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Abstract

Recognition of mitotic figures in histologic tumor specimens is highly relevant to patient outcome assessment. This
task is challenging for algorithms and human experts alike, with deterioration of algorithmic performance under
shifts in image representations. Considerable covariate shifts occur when assessment is performed on different tumor
types, images are acquired using different digitization devices, or specimens are produced in different laboratories.
This observation motivated the inception of the 2022 challenge on MItosis Domain Generalization (MIDOG 2022).
The challenge provided annotated histologic tumor images from six different domains and evaluated the algorith-
mic approaches for mitotic figure detection provided by nine challenge participants on ten independent domains.
Ground truth for mitotic figure detection was established in two ways: a three-expert consensus and an independent,
immunohistochemistry-assisted set of labels. This work represents an overview of the challenge tasks, the algorithmic
strategies employed by the participants, and potential factors contributing to their success. With an F1 score of 0.764
for the top-performing team, we summarize that domain generalization across various tumor domains is possible with
today’s deep learning-based recognition pipelines. When assessed against the immunohistochemistry-assisted refer-
ence standard, all methods resulted in reduced recall scores, but with only minor changes in the order of participants
in the ranking.
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1. Introduction

Despite advances in molecular characterization of bi-
ological tumor behavior, morphological tumor classifica-
tion using established histopathologic techniques remains
an important factor in tumor prognostication (Makki,
2015; Soliman and Yussif, 2016). One criterion of par-
ticular interest within many tumor grading schemes is
the density of cells undergoing division, which are vis-
ible as mitotic figures (MFs) in hematoxylin and eosin
(H&E)-stained histopathological sections (Veta et al.,
2015, 2019). The number of MFs within a specific tumor
area is enumerated by experienced pathologists, resulting
in the mitotic count (MC). Despite the prognostic rele-
vance of the MC, low inter-rater consistency on an object
level has been reported in many studies (Veta et al., 2016;
Meyer et al., 2005, 2009; Malon et al., 2012; Bertram
et al., 2021). The recommendation for pathologists is to
select the region of the suspected highest mitotic activ-
ity, which is considered to be the best predictor of tumor
behavior (Azzola et al., 2003; Meuten et al., 2008; Veta
et al., 2015). Selection of this regions of interest (ROI)
within the tumor has a great impact on the MC (Bertram
et al., 2020), but is difficult for pathologists to reliably
accomplish and is poorly reproducible (Aubreville et al.,
2020; Bertram et al., 2021). While assessment of mitotic
activity in the entire tumor section (or in the case of the
digital image: the whole slide image (WSI)) would be
preferable in order to identify those mitotic hotspot ROI,
this is not feasible in current practice. Additionally, low
inter-rater consistency on an object level within these se-
lected ROI has been reported in many studies with the ten-
dency of pathologists to overlook MFs (Veta et al., 2016;
Meyer et al., 2005, 2009; Malon et al., 2012; Bertram
et al., 2021).The combination of these circumstances and
the recent availability of large-scale digital pathology so-
lutions makes automatic detection of MFs desirable.

Unsurprisingly, MF detection was one of the earli-
est identified areas of research interest in computational
pathology, with the first approaches in 2008 (Malon et al.,
2008). The first challenge on MF detection in breast can-
cer (MITOS2012, (Roux et al., 2013)) was held at the
International Conference on Pattern Recognition (ICPR)
and resulted in the first publicly available MF dataset.
While this gave rise to algorithm development in the field,
it was also an example of questionable dataset quality,

as the training and test sets were selected from the same
histology slides (Roux et al., 2013). More recent chal-
lenges (MITOS2014 (Roux et al., 2014), AMIDA13 (Veta
et al., 2015), TUPAC16 (Veta et al., 2019)) also comprised
breast cancer and incorporated a higher number of cases,
yet, were still limited by having the same digitization de-
vice for the training and test set.

As shown by prior research (Aubreville et al., 2021),
the digitization device has a decisive influence on detec-
tion quality, as it coincides with a shift in image repre-
sentation, leading to a domain shift in latent representa-
tion of the detection models (Stacke et al., 2020; Aubre-
ville et al., 2023a). Investigation of these limitations was
the main idea behind the MItosis DOmain Generaliza-
tion (MIDOG) challenge, held as a one-time event at the
International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) in 2021.
This challenge, which was the first to directly target do-
main generalization in histopathology, evaluated the de-
tection of MFs in ROIs of human breast cancer, digitized
using various devices (WSI scanners).

Since MFs are not only of interest for human breast
cancer, the 2022 MIDOG challenge extended the task of
MF domain generalization to include further representa-
tion shifts of interest: In addition to the use of different
WSI scanners, the training dataset was enhanced by in-
cluding histological specimens from different tumor types
as well as different species (human, canine, feline), pro-
cessed by different laboratories. Each of these contribut-
ing factors defined a tumor domain. We define a tumor do-
main as a specific combination of tumor type, species, lab,
and WSI scanner. We found that the domain gap between
tumor types is substantial (Aubreville et al., 2023b) and
seems to be more important than the domain gap between
scanners, thus the cases used for the MIDOG 2022 chal-
lenge were primarily categorized by the tumor domain.

Challenge format and task
As in previous challenges on MF detection, we pro-

vided ROIs, selected by an experienced pathologist from
a tumor region with the presumed highest mitotic activity
and appropriate tissue and scan quality. MF candidates
were identified and assessed by a blinded consensus vote
of three experts. The training set, consisting of 405 tumor
cases (corresponding to 405 patients) and featuring 9,501
MF annotations was released on April 20, 2022. These
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Figure 1: Random selection of crops of size 128×128px, centered around annotated MFs from the six domains of the training set (A: human breast
carcinoma, B: canine lung carcinoma, C: canine lymphosarcoma, D: canine cutaneous mast cell tumor, E: human pancreatic and gastrointestinal
neuroendocrine tumor, F: human melanoma). Domain F was not labeled, hence the crops were selected at random.

cases were split across six tumor domains (see Fig. 1),
out of which five were provided with labels and one was
provided without labels as an additional data source for
unsupervised domain adaptation techniques. An extended
version of the training set, including two novel domains,
was made available under a Creative Commons CC0 li-
cense post-challenge (Aubreville et al., 2023b).

