of the knowledge about
the condition space to create a more robust feature represen-
tation regarding domain changes. For inclusion into our net-
work we use the method by (Monka et al., 2021) and adjust
LSC to

LKG =
∑
i∈I

LKG
i , (2)

LKG
i =

−1

|P (i)|
∑

p∈P (i)

log
exp(d(hKG,i,zp)/τ)∑

a∈A(i) exp(
d(hKG,i,za)/τ)

,

(3)

where hKG,i is the domain invariant representation of the
class label yi of xi generated by a KG. Hence, we train
Enc(·) by minimizing LKG for Proj(Enc(·)) to create a fea-
ture representation, which can be passed to the decision func-
tion f(Enc(·)). The general procedure is visualized in Fig. 1.

While this approach was originally proposed for extending
LSC , it can readily be applied to a wide set of deep metric
learning loss functions, i.e., where the learning goal is the
minimization of a distance between vectors.

Note that we include no data augmentation in our approach,
which would be the standard approach for contrastive learn-
ing and which was also included by (Monka et al., 2021).
This is deliberate because we want to study the effect of the
influence of the KG in particular. Nevertheless, data augmen-
tation techniques specific to a domain can readily be included,
e.g., from (Ding, Zhuang, Ding, & Jia, 2022).

4. EXPERIMENTS

In the following we outline the experimental setup, includ-
ing datasets, case studies and model configurations, used to
assess the performance of the proposed KG-enhanced deep
learning approach.
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1 2 3
Create Knowledge Graph Embedding Train Encoder Network Train Decision Function

Figure 1. For KG-enhanced deep learning we (1) create a domain invariant KG and embed it into a numerical representation.
Then (2) we train an encoding network Enc(·) based on the KG embedding. Finally (3), we train a decision function f(·) for
the classification task based on the feature representation created by the encoding network.

4.1. Data and Preprocessing

Our approach is evaluated on a bearing fault classification
task using the widely recognized Case Western Reserve Uni-
versity (CWRU) dataset2. The system under observation con-
sists of a reliance electric motor with two bearings of distinct
geometries positioned at the drive end (DE) and the fan end
(FE) of the motor shaft. Vibration signals were captured for
both bearings, with sensors placed near each respective bear-
ing, to record various faults including outer race (OR), in-
ner race (IR), and ball (B), each with different sizes (7, 14,
21). The sample frequency for these recordings was set to 12
kHz. Additionally, vibration signals were also recorded for
the healthy state of the system at a higher sample frequency
of 48 kHz, which we downsampled to 12 kHz for the purpose
of our evaluation. The dataset includes vibration signals for
all ten health conditions under different motor loads (0, 1, 2,
3), which impact the shaft speed.

To feed our models, we divided the original signals into non-
overlapping sequences of length 512, thereby resulting in
roughly 13,000 samples per bearing. No further preprocess-
ing was applied to the data prior to training and evaluation.

4.2. Case Studies

The way the data is recorded enables us to evaluate our
approach for the two scenarios described in Sec. 2. With
L = {0, 1, 2, 3} we denote the set of different motor loads,
B = {FE,DE} are the two different bearings, l ∈ L and
b ∈ B.

4.2.1. Case Study 1: Different Motor Loads

The first case study, inspired by (Rombach, Michau, & Fink,
2021), simulates scenario 1, where a decision function is eval-
uated on a completely unseen target domain. We test how
well a model, trained on certain motor loads, performs when
it is confronted with data recorded under a different load. We
train our model on the source domain Db,L\{l}, i.e., on data
2https://engineering.case.edu/bearingdatacenter,
accessed 16/05/2023

from bearing b for all loads from L except l, and evaluate it on
the target domain Db,l, i.e., on data from bearing b for load l.
To additionally evaluate how well the model performs on the
source domain we perform a 80/20 train/test split on Db,L\{l}.
In contrast to (Rombach et al., 2021), our approach extends
the target domains to include the highest (3) and lowest (0)
motor loads. We assume that these extreme load conditions
pose greater challenges for generalization compared to situa-
tions where the model has access to loads, which are higher
and lower than the target domain. By incorporating these ad-
ditional target domains, we aim to evaluate the model’s ability
to adapt and generalize across the entire load spectrum.

4.2.2. Case Study 2: Different Bearings

The second case study focuses on simulating scenario 2,
where a decision function is fine-tuned through few-shot
learning on the target domain. We aim to evaluate the model’s
performance when presented with vibrations from a different
bearing. To simulate this scenario, we train the model on the
dataset DB\b (excluding the target bearing) and evaluate its
performance on the dataset Db (specific to the target bear-
ing). We acknowledge that this domain shift, caused by the
introduction of vibrations from a different bearing, is signifi-
cantly more challenging compared to a mere change in motor
loads. To address this challenge, we employ few-shot learn-
ing techniques. We fine-tune our decision function using a
limited number of shots, specifically 1, 2, 4, 8, 16, 32, or
64 shots. Each shot represents one sample from each class
within the target domain. This adaptation process enables the
model to better accommodate and understand the previously
unseen bearing. Again, the model is additionally evaluated
on the source domain on a 80/20 train test split.

