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Fusarium head blight (FHB) is one of the most prevalent wheat diseases, causing substantial yield losses 
and health risks. Efficient phenotyping of FHB is crucial for accelerating resistance breeding, but currently 
used methods are time-consuming and expensive. The present article suggests a noninvasive classification 
model for FHB severity estimation using red–green–blue (RGB) images, without requiring extensive 
preprocessing. The model accepts images taken from consumer-grade, low-cost RGB cameras and 
classifies the FHB severity into 6 ordinal levels. In addition, we introduce a novel dataset consisting of 
around 3,000 images from 3 different years (2020, 2021, and 2022) and 2 FHB severity assessments per 
image from independent raters. We used a pretrained EfficientNet (size b0), redesigned as a regression 
model. The results demonstrate that the interrater reliability (Cohen’s kappa, κ) is substantially lower 
than the achieved individual network-to-rater results, e.g., 0.68 and 0.76 for the data captured in 2020, 
respectively. The model shows a generalization effect when trained with data from multiple years and 
tested on data from an independent year. Thus, using the images from 2020 and 2021 for training and 
2022 for testing, we improved the Fw

1
 score by 0.14, the accuracy by 0.11, κ by 0.12, and reduced the 

root mean squared error by 0.5 compared to the best network trained only on a single year’s data. The 
proposed lightweight model and methods could be deployed on mobile devices to automatically and 
objectively assess FHB severity with images from low-cost RGB cameras. The source code and the dataset 
are available at https://github.com/cvims/FHB_classification.

Introduction

Worldwide, Fusarium head blight (FHB), also called wheat scab 
or ear blight, is the most prevalent floral disease in wheat 
(Triticum aestivum) [1–3]. Besides causing substantial yield 
losses and decreasing baking quality, FHB is a major source of 
mycotoxins in grains. In particular, the dominant mycotoxin 
deoxynivalenol constitutes important health risks [1,2]. FHB 
is caused by various Ascomycete Fusarium species such as 
Fusarium culmorum and Fusarium graminearum. The main 
FHB symptom is the whitening of spikelets up to the entire ear. 
Depending on the weather conditions, the complete coloniza-
tion of the ear can take approximately 10 to 14 days [1].

FHB was predicted to profit from ongoing climatic change due 
to shifted wheat flowering, drought stress of the host plant, and 
temperature increase [4]. Therefore, resistance breeding needs to 
be further intensified. Commonly, this process involves testing of 
thousands of breeding lines under field conditions and often 
includes artificial inoculation [1,4]. Therefore, there is an urgent 
need for efficient phenotyping of FHB under field conditions.

Biochemical methods are available for detecting mycotoxins 
produced from FHB but remain time-consuming and expensive 

[2]. Hitherto, field-based scoring of FHB severity relies on 
visual assessment of the disease incidence and severity on the 
wheat’s ear [5], being time-consuming, expensive, and subjec-
tive, depending on the breeders‘ perception and experience [6]. 
Consequently, FHB scoring is limited to a few points in time, 
thus limiting the monitoring of the infestation over time and 
the comparison of phenologically shifted genotypes. Therefore, 
sensor-based high-throughput phenotyping of FHB could facil-
itate the scoring process.

Previous approaches estimated FHB severity ex situ using 
hyperspectral data [7–10]. While hyperspectral imaging achieved 
good detection of FHB also in the field [11–13], this approach 
cannot be readily utilized for high-throughput field-based phe-
notyping due to the long measurement time and high sensor 
costs [14]. Unlike hyperspectral cameras, red–green–blue (RGB) 
imaging is characterized by low sensor costs, simple sensor han-
dling, and fast scanning but is limited to the visible spectrum.

In recent years, deep learning methods have brought sub-
stantial progress to image-based plant disease detection [15]. 
Using images of dissected ears, Gao et al. [16] applied transfer 
learning based on networks pretrained on the ImageNet dataset 
[17] for the prediction of visual FHB scores, recommending 

Citation: Rößle D, Prey L, 
Ramgraber L, Hanemann A, 
Cremers D, Noack PO, Schön T. 
Efficient Noninvasive FHB Estimation 
using RGB Images from a Novel 
Multiyear, Multirater Dataset. 
Plant Phenomics 2023;5:Article 
0068. https://doi.org/10.34133/
plantphenomics.0068

Submitted 25 January 2023  
Accepted 19 June 2023  
Published 14 July 2023

Copyright © 2023 Dominik Rößle 
et al.  Exclusive licensee Nanjing 
Agricultural University. No claim 
to original U.S. Government Works. 
Distributed under a Creative 
Commons Attribution License 4.0 
(CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org at H

ochschulbibliothek Ingolstadt on N
ovem

ber 03, 2023

https://doi.org/10.34133/plantphenomics.0068
mailto:dominik.roessle@thi.de
https://github.com/cvims/FHB_classification
https://doi.org/10.34133/plantphenomics.0068
https://doi.org/10.34133/plantphenomics.0068
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fplantphenomics.0068&domain=pdf&date_stamp=2023-07-14


