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Histopathological examination of tissue samples is essential for identifying tumor malignancy and 
the diagnosis of different types of tumor. In the case of lymphoma classification, nuclear size of the 
neoplastic lymphocytes is one of the key features to differentiate the different subtypes. Based on 
the combination of artificial intelligence and advanced image processing, we provide a workflow for 
the classification of lymphoma with regards to their nuclear size (small, intermediate, and large). As 
the baseline for our workflow testing, we use a Unet++ model trained on histological images of canine 
lymphoma with individually labeled nuclei. As an alternative to the Unet++, we also used a publicly 
available pre‑trained and unmodified instance segmentation model called Stardist to demonstrate 
that our modular classification workflow can be combined with different types of segmentation 
models if they can provide proper nuclei segmentation. Subsequent to nuclear segmentation, we 
optimize algorithmic parameters for accurate classification of nuclear size using a newly derived 
reference size and final image classification based on a pathologists‑derived ground truth. Our image 
classification module achieves a classification accuracy of up to 92% on canine lymphoma data. 
Compared to the accuracy ranging from 66.67 to 84% achieved using measurements provided by three 
individual pathologists, our algorithm provides a higher accuracy level and reproducible results. Our 
workflow also demonstrates a high transferability to feline lymphoma, as shown by its accuracy of up 
to 84.21%, even though our workflow was not optimized for feline lymphoma images. By determining 
the nuclear size distribution in tumor areas, our workflow can assist pathologists in subtyping 
lymphoma based on the nuclei size and potentially improve reproducibility. Our proposed approach 
is modular and comprehensible, thus allowing adaptation for specific tasks and increasing the users’ 
trust in computer‑assisted image classification.

For automated analysis of histological images, algorithms based on artificial intelligence (particularly deep learn-
ing) have been shown to achieve exceptionally high performance as well as increased reproducibility of  results1. 
The improved computational power of modern computers and the increasing capabilities of deep learning-based 
models have enabled these algorithms to become part of medical research and diagnostic pathology  service2.

Lymphoma is a malignant neoplasm of the hemolymphatic system derived from lymphocytes that is com-
mon in human and veterinary medicine. Lymphoma is an umbrella term for a heterogenous group of different 
subtypes with highly variable biological behavior ranging from indolent to  aggressive3. Therefore, histological 
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classification of the different subtypes of lymphoma is necessary for the assessment of patient prognosis and 
decisions on appropriate treatment plans. Histological classification of lymphomas according to the WHO clas-
sification  system3 is based on different features, including the size of the nuclei of the neoplastic lymphocytes. 
Nuclear size is categorized by estimating the ratio of neoplastic nuclei to the size of a red blood cell. Pathologists 
assign three categories: small (< 1.5 × diameter of red blood cells), intermediate (1.5–2 × diameter of red blood 
cells), or large (> 2 × diameter of red blood cells) nuclear  size4. The inter- and intra-rater reproducibility of this 
task is not yet well studied, however, there are several aspects that may cause rater inconsistency. Besides gen-
eral visual and cognitive traps for  pathologists5, the nuclear size and shape vary between individual neoplastic 
lymphocytes in the same tumor, and image sections may lack an appropriate size reference (i.e., red blood cells) 
without changes in size and shape, as exemplified in Fig. 1. A further limitation of red blood cells as the size 
reference is that their size varies between  species6.

With the routine availability of digital images (whole slide images, WSI) in the pathology workflow, accurate 
nuclear measurements in µm using computerized tools are theoretically possible. However, measurements of 
neoplastic nuclei are currently not carried out, probably due to the tedious and time-consuming nature of this 
task. While measurements can potentially improve reproducibility, a challenge is the lack of standardized size 
references in µm. Addressing the described problems, we implemented a solution for automated nuclei segmen-
tation and subsequent image classification based on nuclear size measurements of canine and feline lymphoma 
using segmentation masks provided by a segmentation neural network. Although black-box models are used as 
a basis for our automated classification of histological images, our workflow provides reproducible and under-
standable results due to the insights provided into the preliminary outcomes produced during the application of 
the individual workflow modules. These insights provide the ability to comprehend and verify the results, which 
would not be possible by using classification neural networks directly trained on whole slide images.