4.3. Bearing Fault Knowledge Graph

The condition space of the bearing fault classification task
consists of 10 different conditions and can be effectively rep-
resented by a hierarchical KG. The nine different fault con-
ditions are categorized based on their fault size (Small - 7,
Medium - 14, Large - 21) and fault type (InnerRace,
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Figure 2. KG representing the hierarchical structure of the condition space for a bearing fault classification task. All arrows
represent rdfs:subClassOf relationships between entities, where the arrow points in the direction of the object.

OuterRace, Ball). All fault conditions are subclasses of
Fault. The healthy condition is related to no other entities.
This hierarchical structure establishes an invariant KG that re-
mains consistent across different domains explored in the two
case studies. Thus, a triple such as (LargeInnerRace,
rdfs:subClassOf, InnerRace) holds true regardless
of the specific load or bearing from which the vibration signal
originates. The complete KG comprises 21 triples and is de-
picted in Figure 2. Since we have 17 entities, we can embed
the complete KG into a 17 × 17 matrix by utilizing the ap-
proach outlined in Section 3.2. Each condition is represented
by the respective row of the embedding.

4.4. Model Configurations and Preprocessing

We conduct a comparative analysis of our proposed approach,
which utilizes the supervised contrastive loss with a KG
embedding (SC+KG), against other established loss func-
tions. Specifically, we compare it to the standard cross-
entropy (CE), the conventional supervised contrastive loss
from Equation (1) (SC), and the semi-hard implementation of
the triplet loss (TL) using the L2 distance measure (Schroff,
Kalenichenko, & Philbin, 2015). The inclusion of TL is mo-
tivated by its strong performance in a previous evaluation on
a load domain shift case study conducted by (Rombach et al.,
2021). It is worth noting that TL can be considered as a spe-
cial case of SC when only one negative and positive sample
is taken into account (Khosla et al., 2020). Consequently,
TL can be evaluated in the same manner as SC and SC+KG.
Given that TL has access to less information during the learn-
ing process, we anticipate that its performance may be com-
paratively lower than that of SC.

The architecture for the encoding network Enc(·) is the same
for all loss functions and is inspired by (Rombach et al.,

2021). It consists of four 1-d convolutional layers (64, 32, 16,
8 kernels) with kernel size 12. After each layer we use the
Leaky Rectified Linear Unit (ReLU) as an activation func-
tion with a negative slope of 0.5, max pooling with a stride
of 2 and dropout with p = 0.1. The output is then flat-
tened, fed into a fully connected layer with output dimension
dE = 50 and activated by a Leaky ReLU. The output of this
layer is our feature representation generated by Enc(·). For
CE this representation is directly handed over to the decision
function fCE(·), which consists of a single linear layer with
output dimension 10—the number of classes. We can there-
fore directly train fCE(Enc(·)). For the other loss functions
(O = {SC,SC+KG,TL}) the output is first fed into a projec-
tion network ProjO(·) consisting of a linear layer with an out-
put dimension of dP = dKG = 17—the size of the numerical
representation of each class induced by the KG. As stated in
Sec. 3.1, ProjO(Enc(·)) is trained using either SC, SC+KG
or TL and afterwards, ProjO(·) is discarded. For fault clas-
sification, an additional decision function fO(·) consisting of
one linear layer with output dimension 10 is trained using the
cross-entropy loss.

The networks fCE(Enc(·)) and ProjO(Enc(·)) were trained
for 100 epochs, followed by an additional 20 epochs of train-
ing specifically for fO(·). To mitigate the impact of random-
ness, all models were trained 10 times using the same 10 ran-
dom seeds. The Adam optimizer was employed during the
training process with learning rate γ = 0.001.

In the few-shot scenario, the decision functions were fine-
tuned for 200 epochs. As the selection of samples for fine-
tuning significantly affects the performance, we repeated the
fine-tuning process 10 times, each time with different random
seeds, to ensure robustness and capture the influence of vari-
ous sample combinations.
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Table 1. Accuracies in percentages for the domain shift between different loads (Db,L\{l} → Db,l). The left column of each
domain shift depicts the performance on the source domain and the right column on the target domain. Standard deviations are
given in brackets for 10 runs and the best value for each domain is printed in bold.

