
Modelling and Simulation of Keep-Lane Errors in
Automated Vehicles

Faculty of Electrical Engineering and Information Technology

Master thesis in
Automated Driving and Vehicle Safety

BMW AG
Matrikel-Nr. 00119616

born in 19.09.1996 in Chidambaram

Sintpertstraße 46
81539 Munich

Supervisor: Dr.-Ing Ludwig Drees, BMW AG

Examiner: Prof. Dr.-Ing. Werner Huber, THI
Prof. Dr. rer. nat. Martin Ebert, THI

Start of thesis: 07.11.2022
End of thesis: 21.06.2023
Date of Presentation: 21.06.2023



Abstract
With the perpetual advancements in the field of automated driving, the first and foremost con-
cern with regard to the acceptance of the technology by the general public is safety assurance.
Safety assurance can only be established by displaying the consistency and reliability of the
technology, proving that the manufacturer has taken all possible actions to mitigate the failures
that might arise from the uncertainties and randomness that are introduced into the system.
Statistical quantification of risks arising from potential failures is a proven metric for safety
conformity as well as to determine acceptable safety levels. This thesis focuses on determining
the overall injury risk by simulation of lane-keeping failure in an automated vehicle. A highly
parameterized traffic model capable of simulating the interactive behavior of the automated
vehicle along with other road users in normal highway traffic conditions is described in this
thesis work. The overall injury risk is then determined by simulating the parameterized traffic
model based on Monte Carlo simulation methodology, such that the traffic model can simulate
the failure in nearly every possible traffic scenario, in concurrence with the likelihood of each
state of the individual parameters that define a traffic scenario. Quantification of the risk of
automated driving functions is important for safety validation, and it also provides statistically
significant insights for defining the tolerable limits for a functional failure.
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1. Introduction
In this introductory chapter, the objective behind the thesis and the overall approach is de-
scribed. The motivation is presented first, followed by the objective, and then the chapter
concludes with the structure outline of the thesis.

1.1. Motivation

Automated Driving (AD) technology has made significant advancements over the recent years
[1]. Among the numerous motivations for its development and deployment, the most impor-
tant ones are improving road safety, enhancing the traffic flow, and increasing accessibility and
mobility to individuals with limited conventional mobility opportunities.

According to a study conducted by the National Highway Traffic Safety Administration (NHTSA),
more than 90% of accidents on the roads are due to human error [2]. AD function has the
potential to eliminate or lower human error, which reduces the number of accidents on the
road. A recent study by the RAND Corporation [3] had published that with the AD functions
over the next few decades an estimation of about 300,000 deaths can be prevented. Research
has also shown that AD technology can improve the efficiency of traffic flow thereby lowering
traffic congestion. As per a study conducted by the University of Texas at Austin [4], with a
mere 10% of total cars on the roads having AD technology it could reduce traffic congestion by
up to 40%. Apart from this, AD technology can also optimize fuel consumption by eliminating
and or reducing unnecessary acceleration and braking, which lowers the fuel consumption and
emissions [5]. Moreover, the introduction of self-driving cars could potentially provide mobility
opportunities to people who are unable to drive, including the elderly, people with disabilities,
and low-income individuals.

The key challenge for the development and testing of AD technology [6], is ensuring its safety
and reliability as the function must be able to operate safely in all possible scenarios even dur-
ing partial or complete failure of the function. Therefore, as a solution scenario-based testing
is developed which is a very effective testing methodology [7], that focuses on verifying the
safety of the AD function virtually during potentially hazardous scenarios that might arise in
the real world during the operation of the AD function and cataloging both the results and test
cases. Generally, multiple supporting functions are required for AD technology, so the safety
and reliability of AD technology is dependent on the same for the supporting functions. One
of the most fundamental and important functionalities of AD technology is the lane-keeping
functionality. This ensures the safety of the passengers and other road users by maintaining
the vehicle inside the lane while driving in autonomous driving mode. Lane-keeping is a com-
plicated task, as it demands the vehicle to recognize and respond to the changes in the road
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conditions such as curves, slopes, and obstacles. Thus, the lane-keeping functionality might
have many unique challenges specific to different road types and driving scenarios.

Hence, the simulation of lane-keeping failure in AD function is a crucial step in evaluating the
risk of AD function in normal driving conditions. The simulation aids in studying the behavior
of the AD function and improving its robustness and reliability.

1.2. Objective

The main aim of this study is to assess the safety risk due to lane-keeping failure of the
AD function as estimated injury probability. This is achieved in three parts: First, to create a
mathematical model which represents the real-world behavior of the autonomous vehicle as well
as the behavior of other traffic participants involved. Second, to simulate the AD function with
lane-keeping failure in multiple discrete traffic scenarios using Monte Carlo simulation (MCS)
methodology. Third, to quantify the risk in the form of injury probability for different injury
levels that arise from the simulations.

1.3. Content and structure

A brief overview of the subject matter is provided in Chapter 1. The theoretical background
regarding the subject matter is introduced in Chapter 2. The implementation and methodology
of the study are discussed in Chapter 3. The source of the data set used in the study is
described in detail in Chapter 4. Simulation results and inferences are discussed in Chapter 5.
And finally, chapter 6 encapsulates the summary and subsequently gives a future outlook.
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2. Theoretical Background

2.1. Levels of vehicle automation

Among the major trends reflecting the ongoing transformation of the automotive industry, au-
tonomous driving continues to maintain a strong foothold in both its development and research
endeavors. Automation in vehicles refers to the extent to which a vehicle can operate and
manage its functions on its own without any human interventions. The Society of Automotive
Engineers (SAE) has developed a widely recognized classification system for categorizing the
different stages of vehicle automation into six systematic levels with a standardized framework
that defines the capabilities and limitations of automated vehicles [8, 9].

• Level 0 - No Driving Automation: All the responsibilities of the driving tasks are assumed
by the human operator.

• Level 1 - Driver Assistance: The overall control of the vehicle lies with the human
operator. However, the driving is assisted with the support of the automation system.

• Level 2 - Partial Driving Automation: A combination of multiple automated functions
are utilized for partial automation of the driving task. Nevertheless, the human operator
must still monitor the environment and control the overall driving task.

• Level 3 - Conditional Driving Automation: The driving tasks under defined operating
conditions are performed by the automated function itself. However, the human oper-
ator must always be prepared to regain control of the vehicle upon request from the
automated function.

• Level 4 - High Driving Automation: The automation system is capable of carrying out
the complete driving operation under defined operating conditions without relying on
the human operator to take back control. Nevertheless, the human operator may be
able to operate the vehicle when desired.

• Level 5 - Full Driving Automation: The automation system is capable of operating by
itself under all conditions without relying on the human operator. However, the human
operator may be able to operate the vehicle when desired.

2.2. Errors in automated vehicles

Vehicle system architecture is responsible for the control and implementation of different levels
of automation in the vehicle. An automated vehicle can be imagined as a cognitive technical
system comprising of three main modules in its system architecture [10, 11], as shown in figure
2.1. The first module is for the perception of the environment with use of sensors. The second
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module is for formulating the action plan for the vehicle based on the perceived environment.
And finally, the third module is for controlling the vehicle components in order to carry out
the formulated action.

Environment
perception

Motion
planning

Control and
actuation

Environment

Figure 2.1.: Automated vehicle system architecture modules

As AD is achieved with the use of multiple autonomous techniques, the complexity of the
function increases as well, potentially causing errors and failures that affect the system’s
stability, reliability, and safety. These issues must be resolved to mitigate and prevent any
severe safety concerns for the vehicle. Thus, a detailed analysis of potential errors from
AD technology is required to understand the present safety status. The errors from the AD
technology for different automation levels are categorized based on the three broad components
of the system architecture [6].

• Perception error : The environment perception module is responsible for the acquisi-
tion of sensor data about the surroundings to evaluate and formulate real-time action
decisions. The advancements in AD technology are directly tied to the reliability, sus-
tainability, complexity, and maturity of the sensing technology [12]. The three major
sources of this error are hardware, software, and communication. Hardware error can
arise from the degradation or failure of the sensors resulting in severe perception errors
leading to unsafe driving operations. The malfunction of the software can also lead to
a perception error. For vehicles with higher levels of automation, communication errors
can occur during the transmission of data between the road and the vehicle and/or with
other road users and/or with the cloud.

• Decision error : The motion planning module interprets the collected data from the
perception level and formulates the next course of action. The decision errors are mainly
due to system faults or human error. If the system algorithm is not able to effectively
determine all the potential hazards before formulating the next action, the safety of the
vehicle is compromised. In case of misjudgment by the system, the driver might require
additional time to take full control of the vehicle due to preoccupation with a secondary
task, thereby introducing uncertainties to the vehicle’s safety. Thus, the availability of
the driver must be factored in while designing the automated function to operate safely,
even during a decision error arising from single or multiple functional failures.

• Action error : The action and control module is responsible to execute the formulated
decisions from the motion planning module by controlling any and all of the vehicle
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actuators: steering wheel, throttle valve, or brake. Additionally, the actuators are also
monitored to confirm that the actions are executed and to formulate new deployment
decisions. Action errors arise from the malfunctioning of the steering system, exhaust
system, or power train which may threaten the safety of the vehicle. Human operators
will be capable of sensing these errors and halting the driving operation in a very short
response time. Therefore, the system must be designed to be able to detect the malfunc-
tion of the actuators and formulate actions to mitigate the effects of the malfunction
on the driving operation.

2.3. Approval of automated vehicles

Owing to multiple decades of experience in the development of the automotive field, the indus-
try and the regulatory bodies responsible for the validation and testing of the technology have
acquired the expertise to develop safety standards and validation methodologies. However,
these are majorly applicable to individual engineering components of the car as the develop-
ment of highly automated driving functions is relatively recent in the history of the automotive
industry. Thus, making the approval of the AD technology the most challenging aspect of its
development. As the assessment and standardization of AD functions is a complicated process
[13] which requires collaboration among system developers, regularity authorities, and other
stakeholders. The various steps involved in the approval of AD functions are development and
testing, compliance of standards, type approval, operational approval, and continuous evalua-
tion. The objective of the approval process is to ensure the safety, reliability, and functionality
of the system are in accordance with requirements in order to assure the customer that the
system is safe for usage.

Generally, AD functions have more than one objective, which includes, but is not limited to,
the safety and comfort of the passengers. Validation and assessment of the comfort objec-
tives are usually carried out with high reliability, either in a robust virtual environment or in
a controlled testing facility. On the contrary, it is more challenging and complex to do the
same for the safety objectives of the AD functions. The implementation of complicated active
safety devices on the basis of engineering intuition and expert knowledge alone is neither cost-
effective nor free of risk. The effectiveness of the safety feature of a particular AD function is
usually difficult to be extracted from the corresponding accident statistics alone. Furthermore,
the validation and evaluation of the safety feature based on accident statistics would require
long periods of observation which leads to a lag between the development and optimization
process in the V-model [14].

One of the most important differences with respect to the validation and approval between AD
functions Automation Level 3 and above (L3+) and driver assistance functions Automation
Level 2 and below (L2-) is the controllability and sudden intervention of the AD functions
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over the course of its operation. The L2- functions restrain from unanticipated and abrupt
interventions [15], as the focus of these L2- functions is to aid the driver who is primarily in
control of the driving, unlike in L3+ functions where the system takes control of the driving
task for a defined period of operation. The biggest challenge in the validation of AD function
[16] is to prove that the safety level of automated driving is acceptable when in comparison
with the current safety provided by human drivers.