State of the art
In the field of digital pathology, deep learning has demonstrated its potential for detecting and classifying vari-
ous types of  tumors7,8. Collaborations between pathologists and data scientists have led to several publications 
highlighting the benefits of AI-supported diagnostic  workflows1,9,10, as well as guidelines for including AI in 
digital  pathology11. While these workflows can potentially save time and reduce errors, the interpretability of the 
diagnostic process must be improved to increase trust in these algorithms for daily use in diagnostic  workflows12. 
This is majorly restricted by the use of black-box  models9. Neural network architectures, specifically those based 
on convolutional neural networks, are commonly used in AI-supported histopathological diagnostics. These 
networks are able to quickly process large images while maintaining a high level of classification  accuracy13,14. 
This is also the case for subtype classification of canine  tumors15, which supports our strategy of relying on these 
models. The specific task of detecting and segmenting nuclei within histopathological images using artificial 
neural networks has been proven to be effective, as demonstrated in various  studies16–18. Therefore, we did not 
focus our work on further comparison of different types of segmentation models based on their segmentation 
capabilities or further development to improve these types of models. We relied on popular neural networks 
for image segmentation tasks, such as the  Unet19 and  Stardist20. Our selected neural networks should only be 

Figure 1.  Histological slide of a canine lymphoma at high magnification with variably sized nuclei of the 
neoplastic lymphocytes (mostly large sized nuclei). The lack of red blood cells (size reference for lymphocyte 
classification) complicates size estimates. Hematoxylin and eosin stain, 40 × objective.
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considered as possible candidates for users of our modulary workflow, which could be replaced by any capable 
segmentation neural network. Built up by an encoder/decoder structure, Unet is a common choice for image 
segmentation and various adapted versions like the Unet++

21, which was used for our workflow, are available. 
Unlike Unet, Stardist is considered an instance segmentation approach that can detect overlapping objects 
within an image. Both models offer precise information on the location of nuclei in the image, which serves as 
the foundation for our interpretable nuclei classification method.

Material and Methods
Image acquisition and annotation
For this study, 116 histologically confirmed canine lymphoma cases and 38 feline cases were selected from the 
diagnostic archive of the Institute of Pathology of the University of Veterinary Medicine Vienna. During the 
selection process of these cases, care was taken to include a roughly equal number of small, intermediate, and 
large cell lymphoma. Formalin-fixed and paraffin-embedded specimens were retrieved, and 2–3 µm sections were 
produced and stained with hematoxylin and eosin (HE). Out of these histological slides, 12 slides were digitized 
with the Aperio slide scanner (Aperio Scanscope CS2, Leica, Nussloch, Germany), and all the other slides with the 
3DHISTECH slide scanner (3DHISTECH Pannoramic Scan II, Budapest, Hungary) at a magnification of 400 × 
with an image resolution of 0.25 µm/pixel. Within the whole slide images, a pathologist selected a representative 
area, and tiff files with the size of 1024 × 1024 pixels were created.

The individual parts of our workflow are built up by the concept of providing as much insight into the decision 
process for the user as possible besides the black box model used for the segmentation. Based on the separation of 
classification and segmentation, we used separate datasets for the individual parts of the workflow. This decision 
should prevent data bias during the individual steps. This separation of data can be seen in Fig. 2. The datasets 
were selected based on the specific objectives of each module, providing diverse information. Lymphoma images 
with ground truth annotations of all neoplastic nuclei were used for establishing and testing the Unet segmenta-
tion neural network model. For the subsequent image processing, we used further datasets: 1) measurements of 
small non-neoplastic canine and feline lymphocytes as a new reference size, 2) images from canine lymphoma 
classified by their overall nuclear size (consensus by three pathologists), which were used for parameter optimi-
zation. Performance evaluation of the entire workflow was done using images and global nuclear size labels of 
canine lymphoma and, for testing species transferability, of feline lymphoma.

Ground truth dataset
For the training of the Unet++ segmentation model, we used 27 images of histological samples of canine lym-
phoma. It was important to provide a complete label mask where all lymphoma nuclei are labeled for these 
samples. The ground truth labeling of all lymphocytic nuclei within these images was carried out by two patholo-
gists using the open-source annotation software  SlideRunner22. Using the polygon tool of the SlideRunner, the 
nucleus of each lymphocyte was surrounded by a thin line. In addition, the estimated size class of the nucleus 
(small, intermediate, large) was registered in a database. This process resulted in a total of 24.556 labeled nuclei.

The 27 samples were split into 18 training samples, four validation samples, and five test samples. During this 
data split, we ensured that both types of scanners were included in both the training and testing data.

