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Abstract. The volume-corrected mitotic index (M/V-Index) was shown to pro-
vide prognostic value in invasive breast carcinomas. However, despite its prog-
nostic significance, it is not established as the standard method for assessing
aggressive biological behaviour, due to the high additional workload associated
with determining the epithelial proportion. In this work, we show that using a deep
learning pipeline solely trained with an annotation-free, immunohistochemistry-
based approach, provides accurate estimations of epithelial segmentation in canine
breast carcinomas. We compare our automatic framework with the manually an-
notated M/V-Index in a study with three board-certified pathologists. Our results
indicate that the deep learning-based pipeline shows expert-level performance,
while providing time efficiency and reproducibility.

1 Introduction

The accurate assessment of mitotic activity in histopathology plays an essential role in
cancer diagnosis, prognosis, and treatment decisions. The mitotic count (MC), which
represents the number of mitotic figures in a given area of tissue is a key parameter
in many grading schemes used to assess the proliferation rate and aggressiveness of
various malignancies. The prognostic significance of the MC is limited due to high
inter-observer variability, poor reproducibility and the labor-intensive nature of this
microscopic task. Additionally, varying cellular densities of different tumors can limit
the interpretability of the MC across cases. Haapasalo & Collan [1] introduced the
volume corrected mitotic index (M/V-Index) in an effort to standardize the counting of
mitotic figures. The M/V-Index standardizes the MC by dividing it by the area fraction
of the epithelial tissue estimated subjectively or by using a point grid and adjusting it for
the size of a high power field, resulting in an estimate of the number of mitotic figures
per square millimeter. Jannink et al. [2] demonstrated that the M/V-Index, along with
tumor size and lymph node status, offered better prognostic information for human breast
cancer than the uncorrected MC. Despite its significance, the M/V-Index is not widely
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adopted due to the additional effort required in estimating the epithelial tissue fraction,
leading to higher inter-observer variability. Hence, the faster and simpler uncorrected
MC remains the preferred method for assessing tumor proliferation. In this study, we
provide an automated framework for the calculation of the M/V-Index on hematoxilin
and eosin (H&E)-stained images. The framework is developed in an annotation-free
fashion (i.e. not requiring any human labelling effort for estimating the area fraction of
the epithelial tissue) by using immunohistochemistry (IHC) as a reference standard [3]
and leveraging an existing model for MC estimation [4]. This framework provides the
first proof of concept that the M/V-Index can be estimated with accuracy, efficiency and
reproducibility, offering a more objective method to assess tumor proliferation.

2 Materials

The dataset consisted of 50 canine mammary carcinoma samples collected at the Univer-
sity of Veterinary Medicine, Vienna. The samples were first stained with standard H&E
and scanned with a 3DHistech Panoramic Scann II at 40× magnification (0.25 µm/px).
After scanning, the slides were destained and then restained with the pan-cytokeratin
AE1/AE3 primary antibody, which is specific for cytokeratin proteins commonly found
in epithelial tissues. The IHC slides were rescanned using the same scanner and mag-
nification. The process of restaining the slides resulted in 50 H&E and IHC whole
slide image (WSI) pairs which were co-registered using a robust quad-tree based WSI
registration method [5]. Due to some staining artefacts and alignment errors, 9 samples
were removed from the dataset. Of the remaining 41 samples, 12 were kept as a hold-out
test set. The remaining 29 samples were used in a 5-fold Monte Carlo cross-validation
where the samples were randomly divided into 20 training and 9 validation cases. For
each slide in the hold-out test set, a region of interest (ROI) with an area of 2.37 mm2

equivalent to 10 high power fields (HPFs) in a microscope with an ocular Field Number
(FN) of 22 mm was selected and annotated for epithelial tissue by a board-certified
pathologist.

3 Methods

To reduce the overall amount of manual labelling for our automated M/V-Index system,
we automatically generated the training data for tumor epithelium segmentation from
the IHC slides, which were then transferred by the registration method to the H&E slides
on which we trained our segmentation network.

3.1 Automatic Tumor Epithelium Segmentation on H&E

For tumor epithelium mask generation, we created an IHC map from downsampled WSIs,
excluding irrelevant areas. The IHC map was created by applying color deconvolution
and then using the cytokeratin channel to generate a binary mask by first applying a
Gaussian blur filter and then Otsu’s adaptive thresholding method, followed by a closing
operation to remove small interruptions. Patches with at least 5% non-zero values in
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the IHC map were then processed at full resolution, first using color deconvolution,
followed by binary thresholding and an opening operation to remove small noise from
staining artefacts and intensity variations. Finally, a closing operation with a large
circular kernel resulted in a coarse segmentation mask (Fig. 1) that was helpful in
mitigating small alignment errors from the registration process. Bulten et al. [3] used a
similar pipeline on prostate samples, however they used additional human labelling to
further optimize the masks. The tumor epithelium segmentation network was based on
a U-Net architecture, consisting of an EfficientNet-b0 encoder and a classical encoder
composed of up-sampling and convolutional layer. The network was trained on patches
of size 1024 × 1024 at a resolution of 0.5 µm/px and a batch size of 4. We used the
Adam optimizer with an initial learning rate of 0.001 and an exponentially decaying
learning rate schedule with a factor of 0.99. The loss function consisted of a weighted
combination with factor 0.5 of dice loss and binary cross-entropy loss. To make the
model more robust to the noisy training masks, we used label smoothing with a factor
of 0.1 for the targets in the cross-entropy loss function. The model was trained with
standard online augmentation including random flipping, rotation, Gaussian blurring,
and changes in brightness, contrast, saturation and hue.

400μm400μm

Fig. 1. Two example patches from the mask generation process. (left) H&E patch, (middle) IHC
patch, (right) automatically generated mask (white: epithelial tissue, black: background).

