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Abstract

We introduce Würstchen, a novel technique for text-to-image synthesis that unites
competitive performance with unprecedented cost-effectiveness and ease of training
on constrained hardware. Building on recent advancements in machine learning,
our approach, which utilizes latent diffusion strategies at strong latent image com-
pression rates, significantly reduces the computational burden, typically associated
with state-of-the-art models, while preserving, if not enhancing, the quality of gen-
erated images. Würstchen achieves notable speed improvements at inference time,
thereby rendering real-time applications more viable. One of the key advantages
of our method lies in its modest training requirements of only 9,200 GPU hours,
slashing the usual costs significantly without compromising the end performance.
In a comparison against the state-of-the-art, we found the approach to yield strong
competitiveness. This paper opens the door to a new line of research that prioritizes
both performance and computational accessibility, hence democratizing the use of
sophisticated AI technologies. Through Würstchen, we demonstrate a compelling
stride forward in the realm of text-to-image synthesis, offering an innovative path
to explore in future research.

1 Introduction

State-of-the-art diffusion models [Ho et al., 2020, Saharia et al., 2022, Ramesh et al., 2022] have
advanced the field of image synthesis considerably, achieving remarkable results that closely approxi-
mate photorealism. However, these foundation models, while impressive in their capabilities, carry a
significant drawback: they are computationally demanding. For instance, Stable Diffusion 1.4, one of
the most notable models in the field, used 150,000 GPU hours for training. Against this backdrop,
we propose a novel approach, named "Würstchen", which drastically reduces the computational
demands while maintaining competitive performance. Our method is based on a novel architecture
that elegantly distributes the task of image synthesis across three distinct stages, thereby making the
learning process more manageable and computationally efficient.
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A photo of 
the mandalorian.

A photo of a teddy bear
standing in time square.

Highly realistic photo
of a bear sitting in class.

A picturesque 
photo of a pink astronaut.

A photo of new york 
at sunrise.

Realistic photo of a eagle dressed
as a doctor in a white coat.

Highly realistic photo of a 
dog as a lawyer sitting in court.

Photo of rat with a top hat.An astronaut in an orange 
space suit standing in the desert.

Highly realistic photo of a 
bee dressed as an astronaut.

Wooden sculpture of 
Barack Obamas head.

Two stormtroopers sitting 
in a bar drinking beer.

Figure 1: Text-conditional generations using Würstchen.
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The approach uses three distinct stages for image synthesis (see Figure 2): initially, a text-conditional
latent diffusion model is used to create a latent image of reduced resolution (Stage C), which is then
decoded by another model into a vector-quantized latent space of higher resolution (Stage B). Finally,
the quantized latent image is decoded to yield the full-resolution output image (Stage A).

Training is performed in reverse order to the inference (Figure 3): The initial training is carried out
on Stage A and employs a Vector-quantized Generative Adversarial Network (VQGAN) to create a
discretized latent space. As shown in earlier work, this compact representation facilitates learning and
inference speed [Rombach et al., 2022, Chang et al., 2023, Rampas et al., 2023]. In the next phase
Stage B is trained, which acts as a further compression stage, employing an encoder that projects
images into an even more condensed space and a decoder that tries to reconstruct VQGAN latents from
the encoded image. We employ a token predictor based on the Paella [Rampas et al., 2023] model for
this task, which is conditioned on the representation of the encoded image, as it comes with the benefits
of a low required number of sampling steps (which is especially beneficial to computational efficiency
due to the comparatively highly resolved latent space) [Rampas et al., 2023], simple implementation
and training. Finally, for the construction of Stage C, the aforementioned image encoder is employed
to project images into the condensed latent space where a text-conditional latent diffusion model
[Rombach et al., 2022] is trained. The significant reduction in space dimensions in Stage C allows
for more efficient training of the diffusion model, considerably reducing both the computational
resources required and the time taken for the process.

Our proposed Würstchen model thus introduces a thoughtfully designed approach to address the high
computational burden of current state-of-the-art models, providing a significant leap forward in text-
to-image synthesis. With this approach we are able to train a 1B parameter Stage C text-conditional
diffusion model within approximately 9,200 GPU hours, resembling a 16x reduction in computation
compared to the amount Stable Diffusion 1.4 used for training (150,000 GPU hours), while showing
similar fidelity both visually and numerically. Throughout this paper, we provide a comprehensive
evaluation of Würstchen’s efficacy, demonstrating its potential to democratize the deployment &
training of high-quality image synthesis models.