To avoid overfitting during the training of our model and to reduce the impact of domain shift caused by 
different imaging setups, we used data augmentation  techniques23 that involved adjusting color and contrast 
and applying various distortion methods, such as elastic, optical, and grid distortion, along with shifting, blur-
ring, Gaussian noise, scaling, and rotation. Combined with cropping smaller parts of each image with a size of 
512 × 512 (input size of our segmentation model), we were able to extend our dataset by a factor of ten using 
these techniques.

The used Stardist model (“2D_versatile_he”), was not trained using our data but instead was already pre-
trained by the authors of the Stardist framework who trained it using the dataset of the “A Multi-Organ Nucleus 
Segmentation Challenge”24 as well as the dataset of a publication for nuclei segmentation in histopathological 
 images25. In contrast to the commonly used fine-tuning of such pre-trained models, we used this model without 
any changes to test how well our workflow generalizes with different models regardless of the training dataset 
used.

The size estimation provided for each nucleus in the training data results in classes that overlap significantly 
with respect to their measured size, as shown in Fig. 3, which inhibits multiclass segmentation methods as a 
solution for our workflow.

Reference data with small non‑neoplastic lymphocytes
For the selection of a valid reference size representing the fixed parameter to be used for the size comparison 
within our workflow, we used small non-neoplastic lymphocytes of canine and feline lymph nodes, respectively. 
The nuclei of 100 small non-neoplastic lymphocytes for each species were annotated as described above. The 
measured mean of these nuclei individually measured for each species is considered to be a representative aver-
age size of small non-neoplastic lymphocytes as well as the lower limit of the possible size for a small lymphoma 
nucleus. We considered small non-neoplastic lymphocytes (5–10 µm) a more appropriate reference size than 
the almost equally sized red blood cells ( ∼ 6–7 µm)6, as they are more commonly present in most tumor regions 
of lymphoma (non-neoplastic lymphocytic component) and were suspected of having a more consistent size 
and shape.
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Dataset for parameter optimization and workflow testing
We used 89 images of canine lymphoma and 38 of feline lymphoma, all taken from different whole slide images 
that were not used in the previous datasets. The canine dataset was split for parameter optimization (N = 64) and 
workflow testing (N = 25), while feline cases were exclusively used for workflow testing. For each image, three 
pathologists estimated the nuclear size category, and a label for the entire image based on the consensus of all 
three pathologists was created. Furthermore, the three pathologists each annotated 20 neoplastic nuclei (result-
ing in 60 annotations per image) for the optimization split and 10 neoplastic nuclei (resulting in 30 annotations 
per image) for all test images, of which the measurement was used as an alternative ground truth definition for 
image classification.

Figure 2.  Flowchart of the experiment workflow representing the data processing for the individual workflow 
steps. A set of images fully labeled for neoplastic nuclei were separated into a fixed set of training, test, and 
validation set. Measurements of small non-neoplastic lymphocytes were used as size reference and one set of 
images from dogs was used for the parameter optimization. The testing of the overall lymphoma classification 
performance was done on independent canine and feline lymphoma images.
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Deep learning assisted image analysis workflow
Using an  Unet19 architecture for the segmentation of the nuclei based on the initial RGB image, all individ-
ual nuclei are detected in the following using connected components labelling (provided by the OpenCV 
 framework26). This step can be combined by using an instance segmentation algorithm like  Stardist20, which 
we also included in our workflow test. Both workflow options are followed by filtering all invalid objects based 
on their shape. After the classification of each individual remaining object, our workflow provides a final clas-
sification for the entire image as well as the information on which objects are excluded due to the filter or the 
classification step, as well as the statistical distribution of the three classes. This approach delivers reproducible 
and understandable information in addition to the actual classification. Additionally, it is possible to adjust our 
workflow for other types of segmentation models and also other types of features to be extracted out of the nuclei 
by adjusting the individual modules.

In the following sections, we describe the individual components of our workflow as shown in Fig. 4.

Segmentation and detection of individual lymphoma nuclei
For our workflow, we used two different types of segmentation neural networks in order to highlight the modu-
larity of our workflow.

Figure 3.  Histogram of the measured areas using the manual nuclei segmentation comparing the three label 
classes for the nuclear size categories estimated by the annotators (small, intermediate, large) within the training 
dataset (27 images). To avoid the influence of labeling errors, we have excluded objects that are less than 1µm2 
in size for this histogram.