The participants were required to package their algo-
rithmic solution in the form of a docker container1, which
was subsequently evaluated on the test data on the grand-
challenge.org platform2 in a fully automatic manner, i.e.,
no participant had access to any of the test images dur-
ing or after the challenge. To perform a technical vali-
dation of the docker containers, we provided an indepen-
dent preliminary test set, consisting of four unseen tumor
domains. During a preliminary test phase, which started
on August 5, participants were allowed to perform one
evaluation of an algorithmic approach per day. We ex-
plicitly made the participants aware that the four domains
of the preliminary test set were disjointed from the tu-
mor domains of the actual challenge test set, so overfitting
to those domains by means of hyperparameter or model
selection would not be meaningful. The final challenge
submission phase started on August 26 and lasted until
August 30. During this phase, participating teams were
exclusively authorized to submit a single algorithmic ap-
proach.

The challenge provided two tracks: As multiple openly

1A reference docker container for evaluation was made avail-
able to the participants at: https://github.com/DeepMicroscopy/
MIDOG_evaluation_docker

2https://midog2022.grand-challenge.org

accessible datasets on MF detection already exist, we gave
participants the choice to either use only data provided by
the challenge (track 1) or additionally use publicly avail-
able data and labels (track 2). In the second track, partic-
ipants also had the option to use in-house datasets under
the condition that these datasets were made publicly avail-
able and announced on the challenge website up to one
month prior to the challenge. We opted for this strategy
to maximize the reproducibility of the challenge results.
However, no participating team chose to use previously
non-public datasets.

The structured challenge design includes details about
the policies regarding participation, publication, awards,
and results announcement, and was made available pub-
licly (Aubreville et al., 2022). The challenge design was
proposed and evaluated in a single-blinded peer review for
admission to MICCAI 2022.

Main novelties over the predecessor

While the task (MFs detection on ROIs images) was
identical to the preceding MIDOG 2021 challenge, we
incorporated three major modifications in the 2022 chal-
lenge design that set it apart from its predecessor:

• We extended the sources of domain shift by not only
including the imaging device and the inherent stain
differences between cases but also by incorporating
different laboratories (and hence tissue processing),
different tumor types, and different species, minimiz-
ing the gap to real-world data variability.

• The evaluation was carried out on ten independent
tumor domains, representing a wide variety of con-
ditions and thus allowing for better generalization of
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the assessment. The ten domains were additionally
disjoint from the four independent domains of the
preliminary test used for technical validation of the
docker pipeline.

• We established the ground truth of the test set not
only as the consensus of three experts on the H&E-
stained sections (used for challenge evaluation and
ranking) but also by additionally using an immuno-
histochemical (IHC) stain for Phospho-Histone H3
(PHH3) (specific for cells entering the mitotic cy-
cle (Hendzel et al., 1997)), which was superimposed
on the H&E image for assisted labeling aiming to
object-level confusion, which is a main source of
inter-rater disagreement (Veta et al., 2016).

2. Material and evaluation methods

For all tumor types included in our datasets, the MC
has well-established prognostic relevance for discriminat-
ing patient outcome, either as a solitary prognostic test or
as part of an established grading scheme. We retrieved
human tissue samples from the diagnostic archives (DAs)
of the Department of Pathology of the University Medical
Center (UMC) Utrecht, The Netherlands, as well as the
Institute of Neuropathology and the Institute of Pathol-
ogy of the University Hospital Erlangen, Germany. All
samples were prepared from paraffin-embedded tumour
sections stained according to the standard procedures of
the respective institutions. We received ethics approval
from the UMC Utrecht (TCBio 20-776) and the ethics
board of the medical faculty of FAU Erlangen-Nürnberg
(AZ 92 14B, AZ 193 18B, 22 342 B). For samples taken
from the DAs of veterinary pathology laboratories (Freie
Universität Berlin (FUB), Germany and University of Vet-
erinary Medicine Vienna (VMU), Austria), no ethics ap-
proval was required.

2.1. Challenge cohort and tumor domains

We included a total of 405 cases in our dataset (see Fig.
1):

• Domain A: Human breast carcinoma, retrieved from
the DA of UMC Utrecht. 150 cases split across three
scanners (Hamamatsu XR, Hamamatsu S360, Ape-
rio Scanscope CS2, 50 each) at 40× magnification

(0.23 to 0.25 µm/px), previously released as train-
ing set of the 2021 MIDOG challenge (Aubreville
et al., 2023a). The MC is part of the College of
American Pathologists guidelines for breast cancer
(Fitzgibbons and Connolly, 2023).

• Domain B: Canine lung carcinoma, retrieved from
the DA of VMU. 44 cases digitized with a 3DHis-
tech Pannoramic Scan II at 40× magnification (0.25
µm/px). The MC is part of the grading scheme by
McNiel et al. (1997).

• Domain C: Canine lymphosarcoma, retrieved from
the DA of VMU. 55 cases digitized with a 3DHis-
tech Pannoramic Scan II at 40× magnification (0.25
µm/px). MC is part of the grading scheme by Valli
et al. (2013).

• Domain D: Canine cutaneous mast cell tumor, re-
trieved from the DA of FUB. 50 cases digitized
with an Aperio ScanScope CS2 at 40× magnifica-
tion (0.25 µm/px). MC is part of the grading scheme
by Kiupel et al. (2011).

• Domain E: Human pancreatic and gastrointestinal
neuroendocrine tumor, retrieved from the DA of
UMC Utrecht. 55 cases digitized with a Hama-
matsu XR (C12000-22) at 40× magnification (0.23
µm/px). MC is part of the 2022 WHO classifica-
tion scheme of endocrine and neuroendocrine tumors
(WHO Classification of Tumours Editorial Board,
2022).

• Domain F: Human melanoma, retrieved from the DA
of UMC Utrecht. 51 cases digitized with a Hama-
matsu XR (C12000-22) at 40× magnification (0.23
µm/px). MC is part of the staging and classifica-
tion scheme of the AJCC for melanoma (Gershen-
wald et al., 2017). This domain was not labeled and
only provided as an additional source of data diver-
sity for unsupervised approaches.

While, ideally, a consecutive selection of cases would
be desirable to provide representative samples, we inten-
tionally deviated from this norm in this iteration of the
challenge. Specifically, we ensured the inclusion of a
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minimum number of mitotically active cases across all do-
mains. This was done in order to ensure sufficient dataset
support for MF objects in each respective domain.

We prepared a small preliminary test set to check the
validity of the algorithmic approaches through the docker
submission system. In this dataset, the following domains
were included:

• Domain α: Human breast carcinoma, similar to the
training set domain A, but scanned with a Hama-
matsu RS2 scanner. Five cases, previously used
as part of the preliminary test set of MIDOG 2021
(Aubreville et al., 2023a).