Rößle et al. 2023 | https://doi.org/10.34133/plantphenomics.0068 2

the ResNet-50 [18] model rather than VGG16 [19] and MobileNetV1 
[20]. These authors partitioned the severity of FHB infestation 
into 5 classes. Zhang et al. [9] combined hyperspectral and RGB 
imaging data for FHB detection, also using dissected ears. In 
contrast, Gu et al. [21] used an ordinal scale with 5 classes for 
classifying FHB severity of individual dissected ears. These 
authors used the AlexNet [22], pretrained on ImageNet [17] 
for extracting deep features, which were combined with shallow 
color and texture features. Using a Relief-F algorithm followed 
by classification, they achieved improved accuracy for FHB 
classification. Zhang et al. [23] applied a fully connected net-
work for ear segmentation, followed by a pulse-coupled neural 
network with K-means clustering of an improved artificial bee 
colony for diseased ear area segmentation. Using in situ RGB 
imaging in the field, Qiu et al. [24] developed a segmentation 
method for discriminating diseased from healthy ear pixels 
based on a green/blue color channel feature. They used a Mask 
R-CNN [25] model, pretrained on the COCO dataset [26], for 
the segmentation task. However, the method was developed 
with only a few cultivars, and the images were taken under 
controlled illumination. Gao et al. [27] used a tandem dual 
BlendMask deep learning algorithm for simultaneously seg-
menting ears and diseased pixel area. The authors used a feature 
pyramid network based on the ResNet-50 model [18]. In addi-
tion, they defined the FHB severity as the “proportion of the 
diseased area to the total spike area” [27]. In a similar approach, 
Su et al. [28] applied a Mask R-CNN based on a feature pyramid 
network with ResNet-101 [18] for predicting diseased FHB 
area per ear after wheat mask generation. Recently, Hong et al. 
[29] developed a lightweight YOLOv4 [30] model, adapted 
by the MobileNet [20] for lightweight FHB detection from 
unmanned aerial vehicle (UAV)-based images. The suggested 
model was based on the labeling of diseased areas using bound-
ing boxes. Xiao et al. [31] used UAV-based hyperspectral data 
for extracting spectral and texture features, which were used 
for the identification and spatial mapping of lightly and heavily 
infested areas.

The development of sensor-based phenotyping methods 
relies on the quantity and quality of the reference data [6,32]. 
Commonly, available reference data are limited to the assess-
ment of one expert (rater). Intrarater reliability of experienced 
raters is generally high [33], so that models trained and tested 
with data scored by the same person often appear to provide 
sufficient accuracies. However, interrater reliability, describing 
the reproducibility as compared to the assessment by another 
expert, is often substantially lower [32]. Thus, the transfer of 
sensor-based models to data assessed by other raters was rarely 
addressed and remains uncertain. On the other hand, the trans-
fer of plant disease models between datasets generated in 
different years and growth stages was rarely addressed but is 
essential for practical applications, notably in the case of FHB, 
where the main symptom of whitened ears overlaps with senes-
cence effects. Thus, model generalizability needs to be evalu-
ated from the difference in model performance between the 
training data and the test data (unseen data) [34]. For wheat 
ear blast, which causes similar symptoms, Fernandez-Campos 
et al. [35] reported better classification accuracies for a test data-
set with only premature ears than for a dataset with premature 
and mature ears. However, the training data comprised data 
from both development stages. While models must provide 
sufficient accuracies within individual datasets, i.e., years, it 
remains unclear to what extent models trained and tested on 

data from different years, or on combined data from multiple 
years, perform on unseen data.

While RGB-based FHB detection was substantially improved 
in the past years [15], most previous approaches either gathered 
images of dissected ears under controlled conditions or used a 
method comprising the detection of ears and the percentage of 
diseased pixels [23,24,27,28]. However, this approach is sus-
ceptible to FHB gradients within the images and the differing 
pixel size of the ears. Furthermore, improving pixel-based 
approaches requires time-intense image labeling. Moreover, 
traditional visual scoring is often based on an ordinal scoring 
scale without explicit estimation of the percentage of diseased 
spikelets or pixels [16,21]. Therefore, this study aims to develop 
and test a classification algorithm for directly estimating FHB 
scoring values without prior segmentation of overall or dis-
eased ear pixels. In addition, we aim for a cost-effective method 
and deliberately use RGB images captured with consumer-grade 
cameras under field conditions with different lighting condi-
tions. We use a pretrained EfficientNet [36] architecture in its 
smallest variant (b0) to classify the FHB severity. Recently, the 
EfficientNet has proven to be useful for plant disease pheno-
typing for its superior combination of high accuracy and cal-
culation efficiency [37–39]. In our implementation, it takes 
RGB images as inputs and returns a numeric value that repre-
sents the severity of FHB. The network is faster and smaller 
than other networks used for FHB classification, such as ResNets 
or MobileNets [16], while also potentially deployable on mobile 
devices. We compare our model with the interrater reliability 
and evaluate the performance on individual years of our data-
sets and on unseen data, which is important for real-world 
applications.

Material and Methods

Data acquisition
Experimental design
The winter wheat Fusarium trials were conducted in 2020, 
2021, and 2022 in Southeast Germany. The sowing dates were 
25, 26, and 29 October 2019, 2020, and 2021, respectively. 
Preceding crops were rapeseed for the first and third and 
sugar beet for the second year. See [40] for details on soil and 
weather conditions. The wheat was sown in double-row plots 
of 1.5 m in length and with a row distance of 15 cm. The germ 
plasm consisted of preselected material, F5 generation and 
older, and double haploid lines without extreme genotypes in 
terms of morphology and phenology. The breeding program 
is targeted to the central European market, very early or very 
short phenotypes are therefore missing. In the larger part of 
the trials, every fifth plot was sown with 1 of 2 reference cul-
tivars. F. culmorum spores were inoculated on 2 dates each in 
both years as a solution of 600 liters·ha−1 with a concentration 
of 100,000 spores·liter−1. Inoculation dates were 4 and 8 June 2020, 
15 and 18 June 2021, and 30 May and 1 June 2022, correspond-
ing to early and late milk ripeness, respectively.