Figure 4.  Flowchart representation of the proposed multi-step classification workflow where the initial RGB 
image is processed using a segmentation neural network. The resulting binary mask is used to identify and 
measure the individual nuclei for feature extraction. Some neural networks, like Stardist, could also provide 
this identification step out of the box, if it is capable of instance segmentation. After excluding all invalid 
objects using a filter mechanism, all remaining nuclei are classified based on the previous measurements within 
the feature extraction step. Using a majority vote, the most common class of nuclei also represents the final 
classification of the whole image.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19436  | https://doi.org/10.1038/s41598-023-46607-w

www.nature.com/scientificreports/

Our first model is based on an  Unet19 architecture and was specifically trained on our lymphoma samples 
sourced from dogs. Combined with advanced image processing used for the actual instance detection, this 
semantic segmentation model provided the best results on our dog data, despite its lack of detecting individual 
objects, as we described in the results section.

We are using an advanced version of the original  Unet19 called Unet++
21 provided by the segmentation mod-

els package for  Pytorch27 with a regnety_120  backbone28. We trained this model using the Pytorch  lightning29 
framework. The training of our model was executed for 1500 epochs, and the best model of these epochs based on 
the validation results was selected as the final model. The modeling quality is measured using the Dice Similarity 
Coefficient (Dice score), where the resulting binary segmentation mask is compared with the actual label mask.

The second model represents a state-of-the-art instance segmentation model named  Stardist20. Stardist is a 
deep learning framework based on  Tensorflow30 for precise object detection and segmentation in 2D and 3D 
images, which already provides a pre-trained model (“2D_versatile_he”) for nuclei segmentation in histological 
images. This model was selected due to its generalized nuclei detection capability as well as its ability to provide 
the demanded instance segmentation for the following classification. It should also be able to provide this infor-
mation on data sourced from different types of animals, which we test in the results section.

As shown in the segmentation result depicted in Fig. 8, the Unet++ processed the initial RGB image and 
generated a binary representation of the nuclei within the image. In this binary representation, all nuclei are 
highlighted with a pixel value of one, appearing as white objects, while the background is represented by zeros, 
appearing as a dark background. By applying the connected components labeling provided by the OpenCV 
 framework26 on these binary images, the algorithm is able to accurately identify each individual area that was 
not marked with a zero pixel value. This enables the separation of each object within the binary images and the 
assignment of a unique identification number to each individual object. By combining the Unet++ architecture 
with the connected components labeling, our segmentation method provides similar information as instance 
segmentation algorithms like the presented Stardist without the ability to detect overlapping objects.

It is important to note that our workflow is designed to be flexible and interchangeable. This means that 
instead of using Unet++ and Stardist, you could also use other models if preferred. Since our primary focus was 
on classification based on the resulting segmentation masks, we did not create new neural network architectures 
for tumor nucleus segmentation, instead we relied on the sophisticated neural networks.

Based on the identification result provided by Stardist or the connected components labeling, the filtering 
algorithm as well as the actual classification could be applied as described in the following chapter.

Feature extraction and filtering of the detected nuclei
Following the segmentation and connected components algorithm, each identified nucleus, as shown in Fig. 5 is 
classified individually. While we use lower and upper limits to define the possible size of each segmented nucleus, 
it is still possible for closely located nuclei to be incorrectly segmented together and considered as one object. This 
problem is not that common using instance segmentation models like Stardist, which should result in a lower 
drop rate of invalid objects. To address this issue, we developed a workflow to filter out non-elliptical objects 
based on the hypothesis that correctly segmented lymphoma nuclei should provide a more elliptical shape than 
connected nuclei. Our filter mechanism involves computing the mean of two measures to calculate this so-called 
“circularity”, both of which are implemented using methods provided by the scikit-image  framework31. The first 

Figure 5.  Example image of the segmented nuclei mask, where each nucleus is identified using a unique 
number represented by the object’s intensity value.
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measure is the ratio of the segmented area pixels to the resulting convex hull of the same area. A perfect circle 
should provide a ratio of one. The second measure is the ratio of the detected area to the area of a circle that uses 
the maximum distance of the border pixels of the detected area as the diameter. As with the first measure, a per-
fect circle should provide a ratio of one. To be included in the classification process, the mean of these measures 
must remain above 0.5 (empirically determined) for each individual nucleus. This approach ensures that only 
nuclei with a more elliptical shape are included in our analysis.

As shown in the filter example in Fig. 6, all the connected objects in the raw segmentation result are no longer 
visible in the filtered representation on the right due to their low circularity value.