• Domain β: Canine osteosarcoma, retrieved from the
DA of VMU. Five cases digitized with a 3DHis-
tech Pannoramic Scan II at 40× magnification (0.25
µm/px).

• Domain γ: Human lymphoma, retrieved from the
DA of UMC Utrecht. Five cases digitized with a
Hamamatsu XR (C12000-22) at 40× magnification
(0.23 µm/px).

• Domain δ: Canine pheochromocytoma, retrieved
from the DA of VMU. Five cases digitized with a
3DHistech Pannoramic Scan II at 40× magnification
(0.25 µm/px).

For the evaluation of the challenge, we constructed the
so-called final test set, where only a single evaluation per
team was permitted. The dataset included 10 cases per
domain, encompassing the following domains, evenly di-
vided between human and veterinary samples:

• Domain 1: Human melanoma, retrieved from the DA
of UMC Utrecht, digitized using a Hamamatsu S360
(C13220) at 40× magnification (0.23 µm/px). MC is
part of the staging and classification scheme of the
AJCC for melanoma (Balch et al., 2009).

• Domain 2: Human astrocytoma, retrieved from the
DA of the Institute of Neuropathology at University
Hospital Erlangen, digitized with a Hamamatsu S60
at 40×magnification (0.22 µm/px). MC is part of the
2016 WHO grading scheme (Louis et al., 2016).

• Domain 3: Human bladder carcinoma, retrieved
from the DA of the Institute of Pathology at Uni-
versity Hospital Erlangen, digitized with a 3DHis-
tech Pannoramic Scan II at 40× magnification (0.25
µm/px). MC is used in the differentiation of tumor
types according to (Epstein et al., 1998) and was re-
cently confirmed to be prognostically significant by
(Akkalp et al., 2016).

• Domain 4: Canine breast carcinoma, retrieved from
the DA of VMU, digitized with a 3DHistech Pan-
noramic Scan II at 40× magnification (0.25 µm/px).
MC is part of the grading scheme by Peña et al.
(2013).

• Domain 5: Canine cutaneous mast cell tumor, re-
trieved from the DA of FUB, digitized with a Hama-
matsu S360 (C13220) at 40× magnification (0.23
µm/px). MC is part of the grading scheme by Kiupel
et al. (2011).

• Domain 6: Human meningioma, retrieved from the
DA of the Institute of Neuropathology at Univer-
sity Hospital Erlangen, digitized with the Hama-
matsu S60 at 40×magnification (0.22 µm/px). MC is
part of the 2016 WHO grading scheme (Louis et al.,
2016).

• Domain 7: Human colon carcinoma, retrieved from
the DA of UMC Utrecht, digitized using a Hama-
matsu S360 (C13220) at 40× magnification (0.23
µm/px). MC is not part of the grading scheme but
was shown to predict survival for lymph-node nega-
tive colon carcinoma by Sinicrope et al. (1999).

• Domain 8: Canine splenic hemangiosarcoma, re-
trieved from the DA of VMU, digitized with a
3DHistech Pannoramic Scan II at 40× magnification
(0.25 µm/px). MC is part of the grading scheme of
Ogilvie et al. (1996).

• Domain 9: Feline (sub)cutaneous soft tissue sar-
coma, retrieved from the DA of VMU, digitized with
a 3DHistech Pannoramic Scan II at 40× magnifica-
tion (0.25 µm/px). MC is part of the grading scheme
of Dobromylskyj et al. (2021).

• Domain 10: Feline gastrointestinal lymphoma, re-
trieved from the DA of VMU, digitized with a
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3DHistech Pannoramic Scan II at 40× magnification
(0.25 µm/px). For cats, the MC is know to be corre-
lated with the grade according to the National Cancer
Institute working formulation (Valli et al., 2000).

While human melanoma (unlabeled) and canine cuta-
neous mast cell tumor were already part of the training set,
the test set used different scanners for both tumor types.

2.2. Establishment of ground truth
The MC is typically assessed on an ROI of 10 high

power fields, the size of which is dependent on the optical
properties of the microscope (Fitzgibbons and Connolly,
2023). For digital microscopy, it is more sensible to di-
rectly define the area, calculated from the resolution of
the digitization device, which we set in accordance with
previous work (Veta et al., 2019, 2015) to 2 mm2. The
ROI was selected from each digitized WSI by a patholo-
gist with expertise in tumor pathology (C.A.B.) as the area
with appropriate tissue and scan quality and the perceived
highest mitotic activity, which was considered to be more
likely found in a region with high cellular density. This
is in accordance with current guidelines (Donovan et al.,
2021; Avallone et al., 2021; Ibrahim et al., 2022; Fitzgib-
bons and Connolly, 2023).

Given the well-known inter-rater disagreements in
identification and annotation of MFs, strategic study de-
sign methods are essential to limit the effects of these fac-
tors on the ground truth for subsequent (ideally unbiased)
evaluation. Two main annotation biases need to be con-
sidered: When presented with a MF, previously identified
as such by another expert, an independent expert might
be subject to a confirmation bias. Similarly, it has been
reported that the chance of overlooking individual MFs,
especially in densely populated cell areas or under sub-
optimal image quality, should not be neglected (Bertram
et al., 2021). Our methods (described in more detail in
Bertram et al. (2019)) take both factors into account by
identifying MF candidates (i.e., MFs and non-mitotic fig-
ures/imposters), which are then classified by three experts
in an blinded manner. This task was carried out by one
expert (C.A.B.) with roughly equal number of MFs and
non-mitotic figures labels, and, in a second step, was sup-
ported by a machine learning model aimed at identifying
MFs with high recall. The model was trained on the ini-
tial manual annotation. This first expert also directly per-

formed an initial classification of these additionally de-
tected structures as MFs or imposters (non-mitotic fig-
ures). The second expert (R.K.) performed the same clas-
sification task (MF vs. non-mitotic figure) for all iden-
tified objects but was blinded to the decision of the first
expert. In case of disagreement between both experts, a
third expert (T.A.D.) rendered the final class label. All
three experts have more than five years of experience in
MF identification. This independent vote counteracts a
confirmation bias, while use of the machine-learning sup-
port mitigates the omission of individual objects. Prior
to the assessment, the experts agreed on common criteria
for the identification of MFs (Donovan et al., 2021). The
annotation of all parts of our dataset (training set, prelim-
inary test set, and the final challenge test set) was carried
out using the same methodology. This ground truth def-
inition was used for performance evaluation and ranking
of the participants during the MIDOG 2022 challenge.