3.2 Mitotic Count Estimation

The mitotic count estimation network was based on DA-RetinaNet [4], a one-stage
RetinaNet object detector with a ResNet-18 backbone, trained with domain adversarial
training on the MIDOG 21 [6] training dataset, which consists of 200 human breast
cancer images from four different scanners. No further annotations or fine tuning were
considered necessary due to the morphological similarity between the two species. For
further details on the implementation of the network, the reader is referred to Wilm et
al. [4].

3.3 Volume Corrected Mitotic Index

The volume corrected mitotic index (M/V-Index) was originally proposed by Haapasalo
& Collan [1] in order to standardize the MC based on the cellular density of the tumor.
The formula for calculating the M/V-Index is
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M/V-Index = 𝑘

𝑛∑︁
𝑖=1

MCi
Vvi

,where

𝑛 is the number of microscope fields studied, MC is the number of mitotic figures in
a selected field, Vv is the volume fraction (in per cent) of the neoplastic tissue in the
same field, either estimated subjectively or with point-counting, and 𝑘 is a coefficient
characterizing the microscope: 𝑘 = 100/𝜋𝑟2 where 𝑟 in (in mm) is the radius of the
circular microscope field. To adapt the formula for a digital evaluation we defined
𝑘 = 100/𝐴, where 𝐴 is the area (in mm2) of the evaluated ROI. Here we set 𝑘 =

100/2.37 mm2, where 2.37 mm2 is the area of 10 HPFs at 40× magnification (0.25
µm/px). The MC was estimated by first dividing the image into overlapping patches of
size 512×512 at 40× magnification (0.25 µm/px). The predictions of the MC estimation
model are then fused and transformed into the original coordinate space. Similarly, Vv
is estimated using the segmentation model on overlapping patches of size 1024×1024 at
20× magnification (0.5 µm/px). The concatenated result of the epithelium segmentation
is then used as a mask to filter mitotic figures that are within the epithelial tissue region.
Finally, the M/V-Index is calculated as 𝑘 × MC/Vv over the entire ROI.
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Fig. 2. Automated volume corrected mitotic index (M/V-Index) framework. The image on the
right shows the epithelium segmentation in orange. Green boxes represent mitotic figures detected
within the epithelium mask. Red boxes represent mitotic figures filtered out by the epithelium
mask. The results below the image present algorithm-derived mean and standard deviation for
both epithelium proportion and the M/V-Index.

3.4 Manual vs. Automatic M/V-Index

Three board-certified pathologists manually determined the M/V-Index using a Weibel
point grid [2] to reduce interrater variability. The grid, adjusted to the ROI size, had
432 points, equivalent to the 42-point Weibel grid used for a single HPF. Pathologists
separately annotated epithelium proportion and mitotic figures, measuring the time for
each task. We compare the estimated epithelium proportion using the Weibel grid to
the ground truth calculated from the epithelium masks of our pathologist. The ground
truth for the M/V-Index is calculated by first filtering all mitotic figure annotations
from our pathologists through the ground truth epithelium mask and then averaging the
M/V-Index of the individual pathologists.
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4 Results

The epithelium segmentation algorithm achieved an average intersection-over-union
(IOU) of 0.71 (±0.01) and F1 score of 0.83 (±0.01) on the hold-out test set. Qualitative
results are in Fig. 3. A comparison of results between manual and automatic M/V-Index
is in Tab. 1. The mean absolute error (MAE) for epithelium proportion was consistent
among pathologists and the algorithm, shown in Fig. 4 (left). For the M/V-Index, the
average MAE was 7.39 (±1.37) for pathologists and 4.51 (±0.25) for the algorithm,
displayed in Fig. 4 (right). In our study, pathologists took an average of 12 minutes,
while the algorithm only took 20 seconds to calculate the M/V-Index on a ROI. Using
the Weibel grid, pathologists spent an average of 6 minutes assessing only the epithelium
proportion per ROI.

Tab. 1. Results from the comparison between the manual and automatic M/V-Index to the ground
truth. Displayed are the mean absolute error (MAE), and Pearson’s correlation coefficient.

MAE Pearson’s r
Epithelium Proportion
Pathologists 0.06 ± 0.02 0.95 ± 0.04
Algorithm 0.06 ± 0.01 0.83 ± 0.11
M/V-Index
Pathologists 7.39 ± 1.37 0.87 ± 0.06
Algorithm 4.51 ± 0.25 0.78 ± 0.02

600μm 600μm

Fig. 3. Tumor epithelium segmentation results on the hold-out test set. (left) original image, (mid-
dle) expert labelled ground truth, (right) segmentation results. Green pixels show true positives,
red false positives and blue false negatives.

5 Discussion

We showed that our algorithm can estimate the M/V-Index comparable to expert level
performance. We avoided the need for time-consuming manual labeling of tumor tis-
sue by the innovative use of immunohistochemical stainings as the ground truth. The
evaluation of the model on a expert-derived ground truth of the test set serves as a
first proof of concept that the M/V-Index can be calculated in an automated, fast and
reproducible way. This framework is easily extendable to calculate the M/V-Index on
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Fig. 4. Results of the manual vs. automatic M/V-Index annotation study with three board-certified
pathologist. (left) Epithelium proportion, (right) M/V-Index.

entire WSIs automatically providing even larger time savings for the pathologist and
further reducing the potential for inter-observer variability by selecting the region of
highest mitotic activity in a computer-aided and more reproducible fashion. In a future
work, this framework can be improved by employing a more precise IHC marker during
training, addressing the issue caused by pan-cytokeratin also binding to myoepithelial
cells, which is a potential error for the segmentation model.
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