As the reference nuclear size we calculated the mean diameter of small canine non-neoplastic lymphocytes. 
The overall mean diameter was 4.14 µm. This reference size provided a useful measure for classifying lymphoma 
nuclei in our workflow.

Based on the measured reference, finding thresholds for the actual classification is still not trivial due to 
significant overlap of possible diameters as indicated by the box plots in Fig. 10 of the results section. Consider-
ing the box plot for the small class, it could also be seen that our assumption for using our reference size as the 
smallest possible diameter of a lymphoma nuclei could be considered valid, as this category does not significantly 
reach below the reference size.

Based on these findings, we used a brute force parameter testing method to test all possible combinations 
within a specified range of sensible values. These ranges are listed in Table 1. Ignoring possible duplicates, this 
method tested 178.364 combinations. Based on the known sizes of the labeled nuclei, each set was evaluated by 
its ability to separate the nuclei in the three classes (small, intermediate, large) so that the majority of measured 
nuclei represent the label for the whole image based on the expert’s consensus. Based on the comparison of the 
classification results done by the experts and the classification result using the individual parameter settings, we 
ranked the individual sets using scikit-learns’32 built-in F1 score method for multiple classes.

The best setting out of all tested parameter combinations was used for the classification part of our workflow.

Workflow‑generated output
After the application of all the presented algorithms, our workflow not only provides a classification for the 
image based on the most common nuclei class but also provides an insight into the individual steps, as shown in 
Fig. 7. Despite the actual class distribution, which is used for the classification, our workflow provides overlays 
for the classification of each individual nuclei as well as the information on which objects were not included in 
the analysis due to their shape or size. Our workflow also provides the mentioned drop out rate of these invalid 
objects shown in the right image of Fig. 7.

Figure 6.  Filter mechanism comparison using the unfiltered segmentation image on the left shows some 
connected objects with a lower circularity score than the other non-connected objects. As shown in the filtered 
image on the right, these connected objects are no longer visible.

Table 1.  The table presents the various parameter settings that were tested for the classification thresholds 
used in the study. The lower bound refers to the smallest value that was tested and was iteratively increased 
by the step size until the upper bound was reached. This testing process involved all possible combinations of 
parameter values within the specified lower and upper bound ranges, excluding any duplicates.

Parameter Lower bound Upper bound Stepsize

Small lower limit 1.00 1.29 0.01

Small upper limit 1.18 1.24 0.01

Intermediate upper limit 1.35 1.51 0.01

Large upper limit 2.00 2.59 0.01
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Results
In order to understand the abilities of our workflow’s segmentation and classification modules, we conducted 
separate testing and validation before combining them for overall test results. In the following subsection, we 
provide a detailed explanation of the individual test results.

Segmentation and detection of lymphoma nuclei
As depicted in Fig. 8, the segmentation outcome using the Unet++ represents a comparable binary mask for 
the used test image, in comparison to the ground truth mask, with a resulting overall Dice score for the nuclei 
segmentation quality of 0.8379 for all five test images. Based on the comparison with the individually labeled 
object within the ground truth image and the use of connected components labeling on the segmentation result, 
this combination achieved an object detection performance of F1 score = 0.8146. Despite the need for connected 
components labeling for the identification of the individual objects, the resulting detection score is even higher 
than the performance of the pre-trained and unmodified Stardist model on the exact same images (F1 = 0.7987), 
considering the quality measures in Table 2. The major downside of the used Stardist model is the comparably 
low binary segmentation accuracy with a Dice score of 0.7063 on the used test dataset. As shown in Fig. 9, this 
low score could be explained by the incomplete detection of nuclei visible in the mask but not segmented by 
the Stardist model. After analyzing the ground truth mask and the detection result, it became evident that some 
nuclei were not detected. However, the ones that were accurately detected were nearly identical to their cor-
responding counterparts in the ground truth.

Although the binary segmentation of the pre-trained and unmodified Stardist model yielded a low Dice 
score, this model significantly reduced the necessity for filtering invalid objects, with only 5.76% of objects 
being excluded from the final classification, as opposed to the 23.11% exclusion rate when using the Unet++. 

Figure 7.  Example output combining all the mentioned methods of our workflow, represented by the class 
distribution on the left and the overlay of the classification of each nuclei (small: red, intermediate: yellow, large: 
white) on the original RGB image in the middle as well as a visual representation of the remaining nuclei (white) 
compared to the filtered objects (red) in the right image.