Annotation and image acquisition
The annotation scale for FHB is separated into 9 severity levels, 
ranging from severity level 1 to 9. The FHB severities follow an 
ascending logarithmic order [41]. The annotated scores pre-
dominantly refer to the percentage of the infested spike area as 
averaged over the spikes of each plot, as shown in Table 1. For 
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example, classes 1, 5, and 8 correspond to 0%, 8% to 14%, and 
37% to 61%, respectively. The averaged score is a combination 
of the number of infested spikes and their respective infestation 
severity. For example, 50% infested spikes of each 100% infested 
area would result in an overall infestation area of 50% and, 
therefore, class 8, while 10% infested spikes of each 10% infested 
area would result in an overall infestation area of 1% and, there-
fore, class 1 [41]. In addition, the intensity of the color change 
was considered if the area-based score was at the boundary of 
2 classes.

The severity of FHB infestation was directly scored by a 
breeder in the field, which is the established method for FHB 
assessment. However, since image capture dates differed from 
those of these field annotations, image-based annotation was 
conducted instead on the corresponding image data. For each 
image, 2 raters assigned one score representing the average 
infestation level. RGB images of the Fusarium plots were cap-
tured manually using consumer-grade cameras from the front 
of the plots, since the plots were accessible from unvegetated 
cross tracks only. The cameras were positioned at breast 
height, and the angle was adjusted to capture the entire plot. 
To account for changing illumination conditions, all camera 
settings were set to automatic adjustment. In most cases, a 
wide-angle zoom was chosen. We recorded the FHB infesta-
tion and images in 3 consecutive years, 2020, 2021, and 2022. 
Because of the size of the trials and lacking accessibility of 
about half of the plots, images were captured only in a subset of 
the overall plots. In 2021, some plots were characterized by insuf-
ficient germination. Therefore, images of plots with less than 
50% plant cover were discarded. In addition, different cameras 
were used for image recording. Table 2 summarizes the data 
collection with respect to measurement dates and camera 
equipment.

We designed the dataset such that each image depicts exactly 
one plot. The images were manually cropped using the image 
editing software IrfanView so that only the main plots were 
visible, with hardly any information about the neighboring 
plots. If needed, images were rotated before using rectangular 
cropping. Figure 1 shows examples of our dataset with an increas-
ing FHB severity from left to right.

Rating by 2 persons results in different distributions in the 
annotation assignment. Table 3 shows the number of images 
the raters assigned to the classes, with different class distribu-
tions by raters. We use the following notations that we will also 
use in the subsequent sections: Dataset  refers to the data 
collection of a specific year, 20 for 2020, 21 for 2021, and 22 
for 2022. The 2 recording dates of 20 were combined to get a 
larger dataset for 2020. Image rater n refers to the person who 
performed the annotation based on the captured images with 
n as a specifc rater. The total amount of images of 1 and 2 
differs from each other because the raters omitted images for 
which they were unsure about assigning an appropriate anno-
tation or because of insufficient image quality, e.g., strong image 
illumination.

Image data preprocessing
The different datasets were divided into training, validation, 
and test sets. We used 80% of the total dataset for the training 
process, of which we used 80% for training optimization and 
20% for validation. The remaining 20% of the total dataset was 
used for testing the resulting networks. We used the same data 
split percentages for all years and split them separately. In addi-
tion, we performed a stratified split of the labels to obtain the 
original label distribution of the entire dataset in each data split. 
Since we also used multiple cameras for the images, we also 
split across each camera in a stratified manner. For example, if 
multiple cameras for a year of data collection were used, we 
keep the distribution of annotated images per camera and merge 
these splits to create the data splits for that data year.

Training reasonable image classification networks requires 
sufficiently large datasets. We used data augmentation methods 
to meet this requirement and to contribute to a better general-
ization of the network. In particular, we used resizing, random 
rotation with a maximum rotation angle of 2.5°, random crop-
ping, random horizontal flipping, and image normalization. We 
iterated over all images in advance to calculate the average height 
and width for resizing and the normalization values (mean, SD) 
for the image color channels. Random cropping was used so 
that 90% of height and width must always be maintained. It 
was found that adjustments in color space decrease the learning 

Table 1. The FHB severity annotation scale. The scale is based 
on the official guidelines of the German Federal Office of Plant 
Varieties (Bundessortenamt [41], p. 2.7–3).

FHB class
Infested spike area 

(%)
Description

1 0 Missing

2 0–2 Very low to low

3 2–5 Low

4 5–8 Low to medium

5 8–14 Medium

6 14–22 Medium to strong

7 22–37 Strong

8 37–61 Strong to very strong

9 61–100 Very strong

Table 2. Dataset image, annotation, and camera type informa-
tion.

Years
Image capture 

date
Cameras

Original reso-
lution

2020 23.06 Panasonic 
DMC-TZ4

3,264 × 2,448
03.07

2021 06.07 Panasonic 
DMC-TZ4

3,264 × 2,448

NIKON 3700 2,048 × 1,536

2022 30.06 Panasonic 
DMC-TZ4

3,264 × 2,448

Panasonic 
DC-GH5

5,184 × 3,888
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potential of FHB severity with our dataset. This may be because 
both the color and brightness of the wheat ears are crucial for 
correct classification. Such augmentation in the color spectrum 
could lead to a modification of these indicators and, subse-
quently, a fluctuation in the actual FHB severity. Adjustments 
in the color spectrum may reduce or increase the separation of 
the color regions too much, resulting in ambiguous classifica-
tion. For validation and testing, only resizing and data normal-
ization were used. In addition, to obtain the input sizes for all 
data splits, the training augmentation methods of resizing and 
random cropping result in the same image height and width as 
the resizing for validation and test datasets. The augmentation 
pipeline for training, validating, and testing is illustrated in 

Fig. 2. To train the neural networks, we only used the annota-
tions of either the rater 1 orand 2. The reason is that the net-
work and the raters make their final decision based on the image. 
Thus, the classification is performed exclusively on the basis of 
the same underlying information.