PHH3-assisted ground truth
Due to the considerable degree of inter-rater disagree-

ment, it is prudent to create a ground truth that relies less
on the subjective judgments of multiple experts. Hence,
as an alternative ground truth for the test set, we per-
formed IHC staining for all slides of the test set for PHH3.
This ground truth definition was not available during the
MIDOG 2022 challenge and was developed for this sum-
mary paper to gain a better understanding of the algorith-
mic performance. Histone H3 is a protein that is phos-
phorylated in the early stages of the mitotic phase and
represents a specific marker for mitosis (Hendzel et al.,
1997; Bertram et al., 2020; Tellez et al., 2018). How-
ever, the specific stain is less pronounced in the last phase
(telophase) of mitosis, a phase which is usually morpho-
logically conspicuous with the H&E stain, and is already
present in early prophase, which is usually not apparent
based on H&E morphology. We hypothesized that the
combination of these two staining techniques would in-
crease label consistency. To evaluate H&E and PHH3
in the same cells, we de-stained the H&E-stained slides
after digitization and re-stained them with an antibody
for PHH3, combined with a secondary antibody equipped
with a tailored enzyme that reacts with a substrate to yield
a brown stain (see Fig. 2 ). After digitization of the IHC-
stained slide and subsequent manual registration of both
scans, a tool based on the EXACT annotation server was
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Figure 2: Correspondence between hematoxylin and eosin (H&E)-
stained tissue (top) and immunohistochemistry stain against phospho-
histone H3 (PHH3, bottom). The left panel shows two tumor cells (green
circles) with clear immunopositivity against PHH3 conclusive for MFs,
supporting H&E morphology. The right panel shows a mitotic figure in
telophase where the PHH3-stain is less conclusive, but the morphology
in the H&E is characteristic.

employed by an expert (Marzahl et al., 2021), in which
both scans could be superimposed with variable trans-
parency. Hence, it was possible to simultaneously eval-
uate both the specific immunopositivity for PHH3 as well
as the morphology in the H&E stain for each cell. In case
of non-perfect registration between cells in the PHH3 and
H&E stain, the expert annotated the exact coordinate of
the MF the H&E stain. Out of 100 cases of the test set,
we were able to register 98 to the respective ROIs in the
H&E image. For two cases (068 and 100) restaining with
PHH3 was not possible due to damage during tissue han-
dling. Immunopositive cells lacking H&E morphology of
MFs were not annotated (mostly early prophase MFs) as
it is impossible to identify them in the H&E images to
which algorithmic analysis and the primary ground truth
were restricted.

2.3. Dataset statistics

The MC is expected to vary across tumor types and
species. This expectation was confirmed in the distribu-
tion of MC shown in the histogram for the training set
(Fig. 4) as well as in the box-whisker plots for the pre-
liminary and the final challenge test set (Fig. 3). Tumor
types with a comparatively high MC in our samples were
canine lung cancer (domain B), canine lymphosarcoma
(domain C), canine osteosarcoma (domain β), as well as
human bladder carcinoma (domain 3), human colon car-
cinoma (domain 7), canine hemangiosarcoma (domain 8),
and both feline tumors (domains 9 and 10). The mean MC

Figure 3: Box-whisker plot of the distribution of MC across the domains
of the preliminary test set and the final challenge test set. Boxes indicate
lower and upper quartile values, colored lines indicate median values.

of the training, preliminary test, and final challenge test
set were 26.84, 18.00, and 34.74, respectively.

2.4. Reference approaches

For optimal familiarization, challenge participants
were provided with three baseline approaches with algo-
rithmic descriptions and preliminary test results. Out of
these three approaches, two were based on the RetinaNet
(Lin et al., 2017) single-stage object detection architec-
ture and one was based on the Mask RCNN (He et al.,
2017) architecture. The first RetinaNet-based approach
used a domain-adversarial (Ganin et al., 2016) branch
and was trained solely on the MIDOG 2021 training set
(i.e., the identical setting as the reference approach for the
MIDOG 2021 challenge) and the reference approach for
the MIDOG 2021 challenge (Wilm et al., 2022). Con-
sidering that this approach was only trained on human
breast cancer, we expected a considerable domain gap.
The second RetinaNet-based approach was trained on
the six domains of the training set (A-F) and used addi-
tional stain augmentation, based on Macenko’s method
for stain deconvolution (Macenko et al., 2009). As the
top-performing approaches of MIDOG 2021 were all us-
ing (instance) segmentation, we also included the Mask
RCNN for this purpose. This approach was, however,
not trained with any specific domain-generalizing meth-
ods besides default image augmentation. We provided a
detailed description of both approaches as part of the chal-
lenge proceedings (Ammeling et al., 2023).
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Figure 4: Histogram of MFs and non-mitotic figures in the training set of MIDOG 2022.

2.5. Evaluation methods and metrics

MF identification is a balanced pattern recognition
problem in that both an over- and an underestimation of
the MCs can lead to equally detrimental consequences:
overestimation may lead to excessively aggressive treat-
ment with significant side effects, whereas an underes-
timation may contribute to more conservative treatment,
potentially diminishing the overall treatment outcome. As
in prior challenges (Veta et al., 2019, 2016; Roux et al.,
2013, 2014), we thus decided to use the F1 score as our
primary metric, as it represents the geometric mean be-
tween precision and recall and thus benefits from a good
operating point set as a balance between both. To counter
averaging effects from the strongly heterogeneous distri-
bution of the MC, we opted to calculate the F1 score
across all cases/images from the summary of respective
true positives, false positives, and false negatives over all
slides. As the F1 score is threshold-based, it is addition-
ally insightful to see if competing approaches only chose
an unsuitable decision threshold while having an other-
wise proper pattern discrimination. Hence, we addition-
ally evaluated the average precision (AP) metric, calcu-
lated as the mean precision for 101 linearly spaced re-
call values between 0 and 1. For the approaches by some
teams, a meaningful calculation of AP was not possible
due to missing below-threshold classification results. Fur-
ther, we calculated the precision and recall for all algo-
rithms.

To investigate the dependency on the selection of sam-
ples, we performed 1000-fold bootstrapping of the results
of each test case, i.e., we randomly selected the same
number of cases with replacement from the set of results
per case before calculating the precision, recall, AP and
F1 values.