Figure 8.  Visual representation of the segmentation result (right) provided by the Unet++ model using the 
raw RGB image (left) as input in comparison to the manually labeled ground truth mask (middle). On this test 
image, our model achieved an Dice score of 0.94.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19436  | https://doi.org/10.1038/s41598-023-46607-w

www.nature.com/scientificreports/

This behavior can be explained by the high specificity of the binary segmentation mask produced by the Stardist 
model. These results reinforced our decision to employ these models for testing the image classification workflow, 
as they provide complementary properties: one being highly effective in detecting nearly all objects but with an 
increased need for filtering invalid objects, and the other having a higher rate of missed objects (low sensitivity) 
yet requiring less filtering.

Classification parameter optimization
To set a standard for our classification parameter tests, we used the measured value ranges of our optimization 
dataset, which are also visualized in the Boxplot of Fig. 10. Therefore, we used the lower limit of the small class 
and the upper range of the large nuclei as upper and lower thresholds. For the two thresholds in between, we 
used the mean of the upper quantile of the lower-sized class and the lower whisker of the upper-sized class. The 
resulting thresholds are listed in Table 3.

Using the thresholds of Table 3, our workflow achieved a majority classification F1 Score of 0.5860.
Our optimized set of classification thresholds achieved a F1 Score of 0.8103 representing the best setting out 

of all tested parameter combinations listed in Table 4, which highlights the significant increase in classification 
quality compared to the F1 Score of only 0.5860 using the non-optimized parameters of Table 3.

Classification of whole images based on measured lymphoma nuclei
Next, we tested the overall classification accuracy of our whole workflow. The used test images were classified 
by three pathologists, representing the ground truth by majority vote (small, intermediate, large), subsequently 
referred to as majority classification.

As represented by the confusion matrix in Table 5, the classification results on the test dataset indicate a strong 
performance in distinguishing between the three classes: small, intermediate, and large, with 92% correctly clas-
sified images compared to the pathologists’ majority classification. While the use of Unet++ leads to the accurate 
classification of most images, it provides minor misclassifications for the intermediate category.

For comparing our workflow with results from pathologists, it is important to mention that our ground truth 
labels are not based on the ten nuclei selected by each pathologist but rather on the experience of the pathologists 
and defined rules for diagnosing the individual tumor samples. When comparing the accuracy of our workflow 
to the classification based on manually labeled nuclei by our experts (Table 6), we found that our workflow 
achieved a overall higher level of accuracy.

As compared to the Unet++ results, the Stardist model leads to a similar classification performance with an 
accuracy of 88% (Table 7), despite being a pre-trained model without specific training on canine lymphoma. 

Figure 9.  Visual representation of the segmentation result (right) provided by the Stardist model using the 
raw RGB image (left) as input in comparison to the manually labeled ground truth mask (middle). On this test 
image, our model achieved an Dice score of 0.74.

Table 2.  Comparative analysis of the performance metrics between Unet++ and Stardist for cell nuclei 
detection and segmentation.

Model

Object detection Segmentation

Precision Recall F1 Dice Sensitivity Specificity

Unet++ 0.9044 0.7411 0.8146 0.8379 0.8876 0.8764

Stardist 0.9360 0.6974 0.7993 0.7063 0.6289 0.9342
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Figure 10.  Boxplot representation of the three nuclear categories (small-sized, intermediate-sized, and large-
sized) as classified independently by three pathologists. For each sample image, the three pathologists selected 
and measured 20 nuclei relevant to their classification decision. The boxplots indicate the diameter of these 
nuclei (totaling 60 per image) relative to our new reference.

Table 3.  Table of threshold based on the resulting values of the box plot shown in Fig. 10.

Class Range of diameter values

Small 0.994969–1.258042 × reference

Intermediate 1.258042–1.420893 × reference

Large 1.420893–2.601033 × reference

Table 4.  Table of classification thresholds based on the diameter of the individual nuclei compared to our 
measured reference diameter of small non-neoplastic lymphocytes. Each of the three classes is represented by 
an upper and lower limit represented by a multiple of our reference diameter.

Class Range of diameter values

Small 1–1.21 × reference

Intermediate 1.21–1.5 × reference

Large 1.5–2.24 × reference
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Differentiating between the three classes only shows some misclassifications for the intermediate category, similar 
to the Unet++-based algorithm.