Hazard and Risk Analysis (HARA) plays a major role in evaluating the safety and reliability
of the AD functions and this in turn is also necessary for the definition of safety goals for the
function. HARA involves a systematic evaluation of potential failure modes, testing the sys-
tem’s reliability, evaluating the reliability of individual components, and developing strategies
to mitigate failures and ensure that the system operates safely and efficiently. By identifying
and addressing potential issues proactively, reliability analysis will help to minimize the risk of
accidents and build public trust in the technology. Thus, it is evident that both functional
safety and safety of the intended function play a vital role in the testing and verification of
the safety of the AD functions.

2.4. Functional safety of automated vehicles

Functional safety is undoubtedly crucial to the development, approval, and release of a new
feature and/or function in a car, as it addresses and ensures the first and foremost requirement
which is the safety of the usage of the product. Standards are drafted to provide guidelines,
that can verify whether a product is capable of performing its functionality in a safe manner.
As they establish requirements, specifications, recommendations, and characteristics in order
to assure safety, reliability, and quality. International Organization for Standardization (ISO)
developed ISO 26262, an automotive functional safety standard that is applicable to electrical
and electronic systems comprising hardware and software components in vehicles. It defines
the requirements and specifications to be met by the safety-relevant functions of all the elec-
tronic and electrical safety-related systems, as well as by processes, methodologies, and tools
that are applied in the development process.

ISO 26262 standard is based on risk and the acceptance thereof. This standard establishes
guidelines to identify and assess the risk of hazardous operational situations qualitatively. It
also provides guidelines to define safety measures that can avoid and/or control systematic
failures, detect and/or control random hardware failures, and mitigate their effects. The stan-
dard also defines automotive-specific risk classes Automotive Safety Integrity Level (ASIL),
and provides guidelines for determining them based on the functionality of the system. On the
basis of ASIL, the standard also establishes the necessary safety requirements of the system
for achieving an acceptable residual risk. And most importantly it also provides guidelines to
draft and define the requirements for validation, verification, and confirmation measures to
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assure that an acceptable level of safety of the system is achieved.

The functional safety standard ISO 26262 is intended to stipulate the guidelines for hazard
and risk mitigation arising from the malfunctioning of electrical and electronic safety-related
systems, including the interaction within these systems. And as the standard does not stipulate
and regulate the nominal working condition of the system, the ISO standard is applicable for
any level of automated driving. However, in the context of the application of the standard
to AD systems, the challenges of the ISO 26262 standard arise first and foremost due to the
non-availability of the driver, as the driver will no longer be there to take over the control
in case of a system failure in AD functions. Second, in the form of a semantic gap due to
the complexity of the system because of a very high-level interconnection within the functions
of the system. Third, on how to validate and test reliability, safety and security of the AD
functions [17]. One of the contemporary approaches to reducing the function complexity is the
model-based approach which provides a flexible mapping of hardware and software functions
[18]. An iterative multi-level refinement was proposed to simplify the analysis in each step
which thereby bridges the semantic gap [19].

2.5. Safety Of The Intended Function

2.5.1. Overview of Safety Of The Intended Function

Functional safety concerns and problems of driver assistance functions (L2-) are generally
caused due to systematic failures or random hardware failures or uncertain input conditions.
On the contrary, for AD functions (L3+) in addition to these failures, failures could also oc-
cur due to an uncertain output that is obtained due to the use of Artificial Intelligence (AI)
algorithms. These uncertainties are unintended factors that can cause functional aberrations
from the automotive applications and may also lead to unsafe situations and in turn lead to
system failure. In general, the AI algorithms have a negative effect on the functional safety
design, as the AI algorithms owing to their uncertainties may lead to unpredictable system
failures, which in turn increases the vulnerability and risks of using these in the AD functions.
To address the risk of failure due to functional insufficiencies of the intended functionality
and/or foreseeable misuse of the function by the consumers, ISO had created a formal term
Safety Of The Intended Function (SOTIF).

ISO 21448 is a standard that provides a framework and guidelines for the design, verification,
and validation measures to prevent and avoid any hazardous risk arising from functional inad-
equacies such as the incompleteness of the specification of the intended function at a vehicle
level or the incompleteness of specification and/or performance shortfall in the implementa-
tion of the electrical and electronic components of the system. In order to assure the safety
of the intended function, any and all of the potential failure modes are addressed and the
respective measures are taken in order to prevent and/or mitigate the risk emerging from the
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potential failure hazards. This is very relevant since with the higher level of automated driving
functions the responsibility for the safety of the complete driving activity will solely rest on the
function and in turn on the system. Therefore, to comply with the safety norms there must
be substantial evidence and also a validation methodology that can quantify the safety of the
higher-level automated functions (L3+) both subjectively and objectively. ISO standards both
ISO 26262 and ISO 21448 jointly provide guidelines to address the shortfalls of proving the
safety of higher levels of driving automation (L3+).

The fundamental aim of SOTIF is to declare whether the indented function is safe by attempt-
ing to quantify the safety of the function. However, there exist undeniable technological gaps
and challenges in the specification of the intended function requirements and in its verification
at a system level. According to the generalized driving behavior proposed in [20] the important
objective of the driver is to maintain a constant level of task difficulty throughout the driving
activity wherein the task difficulty is objectively characterized based on the interdependent
characteristics of the task demand and its execution capability. If the execution capability is
more than the task demand the driving task difficulty is deemed as acceptable as it assures
that the driving task at hand can be executed without any shortcomings.

The SOTIF requirements of L3+, as proposed in [21], can be verified by analyzing its op-
erational scenarios and ensuring that the task difficulty of the driving activity by the system
is acceptable. The SOTIF requirements are defined based on the worst-case situations and
their corresponding severity in a predefined Operating Design Domain (ODD), where ODD of
a function indicates where and when the function is operated [22]. Alternatively, the work of
[23] suggests that a realistic estimation and determination of the vehicles’ capability can be
achieved via a scenario-based HARA that can combine both functional safety and SOTIF ap-
proaches to analyze the hazards. Risk evaluation and its acceptance thereof play an important
role in SOTIF, because a function can be regarded as safe only when the risks arising from
functional inefficiencies are lowered to a tolerable level. In general, the tolerable limits for risk
from AD functions are very high. The road users, who are the traffic participants in a scenario
including the automated vehicle, are the most influential stakeholder group in determining the
risk tolerance for AD functions [24].

2.5.2. Minimum Endogenous Mortality

The Minimum Endogenous Mortality (MEM) is a risk acceptance principle that mandates
that any new technology should not cause any significant increase in the individual risk when
compared to the already existing MEM rate. The MEM rates for different groups of the gen-
eral population are not the same and they are categorized based on the age of the group.
The lowest endogenous mortality rate in western countries is 5 ∗ 10−5 deaths per per-
son per year, and they belong to children in the age group between 5 and 15 years old. It
is prudent to note that these mortality rates are derived based on the data from the 1980s [25].

6



Theoretical Background

The present natural mortality rate in this modern world, as recommended in standards such
as EN 50126, can however be extrapolated from these rates based on the assumption that an
individual person is exposed to multiple systems (on an average 20) at the same time, resulting
in the minimum mortality rate as 2 ∗ 10−4 deaths per person per year [26]. Standard EN
50126, defines a significant increase as an increase of 5% in the MEM, about 10−6 deaths per
person per year, and this is set as the absolute upper limit where the risks above them are
considered to be unacceptable. Therefore, it can be concluded that MEM is used in the risk
acceptance analysis especially while introducing a completely new technology into the market
which is neither a replacement nor an extended version of the existing technology.

As MEM principle of risk acceptance sets an explicit target for the risk tolerance common
across all industries it is proven to provide strong arguments and reasoning for setting the
tolerance limit. Especially since the impact of a new technology is difficult to access before
the launch a uniform risk tolerance makes MEM widely accepted in the automotive industry
specifically in the context of automated driving.

2.5.3. Positive risk balance

The Positive Risk Balance (PoRiBa) principle was formulated based on the requirement drafted
by the German Ethics Commission for automated and connected driving: “The objective is to
reduce the level of harm until it is completely prevented. The licensing of automated systems
is not justifiable unless it promises to produce at least a diminution in harm compared with
human driving, in other words, a positive balance of risks.” [27]. The approach described in
[28], aims to provide a qualitative risk-benefit framework for the automotive industry which
can provide proof of reduction in the risk of automated vehicles in comparison with the exist-
ing human driving performance, which is adapted from the similar structured procedure in the
pharmaceutical sector called PROACT-URL.

The objective of PoRiBa is to create an acceptance of the AD functions by both the general
public and the authorities and PoRiBa can be broadly grouped into three parts. The first part
is safety as a measurement, which refers to the different methods that can prove the balance
of risks both quantitatively and qualitatively. The second part is safety as a threshold, which
refers to determining a threshold for safety using the concepts of risk acceptance principles [29]
to objectively determine if the risk balance is positive. The third part is safety as a process,
which refers to the fostering of a safety culture within the organization such that the processes
practiced in the organization are already proof of the required standards.

From the PoRiBa framework established in [28], it is evident that the assurance of risk balance
only at the end of the development doesn’t suffice, but rather it should be assured throughout
the development process from the beginning up until the release of the product.
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2.6. Stochastic in automated driving

2.6.1. Importance of stochastic and statistics

A stochastic process in probability theory is a mathematical object that is defined as a collec-
tion of random variables observed in a common probability space. It can be used to represent
the random evolution or change of a system [30]. There have been numerous studies aiming
to quantify traffic behavior in stochastic terms for highly immersive virtual simulations and
virtual validation techniques. For instance, Simulation of Urban Mobility (SUMO), developed
by the German Aerospace Center (DLR), exploits the stochastic behavior of urban traffic to
conduct simulations that closely resemble reality. These simulations can be further utilized for
virtual validation and/or monitoring [31].

The importance of statistics has increased significantly in the automotive industry, especially
with the growth of AD technology. The statistical analysis [32] plays a vital role in enabling
engineers to infer meaningful insights from data, evaluate functional performance, and assist
in making reliable decisions. The study from [33] emphasizes the importance of statistical
methods in evaluating the safety performance of automated driving technologies. Statistical
models and techniques enable determining the performance metrics, analyzing the different
potential failure modes, and in turn, evaluating the safety risk assessment. Thus, incorporat-
ing the statistical insights from the concept phase will lead to the development of robust and
reliable automated driving systems.

The backbone of AD technology is built upon the integration of multiple sensors, intricate
algorithms, and decision-making processes. Uncertainties and randomness are inherently intro-
duced into the system warranting for its necessity to be addressed during the safety validation
of the function. MCS is one of the prominent statistical techniques that ventures a unified
approach to engulf the stochastic nature of traffic atop the inherent uncertainties to validate
the safety of AD technology.

2.6.2. Monte Carlo simulation

2.6.2.1. Overview of Monte Carlo simulation

Monte Carlo simulation, also known as Monte Carlo Method or multiple probability simulation,
is a powerful statistical technique used to model and estimate the possible outcomes of an
uncertain event. The fundamental principle of MCS is based on ergodicity, which describes
the statistical behavior of a moving point in an enclosed system following either a discrete
time-dependent path or a randomized path. The moving point will eventually pass through
all the parts of the enclosed space. MCS simulates complex systems using multiple random
sampling such that all possible outcomes along with the individual probability of each outcome
are obtained.
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2.6.2.2. Monte Carlo integration

One of the most common applications of MCS is the Monte Carlo integration (MCI), whose
objective is to estimate the integration of high dimension functions. Instead of relying on
the discretization of the function for determining its integral as employed in the conventional
numerical approach, MCI uses random sampling to estimate the integral of a function as the
mean expected value of a random variable.