3. Overview of submitted methods

15 registered users from twelve teams submitted at least
once to the preliminary test phase of the challenge. Out of
those, nine also submitted to the final test phase. All mod-
els were based on methods of deep learning. The submit-
ted methods were, as in previous challenges, discrepant
in more than one key factor, which makes a direct iden-
tification of components for a successful MF detection
method difficult. All teams submitted to track 1 (without
additional data) of the challenge, while two teams opted
to also submit approaches trained by utilizing additional
data. In the following section, we will compare the al-
gorithmic strategies of all teams and subsequently discuss
the datasets that were additionally used in track 2.

3.1. Pattern recognition tasks

The majority of teams (5/9) chose to frame the task as
an object detection task (see Table 1), partially with a sec-
ond classification stage. Two teams used a semantic seg-
mentation approach and two teams chose a classification-
based detection. In particular, the approach by Jahan-
ifar et al. (2022) used fixed-size disks around the cen-
troid coordinate of the MFs to generate the segmenta-
tion masks for track 1 and a segmentation mask generated
by the NuClick algorithm (Koohbanani et al., 2020) for
track 2, while the approach by Yang et al. (2022) used the
filled inner circle of the provided bounding box as seg-
mentation target. In contrast, Lafarge and Koelzer (2023)
used a classification of patches (78×78 px) with a slid-
ing window like in the original works by Cireşan et al.
(2013). Gu et al. (2023) framed object localization as a
weakly-supervised learning task derived from class acti-
vation maps of medium-sized (240×240 px) patches that
were classified as containing a MF or not.
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team tracks 1st stage architecture second stage ensembling TTA augmentation use of unla-
beled domain

geometric stain color other
Baseline 1 (Ammeling
et al., 2023)

2 instance segmen-
tation

Mask RCNN (He et al.,
2017), ResNet50 backbone

– ✗ ✗ ✓ ✗ ✓ ✗ –

Baseline 2 (Ammeling
et al., 2023)

1 object detection RetinaNet (Lin et al., 2017),
ResNet18 backbone

– ✗ ✗ ✓ ✓ ✓ ✗ domain-
adversarial

Baseline MIDOG21
(Wilm et al., 2022)

1 object detection RetinaNet (Lin et al., 2017),
ResNet18 backbone

– ✗ ✗ ✓ ✗ ✓ ✗ domain-
adversarial

TIA Centre (Jahanifar
et al., 2022)

1, 2 segmentation Efficient-UNet (B0) (Jahani-
far et al., 2021)

EfficientNet-B7 ✓ ✓ ✓ ✓ ✓ sharpness –

TCS Research (RnI)
(Kotte et al., 2023)

1 object detection DETR (Carion et al., 2020),
ResNet50-DC5 backbone

EfficientNet-B7 ✓ ✗ ✓ ✗ ✓ ✗ –

USZ / UZH Zurich (ML)
(Lafarge and Koelzer,
2023)

1 classification
(sliding window)

P4-ResNet70 (Cohen and
Welling, 2016; He et al.,
2016)

– ✓ ✗ ✓ ✗ ✓ ✗ hard-negative
mining

UCLA-HCI (Gu et al.,
2023)

1 classification
(large tiles)

EfficientNet-B3 weakly super-
vised localization

✗ ✗ ✓ ✓ ✓ blur, noise,
balanced-mixup

treated as
negative

SKJP (Kondo et al.,
2023)

1 object detection EfficientDet (Tan et al.,
2020), EfficientNet V2-L
backbone

– ✗ ✗ ✓ ✗ ✗ stain normaliza-
tion

–

HTW Berlin (An-
nuscheit and Krumnow,
2023)

1 object detection YOLO v5 (Jocher et al.,
2020)

– ✗ ✓ ✓ ✓ ✓ blur/sharpening domain
generalization

AI medical (Yang et al.,
2022; Wang et al., 2023)

1, 2 segmentation SK-UNET (Wang et al.,
2021), SE-ResNeXt50 en-
coder

– ✗ ✗ ✓ ✗ ✓ Fourier-domain
augmentation

–

Virasoft (Bozaba et al.,
2022)

1 object detection YOLO v5 (Jocher et al.,
2020), CSPDarknet53 stem

EfficientNet-B3 ✗ ✗ ✓ ✗ ✗ mosaic –

HITszCPATH (Wang
et al., 2022)

1 object detection RetinaNet (Lin et al., 2017),
ResNet50 stem

– ✗ ✗ ✓ ✗ ✓ – auxiliary clas-
sifier

Table 1: Overview of the submitted methods by all participating teams. TTA indicates test-time augmentation.

3.2. Architectures

The majority of submissions were derivatives of con-
volutional neural networks (CNNs), while one team de-
signed their method based on the Detection Transformer
(DETR) (Carion et al., 2020), which is an object detector
derived from the vision transformer class of models and
hence uses a CNN solely for feature extraction. Amongst
the other approaches, EfficientNet (Tan and Le, 2019)-
derived architectures were frequently used. Variants of
EfficientNet were used as second stage in the approaches
by Jahanifar et al. (2022), Kotte et al. (2023), and Boz-
aba et al. (2022), as classification approach by Gu et al.
(2023), and as a stem of the mitosis detector by Jahanifar
et al. (2022) and Kondo et al. (2023). Other researchers
chose different well-established network stems, such as
ResNet (He et al., 2016), SE-ResNeXt (Hu et al., 2020),
or CSPDarknet53 (Bochkovskiy et al., 2020).

3.3. Ensembling and Test-Time Augmentation

While both ensembling and test-time augmentation
(TTA) are strategies well-known to enhance model robust-
ness, they were only employed by a minority of partic-
ipants (see Table 1). Only the winning approach by Ja-
hanifar et al. (2022) employed both ensembling and TTA.

The runner-up approach by Kotte et al. (2023) employed
a tailored ensembling of model scores of the first and sec-
ond stages but only in cases where the score of an ob-
ject in the first stage did not exceed a given threshold.
The approach by Lafarge and Koelzer (2023) ensembled
two models trained with different augmentation strategies,
and integrated the effect of 90-degree rotation for TTA via
the use of a rotation invariant model (Cohen and Welling,
2016). The approach by Annuscheit and Krumnow (2023)
used four-fold TTA using mirroring of the images.

3.4. Augmentation

All participating teams used standard geometric image
transformations like rotation, scaling, and elastic defor-
mations. Additionally, the majority of teams opted to
use one form of standard color augmentation that aims
at manipulating the hue, brightness, and contrast. Ad-
ditionally, multiple teams opted to use image perturba-
tions such as blurring, sharpening, and noising. Bozaba
et al. (2022) additionally employed mosaic augmentation.
Bochkovskiy et al. (2020), and Gu et al. (2023) addition-
ally used balanced mixup (Galdran et al., 2021). Besides
those general computer vision augmentation strategies,
specific stain augmentation strategies for H&E-stained
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images were employed by three teams (Jahanifar et al.,
2022; Gu et al., 2023; Annuscheit and Krumnow, 2023),
while the approach by Yang and Soatto (2020) augmented
images by performing a style-transfer in the frequency-
domain.