While the requirement of the amount of data was met by data 
augmentation, further aspects had to be considered. In particu-
lar, only a few images and annotations are available for severities 
of very low and very high Fusarium infestation, as shown in 
Table 3. Even with data augmentation and the weighted random 
sampler, overfitting can occur for a few samples. Therefore, we 
combined the severities 1 and 2 as well as 7, 8, and 9, respectively. 
This results in 6 classes for the classification task of FHB, {≤2, 3, 

Fig. 1. Dataset examples with an increasing FHB severity from left to right.

Table 3. Number of rater annotations separated into the FHB severities.

Data Rater
FHB severity

∑
1 2 3 4 5 6 7 8 9

20

1 56 241 139 79 71 72 79 32 4 773
2 36 219 233 82 85 80 47 8 1 791

21

1 12 121 191 240 327 334 285 79 6 1595
2 1 47 283 481 309 198 85 4 0 1,408

22

1 7 60 65 68 46 69 125 74 24 538
2 9 56 62 55 82 97 134 86 18 595

, Image rater.
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4, 5, 6, ≥7}. Furthermore, we did not run a network training for 
the dataset 22, as the total amount of images would be too small 
for a meaningful prediction and evaluation.

The EfficientNet regression approach
To classify the images according to the severity of FHB, we used a 
state-of-the-art neural network for image classification. Specifically, 
we used the EfficientNet [36] (size b0) with pretrained weights on 
the ImageNet dataset [17]. However, deeper models did not show 
higher performance on our dataset and only resulted in a longer 
processing time (data not shown).

To enable the application on our dataset, we replaced the 
output layer of the pretrained network. A network output layer 
that uses the number of specified FHB severities as the number 
of output neurons was used. We freeze all pretrained weights 
during the first 2 epochs and only train the new classification 
output layer. After the first 2 epochs, we unfreeze all weights 
and train the network for a maximum of 50 epochs. The freez-
ing method was used to adapt the network to the new output 
layer and to avoid losing previously learned information due 
to high gradients at the beginning of the training. Early 

stopping was used with a loss delta of 1 × 10−2 and a patience 
of 10 epochs. We set the learning rate to 1 × 10−4 and the 
batch size to 4 and used Adam [42] for stochastic weight 
optimization.

Since the annotations are subject to an ordinal scale, both a 
classification and a regression task can be performed [43]. In 
the classification variant, the neural network has as many output 
neurons as classes and uses the index of the neuron with the 
highest output value as the prediction value. The regression 
approach, on the other hand, uses only one output neuron 
and rounds its output value to an integer value to assign a 
unique class. We found slightly better results for the regres-
sion model (not shown), which was implemented with the 
L1 loss. Therefore, the results presented in the following 
sections are always based on the EfficientNet regression 
network. The L1 loss reduced the discrepancies because 
mispredictions with high deviations from the actual anno-
tation are penalized stronger than with the categorical cross- 
entropy loss.

The number of images per FHB severity plays a crucial role 
in training the neural network. That is because the loss of the 

Fig. 2. Data pipeline for the training process of the EfficientNet-b0 network and the data transformations for applying the validation and test data to the network.
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model can be minimized by focusing on the most represented 
annotation label only. Since we have very diverse amounts of 
images for the different FHB severities, we have to use addi-
tional methods to train the model.

To reduce specialization on a particular label and reduce 
overfitting, we found that using a weighted random sam-
pling method helps to generalize the network for our data-
set. The weighted random sampler helps to sample images 
of different labels so that the number of images of each 
severity is represented equally during a training epoch. For 
the sampling process, the sampling weight w of each image 
sample si

l
 of the dataset with label l ∈ L is calculated by wsi

l =
∣ l ∣

∣L ∣
 

with L = {1, 2, …, 9} as the set of labels, ∣L∣ as the cardinality of 
L, ∣l∣ as the number of images of label l, and i as the index of a 
sample of l. Given the calculated fixed weight (probability) for 
each sample si

l
, we use a multinomial distribution to sample 

images from the dataset. Therefore, images categorized into a 
severity with a small number of image representations are sam-
pled more frequently than images of labels with a higher num-
ber of image representations.

Hereafter, the notation n
 is used for neural networks 

trained with the training data of the rater n. We implemented 
the source code with Python and trained the networks with 
PyTorch and an NVIDIA RTX A6000 graphics card. Training 
a single network took less than an hour on average. Models 
were trained within the year-specific dataset separated for the 
annotation data of each rater. This results in 4 network trainings 
with the data of 1 and 2 for both datasets 20 and 21. In 
comparison, averaging the annotations of both raters was tested, 
but this approach led to markedly worse results. Because of 
the insufficient number of data points, the dataset 22 was not 
used for model training but only for testing. Since 2 reference 
cultivars were grown more frequently in the trials, predictions 
were also compared for the plots of each of these cultivars as 
compared to the other plots.

Evaluation metrics
We have 2 sources of annotations per image available for our 
dataset and used Cohen’s kappa κ metric [44] for our evaluation 
purposes. Cohen’s kappa is a statistical measure to assess the 
interrater reliability of 2 raters and is thus a measure of objec-
tivity and is defined as follows:

with po as the relative raters’ agreement and pe as the propor-
tional expected by chance agreement. Cohen’s kappa ranges 
from −1 to 1, where κ = 1 indicates complete agreement among 
raters and κ ≤ 0 indicates no agreement or a by-chance rating. 
By default, the metric assigns the same value to all disagree-
ments. However, our dataset annotations are based on an ordi-
nal scale. Cohen’s kappa must be adjusted to assess the extent 
of disagreement according to the distance of the mispredic-
tions. Strong disagreements should have a more significant 
negative impact on κ than minor disagreements. We, therefore, 
used a linear weighting for the disagreements as proposed by 
Cicchetti and Allison [45]. When mentioning κ in the follow-
ing, we always refer to Cohen’s kappa with linear weighting. 
We used only the test data split to compute all interrater κ values 
to ensure comparability with the neural network results and 
evaluations.