The fundamental principle of Monte Carlo integration is to evaluate the function at different
randomly generated points within the integration domain [34]. The estimated integral value
is determined by taking the average of the function values and scaling them by the size of the
integration domain. For further understanding, a definite integral of a function f(x) over a
closed interval [a, b] is considered as shown in equation 2.1.

I =
∫ b

a
f(x) dx (2.1)

To approximate the integral function in equation 2.1 using MCI, firstly Ns random points, xi ,
are generated between the interval [a, b] . And the function is evaluated at each of the random
points and scaled based on the integration domain as shown in equation 2.2. From the law
of large numbers, it is inferred that with the increase in the number of samples the expected
value of a random variable approaches its empirical mean.

ˆINs ≈ b − a

Ns

Ns∑
i=1

f(xi) (2.2)

The bias of the result from MCI is zero, as the result is the mean expected value of an
estimator. The variance of the result is dependent on the number of random sample points,
as given in equation 2.3. Therefore, it can be inferred that the variance of results, in turn, the
precision from MCS, is dependent on the number of random sample points generated.

V ar( ˆINs ) = V ar

(
1

Ns

Ns∑
i=1

f(xi)
)

= 1
N2

s

V ar

(
Ns∑
i=1

f(xi)
)

= 1
Ns

V ar ( f(x) ){
V ar(ax) = a2V ar(x) & V ar(x + y) = V ar(x) + V ax(y)

}
(2.3)

The biggest advantage of MCI is its ability to handle complex functions and high dimensional
spaces, which are either computationally expensive or impractical using conventional methods.
On the contrary, the shortfall of MCI is that the convergence rate of the solution is slower in
comparison to other numerical methods. As precision in MCI is dependent on the number of
samples, high precision demands a large number of simulation samples. Techniques such as
importance sampling and stratified sampling have been developed to improve the convergence
with the help of strategic statically principles without the necessity to increase the number of
random samples drastically.
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In importance sampling instead of generating random samples from its corresponding distribu-
tion, rather it is sampled from a distinctive distribution function called importance distributions
that generates sample points on the region of the distribution that has a strong contribution to
the given problem. The results from the samples based on the importance distribution function
are weighted by the importance factor to obtain the integral estimate. In this method, the
variance of the result is reduced as more samples are generated in the significant region of the
problem.

In stratified sampling, the integration domain is divided into smaller, equal-sized regions, and
random samples are generated within each of these regions. Hence, as the name suggests
even distribution of sample points across the integration domain are generated, which in turn
improves the convergence and lowers the variance of the result.

2.6.2.3. Monte Carlo simulation in SOTIF analysis

The MCS technique innately incorporates randomness and uncertainty into its statistical frame-
work while simulating and analyzing the behavior and performance of a system. In contrast
to traditional testing methods, MCS proposes a systematic and probabilistic approach, aiming
to generate scenario cases randomly from the complete range of possible scenarios. This ap-
proach attempts to capture most of the critical edge cases by accounting for various factors
like sensor noise, environment conditions, and traffic patterns as input to the simulation.

By running multiple iterations of simulations with random inputs, MCS enables researchers
and engineers to evaluate the performance and robustness of automated driving systems. It
helps identify potential failure modes, assess risk factors, and optimize algorithms to enhance
the vehicle’s ability to handle challenging situations. Moreover, the statistical nature of Monte
Carlo simulation provides valuable insights into the system’s behavior and performance under
different conditions, offering a more comprehensive understanding of the vehicle’s capabilities
and limitations.

An MCS model for any system comprises of four essential steps. The first step is to identify
the transfer equation which can quantitatively represent the behavior of the system by means
of mathematical expressions. The second step is to define the distributions of the input pa-
rameters to the simulation model. The input parameters are modelled as random variables
with a probability distribution, considering the uncertainty and randomness of each parameter,
instead of being modelled as deterministic values. The third step is to set up the simulation
by preparing a large data set for each input parameter that is sampled at random. The fourth
step is to analyze the final outcome of the simulation for each of the combinations of the input
parameters, according to the transfer equations that represent the behavior of the system.

The framework represented in [35], can generate a probability distribution encompassing all
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possible combinations of motions with reasoning for multiple objects, non-automated vehicles,
and other road users in a road scene using MCS. Merely considering the distance between two
objects on the road alone is not sufficient to conclude if the scenario is safe in the immediate
future. Instead, the behavior of all road users is necessary. The proposed system predicts the
best possible action based on the impact of predicted future motions on the vehicle under
study as well as on the other vehicles.

MCS methodology can be employed for determining the occurrence and severity of scenario-
specific hazards in order to quantify the risks for a particular scenario. The study carried
out by [36] aimed to determine the severity and exposure of potential hazards for a vehicle
operating under AD condition while experiencing a cut-in scenario. The input parameters
MCS are marginalized to fit an estimated probability and then given as input to the simulation
model. Based on the percentage of collision obtained from MCS and the exposure value of
such a scenario, the collision risk is estimated.

2.7. Injury severity and collision types

2.7.1. Injury severity classification

The Abbreviated Injury Scale (AIS) [37], has been widely used for the classification of traumatic
injuries, particularly those caused by automobile collisions by the Medical Engineering Accident
Investigation Teams of the NHTSA, by the NATO Country Teams in Europe, etc. Injury
Severity Score (ISS), [38, 39], is a quantitative methodology that describes the threat to
human life arising from vehicle accidents based on its corresponding AIS injury scores. Injury
severity levels in the automotive industry are generally categorized on the basis of Maximum
Abbreviated Injury Scale (MAIS), which indicates the maximum value of all AIS scores, from
all of the injuries. The different levels of injury severity according to different metric standards
are listed in the table 2.1.

Injury severity level Severity scores
and definition MAIS Destatis ISO

IL1 - Slight injury AIS1 - AIS2 Leichtverletzte S1
IL2 - Severe injury AIS3 - AIS4 Schwerletzte S2
IL3 - Fatal injury AIS5 - AIS6 Getötete S3

Table 2.1.: Injury severity mapping for different classifications

In any traffic simulation study, the most important measurement metric for safety is the injury
estimation arising from the possible collisions in the simulations. Injury estimation of a collision
is indicated as the probability of different injury levels arising from the collision, depending on
the type of collision and the corresponding accident parameters, such as the colliding object,
the impact velocity, the collision angle, and so on.
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Injury Risk Function (IRF), [40], for a particular injury severity with a specific collision type in-
dicates the probability trend of the particular injury severity with respect to important accident
parameters, impact velocity is most commonly used for this purpose of indicating the proba-
bility trend. IRF is developed as a methodology to quantify the risk of collision, by mapping
the likelihood of the injury severity with respect to its corresponding accident parameters. For
each severity level specific to a particular collision type, a specific IRF is required to predict
the injury probability.

2.7.2. Collision types

Generally, a road accident might involve multiple collisions and for the purpose of this thesis,
a collision is defined as an instance where one vehicle is striking an obstacle or another vehicle
thereby restricting the maximum number of vehicles involved in a collision to two. Collisions
in road accidents are classified into different collision types based on the point of impact, the
direction of the approaching vehicle, and finally the angle of collision. For collisions involving
two vehicles, each vehicle can experience either the same or a different type of collision. The
different types of collisions from the perspective of a single vehicle are illustrated in figure 2.2.

(a) Rear-end Vs car (b) Full frontal Vs car (c) Small overlap frontal Vs car

(d) Sideswipe Vs car (e) Driver far side impact Vs car (f) Driver near side impact Vs car

(g) Sideswipe Vs Obstacle (h) Full frontal Vs Obstacle (i) Small overlap frontal Vs Obstacle

Figure 2.2.: Illustration of different types of collision
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3.1. Function description

3.1.1. Operating Design Domain

The safety of AD function that is assessed in this thesis work is SAE Automation Level 3 Driving
Function (L3 Function). The vehicle under investigation, which is using the L3 Function, is
henceforth regarded as the host vehicle or as Ego in this thesis work. The Operating Design
Domain of the function, is assumed, without contradiction, to be between 1 to 60 kmph in
highway traffic conditions. Two possible driving modes are available within the scope of the
assumed ODD for the host vehicle, and it is dependent on the velocity of the host vehicle. The
first mode is normal driving which is operated between 30 to a maximum of 60 kmph. The
second mode is the emergency corridor maneuver, which is operated between 1 to a maximum
of 30 kmph. Additionally, an inbuilt safety functionality Avoid Side Collision (ASC) is included
in the L3 Function, which prevents the lateral collision of the host vehicle with the neighboring
vehicle or lowers the impact thereof, by braking the host vehicle when the necessary braking
conditions are satisfied.

3.1.2. Scope of the study

The aim of this study is to simulate the failure of lane-keeping functionality by introducing a
Keep Lane Error (KLE) in the L3 Function and estimate the injury risk probabilities due to
the collisions arising from the KLE. Lane-keeping error is introduced to the L3 Function as an
involuntary lateral drift of the host vehicle having a constant turning radius. Collision avoid-
ance measure limited to the scope of this study is only the braking of the neighboring vehicles
and/or the host vehicle (as ASC functionality). Other collision avoidance maneuvers such as
steering and acceleration are out of the scope of this study. The injury estimation of collision
arising from KLE in this study is limited to a maximum of two vehicles - the host vehicle
and the neighboring vehicle which with the host vehicle participates in the immediate collision
alone. The impact of the collision on the remaining traffic participants is out of the scope of
this study and their impact on the overall injury estimation is also out of the scope of this study.

The collisions in the simulation can be broadly categorized into two parts, collision of the
host vehicle with another traffic participant and collision of the host vehicle with road edge
obstacles or hazards. The different types of road users that are included in the scope of
this study are cars, trucks/buses, and motorcycles. The different types of road edge hazards
that are included in the scope of this study are trees, lamp-posts, guardrails, guardrail ramps,
break-down vehicles, and pedestrians.
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3.2. Influential factors for injury risk

In order to study in detail about injury risk of a scenario, the severity of the collision as well
as the corresponding conditions which had consequently led to a collision must be examined
closely. Therefore, the following section describes the different factors which are responsible
for the occurrence of the collision and also the factors that decide the severity of the collision.
A simple representation of the factors is shown in figure 3.1, where the factors on the left side
influence the occurrence of the collision and the factors on the right side influence the severity
of the collision.

Factors influencing
the injury risk

Traffic participants’
initial conditions

Road geometry

Error behaviour

Traffic participants’
controllability

Colliding object

Type of collision

Figure 3.1.: Factors that influence the collision in a simulation

• Road geometry describes the different features of the road such as the width of the lane,
number of lanes, curvature of the road, the distance of the guardrail from the end of
the lane edge, etc, which are responsible for collisions in the simulation. Lane width will
decide the lateral distance that is available for the host vehicle to drift until it crosses
its own lane and invades the neighboring lane. The number of lanes along with the
initial positioning of the host vehicle will decide the maximum lateral distance available
for the host vehicle until the road edge. The curvature of the road is an essential factor
to determine the deviation due to lane-keeping failure. The distance to the guardrail
from the road edge is also important in determining the total plausible lateral drifting
distance available for the host vehicle until it completely exits the road and collides with
the guardrail or any other obstacle that may be present along the road edge.

• Traffic participants’ initial conditions will decide both the nature and the type of collision
of the host vehicle with another traffic participant. This entails the initial positioning,
the initial velocity, and also the initial time headway to the next vehicle both for the
host vehicle as well as for the neighboring vehicle in the simulation. The traffic density
is a measure of indication of the degree of closeness of vehicles in a simulation and time
headway is one of the most common means of indication of the traffic density along a

2



Methodology

particular lane. The combination of the relative positioning and relative velocity of the
neighboring vehicle with respect to the host vehicle is crucial to determine whether a
collision is imminent, it is also necessary to determine whether the imminent collision
will occur either with another traffic participant or with the road edge feature. Initial
conditions of the traffic participants are also required to determine the exact instant in
the simulation at which the imminent collision would occur.