3.5. Use of the unlabeled domain

The unlabeled domain F of the training set (human
melanoma) was employed by four teams. Lafarge and
Koelzer (2023) designed a hard-negative mining scheme
that additionally employed the unlabeled domain by un-
mixing the stains into hematoxylin, eosin, and a residual
component, and then extracted objects with high residual
components (e.g., stain artifacts), which can be mistaken
for MFs. Gu et al. (2023) used the surplus domain to treat
all images as negatives and counteracted these noisy la-
bels with a specifically crafted loss function. Annuscheit
and Krumnow (2023) used the domain as an additional
domain in a representation learning scheme for domain
adaptation. Finally, Wang et al. (2022) used the additional
data in an auxiliary domain classifier in a multi-task learn-
ing scheme.

3.6. Domain generalization methodologies

Besides augmentation, several teams employed spe-
cific strategies targeted at domain generalization. An-
nuscheit and Krumnow (2023) designed a domain adapta-
tion scheme based on metric learning where the distance
of each sample to prototypes of all domains was mini-
mized to achieve domain generalization. (Wang et al.,
2022) employed multi-task learning with two auxiliary
tasks: an overall MF classification for the patch and a tu-
mor domain classifier, likely regularizing the model (and
hence counteracting domain overfitting). Similarly, (Yang
et al., 2022) added a weight perturbation to the loss term,
as this was shown to regularize the model and make it
more robust to domain shifts (Wu et al., 2020).

3.7. Addional datasets used in track 2

In the second track of the challenge, it was permitted
to use publicly available datasets. Yang et al. (2022) used
a Hover-Net (Graham et al., 2019) which was trained on
other histopathology datasets to generate more accurate
segmentation masks. Similarly, the approach by Jahanifar
et al. (2022) created enhanced MF segmentation masks by

using NuClick (Koohbanani et al., 2020) and additionally
by incorporating the TUPAC16 (Veta et al., 2019) dataset
to the training dataset.

4. Results

The evaluation of track 1 on all ten tumor domains
of the test set shows that the TIA Center approach (Ja-
hanifar et al., 2022) yielded the best overall performance
(F1 = 0.764), closely followed by the approach from the
TCS Research team (Kotte et al., 2023) (F1 = 0.757).
Breaking this down into the ten tumor domains, we find
a similar overall picture, with both approaches scoring
first or second in all domains (see Table 2). We also note
that the two leading approaches chose different strategies
when optimizing the operating point: While the TIA Cen-
ter approach yielded a moderately lower recall value at a
higher precision value, we found the opposite to be true
for the TCS Research approach (see Fig. 8 and Fig. 7).
The F1 score is roughly reflected in the precision recall
curves of Fig. 9.

In the second track of the challenge, we find a clear su-
periority of the approach by (Jahanifar et al., 2022), fur-
ther supported by having the leading edge in all tumor
domains.

Comparing the performance in both tracks across tumor
domains, we find that tumor domain 2 (human astrocy-
toma) and 6 (human meningioma), i.e, the neuropatholog-
ical domains, seemed to have been particularly challeng-
ing, with overall maximum F1 scores of 0.63 and 0.68,
respectively (see Table 2). On the contrary, the domains
1 (human melanoma), 3 (human bladder carcinoma), 5
(canine cutaneous mast cell tumor), and 8 (canine splenic
hemangiosarcoma) were the tumor domains to which the
algorithms generalized best, achieving F1 scores of up to
0.82, 0.81, 0.82 and 0.82, respectively.

Assessment on alternative (PHH3-assisted) ground truth

After the full annotation of 98 cases based on the joint
information of the H&E and PHH3-stained images, we
found an increase in the count of MF by 15.0%. Out of
the mitotic figures identified aided by the PHH3-stained
images, 28.78% (were previously not part of the consen-
sus vote of the three experts based on the H&E stain. We
performed a post-hoc analysis of all these cells, the results