Furthermore, we used the accuracy for our evaluations, which 
is defined as follows [46]:

Following the regression approach described in the “The 
EfficientNet regression approach” section, we round up the 
neural network outputs for decimals of ≥0.5 and round down 
for decimals of <0.5, calculated as

for evaluation purposes. In addition, we clip the network out-
puts at the boundaries of the severity annotations for evaluation 
so that all network outputs are within the FHB severity anno-
tation range. While we used the accuracy metric as an overall 
performance metric, we used precision p and recall r to evaluate 
individual labels, which are defined as follows:

with TP as the true positives, FP as the false positives, and FN 
as the false negatives. The precision determines the correctly 
predicted positive samples compared to all positive predictions. 
The recall determines the correctly predicted positive samples 
compared to all positive references.

We also used the F1 score, which calculates the harmonic 
mean of the 2 metrics, precision p and recall r. The formula to 
calculate the F1 scorel individually for each label l is defined as 
follows:

Since we have multiple labels with a varying number of instances 
per label, we used the weighted F1

w score, which is calculated as 
follows:

with f
w
l

=
∣ l ∣

∑L
l ∣ l ∣ , L as the set of labels, and ∣l∣ as the number 

of instances of l ∈ L.
To assess the quality of the regression models without 

rounding the output to the nearest integer, we used the root 
mean squared error (RMSE), which is defined as follows [47]:

Results

Interrater reliability
Before evaluating the network results, the raters’ matches or 
mismatches are evaluated using Cohen’s kappa κ. The interrater 
reliability of the raters is shown in Table 5 (last column). Cohen’s 

(1)� =
po − pe
1 − pe

(2)Accuracy =
correctly identified samples

all samples

(3)Output =

�⌊2 × prediction⌋
2

�

(4)Precision p =
TP

TP + FP

(5)Recall r =
TP

TP + FN

(6)F1 scorel = 2 ×
pl × rl
pl + rl

.

(7)Fw1 score =

L∑

l

f w
l
× F1 scorel

(8)RMSEl =

����
∑∣l∣

i∈l

�
predictioni− targeti

�2

∣ l ∣
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kappa shows that the image raters 1 and 2 depict moderate 
equality. Furthermore, data from the year 2021 also show higher 
disagreement between the image raters than in 2020. The agree-
ment of the raters 1 and 2 is shown in the confusion matrix 
in Fig. 3A. It is noticeable that the deviation from the image 
raters is usually no more than one severity level. The Fusarium 
scores differed substantially between scoring dates and are related 
to the genotypic differences in resistance and the 2 inoculation 
dates.

Neural network performance
All results refer to the fully trained neural network and sub-
sequent evaluation using only the test datasets, if not stated 
otherwise.

Network-to-rater reliability
We again used Cohen’s kappa κ to compare the trained net-
works with the annotation agreement of the raters, shown in 
Table 5. We follow the notation style from the “Interrater reli-
ability” section and use the notation n

 to refer to a trained 
neural network with data annotations from rater n. Compared 
to the agreement of the raters from Table 5, the agreements 
between the respective rater and the specifically trained neural 
network increase, as shown in Table 5. This implies that the 
respective networks succeed in adapting to the specific assess-
ments of the raters. In addition, the reduction of disagreement 
for 20 is illustrated with the confusion matrices, shown in 
Fig. 3B. Figure 3A shows the annotation comparison between 
the raters 1 and 2. Figure 3B shows the comparison of the 
rater 1 and the network I1

. The spread on the main diagonal 
decreases with the neural network approach, resulting in a 
lower deviation of the predictions from the actual targets. This 
pattern also appears for 21 and for networks trained on anno-
tations of rater 2 (see Figs. S1 to S4).

FHB severity evaluation: The rater effect
To measure the exact match of the raters and the network pre-
dictions, we used the metrics accuracy, weighted Fw

1
 score (Fw

1
), 

precision (p), and recall (r). A specific overview of the severity 
prediction results is presented in Table 4.

The neural networks achieve better results compared to the 
rater matches (1 versus 2), for both trained neural networks 
1

 and 2
. Furthermore, the network trained with the data 

annotations of 1 is superior to the accordance of the 2 raters 
1 versus 2 in all respects, as visible from the weighted Fw

1
 score 

and the overall accuracy, for both test datasets of 20 and 21.
To fully utilize the numeric values generated by the regres-

sion model, we applied the RMSE to assess the deviation 
(distance) of the predictions from the actual targets, shown 
in Table 5. The comparison between the raters and the net-
works trained with the annotations from the individual raters 
shows that the trained networks reduce the prediction errors 
as compared to the interrater deviation. That aligns with the 
results of the visualization of the confusion matrices in Fig. 3, 
resulting in fewer large label mispredictions, i.e., deviations 
of the predictions and targets of more than one FHB severity. 
Therefore, the performance of our network is comparable or 
superior to that of human raters.

FHB severity evaluation: The dataset effect
Previous FHB network training reported in the literature was 
predominantly evaluated on the data from the same trial. In 
the following, we show (a) the results for trained networks with 
1 year and tested on another year and (b) the results for trained 
networks with 2 data years and tested on a single data year. All 
networks were trained with the data annotations from 1 since 
the annotations provided better results for the severity evalu-
ation compared to 2. Accordingly, we also used the test data-
sets of 1 for the network evaluation. We also used 22 entirely 
(no train/val/test splits) to evaluate the generalization of the 
networks. For the datasets 20 and 21, we only used the test 
datasets so that the results are comparable with the evaluations 
from the “FHB severity evaluation: The rater effect” section. 
Tables 6 and 7 show all results of the dataset effect evaluation 
for the networks trained on 20, 21, and 20+21. Starting with 
the trained networks 1, from the “FHB severity evaluation: 
The rater effect” section, for both years 2020 and 2021 individ-
ually, we cross-test the networks with the datasets from differ-
ent years. Training on 20 and testing on 21 perform slightly 
better than the interrater comparison 1 and 2 in terms of Fw

1
 

and accuracy (Table 4) but worse when compared with training 

A B

Fig. 3. Confusion matrix of 1 versus 2 (A) and 1 versus 1
 (B), both from data 20. y axis is 1. The confusion matrices for all other comparisons by years, raters, and 

networks can be found in Figs. 1 to 4.