• KLE characteristic is the most influential factor for the collision of the host vehicle which
is operating under L3 Function. As this error triggers the vehicle under L3 Function
to stray away from the intended safe path and cause the potential collision. KLE is
very dynamic in nature and hence for simulation and modelling purposes, this error is
assumed, without contradiction, to be a constant turn radius for a particular duration.
The resulting collision due to the KLE is considered as the measure of the potential risk
which would be caused by the failure of the lane-keeping functionality in the L3 Function.
The KLE turn radius is independent of the curvature of the road and it is bidirectional
in nature, meaning the host vehicle is expected to drift away from the intended path in
both directions at a constant turning radius regardless of the road curvature throughout
the simulation for a certain duration of time.

• Colliding object is one of the most vital aspects in determining the severity of the
collision. The most important and crucial deciding factor in the estimation of the injury
levels in case of a collision is delta-V. Delta-V is majorly dependent on the object type,
because it is derived based on the conservation of momentum principle. The nature of
the motion of the colliding object, that is whether the object is fixed or is in motion,
along with the weight of the colliding object will affect the conservation of momentum
principle which in turn affects the estimation of delta-V.

• Traffic participants’ controllability plays a very important role in lowering and mitigating
the effects of an imminent collision. Controllability measures considered in this study
are the braking of the host vehicle due to the ASC functionality and the preventive
braking of the neighboring vehicle because of a perceived danger arising from the lane
intrusion of the host vehicle due to the KLE. This braking of the traffic participants
can either completely avoid the imminent collision altogether or can lower the impact
velocity, consequently the delta-V, and potentially delay the collision.

• Type of collision also plays an important role in deciding the severity of the collision.
As the type of collision dictates exactly the effects of the collision on all of the vehicles
involved in it, and thus it is essential to determine the type of collision in order to
properly estimate the injury level of the collision. The different types of collisions that
are considered in this study are head-on frontal collision, rear-end collision, far-side
impact collision, near-side impact collision, small overlap or small offset frontal collision,
and sideswipe collision. The collision type, together with the colliding object type and
the impact velocity determines the overall estimation of the injury level.
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3.3. Traffic model

This section will describe in detail the traffic model for an automated vehicle with lane-keeping
failure in normal highway traffic conditions. A depiction of the highway traffic model is shown
in figure 3.2. The figure represents a traffic scenario under normal highway traffic on a 3-
lane-highway road, Where the road is curved to the right from the top view. The host vehicle
is driven under L3 Function with a KLE forcing the host vehicle to turn to the left, from
the top view, at a constant turn radius. The other traffic participants, i.e., neighboring vehi-
cles, are driving along the curvature of the road without any deviation from the road curvature.

The simulation leads to the collision between the host vehicle and the neighboring vehicle as
the host vehicle deviates from its path and enters into the neighboring vehicle’s lane, i.e.,
drifting of the host vehicle from its initial position in lane 2 onto lane 3 due to KLE. The
longitudinal direction of the vehicle is depicted along the horizontal direction (x-axis) and the
lateral direction of the vehicle is depicted along the vertical direction (y-axis) in the model
depiction.

Figure 3.2.: Depiction of highway traffic model

3.3.1. Assumptions

In order to determine the reliability of the L3 Function, the first and foremost important as-
sumption considered is that the failure of the L3 Function was caused only because of the
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failure of one essential functionality of the L3 Function, which is the lane-keeping functional-
ity. The remaining functionalities involved in the system during the operation of L3 Function
are considered to be operating in perfect working condition. The sensory information that
indicates the relative distance and relative velocity of the other traffic participants, i.e., the
neighboring vehicles, are assumed to be accurate without any tolerance error.

The traffic model is simulated only from the beginning of the KLE either until the end of the
error or until a collision occurs, whichever occurs earlier. The injury estimation of the colli-
sions arising from the simulations is based on injury risk functions, which are models derived
from prior literature reviews, and they are also assumed to be applicable and valid for this study.

It is also assumed in this study that the traffic participants are considered to have no change in
acceleration throughout the simulation unless an appropriate response of braking is warranted
by the neighbor due to the lane intrusion of the host vehicle and/or by the host vehicle when
the conditions of the ASC are satisfied. Braking behavior in this model is considered to be
constant, and the deceleration build-up time is neglected in this model. The road curvature is
modelled to have a constant radius of curvature for each of the lanes in the model. Since the
model is simulated only when a KLE occurs during the L3 Function, a conservative assumption
of constant road geometry throughout the simulation is considered.

3.3.2. Input parameters

The traffic model in this study is developed for simulating a functional scenario in which the
lane-keeping functionality fails in an automated vehicle operating in normal highway traffic
conditions under L3 Function. The proposed traffic model is capable of simulating multiple
concrete scenarios using the MCS methodology. A concrete scenario is described in detail with
the help of scenario parameters which would be providing exact information and details that
are essential to reconstruct the scenario in a virtual and or in a real environment for further
research and validation.

The model input parameters that are required to derive further dependent model parameters
that are essential for the description of the concrete scenarios of highway traffic scenarios
are broadly categorized into three categories: ambient characteristics, ego characteristics, and
neighbor vehicle characteristics. Parameters belonging to each of these categories are listed
in figure 3.3. The description of these parameters and their influence on the traffic model is
discussed further in this section. A detailed description of the model input parameters along
with the distribution of the parameter states for each of the model parameters considered in
this traffic model is elaborated in chapter 4.
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Model input parameters

Ambient characteristics
parameters

Road curvature

Number of lanes

Lane width

Lane markings’
width

Lane end to
road edge

Driving mode

Number of
road users

Ego characteristics
parameters

Centering error

Host vehicle
lane number

Initial emergency
lateral shift fraction

Initial longitu-
dinal position

Initial velocity

KLE duration

KLE drift radius

Neighbor characteristics
parameters

Neighbor vehicle type

Neighbor vehicle
lane number

Centering error

Initial emergency
lateral shift fraction

Neighbor
time headway

Initial lane-wise
longitudinal position

Initial lane-
wise velocity

Driver brake
reaction time

Figure 3.3.: Input parameters for highway traffic model

3.3.3. Model description

The traffic simulation model is built on an inertial reference frame X-Y as shown in figure
3.4, where the longitudinal measurement of the traffic scenario is along the X-axis and the
lateral measurement is along the Y-axis. All the paths taken by the vehicles and the curvature
of the road are depicted as circles, where the centers of all the curves lie along the Y-axis.
The X-axis of the X-Y frame is positioned on the rightmost edge of the road lying on the Y-axis.

The positive values along the X-axis indicate longitudinal measurements along the direction
of forward motion and vice versa for the negative values. Similarly, the positive values along
the Y-axis indicate lateral measurements along a direction from the right side of the road to
the left and vice versa for negative values.
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The path of the host vehicle is controlled by the KLE drift radius, rKLE , for a duration of
tKLE , and the path of the other vehicles are along the curvature of the road, rroad . The
direction of the turn with respect to the X-Y frame is represented by the sign of the turn
radius, where a right turn is indicated by a negative radius and a left turn by a positive radius
value. The positions of the vehicles with respect to the inertial frame are not continuously
determined, but discretely at the frequency of 10 Hz , i.e., the positions are determined for
every tenth of a second implying that every instant of the simulation is 1/10th of a second
apart from one another.

The lane width of the road is represented as WL and the lane makings’ width is given by
WLM . For any vehicle in a scenario, $ , the track width is indicated as TW$ and the wheel
base is denoted as WB$ . The number of lanes in a scenario is denoted by nLanes , and the
lane assigned to any vehicle is designated by nLane, $ . The distance between the lane edge
to the road edge from the leftmost lane is denoted by LTRleft and by LTRright from the
rightmost lane. Positions of all the vehicles in the proposed traffic model are indicated by the
co-ordinates of their corresponding centers. The subscripts E & β denote the attributes of
the host vehicle and neighbor vehicles respectively.

Figure 3.4.: Traffic model concept
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3.3.4. Initial position calculation

Determining the starting positions of all the vehicles in the traffic model with respect to the
inertial reference frame X-Y is the first and foremost step. Both the driving mode in the
ODD of the L3 Function understudy is incorporated in the proposed highway traffic model.
Where DMode, EC denotes the emergency corridor driving mode and DMode, ND denotes the
normal driving mode. The initial lateral positioning offset of the vehicles at the beginning of
the simulation is dependent on the driving mode of the scenario and also on the lane assigned
to the corresponding vehicle. The initial lateral offset of the vehicles due to the emergency
corridor situation is as indicated in figure 3.5.

(a) 2-lane road (b) 3-lane road (c) 4-lane road

Figure 3.5.: Illustration of emergency corridor in multi-laned roads

As shown in equation 3.1, the initial lateral shift of each vehicle for emergency corridor ma-
neuver, y0, shift, $ , is influenced by a fraction of the initial emergency lateral shift, percshift$ .
And the corresponding lateral shifting side, y0, shift, $, side , is dependent on the lane to which
the vehicle is assigned.

y0, shift, $, side =

 −1, if nLane, $ = nLane

+1, otherwise { $ ∈ All vehicles in the scenario }

y0, shift, $ =

0, if DMode, ND

( WL − TW$ ) ∗ 0.5 ∗ fracshift$ − 0.2, if DMode, EC

(3.1)

The initial center-line offset, CO$ , is the overall lateral offset of the vehicles at the start of
the simulation. As given in equation 3.2, CO$ is influenced by the initial centering error, C$ ,
and the initial lateral offset corresponding to the emergency corridor maneuver alone.

CO$ = y0, shift, $ ∗ y0, shift, $, side + C$ (3.2)

From the center-line offset the initial lateral position of all the vehicles, y0, $ is calculated
using equation 3.3.

y0, $ = ( nLane, $ − 0.5 ) ∗ WL + ( nLane, $ ∗ WLM ) + CO$ (3.3)

8



Methodology

For a neighbor vehicle, βq , designated to lane, nLane, βq , with q − 1 vehicles behind it,
the distance of its initial position from the Y-axis along the curvature of the road, ˜d0, βq ,
is dependent on ˜d0, βq−1 , and tHW, βq−1 as given in equation 3.4. Where ˜d0, βq−1 is the
distance of the initial position of βq−1 , which is the vehicle immediately behind βq in the
same lane, from the Y-axis along the curvature of the curvature. And tHW, βq−1 denotes the
time headway distance between βq−1 & βq in seconds. In this traffic model, it is assumed,
without any further contradiction, that the initial velocity of all the vehicles along a lane is
the same. Therefore, the initial velocity of βq−1 is same as that of βq which is v0, βq .

˜d0, βq =


˜d0, nLane, l

, if q = 1 ⇒ no vehicles behind
˜d0, βq−1 + d0, βq ∗ tHW, βq−1 +

0.5 ∗ ( TWβq + TWβq−1 ) , otherwise

{ βq ∈ All neighbors : nLane, βq ̸= nLane, E }

(3.4)

The initial longitudinal position of the neighbor vehicle on the inertial reference frame, x0, βq ,
is calculated from ˜d0, βq as shown in equation 3.5.

x0, βq = rroad ∗ sin
˜d0, βq

rroad

{ βq ∈ All neighbors : nLane, βq ̸= nLane, E }
(3.5)

3.3.5. Maximum permissible lateral drift due to KLE

The maximum lateral distance that the host vehicle can travel due to the KLE before reaching
the edge of the road, where road edge hazards such as guardrails, trees/poles, pedestrians,
etc, exist, is denoted as the maximum permissible lateral drift, DTE . Depending on the
direction and magnitude of the KLE drift radius and the curvature of the road, the DTE can
either be the distance from the host vehicle to the leftmost road edge or to the rightmost road
edge.