Figure 2: Inference architecture for text-conditional image generation.

Our main contributions are the following:

1. We propose a novel architecture for text-to-image synthesis that substantially reduces com-
putational demands while achieving state-of-the-art performance. This approach introduces
an efficient pipeline following a three-stage paradigm, namely a text-conditioned diffusion
model (Stage C), an image encoder/decoder (Stage B), and a VQGAN (Stage A).

2. Our architecture enables the training of a 1B parameter Stage C diffusion model with a
significantly reduced compute budget. This level of efficiency is achieved without sacrificing
the quality of the synthesized images.

3. We provide comprehensive experimental validation of the model’s efficacy, opening the door
to further research in the field of efficient, high-quality generative models in presenting a
compelling paradigm that simultaneously prioritizes both performance and computational
feasibility.
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4. We are publicly releasing the source code and the entire suite of model weights.

2 Related Work

2.1 Conditional Image Generation

The field of image generation guided by text prompts has undergone significant progression
in recent years. Initial approaches predominantly leveraged Generative Adversarial Networks
(GANs) [Reed et al., 2016, Zhang et al., 2017]. More recently, however, a paradigm shift in the
field of image generation towards diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020]
has occurred. These approaches, in some cases, have not only met but even exceeded the perfor-
mance of GANs in both conditional and unconditional image generation [Dhariwal and Nichol, 2021].
Diffusion models put forth a score-based scheme that gradually eliminates pertubations (e.g.,
noise) from a target image, with the training objective framed as a reweighted variational lower-
bound. Next to diffusion models, another dominant choice for training text-to-image models
are transformers. In their early stages, transformer-based models utilized an autoregressive ap-
proach, leading to a significant slowdown in inference due to the requirement for each token
to be sampled individually. Current strategies, however, employ a bidirectional transformer
[Ding et al., 2022, Chang et al., 2022, Chang et al., 2023] to address the challenges that traditional
autoregressive models present. As a result, image generation can be executed using fewer steps, while
also benefiting from a global context during the generative phase. Other recent work has shown that
convolution-based approaches for image generation can yield similar results [Rampas et al., 2023].

2.2 Compressed Latent Spaces

The majority of approaches in the visual modality of generative models use some way to train
at a smaller space, followed by upscaling to high resolutions, as training at large pixel resolu-
tions can become exponentially more expensive with the size of images. For text-conditional
image generation, there are two established categories of approaches: encoder-based and upsampler-
based. Latent diffusion models [Rombach et al., 2022], DALL-E [Ramesh et al., 2021], CogView
[Ding et al., 2021, Ding et al., 2022], MUSE [Chang et al., 2023] belong to the first category and
employ a two-stage training process. Initially, an autoencoder [Rumelhart et al., 1985] is trained to
provide a lower-dimensional, yet perceptually equivalent, representation of the data. This representa-
tion forms the basis for the subsequent training of a diffusion or a transformer model. Eventually,
generated latent representations can be decoded with the decoder branch of the autoencoder to the
pixel space. The result is a significant reduction in computational complexity for the diffusion /
sampling process and efficient image decoding from the latent space using a single network pass. On
the contrary, upsampler-based methods generate images at low resolution in the pixel space and use
subsequent models for upscaling the images to higher resolution. UnClip [Ramesh et al., 2022] and
Imagen [Saharia et al., 2022] both generate images at 64x64 and upscale using two models to 256
and 1024 pixels. The former model is the largest in terms of parameter count, while the latter models
are smaller due to working at higher resolution and only being responsible for upscaling.

2.3 Conditional Guidance

The conditional guidance of models in text-based scenarios is typically facilitated through the
encoding of textual prompts via a pretrained language model. Two major categories of text encoders
are prevalently employed: contrastive text encoders and uni-modal text encoders. Contrastive
Language-Image Pretraining (CLIP) [Radford et al., 2021] is a representative of the contrastive
multimodal models that strives to align text descriptions and images bearing semantic resemblance
within a common latent space. A host of image generation methodologies have adopted a frozen
CLIP model as their exclusive conditioning method in recent literature. The hierarchical DALL-E 2
by Ramesh et al. [Ramesh et al., 2022] specifically harnesses CLIP image embeddings as input for
their diffusion model, while a ’prior’ performs the conversion of CLIP text embeddings to image
embeddings. Stable Diffusion [Rombach et al., 2022], on the other hand, makes use of un-pooled
CLIP text embeddings to condition its latent diffusion model. In contrast, the works of Saharia et
al. [Saharia et al., 2022], Liu et al. [Liu et al., 2022] and Chang et al. [Chang et al., 2023] leverage
a large, uni-modal language model such as T5 [Raffel et al., 2020] or ByT5 [Xue et al., 2022] that
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can encode textual prompts with notable accuracy, leading to image generations of superior precision
in terms of composition, style, and layout.