10



Team overall Tumor 1 Tumor 2 Tumor 3 Tumor 4 Tumor 5 Tumor 6 Tumor 7 Tumor 8 Tumor 9 Tumor 10
Baseline 2 (Wilm) 0.714 [0.68,0.74] 0.74 [0.61,0.79] 0.48 [0.27,0.63] 0.75 [0.69,0.79] 0.68 [0.61,0.73] 0.81 [0.76,0.84] 0.66 [0.50,0.73] 0.72 [0.62,0.78] 0.77 [0.64,0.82] 0.69 [0.55,0.75] 0.66 [0.56,0.72]
Baseline 1 (Ammeling/Ganz) 0.654 [0.62,0.68] 0.72 [0.59,0.78] 0.32 [0.13,0.48] 0.72 [0.66,0.76] 0.56 [0.48,0.61] 0.76 [0.67,0.80] 0.60 [0.42,0.72] 0.67 [0.59,0.72] 0.70 [0.59,0.74] 0.57 [0.40,0.66] 0.64 [0.55,0.72]
Baseline MIDOG2021 0.513 [0.44,0.58] 0.73 [0.58,0.79] 0.38 [0.13,0.67] 0.74 [0.68,0.79] 0.23 [0.12,0.32] 0.69 [0.64,0.73] 0.62 [0.38,0.70] 0.69 [0.59,0.74] 0.50 [0.34,0.58] 0.32 [0.22,0.36] 0.08 [0.03,0.13]
TIA Centre 0.764 [0.74,0.78] 0.80 [0.74,0.84] 0.65 [0.38,0.79] 0.81 [0.78,0.83] 0.71 [0.62,0.78] 0.83 [0.81,0.86] 0.71 [0.52,0.78] 0.75 [0.65,0.82] 0.79 [0.70,0.83] 0.70 [0.58,0.77] 0.77 [0.70,0.81]
TCS Research (RnI) 0.757 [0.72,0.78] 0.76 [0.66,0.80] 0.48 [0.24,0.72] 0.79 [0.73,0.84] 0.73 [0.66,0.76] 0.79 [0.74,0.83] 0.65 [0.41,0.75] 0.74 [0.64,0.80] 0.84 [0.73,0.87] 0.72 [0.62,0.77] 0.77 [0.70,0.82]
USZ / UZH Zurich (ML) 0.696 [0.66,0.73] 0.76 [0.58,0.83] 0.28 [0.10,0.52] 0.75 [0.69,0.80] 0.66 [0.55,0.73] 0.73 [0.66,0.79] 0.64 [0.45,0.71] 0.71 [0.63,0.77] 0.78 [0.66,0.82] 0.64 [0.46,0.73] 0.66 [0.58,0.73]
UCLA-HCI 0.685 [0.65,0.71] 0.55 [0.39,0.67] 0.48 [0.20,0.74] 0.76 [0.70,0.80] 0.68 [0.62,0.72] 0.77 [0.74,0.79] 0.57 [0.46,0.65] 0.69 [0.61,0.75] 0.72 [0.62,0.76] 0.58 [0.44,0.66] 0.73 [0.67,0.79]
SKJP 0.671 [0.64,0.70] 0.76 [0.65,0.80] 0.51 [0.23,0.69] 0.75 [0.69,0.80] 0.60 [0.53,0.65] 0.70 [0.59,0.76] 0.65 [0.48,0.75] 0.67 [0.57,0.73] 0.71 [0.58,0.77] 0.60 [0.52,0.64] 0.63 [0.52,0.71]
HTW Berlin 0.666 [0.63,0.70] 0.75 [0.64,0.80] 0.57 [0.30,0.76] 0.72 [0.64,0.78] 0.57 [0.41,0.66] 0.77 [0.68,0.81] 0.66 [0.51,0.75] 0.64 [0.58,0.69] 0.69 [0.52,0.76] 0.56 [0.40,0.63] 0.68 [0.57,0.75]
AI medical 0.659 [0.62,0.69] 0.80 [0.70,0.84] 0.63 [0.33,0.83] 0.74 [0.67,0.80] 0.64 [0.52,0.73] 0.79 [0.72,0.84] 0.65 [0.49,0.72] 0.68 [0.62,0.72] 0.68 [0.56,0.75] 0.52 [0.43,0.60] 0.59 [0.51,0.65]
Virasoft 0.639 [0.61,0.67] 0.66 [0.50,0.74] 0.34 [0.15,0.65] 0.70 [0.66,0.72] 0.62 [0.54,0.67] 0.60 [0.54,0.65] 0.59 [0.35,0.65] 0.60 [0.49,0.67] 0.73 [0.64,0.77] 0.63 [0.50,0.68] 0.61 [0.54,0.66]
HITszCPath 0.630 [0.59,0.66] 0.75 [0.65,0.80] 0.38 [0.17,0.60] 0.73 [0.66,0.77] 0.55 [0.44,0.63] 0.72 [0.66,0.76] 0.57 [0.34,0.66] 0.62 [0.56,0.65] 0.70 [0.59,0.76] 0.49 [0.33,0.56] 0.61 [0.53,0.67]
TIA Centre (Task 2) 0.749 [0.72,0.77] 0.83 [0.77,0.86] 0.70 [0.37,0.86] 0.81 [0.78,0.84] 0.71 [0.61,0.76] 0.82 [0.80,0.84] 0.69 [0.57,0.74] 0.73 [0.64,0.79] 0.78 [0.68,0.82] 0.67 [0.52,0.73] 0.73 [0.65,0.78]
AI medical (Task 2) 0.708 [0.68,0.73] 0.82 [0.74,0.86] 0.61 [0.29,0.78] 0.78 [0.71,0.83] 0.65 [0.56,0.71] 0.78 [0.74,0.81] 0.66 [0.50,0.76] 0.71 [0.64,0.75] 0.73 [0.61,0.80] 0.58 [0.42,0.64] 0.71 [0.66,0.77]

Table 2: F1 values across all tumor domains for all participants. Values in brackets indicate 95% confidence interval as a result of bootstrapping.
The top group is the baselines, the middle group is the submissions in track 1 and the bottom group is the submissions in track 2 of the challenge.

Figure 5: Distribution of the F1 score as a result of bootstrapping.

Figure 6: Distribution of the AP score as a result of bootstrapping. Only
submissions that provided meaningful model scores are shown.

Figure 7: Distribution of precision as a result of bootstrapping.

Figure 8: Distribution of recall as a result of bootstrapping.
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Figure 9: Precision-recall values and curves (for all participants where
the model score per MFs was provided and consistent). The marker
indicates operating point calculated by the thresholded detections of the
participants. Minor mismatches may be explained by post-processing
after thresholding.

of which are depicted in Table 3. Out of those MF only
identified with help of the PHH3 stain, 20.97% were from
the 9% of cases of feline lymphoma, which are generally
difficult due to the small cell size resulting at low cellular
details at the given image resolution. Over the complete
test set, the primary reason for the discrepancy was a bor-
derline mitotic figure morphology, which was hard to dis-
criminate against imposters due to cells being out of fo-
cus or superimposed to other cells in thick tissue sections,
poor tissue / image quality such as overstained chromatin
structures, prophase morphology without obvious chro-
matin spikes that are difficult to differentiate from apop-
totic cells or other, not further classified reasons. Less
prominent were difficulties to delineate the MF from im-
posters due to a borderline cell cycle phase to the G2-
phase with early membrane changes and G1-phase with
formation of nuclear membranes of the two neighboring
daughter cells. In 5.85% of cases the MFs were found
to have an unusual morphology, while in 0.54% of cases
we found an incomplete capture of the cell at the image
borders. Only 1.08% of mitotic figures were considered
labeling error in the HE-approach, as characteristic MF

category subcategory percentage

borderline morphology

prophase with resemblance to apoptosis 31.23 %
out of focus (scan artefact or thick tissue section) 27.54 %
poor image tissue quality (such as overstained) 5.67 %
not further classified 23.13 %
total 87.58 %

borderline to non mitotic phases
prophase with early membrane changes 4.05 %
late telophase (with formation of nuclear membrane) 0.90 %
total 4.95 %

untypical MF morphology 5.85 %
cut off at image border 0.54 %
overlooked (clear mitotic figure) 1.08 %

Table 3: Breakdown of mitotic figures that were additionally identified
using the phosphohistone H3 (PHH3) stain.

morphology was apparent.
When evaluating with this alternative, IHC-assisted

ground truth, we found overall lower recall values for all
approaches, as shown in Fig. 10, also resulting in over-
all lower AP and F1 values. However, the order of the
approaches, when sorted by the F1 value, was almost un-
altered. Fig. 10 also shows the precision and recall val-
ues of both experts using the original H&E images when
evaluated on the PHH3-assisted alternative ground truth,
as well as the respective values for the three-expert con-
sensus, indicating a good alignment between the consen-
sus and the IHC-assisted GT. For expert 1 (C.A.B.), we
found an overall precision, recall, and F1 value of 0.926,
0.611, and 0.736, respectively, and for expert 2 (R.K.) we
found an overall precision, recall, and F1 value of 0.659,
0.747 and 0.700, respectively. The three expert consensus
achieved a precision, recall, and F1 value of 0.818, 0.711,
and 0.761 respectively.