Transferability of image classification to feline lymphoma
Even though our classification thresholds were only optimized for canine lymphoma, we assumed that these 
parameters should also be applicable to feline lymphoma due to the similar size of their small non-neoplastic 
lymphocytes of around 4.17 µm (cat) compared to the 4.14 µm (dog). The application on feline data provides 
insight into the generalization ability of our workflow.

The approaches based on the Unet++ (Table 8) and on the Stardist (Table 9) models both resulted in high 
classification performance with a generally effective performance in differentiating between all three classes 
even though there are some misclassifications by differentiating the intermediate and large nuclei from each 
other. These results also show that the workflow based on the Stardist segmentation is able to provide a better 
classification accuracy compared to the one using the Unet. These results also reinforces our decision to use an 
already well-performing pre-trained and unmodified model and demonstrates that our workflow can be adapted 
for other nuclei segmentation neural networks.

Table 5.  Confusion matrix of the canine test dataset depicting the classification performance of the algorithm 
based on the segmentation of the Unet++ model. The labels on the left indicate the class labels by pathologists’ 
majority classification, whereas the labels on the top represent the predicted labels by our workflow. The overall 
test accuracy was 92%.

Small Intermediate Large

Small 5 0 0

Intermediate 1 7 1

Large 0 0 11

Table 6.  Confusion matrix of the canine test dataset, which shows the classification performance of three 
pathologists based on ten nuclei selected by each pathologist, which should represent the overall nuclear 
size predicted by the individual pathologist. The labels on the left indicate the class labels as defined by the 
consensus of our experts based on diagnostic experience. The mean accuracy of our pathologist was 74.22%.

Small Intermediate Large Small Intermediate Large Small Intermediate Large

Small 4 0 0 5 0 0 4 1 0

Intermediate 2 5 2 2 6 1 1 3 5

Large 0 4 7 0 1 10 0 0 11

Expert 1: 66.67% Expert 2: 84% Expert 3: 72%

Table 7.  Confusion matrix of the canine test dataset depicting the classification performance of the algorithm 
based on the segmentation of the pre-trained and unmodified Stardist model. The labels on the left indicate the 
class labels by pathologists’ majority classification, whereas the labels on the top represent the predicted labels 
by the model. The overall test accuracy was at 88%.

Small Intermediate Large

Small 5 0 0

Intermediate 1 7 1

Large 0 1 10

Table 8.  Confusion matrix for the classification performance using the Unet++ model (trained only with 
canine images) on the feline lymphoma images. The labels on the left indicate the class labels by pathologists’ 
majority classification, whereas the labels on the top represent the estimated labels by our workflow. The 
workflows’ accuracy on this dataset was 81.57%.

Small Intermediate Large

Small 6 1 0

Intermediate 1 16 6

Large 0 0 9
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As with the canine test data, we also analyzed the classification accuracy using the experts’ estimates for the 
feline test images. As indicated by the results in Table 10, pathologists had a significantly lower classification 
accuracy of 70.07% compared to our workflows’ accuracy of 81.57 and 84.21%.

The comparison of the achieved classification accuracies in Fig. 11 shows nearly indistinguishable results 
using the Unet++ and the pre-trained and unmodified Stardist model. The results on both datasets show that 
our manually labeled nuclei dataset led to a worse classification than the deep learning-supported methods.

Table 9.  Confusion matrix for the classification performance using the pre-trained and unmodified Stardist 
model on the feline lymphoma images. The labels on the left indicate the class labels by pathologists’ majority 
classification, whereas the labels on the top represent the estimated labels by our workflow. The achieved 
accuracy on this dataset was 84.21%.

Small Intermediate Large

Small 6 1 0

Intermediate 0 18 4

Large 0 1 8

Table 10.  Confusion matrix that shows the individual classification performance based on the manually 
labeled nuclei of the three pathologists. The labels on the left indicate the class labels using the consensus of 
our experts, and the labels on the top of each block represent the prediction based on the pathologist’s nuclei 
measurements. The mean accuracy was 70.07%.