3 Method

Our method comprises three stages, all implemented as deep neural networks. For image generation,
we first generate a latent image at a strong compression ratio using a text-conditional latent diffusion
model (Stage C). Subsequently, this representation is transformed to an upsampled and quantized
latent space by the means of a secondary model which is tasked for this reconstruction (Stage B).
Finally, the tokens that comprise the latent image in this intermediate resolution are decoded to yield
the output image (Stage A). The training of this architecture is performed in reverse order, starting
with Stage A, then following up with Stage B and finally Stage C (see Figure 3).

3.1 Stage A and B

It is a known and well-studied technique to reduce the computational burden by compressing data
into a smaller representation[Rombach et al., 2022, Chang et al., 2022]. Our approach follows this
paradigm, too, and makes use of Stage A & B to achieve a notably higher compression than usual.
Let H × W × C be the dimensions of images. A spatial compression maps images to a latent
representation with a resolution of h × w × z with h = H/f,w = W/f , where f defines the
compression rate. Common approaches for modelling image synthesis use a one-stage compression
between f4 and f16 [Esser et al., 2021, Chang et al., 2023, Rombach et al., 2022], with higher factors
usually resulting in worse reconstructions. Our Stage A consists of a f4 VQGAN [Esser et al., 2021]
with parameters Θ and initially encodes images x ∈ R3×512×512 into 128× 128 discrete tokens from
a learnt codebook of size 8,192.

xq = fΘ(x)

The network is trained as described by Esser et al. and tries to reconstruct the image based on the
quantized latents, so that:

f−1
Θ (fΘ (x)) = f−1

Θ (xq) ≈ x

where f−1
Θ resembles the decoder part of the VQGAN.

Afterwards, Stage B is learnt in the compressed and discrete VQGAN space to reconstruct images
that were encoded with an additional model which utilizes an inherent higher compression ratio (see
Figure 3). We make use of the large (L) configuration of an EfficientNet2 stem [Tan and Le, 2020] to
encode images, and task the Stage B model to reconstruct the representation of the same image in the
VQGAN space of Stage A. The EfficientNet2 eϕ takes in images x ∈ R3×384×384 and embeds them
into a space of R1280×12×12.

We use simple bicubic interpolation for the resizing of the images from 512×512 to 384×384. On top
of that representation, we add a 1×1 convolutional head that normalizes and projects the embeddings
to ceff ∈ R16×12×12. This compressed representation of the images is given to the Stage B decoder
as conditioning to guide the decoding process. We formulated this learning process in a typical
noising/denoising framework and decided to use the architecture of Paella [Rampas et al., 2023]
for that. The approach works on quantized tokens and is hence perfectly suitable for this task.
Image tokens xq are noised by random token replacement with other tokens from the VQGAN
codebook based on random timesteps. The noised representation x̃q,t, together with the EfficientNet
embeddings ceff , text conditioning ctext and the timestep t are given to the model.

x̄q,0 = fϑ(x̃q,t, ceff , ctext, t)

Its task is to predict the original tokens. Sampling is executed in an iterative fashion given new
EfficientNet embeddings. After training, images x ∈ R3×512×512 can be decoded from a latent space
of R16×12×12, resulting in a total spatial compression of f42.