The resulting drift direction in a scenario arising from different combinations of road curvature
and drift curvature is explained in table 3.1. This is determined mathematically as given in
equation 3.6, where driftside is positive when the resultant drift is towards the left side of

Case KLE curve Road curve Radius comparison Resultant drift
Case 1 To right To right | rKLE | < | rroad | To right
Case 2 To right To right | rKLE | > | rroad | To left
Case 3 To right To left Either way To right
Case 4 To left To left | rKLE | < | rroad | To left
Case 5 To left To left | rKLE | > | rroad | To right
Case 6 To left To right Either way To left

Table 3.1.: The resultant drift direction due to road and KLE curvature
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the road and negative when the resultant drift is towards the right.

driftside =

 1 ∗ signum( rKLE ) , if signum( rKLE ) ̸= signum( rroad )

1 ∗ signum( rKLE ) ∗ signum( | rroad | − | rKLE | ) , otherwise
(3.6)

The lateral distance between the host vehicle and the leftmost edge of the road in the scenario,
DTEleft , is determined using equation 3.7.

DTEleft = (nLanes − nLane, E + 0.5) ∗ WL − 0.5 ∗ TWE − COE

+ (nLanes − nLane, E + 1) ∗ WLM + LTRright

(3.7)

And the lateral distance from the host vehicle to the rightmost edge of the road, DTEright ,
is given by the equation 3.8.

DTEright = (nLane, E − 0.5) ∗ WL − 0.5 ∗ TWE + COE

+ (nLane, E ) ∗ WLM + LTRleft

(3.8)

DTE for a given traffic scenario is dependent on the resultant drift direction of the host
vehicle and it is expressed as shown in equation 3.9.

DTE =

 DTEright if driftside < 0

DTEleft if driftside > 0
(3.9)

In order to calculate the time taken for the host vehicle to cover the lateral drift, tC,Ed , the
intersection of the paths taken by the host vehicle with the road edge curve must be deter-

Figure 3.6.: Intersection of the host vehicle’s path with the road curvature
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mined. This intersection is visualized in figure 3.6, where the curvature of the host vehicle,
Ego path, and the curvature of the road, Road curve, are illustrated in a shifted co-ordinate
frame, X’-Y’. In this frame, the center of the circle representing the host vehicle’s path lies
at the origin, and the radius of the curve is positive for a left turn and negative for a right turn.

To calculate the intersection of the two curves, the distance between the centers of the two
curves, denoted as y′

center,offset , is important. It is determined using equation 3.10. The initial
vertical distance between the two curves is the maximum permissible lateral drift, DTE , refer
to equation 3.9.

y′
center,offset = rroad − rKLE + DTE ∗ driftside (3.10)

The equation of the two circles is given in 3.11, where x′ & y′ are the X & Y co-ordinates
along the curves in X’-Y’ frame.

x′ 2 + y′ 2 = r2
KLE

x′ 2 + ( y′ − y′
center,offset)2 = r2

road

(3.11)

The intersection of the two circles is given by equation 3.12, where y′
int is the point of

intersection of the two curves on the Y-axis.

y′
int = ( y′

center,offset + r2
KLE − r2

road

y′
center,offset

) ∗ 0.5 (3.12)

Finally tC,Ed is calculated using equation 3.13, where v0, E is the initial velocity of the host
vehicle.

tC,Ed = cos−1 ( | y′
int |

| rKLE |
) ∗ | rKLE |

v0, E
(3.13)

3.3.6. Trajectory tracking

The trajectories of all the vehicles are determined by the traffic model to get their exact posi-
tion throughout the simulation for any particular scenario. The model calculates the vehicle’s
center at every instant of the simulation, in δt increment, depending on the velocity, v , and
the curvature of the designated path of the corresponding vehicle, r . Based on the dimen-
sion and orientation of the vehicles, the traffic model can calculate the co-ordinates of all the
vehicle corners from the co-ordinates of its center.

In any given scenario, the host vehicle follows a designated path denoted as rKLE , while
the other vehicles follow the path of the road, represented by rroad . Therefore, at any given
instant, t , the total distance traveled by the vehicle from its initial position along its respective
path, denoted by d(t) , can be determined as given in equation 3.14. It relies on the velocity
of the vehicle at every instant of the simulation from the beginning of the simulation up until
the instant t .
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d(t) =
t∑

T =1
v(T ) ∗ δt (3.14)

The corresponding angle of orientation of the vehicle with respect to the inertial reference
frame X-Y, denoted as ϕ(t) , is obtained from d(t) using equation 3.15.

ϕ(t) = sin−1( d(t)
r

) (3.15)

As multiple vehicles are present in the simulation, the trajectories don’t always begin from the
origin of the X-Y frame. Thus, equation 3.16 includes the impact of the initial X co-ordinate,
x0 , on ϕ(t) . And equation 3.17 includes the effects of the initial Y co-ordinate, y0 , on ϕ(t) .

ϕ0 = sin−1( x0

r
)

ϕ(t) = ϕ(t) + ϕ0

(3.16)

The exact X and Y co-ordinates of the vehicle center at an instant t is calculated as shown
in equation 3.17 and it is illustrated in figure 3.7.

xcenter(t) = r ∗ sinϕ(t)

ycenter(t) = r ∗ ( 1 − cosϕ(t) ) + y0
(3.17)

Figure 3.7.: Trajectory of vehicle center

The X and Y co-ordinates of the vehicle center, as given in equation 3.17, are used to project
the vehicle as a rectangle using equation 3.18. The four corners of the rectangles upper left,
upper right, lower right, and lower left are denoted as UL , UR , LR , and LL respectively.
The rotation of the rectangle (vehicle) follows a clockwise direction for a curve with a negative
radius (right turn) and vice versa. Geometrically, it can be inferred that the magnitude of
rotation of the rectangle is equal to the magnitude of the angle at the center of the curve for
any point along it, but with opposite signs. Therefore, the negative value of ϕ(t) is used as
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the angle of rotation of the rectangle in equation 3.18.

xUL(t) = xcenter(t) − cos(−ϕ(t)) ∗ ( WB )/2 + sin(−ϕ(t)) ∗ ( TW )/2

yUL(t) = ycenter(t) + sin(−ϕ(t)) ∗ ( WB )/2 + cos(−ϕ(t)) ∗ ( TW )/2

xUR(t) = xcenter(t) + cos(−ϕ(t)) ∗ ( WB )/2 + sin(−ϕ(t)) ∗ ( TW )/2

yUR(t) = ycenter(t) − sin(−ϕ(t)) ∗ ( WB )/2 + cos(−ϕ(t)) ∗ ( TW )/2

xLL(t) = xcenter(t) − cos(−ϕ(t)) ∗ ( WB )/2 − sin(−ϕ(t)) ∗ ( TW )/2

yLL(t) = ycenter(t) + sin(−ϕ(t)) ∗ ( WB )/2 − cos(−ϕ(t)) ∗ ( TW )/2

xLR(t) = xcenter(t) + cos(−ϕ(t)) ∗ ( WB )/2 − sin(−ϕ(t)) ∗ ( TW )/2

yLR(t) = ycenter(t) − sin(−ϕ(t)) ∗ ( WB )/2 − cos(−ϕ(t)) ∗ ( TW )/2

(3.18)

3.3.7. Collision detection

After calculating the trajectories of the vehicles, the next step is to determine whether a col-
lision occurred between the host vehicle and the neighboring vehicles during the simulation.
The vehicles are represented as rectangles throughout the simulation, and their corresponding
X and Y co-ordinates are available at each instant. Therefore, when two rectangles represent-
ing the two vehicles intersect with one another it indicates that a collision occurred in the
simulation. There are few built-in MATLAB functions that can detect the intersection of two
rectangles. The first function is "rectint", which determines if two non-rotated rectangles are
intersecting. However, this function can not handle rotated rectangles. The second function
is "intersect", which converts the rectangles into polygons and calculates the area of overlap
between the polygons. Nevertheless, this approach is computationally very expensive. In order
to overcome the limitations of these functions, an adaptation of the separating axis theorem is
employed in the proposed model to detect intersections between two rectangles. This method
offers an efficient solution for collision detection in the simulation.

The Separating Axis Theorem states that two non-convex-shaped objects are separate if there
exists a straight line that can separate the two objects. When applying the separating axis
theorem to identify the intersection between two polygons, both together having ’m’ edges in
total, all the corners of the polygons are projected onto the ’m’ principal axes. The principal
axes are parallel to the edges of the polygons. According to the theorem, the two objects
intersect only when the projected edges overlap on all of the principal axes. In other words, if
there exists a principal axis where the projected corners do not overlap, it can be mathemat-
ically proven that there exists a straight line that can separate the two polygons. Therefore,
by analyzing the overlap of the projected corners on the principal axes, the separating axis
theorem can be used to determine whether or not two polygons intersect.

When adopting this theorem to the intersection of two rectangles, the number of unique (non-
parallel) principal axes reduces to four, PA1 - PA4 . As the opposite edges of a rectangle
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are parallel to each other. The separating axis theorem is depicted for two rotated rectangles,
A & B, in figure 3.8. Where the projected corners of these two rectangles overlap on all four
principal axes. Principal axes are anchored from the origin, and the X & Y co-ordinates of a
point on each of the principal axes at a given instant of the simulation are calculated by using
equation 3.19.

xP A1(t) = xA, UR(t) − xA, UL(t) & yP A1(t) = yA, UR(t) − yA, UL(t)

xP A2(t) = xA, UR(t) − xA, LR(t) & yP A2(t) = yA, UR(t) − yA, LR(t)

xP A3(t) = xB, UR(t) − xB, UL(t) & yP A3(t) = yB, UR(t) − yB, UL(t)

xP A4(t) = xB, UR(t) − xB, LR(t) & yP A4(t) = yB, UR(t) − yB, LR(t)

(3.19)

The projection of all corners, ∀k , of both the rectangles, ∀j , onto all of the four principal
axes, ∀i, is determined using equation 3.20.

PAij, k(t) = xj, k(t) ∗ xP Ai(t) + yj, k(t) ∗ yP Ai(t)
xP Ai(t)2 + yP Ai(t)2

{ i ∈ All principal axes, j ∈ All rectangles, k ∈ All corners }
(3.20)

The corresponding minimum and maximum value of the projected corners for both rectangles,
∀k , onto each of the four principal axes, ∀i , are given by equation 3.21.

PAij, min(t) = min ( PAij, k(t) , ∀k )

PAij, max(t) = max ( PAij, k(t) , ∀k )
(3.21)

The overlap of the projected corners on a particular principal axis is determined mathematically
for every instant of the simulation using equation 3.22. The two rectangles intersect only if
the projected corners overlap on all four principal axes, as illustrated in figure 3.8(a) - 3.8(d).