D
ow

nloaded from
 https://spj.science.org at H

ochschulbibliothek Ingolstadt on N
ovem

ber 03, 2023

https://doi.org/10.34133/plantphenomics.0068


Rößle et al. 2023 | https://doi.org/10.34133/plantphenomics.0068 8

exclusively on 21. Comparing the results with the RMSE and 
κ results, the networks perform slightly worse, indicating that 
the network also predicts higher deviations for some data points. 
In contrast, training on 21 and testing on 20 perform slightly 
worse than the interrater comparison 1 and 2 in terms of Fw

1
 

and accuracy but slightly better when evaluated by the RMSE 
and κ. The reason for the lower RMSEall is that the network predicts 

the severity levels with major occurrences, e.g., severity level 
of ≤2, better compared to the deviations of the raters. Testing 
on 22 results in low Fw

1
κ and high RMSEall values for both 

training data years 2020 and 2021.
Training a new multiyear data network on the training data 

of the data years 2020 and 2021 outperforms the single-year 
trained neural networks in almost all respects. Testing the multiyear 

Table 4. Rater and network precision p, recall r, F1
w score and accuracy (Acc) evaluation results.

Comparison Data

FHB severity

Fw
1

Acc≤2 3 4 5 6 ≥7

p r p r p r p r p r p r

1 versus 2 20 0.84 0.65 0.34 0.65 0.24 0.25 0.17 0.20 0.56 0.41 0.70 0.41 0.52 0.50

21 0.75 0.29 0.28 0.50 0.26 0.54 0.32 0.33 0.36 0.27 0.73 0.17 0.32 0.33

1 versus1
20 0.83 0.68 0.39 0.54 0.38 0.28 0.43 0.60 0.55 0.50 0.67 0.71 0.59 0.57

21 0.69 0.52 0.34 0.36 0.36 0.43 0.45 0.43 0.38 0.49 0.80 0.53 0.48 0.47

1 versus2
20 0.57 0.89 0.66 0.40 0.75 0.55 0.14 0.43 0.56 0.48 0.00 0.00 0.53 0.53

21 0.50 0.54 0.56 0.51 0.53 0.51 0.49 0.51 0.52 0.59 0.50 0.18 0.50 0.50

Table 5. Rater and network RMSE and κ evaluation results.

Comparison Data

FHB severity

RMSEall κ≤2 3 4 5 6 ≥7

RMSE RMSE RMSE RMSE RMSE RMSE

1 versus 2 20 0.67 0.59 0.97 1.34 1.17 1.14 0.93 0.68
21 1.23 1.13 0.81 1.0 1.57 1.74 1.34 0.40

1 versus 1
20 0.65 0.68 1.22 0.77 0.71 0.69 0.77 0.76
21 0.87 1.07 1.12 0.88 0.82 0.81 0.91 0.62

1 versus 2
20 0.33 0.77 0.67 1.0 0.82 1.48 0.75 0.70
21 1.07 0.84 0.75 0.76 0.85 0.91 0.81 0.59

Table 6. Network performance on unseen data years and combined data years evaluated on the metrics precision p, recall r, Fw
1

, and accu-
racy.

Train data Test data

FHB severity

Fw
1

Acc≤2 3 4 5 6 ≥7

p r p r p r p r p r p r

20 21 0.30 0.38 0.33 0.30 0.9 0.45 0.32 0.45 0.32 0.44 0.82 0.12 0.33 0.34
20 22 0.30 0.34 0.23 0.37 0.25 0.28 0.26 0.43 0.20 0.48 0.95 0.17 0.29 0.29
21 20 0.67 0.84 0.23 0.19 0.36 0.28 0.21 0.27 0.36 0.36 0.83 0.29 0.47 0.48
21 22 0.92 0.18 0.33 0.32 0.18 0.23 0.14 0.41 0.18 0.49 0.82 0.13 0.25 0.25
20+21 20 0.80 0.84 0.52 0.46 0.31 0.28 0.41 0.47 0.58 0.64 0.67 0.59 0.61 0.62
20+21 21 0.86 0.57 0.40 0.52 0.32 0.36 0.46 0.43 0.39 0.60 0.87 0.34 0.49 0.46
20+21 22 0.94 0.22 0.33 0.29 0.38 0.29 0.14 0.28 0.17 0.36 0.72 0.55 0.43 0.40
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data network on the test data of 20 , i.e. the dataset from 2020, 
gives better results than the network trained on 20. The mul-
tiyear data network also produces comparable results on the 
test dataset of 21 compared to the network trained on 21. The 
test results on 22  of the multiyear data network highly increase 
the classification metrics Fw

1
 scores and the accuracy and reduce 

the regression metrics RMSEall and κ compared to the networks 
trained on the data from a single year. In contrast to the years’ 
effect, the difference in the prediction errors between the cul-
tivar groups was relatively small (see Table S1).