Figure 4 shows depictions of images and their corresponding reconstructions. Because the Effi-
cientNet encoder was trained on ImageNet data, which does not capture the broad distribution of
images present in large text-image datasets, the model is initialized from a pretrained checkpoint,
but also updated during the training of Stage B. We use Cross-Attention [Vaswani et al., 2017] for
conditioning and project both ceff (flattened) and ctext to the same dimension in each block of the
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Figure 3: Training objectives of our model. Initially a VQGAN-based autoencoder is trained.
Secondly, Stage B is trained as a latent image decoder, decoding an EfficientNet latent image to the
original VQGAN latent space. Finally, Stage C is trained as a text-conditional latent diffusion model
at a compression rate of f42.

model and concatenate them. We refer to [Rampas et al., 2023] for more details on the training and
sampling. Furthermore, during training Stage B, we intermittently add noise to the EfficientNet
embeddings, to teach the model to understand non-perfect embeddings, which is likely to be the case
when generating these embeddings with Stage C. Lastly, we also randomly drop ceff and ctext to be
able to sample with classifier-free-guidance [Ho and Salimans, 2022] during sampling.
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3.2 Stage C

After Stage A and Stage B are trained, training of the text-conditional last stage can be started. We
follow a standard diffusion process, applied in the latent space of the finetuned EfficientNet encoder.
Images are encoded into their latent representation xeff = ceff , which now become the target, instead
of the conditioning. The latents are noised by using the following forward diffusion formula:

xeff,t =
√
ᾱt · xeff +

√
1− ᾱt · ϵ

where ϵ represents noise from a zero mean unit variance normal distribution. We use a cosine schedule
[Nichol and Dhariwal, 2021] to generate ᾱt and use continuous timesteps. The diffusion model takes
in the noised embeddings xeff,t, the text conditioning ctext and the timestep t. The model returns the
prediction for the noise in the following form:

ϵ̄ =
xeff,t − a

| 1− b | +1e−5

where a and b result from:

a,b = fθ(xeff,t, ctext, t)

We decided to formulate the objective as such, since it made the training more stable. We hypothesize
this occurs because the model parameters are initialized to predict 0 at the beginning, enlarging
the difference to timesteps with a lot of noise. By reformulating to the a & b objective, the model
initially returns the input, making the loss small for very noised inputs. We use the standard mean-
squared-error loss between the predicted noise and the ground truth noise. Additionally, we employ
the p2 loss weighting [Choi et al., 2022]:

p2(t)· || ϵ− ϵ̄ ||2

where p2(t) is defined as 1−ᾱt

1+ᾱt
, making higher noise levels contribute more to the loss. Text

conditioning ctext are dropped randomly for 5% of the time and replaced with a null-label in order to
use classifier-free-guidance [Ho and Salimans, 2022]

3.3 Image Generation (Sampling)

Sampling starts at Stage C from initial random noise xeff,TC
= N (0, I). We use the DDPM

[Ho et al., 2020] algorithm to sample the EfficientNet latents conditioned on text-embeddings. To do
so, we run the following operation for TC steps:

x̂eff,t−1 =
1

√
αt

· (x̂eff,t −
1− αt√
1− ᾱt

ϵ̄) +

√
(1− αt)

1− ᾱt−1

1− ᾱt
ϵ

We denote the outcome as x̄eff which is of shape 16× 12× 12. This output is flattened to a shape of
144 × 16 and given as conditioning, along with the same text embeddings used to sample x̄eff , to
Stage B. This Stage operates at the 128× 128 VQGAN latent space. We initialize xq,TB

to random
tokens drawn from the VQGAN codebook. We sample x̄q by iteratively predicting all tokens for TB

steps.

xq,t−1 = fϑ(xq,t, ceff , ctext, t)

and subsequently renoising a ratio of the tokens back to their original noise. Finally x̄q will be
projected back to the pixel space using the decoder f−1

Θ of the VQGAN (Stage A):

x̄ = f−1
Θ (x̄q)

A depiction of the sampling pipeline can be seen in Figure 2.

7



Figure 4: Reconstruction samples using Stage B using a total compression factor of f42.

3.4 Model Decisions

Many choices were required when setting up and training the different stages. One of the most
important decision had to be made about the image encoder. Theoretically, any visual model could be
used for that, but three things should be kept in mind: the training objective the model was trained
with, the parameter count and the embedding dimension. We hypothesize that it is beneficial to use
an encoder that already has a good feature representation of a wide variety of images. Furthermore,
having a small and parameter efficient model makes training of Stage B & C faster. Finally, the
feature dimension of the encoder network is vital. If it is excessively small, it may fail to capture
sufficient image details; conversely, if it is overly large, it may unnecessarily increase computational
requirements and extend training duration. Moreover, the type of model for Stage A & B also
resembles a choice to be made. We decided to use the architecture of Paella for Stage B, due to its
ability to handle quantized data and requiring very little number of inference steps to sample images
[Rampas et al., 2023]. The latter attribute is crucial to maintain a low-latency pipeline, as sampling at
a resolution of 128× 128 could be computationally demanding if many steps are necessary. However,
in theory a diffusion model could be used, too. A different architecture is needed for Stage C since it
requires a model capable of handling continuous data, unlike the one used for Stage B. Hence we
decided to use a latent diffusion model [Rombach et al., 2022]. While diffusion models require more
inference steps, this demand is rendered more feasible within the context of a denser latent space.