DDE,L\{l} → DDE,l DDE,L\{0} DDE,0 DDE,L\{1} DDE,1 DDE,L\{2} DDE,2 DDE,L\{3} DDE,3

CE 99.8 (0.2) 92.5 (2.6) 99.6 (0.3) 98.6 (1.5) 99.6 (0.3) 99.6 (0.5) 99.7 (0.2) 94.6 (2.7)
TL 99.9 (0.1) 91.1 (2.3) 99.6 (0.2) 99.2 (0.3) 99.7 (0.2) 99.9 (0.1) 99.8 (0.1) 95.3 (2.8)
SC 99.8 (0.1) 93.2 (2.2) 99.6 (0.2) 99.4 (0.3) 99.6 (0.2) 99.8 (0.1) 99.7 (0.2) 93.9 (1.8)
SC+KG 99.9 (0.1) 94.9 (1.9) 99.7 (0.1) 99.7 (0.2) 99.7 (0.1) 99.9 (0.1) 99.8 (0.2) 96.8 (1.7)

DFE,L\{l} → DFE,l DFE,L\{0} DFE,0 DFE,L\{1} DFE,1 DFE,L\{2} DFE,2 DFE,L\{3} DFE,3

CE 99.6 (0.3) 81.3 (2.3) 99.3 (0.4) 98.1 (1.2) 99.5 (0.1) 99.1 (0.3) 99.4 (0.3) 90.3 (2.2)
TL 99.6 (0.2) 81.1 (3.3) 99.7 (0.2) 98.6 (0.5) 99.5 (0.2) 98.8 (0.4) 99.6 (0.1) 92.1 (1.9)
SC 99.6 (0.2) 83.4 (2.3) 99.6 (0.2) 98.9 (0.3) 99.5 (0.1) 99.0 (0.4) 99.5 (0.1) 89.2 (2.3)
SC+KG 99.7 (0.2) 83.5 (2.2) 99.6 (0.1) 98.9 (0.3) 99.7 (0.1) 99.1 (0.3) 99.6 (0.2) 92.8 (1.6)

5. RESULTS

The results showcase the findings of the two case studies
that evaluated the performance of the proposed KG-enhanced
deep learning approach in comparison to the baseline models.

5.1. Case Study 1: Different Motor Loads

Table 1 presents the results obtained when dealing with a do-
main shift to a different load in the fault diagnostics task. All
evaluated loss functions demonstrate nearly perfect accuracy
on the source domain. The performance on the target domain
can be divided into two cases.

In the first case, the target domain is situated between the
extreme load ranges of the source domain: for instance the
domain shift from DDE,L\{2} to DDE,2. The accuracies of
the source domain are quite similar to those of the target do-
main, indicating that this domain shift is relatively easy. This
is expected since the models were trained on data that en-
compassed both higher and lower loads. To solve the target
domain, the model only needs to interpolate between these
loads. However, we still observe a performance gain with
TL, SC, and SC+KG, compared to CE. Among these meth-
ods, SC+KG achieves the best performance, especially when
generalizing to load 1.

In the second case, the target load is either higher or lower
than anything the model has encountered before. Particularly
when generalizing to the lower motor load, i.e., l = 0, we
observe a significant decline in performance, up to 9 % for
the DE bearing and up to 18 % for the FE bearing. In this
second case, SC+KG consistently outperforms CE by more
than 2 %. SC and TL show less consistency in their perfor-
mance compared to SC+KG. Interestingly, TL performs bet-
ter when generalizing to a higher load, almost matching the
performance of SC+KG, than when generalizing to a lower
load. On the other hand, SC performs better when general-
izing to a lower load. Currently, we have no explanation for
this observation. In general, we find that handling the motor

load domain shift for the FE bearing is more challenging than
for the DE bearing.

When examining the standard deviations for both cases, we
observe that SC+KG consistently exhibits the lowest values.
This is particularly evident for the domain shift to load 1,
where the volatility of the results is up to seven times higher
for CE compared to SC+KG. From this, we can conclude that
SC+KG not only generates more robust representations in the
face of domain changes but also in terms of performance.

5.2. Case Study 2: Different Bearings

The results for the domain shift to a different bearing are de-
picted in Table 2. Due to the nearly perfect performance on
the source domain across all loss functions used, these results
are not included.

It is evident that directly generalizing to a different bearing
yields poor results. When applying zero shots for fine-tuning
the decision function, both domain shifts result in accura-
cies close to random. However, by employing multiple shots
for fine-tuning, a substantial performance improvement is ob-
served. Accuracies of up to 85 % are achieved when 64 sam-
ples are used to fine-tune the linear classifier.