5. Discussion

The MIDOG 2022 challenge was the first to assess MF
recognition across multiple tumor types. This extends the
range of covariate shifts to the visual context of the MFs.
In the previous challenge, the main domain shift could
be attributed to changes in color, sharpness, and depth of
field (caused by the differing scanners). In this challenge,
the generalization to different tumor types and hence un-
known tissue types that surround the MFs is harder to re-
flect in dedicated domain generalization strategies, e.g.,
domain augmentation. This may explain why the par-
ticipants of this iteration of the challenge did not opt to
formulate novel augmentation strategies. It is noteworthy
that the top three team approaches to track 1 of the chal-
lenge used distinctively different strategies to address the
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Figure 10: Precision and recall of all approaches and the experts, evaluated on the PHH3-assisted alternative ground truth. AP values and curves
are only given for approaches where the model scores were provided and consistent. The expert scores represent the independent assessment of
expert 1 and 2 on the hematoxylin and eosin-stained images, which was performed when establishing the original challenge ground truth, the 3
expert consensus represents the challenge ground truth.

pattern recognition problem (semantic segmentation fol-
lowed by connected components analysis (Jahanifar et al.,
2022), object detection (Kotte et al., 2023) and classifica-
tion on a sliding window (Lafarge and Koelzer, 2023)),
highlighting that the how (i.e., augmentation, sampling
scheme, post-processing) of training was likely more im-
portant than the what (i.e., the neural network architec-
ture). One commonality between the top three perform-
ing approaches to track 1 was, however, that they all used
some form of ensembling technique, which has been re-
ported as a strong determinant of success in biomedi-
cal challenges (Eisenmann et al., 2023), and likely con-
tributed directly to domain robustness.

The use of containers for the algorithmic submission
comes with an increased risk of unintended and unex-
pected technical failures for the participants. For this rea-
son, we made an independent preliminary test set avail-
able to the participants. To avoid overfitting of hyperpa-
rameters to this set by the participants and, at the same
time, to reduce the computational budget required to eval-
uate the containers, one daily execution was admitted dur-
ing a two-week time frame prior to the submission. Since
overfitting could still not be ruled out, in this version
of the challenge, we opted to use four independent (dis-
jointed from the challenge test set) domains in this phase.

The post-challenge evaluation on the alternative,
PHH3-assisted ground truth yielded overall lower recall
values for all approaches. We attribute this to the in-
clusion of multiple MFs having inconclusive morpholog-
ical features in the H&E image, which could be identified
with higher confidence in the IHC due to immunoposi-
tivity against PHH3-antibodies. Equivocal or inconclu-
sive morphologies include the MF being out of focus due
to the factual three-dimensionality of the sample as well
as general difficulty in clearly differentiating some MF
morphologies (particularly prometaphase MF) from im-
posters. In the PHH3 stain, however, these structures are
clearly distinguishable due to immunoreactivity, which
provides an unaltered high contrast, contributing to the
overall higher number of MFs. Similar to the expert an-
notators of the H&E-approach, algorithms were trained
(based on the ground truth used) to exclude these mor-
phologically inconclusive structures, which explains the
lower recall values of all approaches. The good agree-
ment of the challenge ground truth (three-expert consen-
sus) compared to the alternative and IHC-assisted ground
truth highlights the benefits of multiple blinded expert en-
sembles for H&E-based MF annotations. The in-depth
evaluation of mitotic figures that were only identifiable
using the IHC stain as secondary source of information
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(Table 3), however, also reveals the limitations of purely
H&E-based ground truth definitions, as occurring border-
line morphological patterns were found to represent the
majority of IHC-positive MFs that were not found in the
expert consensus of the H&E stain.

One insight from our challenge is the limitations of the
AP metric, which averages the precision at defined re-
call values, as a challenge metric. Besides a high num-
ber of hyperparameters (such as the maximum number
of detections, the interpolation method, and grid), the AP
metric is used according to multiple different definitions
(Hirling et al., 2023). Moreover, as can be seen in Fig.
9, none of the algorithms reached the zero value for pre-
cision, which penalized the approaches in the AP metric.
We hypothesize that this is a result of all approaches us-
ing a detection threshold before the non-maximum sup-
pression; a common procedure to reduce computational
overhead for the matching of ground truth and candidates,
which is an operation in O(n2). If no value can be mean-
ingfully interpolated for high recall values (e.g., for the
MIDOG 2021 baseline approach in Fig. 9 above a recall
value of 0.6), the precision value is commonly extrapo-
lated to 0, which penalizes the approach unjustly. Simi-
larly, should the averaging be confined to the maximum
achieved recall value, methods employing a high detec-
tion threshold would gain an unfair advantage. In partic-
ular, this is demonstrated when comparing the winning
approach of Jahanifar et al. (2022) and the runner-up of
(Kotte et al., 2023). While the precision-recall curve in
Fig. 9 clearly indicates the superiority of the winning ap-
proach, the AP metric (see Fig. 6) benefits from the lower
detection threshold of the approach by Kotte et al. (2023),
giving a false impression that the latter approach has a
higher decision-threshold independent performance. This
provides additional evidence for the utility of the F1 score
as the primary challenge metric.

We found that the top algorithmic solutions of this chal-
lenge detected MFs at a level similar to that of the 2021
MIDOG challenge (top F1 value of 0.748 in 2021 (Aubre-
ville et al., 2023a) and 0.764 in 2022). Additionally, com-
paring these performances to published F1 values for hu-
man experts (0.563 for human breast cancer (Aubreville
et al., 2023a), 0.79 on canine cutaneous mast cell tumor
(Bertram et al., 2021)) indicates that the automatic ap-
proaches are in the range of human experts. Nevertheless,
it is worth pointing out that human experts typically per-

form this task not only on ROIs but on the entire slide,
which was not the task of this challenge. We hence en-
courage the creation of further datasets and challenges in-
corporating annotations on the entire WSIs and thus also
providing labels for a much more diverse set of tissue
characteristics.
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