4 Experiments

4.1 Text-to-Image Training

To demonstrate Würstchen’s capabilities on text-to-image generation, we trained a 18M parameter
Stage A, a 600M parameter Stage B and a 1B parameter Stage C. We employed an EfficientNet2-
Large stem [Tan and Le, 2020] in the training. Stage B and C are both conditioned on un-
pooled CLIP-H [Ilharco et al., 2021] text-embeddings. All models are optimized using AdamW
[Loshchilov and Hutter, 2019] with a learning rate of 1e−4 using a linear warm-up schedule for
10k steps. Stage B & C were trained for 0.25M and 0.8M steps using a batch size of 384 and
1280, respectively. All stages were trained on subsets of the improved-asesthetic LAION-5B
[Schuhmann et al., 2022] dataset.
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Figure 5: Pareto curves for FID and CLIP scores comparing Würstchen to Stable Diffusion 1.4. We
observe the two models to be on par in terms of the CLIP score, but Stable Diffusion 1.4 achieving
higher fidelity for the COCO dataset. We hypothesize the inferior performance on FID to be highly
affected by Stage B, as reconstructions lack details.

4.2 Text-to-Image Evaluation

Evaluations of text-to-image models in both supervised and zero-shot settings commonly use the
COCO 2014 [Chen et al., 2015] validation set as a reference benchmark [Rombach et al., 2022,
Saharia et al., 2022, Chang et al., 2023, Ramesh et al., 2022]. The primary automated metrics em-
ployed for performance assessment are the Frechet Inception Distance (FID) [Heusel et al., 2017],
which quantifies image fidelity, and the CLIP score [Hessel et al., 2022, Radford et al., 2021], which
determines alignment between image and text. In line with prior studies, we provide the FID-30k
metric in a zero-shot context, which involves randomly selecting 30K prompts and image pairs
from the validation set and comparing the model’s generated samples based on these prompts with
the reference images from the validation set in the latent space of an independend third model
(Inception V3 trained on ImageNet). The same generated images will be used to calculate the
CLIP score with the captions. The results can be seen in Table 1. All of the experiments use the
standard DDPM [Ho et al., 2020] algorithm to sample latents in Stage C. Stage B uses the sam-
pling as described in [Rampas et al., 2023]. Both stages also make use of classifier-free-guidance
[Ho and Salimans, 2022] with guidance scale w. We fix the hyperparameters for Stage B sampling
to TB = 8 and w = 2. To find good sampling parameters for Stage C, we evaluate FID & CLIP
score for different classifier-free-guidance weights w. We choose to fix TC = 60. Furthermore, we
also compare to the most similar model, Stable Diffusion 1.4, in terms of trainable parameters and
conditioning. The results are shown in Figure 5 as pareto curves for the COCO [Chen et al., 2015]
dataset. We observe similar results for the CLIP scores in both models, however, slightly worse
results for FID values. We hypothesize this is partly caused by artifacts and innacuracies produced
by the image reconstruction of Stage B. In an attempt to validate this hypothesis, we computed the
FID scores between original COCO images and reconstructed images using Stage B only, which
gave a score of FID = 5.73, thus highlighting the fact that, as we believed, the quality of the
reconstructions is indeed a significant contributor to the FID score, and a clear target for improvement.
Furthermore, Figure A.1-A.5 show visual comparisons between Würstchen and Stable Diffusion 1.4.
All prompts are non-cherrypicked and all generations use the same seed. The prompts represent a
diverse subset of the dalle-mini prompts [Dayma et al., 2021]. Visually, we observe similar fidelity
and prompt-alignment and find both models to be on par.

4.3 Computational Requirements

Table 1 shows the computational costs for training Würstchen compared to the original StableDiffu-
sion 1.4. Based on the evaluations in Section 4.2, it can be seen that the proposed setup of decoupling
high-resolution image projection from the actual text-conditional generation can be leveraged even

9



1 2 3 4 6 8

Batch Size
0

1

2

3

4

5

Se
co

nd
s

Inference Time
Stage C
Stage B
Stage A

Figure 6: Optimized sampling speeds for different batch sizes.