Intersect = True, if ∀i

 PAiA, min(t) ≤ PAiB, min(t) ≤ PAiA, max(t), or

PAiB, min(t) ≤ PAiA, min(t) ≤ PAiB, max(t)
(3.22)

The collision of the host vehicle and each neighboring vehicle is checked individually at every
instant of the simulation, from the beginning until either tKLE , or tC,Ed , whichever occurs
earlier. The first instant at which the rectangles representing the host vehicle and the neighbor
vehicle βq intersect with each other is denoted by tC,βq . In case multiple collisions between
the host vehicle and different neighbor vehicles are detected, the very first collision between
the host vehicle and the neighbors is denoted by tC,β . It is the minimum of all tC, βq from
all neighbors, i.e, ∀β . The simulation results in a collision, when either tC,β or tC,Ed or both
are less than tKLE . The colliding object of a collision is determined based on which collision
occurs first. If tC,β is lower than tC,Ed then the colliding object is the neighbor vehicle;
otherwise, the host vehicle leaves the road and collides with the road edge hazards such as
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guardrail, tree, etc. The time of collision denoted as tC , is determined using equation 3.23.

tC =


tC,β , if tC,β ≤ tC,Ed & tC,β ≤ tKLE

tC,Ed , if tC,Ed ≤ tC,β & tC,Ed ≤ tKLE

n/a , otherwise

(3.23)

(a) Projection on PA 1 (b) Projection on PA 2

(c) Projection on PA 3 (d) Projection on PA 4

Figure 3.8.: Illustration of separating axis theorem

3.3.8. Traffic participants’ controllability

3.3.8.1. Braking intervention of the road users

To simulate the dynamic interactions between the vehicles, the interventions of the vehicles
in the form of braking are incorporated into the traffic model. The host vehicle brakes due
to the ASC function, while the neighbor vehicle brakes in response to the perception of an
imminent collision or danger, in the form of anticipatory braking. The braking intervention
of the host and neighbor vehicle is indirectly dependent on one other. In order to model the
realistic braking behavior, it is assumed, without contradiction, that the braking decision of
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a driver or a system is not influenced by the anticipated behavior of the other vehicles, but
rather relies primarily on the dynamic relative distances and relative velocities between the two
vehicles. Therefore, in the proposed model, the braking interventions are validated simulta-
neously for both the host vehicle and the neighboring vehicle, aiming to establish a coherent
braking behavior that closely resembles real-world scenarios.

Thus, in the proposed traffic model the braking behavior is modelled to have a reduction in
the velocity at a constant rate of dBrk , assuming a constant deceleration rate of − 4 m/s2 .
The braking intervention conditions described in sections 3.3.8.3 and 3.3.8.4 are continuously
monitored throughout the simulation. If the braking requirements are met at instant tB , the
corresponding braking intervention is implemented by reducing the vehicle’s velocity, as shown
in equation 3.24. The time difference between two instances monitored in the simulation is
denoted as δt .

v$(tB + δt) = v$(tB) − dBrk ∗ δt

{ $ ∈ All vehicles meeting braking conditions }
(3.24)

As multiple road users are involved in a scenario, it is necessary to determine the need for
braking intervention for each of the traffic participants. In this proposed methodology, although
parallel braking interventions from both the neighbor vehicle and host vehicle are considered,
the interventions are checked one neighbor at a time with the host vehicle. Since each neighbor
is initialized to a random starting position based on the input data, it is important to ensure
a chronological sequence of interventions by the road users. Therefore, if interventions from
the host vehicle are deemed necessary for more than one neighbor, a re-evaluation of the
braking interventions is required to maintain the chronological correctness of the host vehicle’s
braking. This re-evaluation process is carried out in ascending order for each of the neighbors,
starting with the neighbor having the earliest initial intervention time of the host vehicle, and
concluding with the neighbor that has the latest initial intervention time of the host vehicle.

3.3.8.2. Relative positioning between the vehicles

The relative positioning and orientation of the vehicles in the traffic model along with corre-
sponding parameters that define the same are depicted in figure 3.9. It is illustrating a traffic
scenario, where the host vehicle is intruding onto the neighboring lane at instant t and the
host vehicle is slightly but not completely ahead of the neighbor vehicle β . The attributes of
host and neighbor vehicles are denoted by the subscripts E & β respectively.

Distance between the vehicles is necessary to judge the need for braking. It is determined
based on the co-ordinates of the vehicle center, and the corresponding maximum distance
from the center of the vehicle to both the inner and the outer corners of the vehicle along
the X & Y axes which are represented as xctc,min(t) , xctc,max(t) , yctc,min(t) & yctc,max(t)
respectively, refer equation 3.25.
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Figure 3.9.: Relative distances between the vehicles

xctc,min(t) = 0.5 ∗ WB ∗ cos | ϕ(t) | − 0.5 ∗ TW ∗ sin | ϕ(t) |

xctc,max(t) = 0.5 ∗ WB ∗ cos | ϕ(t) | + 0.5 ∗ TW ∗ sin | ϕ(t) |

yctc,min(t) = 0.5 ∗ TW ∗ cos | ϕ(t) | − 0.5 ∗ WB ∗ sin | ϕ(t) |

yctc,max(t) = 0.5 ∗ TW ∗ cos | ϕ(t) | + 0.5 ∗ WB ∗ sin | ϕ(t) |

(3.25)

Additionally, to judge the braking necessity, it is also important to determine the relative veloc-
ity and acceleration between the host vehicle and the neighbor vehicle along the longitudinal
(X-axis) and lateral (Y-axis) directions given by vr, x(t) , vr, y(t) , ar, x(t) , and ar, y(t)
respectively, refer equation 3.26 & 3.27.

vr, x(t) = | vE(t) ∗ cosϕE(t) − vβ(t) ∗ cosϕE(t) |

vr, y(t) = | vE(t) ∗ sinϕE(t) − vβ(t) ∗ sinϕβ(t) |
(3.26)

ar, x(t) = | vE(t)2 ∗ sinϕE(t)
rKLE

− vβ(t)2 ∗ sinϕβ(t)
rroad

|

ar, y(t) = | vE(t)2 ∗ cosϕE(t)
rKLE

− vβ(t)2 ∗ cosϕβ(t)
rroad

|
(3.27)

As the measurements in the traffic model are based on the X-Y frame, an additional parameter
ϕroad(t) is necessary to determine the orientation of the host vehicle relative to the curvature
of the road. ϕroad(t) represents the expected angular orientation of the host vehicle due to
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the road curvature for the corresponding longitudinal position of the host vehicle relative to
the X-Y frame. This parameter is determined under the assumption that the host vehicle does
not have any lane-keeping failure, as shown in equation 3.28.

ϕroad(t) = sin−1( xE, center(t)
rroad

) (3.28)

3.3.8.3. Avoid Side Collision

ASC is one of the inbuilt safety functionality assumed for the L3 Function that is incorporated
in the simulation model. Its purpose is to brake the host vehicle, in order to mitigate and/or
prevent lateral collision of the host vehicle with another vehicle. It is assumed, without con-
tradiction, that the ASC doesn’t activate for imminent collisions with road edge hazards. The
ASC functionality is activated only when all of the following requirements are satisfied.

• First requirement : A neighboring vehicle must exist within a range of 3m to the front
and 3m to the rear of the host vehicle. This requirement is satisfied when the X co-
ordinate of at least one of the neighbor corners lies within the upper and lower limit of
xE, BB(t) , which are the limits of a bounding box representing a 3m range to the front
and rear of the host vehicle as given in equation 3.29. And xBB(t) is the maximum
distance along the X-axis between the vehicle center and a point 3m away from the
outer corner of the host vehicle.

xBB(t) = xE, ctc,max(t) + 3

xE, BB(t) = xE, center(t) ± xBB(t)
(3.29)

• Second requirement : The lateral gap between the host vehicle and the neighbor vehicle,
denoted as yGap(t) , must be less than the minimum safe lateral gap, which is assumed
as 0.6m for the purpose of this study. This requirement is satisfied if yGap(t) ≤ 0.6m .
The lateral gap between the host vehicle and the neighbor vehicle is determined using
equation 3.30.

yGap(t) = | yE, center(t) − yβ, center(t) | − yβ, ctc,max(t) − yE, ctc,max(t)
(3.30)

• Third requirement : The relative velocity of the neighbor vehicle with respect to the
host vehicle must be within ± 10 kmph. This requirement is satisfied when | vE(t) −
vβ(t) | ≤ 10 .

• Fourth requirement : The host vehicle is unable to overtake or maintain a lead over
the neighbor vehicle without colliding with it, assuming that both vehicles continue
driving further without altering their respective velocities. Due to the complexity of
this requirement, it is construed as a series of three logical statements. Each statement
describes a scenario where the host vehicle can safely surpass or maintain its lead over
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the neighbor vehicle. Therefore, in order for the fourth requirement to be satisfied, all
of the following statements must be false.

– First statement : The host vehicle is faster than the neighbor vehicle, and the host
vehicle must be completely ahead. This statement is true when vE(t) ≥ vβ(t)
and xE,R−N,F (t) > 0 . Where xE,R−N,F (t) is the distance from the front of
the neighbor vehicle to the rear of the host vehicle along the X-axis, which is
determined using equation 3.31.

xE,R−N,F (t) = ( xE, center(t) − xE, ctc,max(t) )

− ( xβ, center(t) + xβ, ctc,max(t) )
(3.31)

– Second statement : The host vehicle is slower than the neighbor, and the host
vehicle is fully behind the neighbor. This statement is true when vE(t) ≤ vβ(t)
and xN,R−E,F (t) > 0 . Where xN,R−E,F (t) is the distance from the front of the
host vehicle to the rear of the neighbor vehicle along the X-axis, given by equation
3.32.

xN,R−E,F (t) = ( xβ, center(t) − xβ, ctc,max(t) )

− ( xE, center(t) + xE, ctc,max(t) )
(3.32)

– Third statement : The host vehicle is not completely ahead of the neighbor, but
the host vehicle can safely overtake the neighbor vehicle. This statement is true
when xE,R−N,F (t) < 0 and ty, gap > tx, ER−NF . Where ty, gap is the time
taken by the host vehicle to cover the lateral gap, yGap(t) , and it is calculated as
shown in equation 3.33.

yGap(t) = vr, y(t) ∗ ty, gap + 0.5 ∗ ar, y(t) ∗ t2
y, gap

⇒ ty, gap =
−2 ∗ vr, y(t) +

√
4 ∗ vr, y(t)2 + 8 ∗ ar, y(t) ∗ yGap(t)

2 ∗ ar, y(t)
(3.33)

And tx, ER−NF is the time taken by the host vehicle to get ahead of the neighbor,
i.e., the cover the distance |xE,R−N,F (t)| , and it is determined using equation 3.34.

|xE,R−N,F (t)| = vr, x(t) ∗ tx, ER−NF + 0.5 ∗ ar, x(t) ∗ t2
x, ER−NF

⇒ tx, ER−NF =
−2 ∗ vr, x(t) +

√
4 ∗ vr, x(t)2 + 8 ∗ ar, x(t) ∗ |xE,R−N,F (t)|

2 ∗ ar, x(t)
(3.34)

Once all the four requirements of the ASC function are satisfied, the host vehicle begins to
decelerate at a constant rate. The braking continues as long as the velocity of the host vehicle
is more than zero, and all the requirements are still satisfied. However, the necessity of the
third requirement is exempted once the function is activated, because when the ASC function
is activated the relative velocity of the colliding vehicle becomes irrelevant and the function
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continues to decelerate the vehicle till the collision is prevented or at the least is mitigated.

3.3.8.4. Neigbor vehicle braking

In reality, drivers typically initiate braking with a certain latency upon perceiving an imminent
collision and/or any danger. The braking behavior of the driver is dependent on their ability
to perceive the danger and is also dependent on their ability to react to the perceived danger.
For modelling the driver’s behavior, a conservative assumption is made, suggesting that the
driver is able to perceive danger upon a visible lane intrusion, particularly when the collision
with the intruding vehicle is imminent. Mathematically, it can be interpreted that for the
neighbor driver to perceive danger and initiate braking, the following three requirements need
to be satisfied.