Small Intermediate Large Small Intermediate Large Small Intermediate Large

Small 7 0 0 6 1 0 5 2 0

Intermediate 0 16 5 0 14 8 0 4 18

Large 0 0 9 0 0 9 0 0 9

Expert 1: 86.49% Expert 2: 76.32% Expert 3: 47.39%

Figure 11.  Bar chart comparison of the achieved lymphoma subtype classification accuracy using the 
mentioned methods for providing the segmented nuclei within the histological images.
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Discussion
Our study results demonstrate the potential of our automated workflow in distinguishing between three nuclei 
categories (small, intermediate, and large) of lymphomas in dogs and cats. Moreover, the workflow offers valu-
able insights into the classification process and provides information about the nuclear size distribution. As our 
results on the routine evaluation by pathologists indicate, obtaining reproducible classification for identical slides 
through individual estimations is difficult. Our workflow fulfills this need for increased reproducibility through 
automated measurement and classification of the individual nuclei. During the classification tests, our system 
processed 25 images with dimensions of 1024 × 1024 pixels per minute, utilizing a Nvidia Titan RTX graphics 
card, which would allow a routine integration into a diagnostic workflow. However, these images represent a 
small proportion of the entire whole slide image and, thus, our current workflow still relies on manual selection 
of regions of interest by pathologists. While this hinders the fully automated processing of lymphoma cases, 
it also ensures that an appropriate tumor region is selected and markedly decreases computational costs. For 
classification of the mean nuclear size, analysis of entire whole slide images would probably not be beneficial, 
providing that the nuclear size is similar in all tumor regions. Future research may focus on automated selection 
of an appropriate tumor region.

Using the publicly available pre-trained and unmodified Stardist model, we have successfully demonstrated 
that our workflow provides the flexibility for the adaptation to other types of segmentation models, providing 
a segmentation mask for the nuclei. The used Stardist model was not fine-tuned on our lymphoma data, which 
should highlight the capability of our classification and filtering workflow, still providing a high level of accuracy 
based on the segmentation of this neural network. Despite the initial lack of interpretability due to the use of a 
Unet++ or the pre-trained Stardist model (both considered as black-box models), our workflow was still able 
to provide detailed insight into the classification of the slide images based on the provided segmentation mask, 
including the distribution of the detected nuclei classes, the amount and reason of excluded objects, as well as 
the class and area for each detected object. Providing insight into the classification process, independent of the 
neural network used to supply the segmentation mask, represents a major benefit of our classification workflow. 
These results highlight the potential for broader applications in tumor diagnostics and the possibility of further 
refining the workflow to process other types of human and animal tumors based on the presented concept of 
separating the image segmentation and feature-based classification. Our workflow allows a fast and reproducible 
cell nuclei classification and analysis of the predominance class. It, therefore, represents a useful tool to support 
clinical decisions but, at this point, should not be considered a stand-alone diagnostic tool.

A limitation of our study is the amount of available data due to the need for expert labels and individually 
marked nuclei within the images. This limitation led us to the decision to include our data sourced from cats 
only within the test dataset, which has provided insight into the generalization performance of our workflow. The 
results have demonstrated that the workflow provides a suitable classification even if data from this species was 
not included in the modeling and parameter optimization. However, it cannot be confirmed that this applies to 
other species without repeating the modeling and optimizing parameters for the classification module.

Our goal was to provide a workflow for analyzing and classifying histological images of canine lymphoma 
based on the segmentation of the neoplastic nuclei. While, we consider the novelty of our work to be the post-
processing of the provided segmentation mask for obtaining best classification results, a well-performing seg-
mentation model is the foundation for this work. Therefore, it was outside the scope of this work to compare 
the segmentation quality of several neural network architectures. Nevertheless, we evaluated two state-of-the 
art neural networks in our study based on previously published architectures. The fist model, a Unet++, was 
specifically trained on our data and served as the baseline. The second model, a publically available pre-trained 
Stardist model, was not optimized for our data and was used to demonstrate two things: 1) instance segmenta-
tion networks can be used instead of a semantic segmentation network, and 2) networks like Stardist can still 
be used, even if the nuclear segmentation is not specific for the cell type of interest, when combined with our 
proposed filter mechanism and classification module.

This selection of segmentation models should emphasize that our workflow is intended to work with different 
kinds of segmentation neural networks due to the separation of segmentation and classification. It would also be 
possible to use a classification neural network using the overall images class as input and the final classification 
label as output. This end-to-end classification of the images would, however, not fulfill our goals, which were to 
provide as much insight into the classification process as possible and thereby gain the users’ trust. This require-
ment was fulfilled by combining a segmentation neural networks with image processing. Even if our segmentation 
neural networks are considered black-box models, their provided segmentation masks are more understandable 
by the users than the confidence values of classification neural networks.

Data availability
All of our datasets are publically available through the following link: https:// git. fh- ooe. at/ fe- extern/ Lymph 
oma- Datas et. git.
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