Model Parameters Sampling Steps FID-COCO-30k ↓ open source GPU hours @ A100
256px 512px

CogView [Ramesh et al., 2021] 4B 1024 27.1 ✓ –
DALL-E [Ramesh et al., 2021] 12B 256 17.89 – –
LDM [Rombach et al., 2022] 1.45B 250 12.63 ✓ - -
GLIDE [Nichol et al., 2021] 3.5B 250 12.24 – –
Make-A-Scene [Gafni et al., 2022] 4B 1024 11.84 – –
Paella [Rampas et al., 2023] 1B 12 11.07 ✓ 64,000
DALL-E 2 [Ramesh et al., 2022] 3.5B 250 10.39 – –
MUSE-3B [Chang et al., 2023] 3B 24 7.78 – –
Imagen [Saharia et al., 2022] 2B 1000 7.27 – –
Parti [Yu et al., 2022] 20B 1024 7.23 – –
Würstchen (proposed) 0.99B 60 11.32 ✓ 9,200
Stable Diffusion 1.4 [Rombach et al., 2022] 0.8B 50 8.27∗ ✓ 150,000

Table 1: Comparison of the zero-shot Fréchet Inception Distance to other state-of-the-art text-to-image
methods on 256× 256 and 512× 512 image resolutions. ∗ own evaluation

more as done in the past [Esser et al., 2021, Saharia et al., 2022, Ramesh et al., 2022], while still
staying on-par in terms of quality, fidelity and alignment. Stage C, being the most expensive stage
to train, required only 9,200 GPU hours, compared to 150,000 GPU hours2 for StableDiffusion 1.4,
making it a 16x improvement. Moreover, although needing to sample with both Stage A & B to
generate the VQGAN latents x̄q , the total inference is still very fast. Figure 6 shows sampling times
for different batch sizes.

5 Discussion

Several constraints persist in our current experimental setup. A principal issue arises when the
model attempts to sample images in Stage B at resolutions higher than its training capacity, leading
to the generation of repetitive patterns. This could potentially result from the model’s inability to
interpret larger images appropriately. We attribute this issue to the conditioning mechanism, where
the EfficientNet embeddings are injected via cross-attention, causing them to be flattened, thereby
losing their two-dimensional positional bias. This might account for the model’s difficulties in
generalizing to varying resolutions during inference. Figure 7 provides examples of sampling at
different resolutions. Furthermore, the current design of Würstchen suffers from common limitations
that are characteristic of models conditioned solely on CLIP text-embeddings, such as StableDiffusion
[Rombach et al., 2022], which includes challenges in rendering text and compositional difficulties
with complex scenes. However, the relatively inexpensive computational demands of this model
open up possibilities for iterating on the model design at faster pace. Moreover, training of Stage
B using the current architecture turned out to be difficult to train due to instabilities. As a result,

2As reported in the model card at https://huggingface.co/CompVis/
stable-diffusion-v-1-4-original
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Figure 7: Failure cases of Stage B: Decoding at resolutions unseen during training (in this case:
512×768) represents a great challenge for the model and results in repetitive patterns. We hypothesize
the reason can be found in the conditioning mechanism used to inject the EfficientNet embeddings.

we had to stop training early. After training Stage B for 250k steps, the model already performed
good for the amount of compression it has to decode, however still shows flaws in finer details of
images. Figure 4 shows examples. We leave this open for future work to iterate on the stability of the
training mechanism. On the other hand, training Stage C behaved significantly more stable and did
not encounter issues during training or sampling.