Regarding the transfer task from the DE bearing to the FE
bearing, the knowledge-enhanced approach SC+KG exhibits
the best performance, particularly when utilizing a limited
number of shots. TL demonstrates comparable performance
to SC+KG but experiences a relative decline in performance
as more shots are employed. When transferring in the oppo-
site direction, from FE to DE, TL holds a slight advantage
over SC+KG, although their performance is nearly identical.
For both shifts, SC+KG outperforms CE by approximately
5 % for a low number of shots, and their performances con-
verge as more shots are used.

Additionally, it is worth noting the disparity between vanilla
SC and SC+KG. The KG-enhanced method significantly en-

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

Table 2. Accuracies in percentages for the domain shift between different bearings (DB\{b} → Db) after fine tuning the decision
function with few-shot learning. Standard deviations are given in brackets for 10 runs and the best value for each column is
printed in bold. The columns indicate the number of samples per class used for fine tuning.

DDE → DFE 0 1 2 4 8 16 32 64
CE 13.3 (0.1) 24.5 (4.6) 35.1 (3.7) 43.5 (3.2) 59.9 (2.8) 72.2 (1.3) 79.6 (0.9) 84.8 (0.6)
TL 13.6 (0.1) 28.0 (4.0) 40.4 (3.9) 48.8 (2.7) 57.6 (2.5) 68.0 (1.6) 76.4 (1.1) 81.6 (0.8)
SC 14.4 (0.1) 24.8 (4.0) 33.2 (3.7) 37.8 (3.3) 53.9 (2.6) 67.8 (1.7) 76.8 (1.0) 82.3 (0.5)
SC+KG 14.7 (0.1) 28.7 (5.1) 40.4 (3.4) 48.7 (3.7) 61.3 (2.7) 72.4 (1.5) 80.1 (1.0) 85.1 (0.6)

DFE → DDE 0 1 2 4 8 16 32 64
CE 15.4 (0.3) 36.3 (4.5) 45.4 (3.3) 52.2 (2.6) 60.8 (2.2) 71.2 (1.4) 78.8 (1.0) 84.8 (0.6)
TL 14.3 (0.1) 42.2 (4.8) 52.5 (4.3) 60.7 (3.2) 68.5 (1.7) 75.1 (1.3) 80.0 (1.0) 84.3 (0.6)
SC 18.0 (0.1) 34.4 (4.8) 41.4 (4.3) 46.5 (3.4) 58.5 (2.2) 69.3 (1.3) 76.2 (1.1) 81.3 (0.7)
SC+KG 15.7 (0.1) 41.8 (5.9) 51.4 (4.0) 58.7 (2.7) 67.4 (2.0) 74.8 (1.2) 79.7 (1.0) 83.9 (0.5)

hances accuracy by up to 10 % for a low number of shots, and
still achieves an improvement of around 3 % when utilizing
64 samples.

In general, there is considerable variability in the results when
employing only a small number of samples for fine-tuning, as
indicated by the high values for the standard deviation. This
variability is expected since the choice of samples plays a
crucial role in model performance. As more samples are used
for fine-tuning, the variability diminishes.

6. CONCLUSION

We evaluated the effectiveness of KG-enhanced deep learning
in two scenarios: domain generalization to different operating
conditions and few-shot learning for fine-tuning the decision
function on a different domain. The results demonstrate the
robustness and improved performance of KG-enhanced deep
learning in creating feature representations that are indepen-
dent of the source domain. Although alternative loss func-
tions occasionally exhibited slight improvements, they signif-
icantly underperformed in other cases. This further highlights
the stability of the proposed approach, which achieved robust
results across all evaluated scenarios.

It is important to acknowledge that the practical relevance of
the few-shot learning example for bearing classification may
be limited. In real-world scenarios, when we have only one
sample, we often have access to multiple samples of a spe-
cific condition. This is because even a signal with a duration
of just one second can be divided into multiple samples if
the sampling frequency is sufficiently high. However, despite
this limitation, the obtained results from the few-shot learn-
ing experiments remain promising and serve as a motivation
to further refine and apply the approach to other tasks where
the acquisition of each additional sample comes with a sub-
stantial cost.

We believe that the KG-enhanced approach is especially rele-
vant when a large condition space is considered. Many differ-

ent kinds of system conditions make it hard to gather data for
all operating conditions, further underscoring the importance
of a robust feature representation, and provide a rich hierar-
chical structure that can be represented by a KG. Incorpo-
rating more knowledge about the condition space, exploring
other metric loss functions and KG embedding techniques,
and adapting the approach to a prognostics setting are poten-
tial paths for future work to further boost the effectiveness
and versatility of KG-enhanced deep learning.

This research highlights the ubiquity of domain shifts, which
remain one of the major drawbacks of deep learning ap-
plied to fault diagnostics. By addressing this challenge
through KG-enhanced deep learning, this work contributes
to overcoming the limitations of traditional approaches and
demonstrates the significance of considering knowledge-
driven methodologies in fault diagnostics and beyond.
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