Discussion
Nondestructive high-throughput disease phenotyping under 
field conditions is challenging because of (a) suboptimal 
data acquisition conditions, (b) the need for affordable, easy-
to-use sensors, and (c) limited accessibility of the individ-
ual ears [14,15]. Therefore, deep learning algorithms have to 
be optimized for overcoming limitations in the image data. 
However, these algorithms require a large amount of sensor 
and scoring data [48]. The present study deliberately used 
in situ RGB image data to directly predict one FHB score per 
image. This approach resulted in lower accuracies than in a 
number of previous studies [9,21,24,27] but offers the advan-
tage of being nondestructive, not requiring specific sensor 
setups, time-consuming object or pixel-based image annota-
tion or image segmentation.

The influence of the raters
Most previous FHB models did not assess the influence of 
multiple raters. Our results confirm that despite a predefined 
scoring scale, multiple raters differ substantially with respect 
to their agreement of the FHB severity level, notably in 21. 
This is in line with several studies on the comparison of inter-
rater reliability as reviewed in [32] and likely influenced by the 
heterogeneous nature of the field-based images. Bock et al. [32] 
reported a tendency to prefer values by individual raters, higher 
intrarater reliability with increasing rating experience, and 
a nonlinear bias in the rated values as error sources. In the 
present dataset, rater 1 tended to exploit the scoring scale more 
toward both severity extremes, which was evident, especially in 
21, the dataset with the lowest interrater reliability. Moreover, 
a rating can be affected by the differing estimation of the number 

of diseased spots and the spots’ area, which are both implicitly 
considered for FHB scoring. Tentatively using the averaged scoring 
data from both raters decreased the network performance (data 
not shown). Thus, the results indicate that rater- specific models 
are more useful for a limited amount of data. However, for 
training reliable multirater models, it appears that substantially 
more data would be required, involving more training of the 
raters for achieving higher interrater reliability before the 
training.

Applicability of the EfficientNet regression approach
The assessment of FHB severities is typically considered a clas-
sification task. Nevertheless, because of the ordinal scale, it is 
also possible to train a regression task [43], which performed 
better in the present study. For the classification task, we used 
the categorical cross-entropy loss. For the regression task, we 
used the L1 loss. We found that the L1 loss regression method 
performed slightly better than the cross-entropy loss classifi-
cation method. The L1 loss reduced the discrepancies because 
mispredictions with high deviations from the actual annota-
tion are penalized stronger than with the categorical cross- 
entropy loss. The network may perform better because the loss 
function used during training prioritizes minimizing the dis-
tance between the predicted and actual labels. Traditional clas-
sification methods do not take into account the ordinal nature 
of the labeling scale, resulting in an equivalent penalty for 
misclassification regardless of the degree of discrepancy between 
predicted and actual labels.

The assessments were conducted similarly to other studies, 
thus using metrics for classification tasks. That involves rounding 
the results of the regression model up and down accordingly 
to get one specific classification output. Afterward, the result can 
be used for the metrics precision, recall, F1 scorel, and accuracy. 
Nevertheless, the regression model offers broader possibilities 
for additional evaluations due to its output in floating point pre-
cision. Furthermore, using the lightweight EfficientNet archi-
tecture allows easier deployability to mobile devices compared 
to previous approaches [16]. The authors of EfficientNet have 
introduced methods for scaling convolutional networks that 
not only add more layers to an existing network to achieve 
better results but instead to find a balance between depth, width, 
and resolution. They developed much smaller and faster net-
works with better predictive performance compared to existing 

Table 7. Network performance on unseen data years and combined data years evaluated on the metrics RMSE and Cohen’s kappa (κ).

Train data Test data

FHB severity

RMSEall κ≤2 3 4 5 6 ≥7

RMSE RMSE RMSE RMSE RMSE RMSE

20 21 1.25 1.50 1.09 1.05 1.26 2.00 1.44 0.38
20 22 1.03 0.99 1.36 1.18 1.96 2.19 1.75 0.41
21 20 0.40 0.90 1.31 1.32 1.02 0.94 0.90 0.68
21 22 1.57 1.37 1.31 1.02 1.08 1.65 1.46 0.38
20+21 20 0.58 0.79 1.25 0.97 0.60 0.54 0.76 0.78
20+21 21 0.95 1.19 1.16 0.89 0.79 0.90 0.96 0.60
20+21 22 1.61 1.59 1.66 1.08 0.89 0.97 1.25 0.53

D
ow

nloaded from
 https://spj.science.org at H

ochschulbibliothek Ingolstadt on N
ovem

ber 03, 2023

https://doi.org/10.34133/plantphenomics.0068


Rößle et al. 2023 | https://doi.org/10.34133/plantphenomics.0068 10

convolutional network designs. We additionally used pretrained 
ResNet architectures of different sizes, as Gao et al. [16] have 
suggested for classifying FHB severities. However, these have 
always performed worse than the EfficientNet models in terms 
of processing time and prediction performance. This is in line 
with the highest accuracy of an adapted EfficientNet as com-
pared to a number of other networks for apple [49] and for 
strawberry [39] disease detection.