We anticipate that Stage B could see significant enhancements in terms of image reconstruction quality
and its ability to handle images beyond the training resolution. Adjustments may be made within the
conditioning mechanism, with positional embeddings on the cross-attention potentially improving the
aforementioned issue. Alternative conditioning mechanisms, such as Modulated / Adaptive Layer Nor-
malization [Chen et al., 2019, Perez et al., 2017] or simple concatenation, could also prove effective.
Moreover, if the EfficientNet latents could be quantized, the possibility of implementing a sampling
mechanism working on quantized latent spaces (such as [Chang et al., 2023, Rampas et al., 2023])
for Stage A would arise, which could further reduce computational demands. Conversely, training
Stage B using Latent Diffusion Models [Rombach et al., 2022] might also be increased in efficiency
by minimizing the number of inference steps by approaches like distillation or consistency mod-
els [Song et al., 2023]. It should be noted that the current design of Stage B also functions as an
upsampler, encoding 384 × 384 images via EfficientNet and decoding into 512 × 512 images. It
is conceivable that this ratio might be increased, allowing Stage B to serve as both a decoder and
upsampler. Furthermore, considerable effort has been dedicated to enhancing the efficiency of text-to-
image model training through tactics such as pre-calculating embeddings and using lower precision
number formats. Other than mixed precision training [Micikevicius et al., 2018], we have not imple-
mented any specific accelerative strategies, suggesting the potential for even greater computational
efficiency and reduced resource requirements. Finally, the paradigm of further decoupling large-scale
conditional training from high-resolution constraints could also be applied to the field of conditional
video generation. Such an approach could yield even more significant accelerations in training &
processing speed than for images.

6 Conclusion

In this work we presented our text-conditional image generation model Würstchen, which employs a
three stage process of decoupling text-conditional image generation from high resolution spaces. The
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proposed process enables to train large scale models efficiently, substantially reducing computational
requirements, while at the same time providing high-fidelity images. Our trained model achieved
comparable performance to models trained using significantly more computational resources, illus-
trating the viability of this approach and suggesting potential efficient scalability to even larger model
parameters. We hope our work can serve as a starting point for further research into a more sustainable
and computationally more efficient domain of generative AI and open up more possibilities into
training, finetuning & deploying large-scale models on consumer hardware. We provide all of our
source code, including training-, and inference scripts and trained models on GitHub 3.
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A Appendix

(a) An armchair in the shape of an avocado

(b) A Pikachu shaped hat

(c) An illustration of a baby daikon radish in a tutu walking a dog

(d) A hedgehog using a calculator

(e) A volcano erupting next to the golden gate bridge

(f) Painting of an alien by Claude Monet

(g) View of Saturn from space

(h) Illustration of an astronaut in a space suit playing guitar

Figure A.1: Non-cherry-picked samples from Würstchen and Stable Diffusion (random seed: 42).
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(a) The Eiffel tower made of French fries

(b) Underwater cathedral

(c) A portrait of a nightmare creature

(d) A dog is holding a gun

(e) A rat holding a red lightsaber in a white background

(f) A pink elephant on a beach

(g) A small blue book sitting on a large red book.

(h) A red cube on top of a blue cube

(i) A man with an apple instead of a head

Figure A.2: Non-cherry-picked samples from Würstchen and Stable Diffusion (random seed: 42).
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(a) A sign that says Hello World.

(b) A storefront with Text to Image written on it.

(c) Lego Arnold Schwarzenegger.

(d) A photo of a confused grizzly bear in calculus class.

(e) A zebra to the right of a fire hydrant.

(f) A train on top of a surfboard.

(g) A cross-section view of a brain.

(h) Five dogs on the street.

(i) Rainbow coloured penguin.

Figure A.3: Non-cherry-picked samples from Würstchen and Stable Diffusion (random seed: 42).
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(a) A shark in the desert.

(b) An elephant under the sea.

(c) A red colored car.

(d) A laptop on top of a teddy bear.

(e) An oil painting portrait of the regal Burger King posing with a Whopper.

(f) Photo of a mega Lego space station inside a kid’s bedroom.

(g) A magnifying glass over a page of a 1950s batman comic.

(h) Darth Vader playing with raccoon in Mars during sunset.

(i) Watercolor painting of a field of sunflowers

Figure A.4: Non-cherry-picked samples from Würstchen and Stable Diffusion (random seed: 42).
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(a) Pencil sketch of a woman’s face.

(b) An old woman buying vegetables in the market. Ukiyo-e

(c) The international space station in the style of Pablo Picasso

(d) Drawing of man fighting a robot. Anime style.

(e) A still of SpongeBob in the movie Toy Story.

(f) Abraham Lincoln in the GoldenEye 007 video game for Nintendo64 released in 1997.

(g) Barack Obama as the final boss of the 1993 video game Doom

(h) An 8-bit pixel art fan fiction version of the video game Halo for XBox

(i) A still of a group of wild animals including giraffes and lions in the movie The Matrix from 1999

Figure A.5: Non-cherry-picked samples from Würstchen and Stable Diffusion (random seed: 42).
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