• First requirement : The host vehicle is within the visibility range of the neighbor driver.
This requirement can be interpreted as logical statements, that the front of the host
vehicle is ahead of the neighbor and also that the distance between the rear of the host
vehicle to the front of the neighbor vehicle isn’t further away than a time headway of
5s. This requirement is true, when xE,F −N,F (t) > 0 and xE,R−N,F (t) < vβ(t) ∗ 5s .
Where xE,F −N,F (t) is the distance from the front of the neighbor vehicle to the front of
the host vehicle, and xE,R−N,F (t) is the distance from the front of the neighbor vehicle
to the rear of the host vehicle along the X-axis. Equation 3.35 is used for calculating
the distances which are essential to determine the visibility aspect .

xE,F −N,F (t) = ( xE, center(t) + xE, ctc,max(t) ) − ( xβ, center(t) + xβ, ctc,max(t) )

xE,R−N,F (t) = ( xE, center(t) − xE, ctc,max(t) ) − ( xβ, center(t) + xβ, ctc,max(t) )
(3.35)

• Second requirement : The host vehicle should intrude onto the lane of the neighbor
vehicle. The lane intrusion of the host vehicle is dependent on the resultant drift of
the host and the corresponding orientation of the host vehicle with respect to the road
curvature. The lane intrusion requirement is satisfied, when ydrift(t) ≥ ydrift, limit ,
indicating that the host vehicle has finally drifted into the lane of the neighboring vehicle.
Where ydrift(t) is the lateral drift of the host vehicle with respect to the road curvature
from the beginning of the simulation and it is given by equation 3.36.

ydrift(t) = | ( yE, center(t) − y0, E ) − rroad ∗ ( 1 − cosϕroad(t) ) | − 0.5 ∗ TWE

+ 0.5 ∗ TWE ∗ cosϕE(t) + | 0.5 ∗ WBE ∗ sinϕE(t) |
(3.36)

And ydrift, limit is the lateral distance between the outer edge of the host vehicle until
the lane of the neighbor vehicle as given in equation 3.37.

ydrift, limit = WL + WLM − TWE − COE ∗ driftside (3.37)
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• Third requirement : The neighbor vehicle is set on a collision course with the host
vehicle, which is visibly intruding onto the lane of the neighbor vehicle, assuming that
both vehicles continue to drive without changing their respective velocities. There are
only two possible situations that can lead the neighbor vehicle on a collision course and
the third requirement is satisfied when either one of the two statements is true.

– First Statement : The host vehicle is slower than the neighbor vehicle and it is fully
ahead of the neighbor. This is true when vβ(t) ≥ vE(t) and xE,R−N,F (t) > 0 ,
refer equation 3.31.

– Second Statement : The host vehicle is not completely in front of the neighbor and
the neighbor vehicle is unable to safely overtake the host vehicle. This statement
is true when xE,R−N,F (t) < 0, refer equation 3.31, xN,R−E,F (t) < 0, refer
equation 3.32, xE,F −N,F (t) > 0, refer equation 3.35, and tx, NR−EF < ty, gap .
Where tx, NR−EF is the time taken by the neighbor vehicle to get ahead of the
host vehicle, refer equation 3.38, and ty, gap is the time taken for the host vehicle
to cover the current lateral gap, refer equation 3.33.

| xN,R−E,F (t) | = vr, x(t) ∗ tx, NR−EF + 0.5 ∗ ar, x(t) ∗ t2
x, NR−EF

⇒ tx, NR−EF =
−2 ∗ vr, x(t) +

√
4 ∗ vr, x(t)2 + 8 ∗ ar, x(t) ∗ |xN,R−E,F (t)|

2 ∗ ar, x(t)
(3.38)

For modelling the braking behavior of a driver the perception of the danger alone is not
sufficient. In reality, there always exists a latency between the perception of danger and the
counteraction, this is known as the driver brake reaction time, tRT, β . The effect of brake
reaction time is included as shown in equation 3.39. Where tp0, β is the first instant at which
danger perception requirements are satisfied for the neighbor vehicle β .

tB, β =

 tp0, β + tRT, β , if ∀t ∈ [tp0, β , tB, β] Danger perception = True
n/a , otherwise

(3.39)

In order to account for the latency, the neighbor vehicle starts to decelerate tRT, β seconds
after tp0, β , only if the danger perception requirements are met even during the latency, i.e.,
tRT, β seconds. Once the neighbor vehicle starts decelerating, i.e., at tB, β, the neighbor
continues to brake as long as its velocity is more than zero and all the danger perceptions
requirements are still satisfied.

3.3.9. Classification of collision

The collisions of the host vehicle in the traffic model are broadly classified into two categories
based on its colliding object, which is either a neighbor vehicle or a road edge hazard. For
the collisions with neighbor vehicles, the different possible combinations of collision types for
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the host vehicle and the neighbor vehicle are full frontal & rear, small overlap frontal & rear,
side-swipe with a vehicle, and side-impact & front collisions. Collision types resulting from the
collision of a host vehicle with road edge hazards are side-swipe with an obstacle, full frontal
with an obstacle, small overlap frontal with an obstacle, and rollover collision. After a collision
is detected by the model along with the colliding object as explained in section 3.3.7. The
traffic model utilizes a sequential methodology to determine the collision type based on the
colliding object, as described further in this section.

(a) Front-rear collision type (b) Side-way collision

Figure 3.10.: Position and orientation of vehicles before collision

For collisions of the host vehicle with a neighbor vehicle, the model assesses whether the
collision is a front-rear collision, where one vehicle is in a front-end collision and the other in a
rear-end collision, or a side-way collision, as shown in figure 3.10(a) and 3.10(b) respectively.
The collision types are identified by the model by checking sequentially if the conditions for
each of the categories and sub-categories as listed below are getting satisfied.

• Front-rear collision with neighbor : At the instant just before the collision, tC − 1 , the
vehicles will overlap one another either partially or completely in the lateral direction,
i.e. along Y-axis, and will maintain a small gap between each other in the longitudinal
direction, i.e. along X-axis, as depicted in figure 3.10(a). Mathematically, this geometric
condition is satisfied when xgap,col(tC − 1) > 0 , and ygap,col(tC − 1) < 0 . Where
xgap,col(tC − 1) is the distance between the inner corners of the two vehicles measured
along the X-axis using equation 3.40.

xgap,col(tC − 1) = | xE, center(tC − 1) − xβ, center(tC − 1) |

− x(tC − 1)E, ctc,min − x(tC − 1)β, ctc,min

(3.40)

And ygap,col(tC − 1) is the distance between outer corners of the vehicles along the
Y-axis, refer equation 3.41.

ygap,col(tC − 1) = | yE, center(tC − 1) − yβ, center(tC − 1) |

− yE, ctc,max(tC − 1) − yβ, ctc,max(tC − 1)
(3.41)
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Additionally in the front-rear collisions, the extent of the frontal overlap decides whether
the vehicle experiencing frontal collision is in a full frontal or small overlap frontal.

– Full frontal & rear collision: The frontal overlap of the vehicles along the Y-axis is
more than 25% of the minimum value of the track width of the two vehicles. This
condition is true when | ygap,col(tC − 1) | > 0.25 ∗ min( TWE , TWβ ) .

– Small overlap frontal & rear collision: The frontal overlap is less than 25% of the
vehicle track width, i.e, | ygap,col(tC − 1) | ≤ 0.25 ∗ min( TWE , TWβ ) .

• Side-way collision with neighbor : Collisions of the host vehicle with a neighbor vehicle
that aren’t meeting the conditions of the front-rear collision type fall under this category.
The side-way collisions of two vehicles are further classified based on the angle of collision
between the host vehicle and the neighbor vehicle, ϕCol(tC) given by equation 3.42.

ϕCol(tC) = ϕE(tC) − ϕroad(tC) (3.42)

– Side-swipe vs car : The angle of collision is less than 15°, this is true when
ϕCol(tC) < 15◦ .

– Side impact & side impact : The angle of collision is more than 15° and the distance
between the front side of both vehicles is less than 110 cm, which is the average
hood length of a car [41]. This is true when ϕCol(tC) > 15◦ and | xE,F −N,F (tC −
1) | < 110 cm .

– Frontal & side impact : The angle of collision is more than 15° and the distance
between the front side of both vehicles is more than 110 cm. This is true when
ϕCol(tC) > 15◦ and | xE,F −N,F (tC − 1) | ≥ 110 cm .

For collisions with the road edge hazards, the collision type is dependent both on the edge
hazards under consideration and the collision angle, ϕCol(tC) . The different types of road
edge hazards are introduced in the injury estimation stage as a percentage factor based on the
occurrence fraction of the individual edge hazards and their corresponding collision types.

3.3.10. Injury risk estimation

For each collision type, a specific IRF is derived using logistic regression on accident database
data. Other than the type of collision, another important parameter for the IRF is the impact
velocity of the accident.

The IRF for front-end, rear-end, and side-impact collisions, which are near side & far side, are
adopted from [42]. They are derived from the logistic regression on Japanese accident data.
The generic form of IRF for severe injury and above, IL2+, is given in equation 3.43, where
IRPdriver is the injury probability for the driver, γn are the risk factors and cn are their
corresponding coefficient as listed in 3.2.
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IRPdriver = 1
1 + exp [ − ( γ0 + γ1 ∗ c1 + γ2 ∗ c2 + ... + γn ∗ cn ) ]

(3.43)

Risk factors (γn) Coefficients (cn)
Intercept -4.909
DeltaV (km/h) 0.095
Crash direction Front -0.051

Rear -
Near side 1.187
Far side 1.016

Age 0.571
Belt use Yes = 1, No = 0 -1.826
Vehicle type Passenger car -0.279

Table 3.2.: Risk factors and the corresponding coefficient for the IRF

Since delta-V isn’t available for all accident cases in the police database an estimation of this
parameter, DeltaVP seudo , is derived using equation 3.44. It is based on the mass and velocity
of the struck and striking vehicles in the event of a collision which are m1 , m2 , V1 & V2

respectively.
DeltaVP seudo = m2

m1 + m2
∗ ( V1 + V2 ) (3.44)

The estimated value of the parameter is then converted to real delta-V values using equation
3.43. The general risk prediction algorithm from [42] is modified to account for the effects of
a small overlap front collision as well. It is assumed, without contraction, that the delta-V for
small overlap is between full frontal and side-way collision.

DeltaV =



0.7 ∗ DeltaVP seudo , Full frontal collision
0.75 ∗ DeltaVP seudo , Small overlap front collision
0.8 ∗ DeltaVP seudo , Side-way collision
0.8 ∗ DeltaVP seudo , Rear-end collision

(3.45)

IRF from 3.43 addresses only IL2+ probability. However, in order to obtain the injury prob-
abilities for other injury levels the injury risk curves are shifted by changing the delta-V as
indicated in table 3.3. The curves are shifted such that the curve from [42] is superimposed
onto the injury risk curves obtained by using logistic regression to fit the accident data from

Collision type IL1+ IL3+
Small overlap front DeltaV + 15 DeltaV - 28

Full front DeltaV + 15 DeltaV - 33
Rear-end DeltaV + 30 DeltaV - 30
Near side DeltaV + 22 DeltaV - 27
Far side DeltaV + 22 DeltaV - 27

Table 3.3.: Shift in deltaV for IL1+ and IL3+ IRFs
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German In-Depth Accident Study (GIDAS) filtered specifically for collisions with IL1+ and
IL3+ injuries.

IRF indicating the overall injury risk for collisions with pedestrians is given by equation 3.46,
where the injury probability is dependent on the velocity at which the pedestrian is struck, v.
The function is derived using logistic regression to fit the accident data from GIDAS, filtered
specifically for pedestrian collisions.