Prediction accuracy
The higher the interrater reliability of a particular year of data, 
the better the network performance trained on individual raters 
as shown in Table 5. This indicates that the networks benefited 
from higher scoring quality in 20 compared to 21. Although 
the networks were trained separately with individual raters, 
the results were better when the interrater reliability was also 
higher for a particular data year, as shown in Table 5. This 
indicates that the networks profited from higher-scoring quality 
in 20 compared to 21. In contrast, also higher soil fraction 
in many images in 21 may have negatively affected the net-
works. This is in line with generally improving plant disease 
classification for various crops after the removal of soil pixels 
[48]. In the present study, soil pixels were not removed, how-
ever, since it can also be error-prone because of sun or shadow 
gradients. Compared to the observed interrater reliability, the 
network-to-rater reliability was higher for both raters and in 
both years, indicating that the network performance is better 
compared to the error of the reference method when ignoring 
rater effects. Still, the model results are weaker than in most 
previous studies, which, however, generally involved higher 
efforts for increasing image quality with respect to constant 
illumination conditions, camera quality, or the dissection of 
ears. Moreover, most previous approaches used pixel-based or 
object-based approaches, requiring substantially more anno-
tation efforts. However, these requirements are important hur-
dles for the automated, high-throughput FHB detection under 
field conditions. From a practical point of view, our approach 
maintains still sufficient discrimination. In fact, the deviations 
between the predictions and the actual labels of our trained 
models are less dispersed across the ordinal FHB severity 
scale, generally deviating by no more than one label. Thus, 
our networks are more precise than the interrater agreement. 
Moreover, the precise determination of the 6 to 9 classes is 
often not required, while often 3 classes would be sufficient. 
In contrast, because of the dynamic development of FHB over 
time and the delayed symptoms of phenologically delayed 
genotypes, the evaluation of the genotypes for selection would 
profit more from more frequent measurements, which is ena-
bled by an automated, sensor-based approach. In most test data-
sets, the RMSE for the models and between raters tended to 
be lower within the reference cultivars than for the other gen-
otypes, possibly indicating that the reference cultivars profited 
from their more frequent occurrence in the dataset (see Table S1).

The effect of dataset size
Many images are usually required to achieve high accuracies 
on image data with neural networks [34,48]. Otherwise, net-
works tend to overfit or lack generalization. As class imbalance 
can also result in poor generalization [38], we combined the 
classes 1 and 2 and classes 7, 8, and 9 into 2 separate categories, 
respectively, since we had very few samples for training the 
network with these classes, resulting in overall 6 classes {≤2, 3, 

4, 5, 6, ≥7} for the FHB severity classification. We also used data 
augmentation methods to increase our training dataset and 
further boost the network generalization. However, we applied 
data augmentation methods only very carefully and omitted 
image color space augmentation, since the bright color of FHB 
is essential to classify the correct severity and infestation level. 
Unlike Gao et al. [16], we did not use color space adjustments 
such as saturation and contrast. Thus, some color transforma-
tions were previously shown to have negative effects on disease 
detection [50]. Nevertheless, further investigation can be con-
ducted to analyze the effect of varying illumination conditions 
on the network performance, especially for very low and very 
high severity levels of FHB. The effect in dataset size was notice-
able when training the networks with the combined datasets 
20 and 21, as displayed in Tables 4 and 6. Compared to single- 
year dataset networks, we achieved better classification and 
regression metric scores in the multiyear dataset networks when 
testing on the test split of 20 and comparable results when 
testing on the test split of 21, respectively. As tested on 20, 
we increased the Fw

1
 scores by 0.02, the accuracy by 5%, and κ 

by 0.02 and decreased the RMSEall by 0.01, whereas on 21, the 
Fw
1

 scores improved by 0.01, the accuracy dropped by 1%, κ 
dropped by 0.02 and the RMSEall increased by 0.05. To further 
improve future models for FHB based on RGB image data, our 
dataset could be used for pretraining models.

Transferability: The effect on unseen data from 
different years
To verify the applicability in real-world applications, we tested 
and evaluated our networks on unseen data from different years, 
differing substantially in phenological development, plant den-
sity, genotypic composition, and soil/plant pixel ratios.

As displayed in Table 6, the Fw
1

 scores and accuracies gen-
erally decreased when the years of data for training and testing 
a model differed. This indicates a shift in the distribution of 
data between years of data collection that cannot be interpreted 
sufficiently by the model, due to the aforementioned year- 
specific factors. Nevertheless, as stated in the “The effect of 
dataset size” section, the higher the data amount, the better the 
model results. This is also the case for the transferability and 
the learning of broader data distribution, meaning that it is 
possible to achieve better results by collecting more diverse 
data from different years.

When training a model with the combined datasets 20 and 
21, we always achieved better results on the unseen data of 
22 compared to networks trained on single-year datasets. In 
fact, e.g., for 22, we increased the Fw

1
 scores by 0.14 , the accu-

racy by 11%, and κ by 0.12 and reduced the RMSE by 475.5 
compared to the best network trained on the single-year data-
set 20.

As an alternative, to further improve the variability and balance 
of the dataset without collecting new datasets and without requir-
ing expert knowledge in FHB assessment, generative approaches 
to create synthetic image data [51] can be applied [38].

Outlook
We developed models for field-based FHB assessment under 
conditions of minimum time and sensor resources for image 
data acquisition and image annotation. We evaluated the influ-
ence of 2 different raters, the interrater reliability, the influence 
of 2 different years for model training and the difference of 
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within-years compared to across-years models. We have shown 
that the amount, rating quality, and similarity between training 
and test data are crucial for better generalization of the net-
works. Therefore, the models could be extended and improved 
with existing or new datasets annotated in a similar way. In par-
ticular, the coverage of FHB severities at the extremes of the 
ordinal scale has an essential impact on extending our models. 
By having more assessment at the severity extremes, the full 
scale ranging from 1 to 9 could be utilized instead of the reduc-
tion to {≤2, 3, 4, 5, 6, ≥7} as used for this work. While the 
developed model was an efficient highthroughput approach 
for nondestructive FHB estimation, the manual image crop-
ping before the usage for the models was still time-consuming. 
However, this preprocessing could be easily avoided through 
increased space between plots, which would allow for auto-
mated plant segmentation, thus allowing for image acquisition 
only in plot centers, or image acquisition above the plots by 
UAVs or field robots.

Future work should consider implementing the models as a 
mobile application, since we have used a fast and mobile-sized 
neural network implementation (EfficientNet-b0 [36]). Moreover, 
the models should be transferred to drone-based data to allow 
for high-throughput screening of large field trials.
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Figure S2. Confusion matrix of 1 versus 2, data 21, and 
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Figure S3. Confusion matrix of 1 versus 1

, data 21, and 
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