IRPped = 1
1 + exp [ − ( a + b ∗ V ) ] (3.46)

The parameters of the pedestrian IRF for IL2+ & IL3+ are listed in table 3.4. For the IL1+,
the risk probability is considered as 1, as at least mild injury is imminent during collisions with
pedestrians.

IRF parameter IL2+ IL3+
a 1.911387 5.93883298
b -0.07877268 -0.07833647

Table 3.4.: Parameters of IRF for collision with pedestrians

The injury probabilities of one vehicle for different injury levels due to sideswipe collisions
with another vehicle and with guardrails (road edge hazard) are obtained from the analysis of
data from National Automotive Sampling System (NASS) [43]. The injury probabilities of a
vehicle due to rollover collision is inferred from the results of [44]. The injury probability for
collisions between car and motorbike is also filtered from GIDAS for velocities below 60 kmph.
The compiled injury probabilities are listed in table 3.5, where the injury probabilities are not
obtained from an IRF making them independent of delta-V and/or collision angle.

Injury level Collisions
Sideswipe Vs Rollover Car Vs

Vehicle Guardrail Motorbike
IL1+ 5.50 % 4.0 % 76.10 % 100 %
IL2+ 0.09 % 0.055 % 17.60 % 4.41 %
IL3+ 0.01 % 0.014 % 9.60 % 0 %

Table 3.5.: Injury probabilities for different collisions

The simulation of the traffic model can result in a collision of the host vehicle either with a
neighboring vehicle or with a road edge hazard. The combination of different types of collision
between the participants in the collision will result in different injury probability functions. The
possible combinations of collision type outcomes with all the participants are shown in table
3.6. The combination of collision types for collision scenarios of the host vehicle with either
a car or a commercial vehicle belong to cases 2 − 12 . The collision angle for cases 2 − 6 is
less than 15° and for cases 7 − 12 it’s more than 15°. Similarly, for collision with road edge
hazards, cases 13 & 14, the collision angle is less than 15° for case 13 and for case 14 it’s
more than 15°.
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Collision Colliding Collision type for
case participant Host vehicle Participant

Case 1 None No Crash No Crash
Case 2 Neighbor Rear-end Full frontal
Case 3 Neighbor Rear-end Small overlap front
Case 4 Neighbor Full frontal Rear-end
Case 5 Neighbor Small overlap front Rear-end
Case 6 Neighbor Sideswipe vs car Sideswipe vs car
Case 7 Neighbor Full frontal Far side
Case 8 Neighbor Full frontal Near side
Case 9 Neighbor Far side Full frontal
Case 10 Neighbor Near side Full frontal
Case 11 Neighbor Far side Near side
Case 12 Neighbor Near side Far side
Case 13 Edge hazard Collision angle ≤ 15°
Case 14 Edge hazard Collision angle > 15°
Case 15 Motorbike Car vs motorbike

Table 3.6.: Possible collision outcome cases

The road edge hazards considered in the traffic model are - guardrails, guardrail ramps, trees/
poles, break-down cars, and pedestrians. As the collision mechanism for each hazard is differ-
ent, the injury probabilities of cases 13 & 14 must account for each of the hazards factored
by the likelihood of the host vehicle encountering the particular hazard. The sub-categories
for cases 13 & 14 are listed in table 3.7.

Collision Colliding Collision type for
case participant Host vehicle Participant

Case 13 Edge hazard Collision angle ≤ 15°
Case 13a Guardrail Sideswipe vs guardrail NA
Case 13b Guardrail ramp Rollover NA
Case 13c Trees/ poles Full frontal NA
Case 13d Break-down car Sideswipe vs car Sideswipe vs car

Full frontal Rear-end
Case 13e Pedestrian Car vs pedestrian
Case 14 Edge hazard Collision angle > 15°
Case 14a Guardrail Full frontal NA
Case 14b Guardrail ramp Rollover NA
Case 14c Trees/ poles Full frontal NA
Case 14d Break-down car Full frontal Near side

Full frontal Rear-end
Case 14e Pedestrian Car vs pedestrian

Table 3.7.: Sub-categories for collision with road edge hazards

The likelihood of a road edge hazard, as shown in equation 3.47, is the ratio of the distance
traveled by the host vehicle with KLE to the average distance between two road hazards of the
same type. The likelihood of each of the road edge hazards considered in this study is listed
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in table 3.8, and this likelihood information is assumed and derived from BMW campaigns.
As this information is BMW proprietary, the values are not accurately recorded in this thesis
work. The sum of the likelihood of all edge hazards is considered as one. Therefore, the
likelihood of the edge hazard as a guardrail is obtained by subtraction of the sum of all other
edge likelihoods from one.

phazard,x = d(tC)E / lhazard, x (3.47)

Road edge hazard Distance between two
occurrences (m), lhazard, x

Guardrail ramps 4 x105 m
Trees/ Poles 5 x104 m
Break-down vehicles 2 x105 m
Pedestrians 2 x105 m

Table 3.8.: Road edge hazard occurrence rates

The IRF for frontal collisions with a road edge hazard is considered to be the same as given
in equation 3.43. However, the velocity of the host vehicle at the time of collision is taken
as delta-V. The two sub-cases for collision with a break-down car, i.e., two sub-cases of case
14d, are assumed to happen in even likelihood. The IRF for them is adopted from equation
3.43. However, DeltaVP seudo is taken as the velocity of the host vehicle for both the host
vehicle and the break-down vehicle. Refer to equation 3.45 for calculating delta-V.

The injury probability of a vehicle must not only account for the injury from the driver [42],
but also include the risks from the co-passenger as well, based on the probability of the co-
passenger being occupied, which is denoted as perccopassenger . The injury risk probability of
a vehicle in a collision is given in equation 3.48. It is assumed, without contradiction, that
the IRF of the driver and co-passenger is the same and that the likelihood of the co-passenger
seat being occupied is 0.35 both for the host vehicle and the neighbor vehicles.

IRPvehicle = IRPdriver + perccopassenger ∗ IRPdriver ∗ ( 1 − IRPdriver ) (3.48)

To determine the injury risk probability of a collision, the injury risk probabilities from all the
participants involved in the collision must be considered. Considering a particular scenario,
n , where the host vehicle and the neighbor, E & β , are involved in a collision having two
different collision types, a & b , for the respective vehicles. The overall injury risk probability
from the collision between two vehicles is given by equation 3.49.

IRPcollision(n) = IRPE, a + IRPβ, b − IRPE, a ∗ IRPβ, b (3.49)

Collision probability is defined as the percentage of the scenario simulations which leads to a
collision, given in equation 3.50. Where nS(v) is the total number of scenario simulations in
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which v is the initial velocity of the host vehicle given there is a KLE, and nS,C(v) is the
number of scenario simulations out of nS(v) scenarios that result in a collision.

pcollision(v) = nS,C(v) / nS(v) (3.50)

Overall injury risk probability of the L3 Function per hour is given by ˜IRP/h , refer equation
3.51, where fKLE is the frequency of occurrence of KLE per hour of driving in L3 Function
which is the exposure rate, pvel(v) is the probability that the vehicle is driven at a particular
velocity v on the highway, and pcollision(v) is the probability of collision of the vehicle driven
at a velocity of v in L3 Function given there is a KLE.

˜IRP/h =
60∑

v=1
pcollision(v) ∗ pvel(v) ∗ fKLE ∗ 1

nS(v) [
nS(v)∑

n(v)=1
IRPcollision(n(v)) ]

(3.51)
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4. Data Sources
The primary data source for the parameters of the Highway traffic model proposed in this thesis
work is from various campaigns and studies carried out by BMW AG, specifically related to
German highway traffic conditions. The data collected is in compliance with the German data
protection policy ensuring the privacy of the users. As data from the campaigns are BMW’s
proprietary properties, the distribution and likelihood trend of the traffic model parameters
relevant to the scope of this thesis work is discussed without revealing any specific value in
the following sections.

4.1. Ambient characteristics parameters

Ambient characteristics provide a very detailed description of the road infrastructure and the
surrounding environment of the traffic scenario.

Road curvature

As the simulation is only for a few seconds, the scenarios of the straight roads are simulated
to have a very large radius of curvature. The probability curve of the curvature of the road
based on BMW campaigns, specific to German highway roads are as shown in figure 4.1.

Figure 4.1.: Road curvature distribution
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The road curvature parameter has both magnitude and sign, where the positive radius repre-
sents left turns and the negative represents right turns, and they are both sampled indepen-
dently. The magnitude of the curvature is sampled from a multi-nominal distribution based on
the likelihood as depicted in figure 4.1 and the sign is sampled from an equal chance bi-nominal
distribution, refer table 4.1 for the sampling of the road curvature.

Road curvature, rroad

| rroad | signum ( rroad )
∼ Mk ( n; p1, .., pk ) ∼ B ( n; 0.5 )

Table 4.1.: Sampling of road curvature

Number of lanes

The number of lanes for a scenario is sampled from a multi-nominal distribution as shown in
equation 4.1. The likelihood of the number of lanes in a highway scenario, as listed in table
4.2, is an assumed distribution derived from the trends observed in BMW campaigns.

nLanes ∼ M4 ( n; p1, .., p4 ) (4.1)

Number of lanes, nLanes

nLanes = 1 nLanes = 2 nLanes = 3 nLanes = 4
0 % 65 % 34 % 1 %

Table 4.2.: Likelihood of number of lanes in a scenario

Lane width

The lane width is sampled from a multi-nominal distribution as shown in equation 4.2. The
likelihood of different lane width values, as indicated in table 4.3, is an assumed distribution
derived from the trends observed in BMW campaigns.

WL ∼ M6 ( n; p1, .., p6 ) (4.2)

Lane width in meters, WL

3.2 m 3.5 m 3.7 m 4.0 m
20 % 30 % 45 % 5 %

Table 4.3.: Likelihood lane width for a scenario

Lane markings width

The lane markings on the highway are not thin, as they need to be visible to the drivers on
the road. Therefore, the width of the lane markings, WLM , is an important parameter as
they contribute to the total width of the road in an absolute mathematical sense. As per

2



Data Sources

the guidelines for road markings listed in [45], the lane markings width for German highway
roads are 15 and/or 30 cm. Based on this the lane marking width is assumed, without any
contraction, as 30 cm for all traffic scenarios.

Distance between lane edge and end of the road

Another important road parameter is the distance between the lane edge and the road edge,
as this is essential to determine how far away are the road edge hazards from the lane edge.
It is assumed, without any contradiction, that an emergency lane will be present next to the
right-most lane in all scenarios and also that the distances between the lane and road edges
are constant but varies only depending on the side of the road as shown in table 4.4.

According to the guidelines for designing motorways in Germany [46] lateral distance between
the road edge and the lane edge can be extrapolated for the right-hand and left-hand side of
the road as argued. Central reserves are recommended to have a width of 2.5m and this value
is assumed as the lateral gap between the lane edge and the road edge on the right side. And
for the left side, it is considered as 0.5m, because the recommended lateral safety space in the
highway is 1m and a guard rail is assumed to be located exactly in the middle between the
road and lane edges.

Distance between road edge and lane edge
LTEleft LTEright

0.5 m 2.5 m

Table 4.4.: Distance between the lane edge and road edge

Driving mode

As the ODD of the assumed exemplary L3 Function includes both normal driving and emer-
gency corridor maneuver, the driving mode is one of the most crucial ambient traffic param-
eters. The driving mode is solely dependent on the velocity of the host vehicle as shown in
table 4.5 because the ODD of the exemplary L3 Function is divided based on the velocity.

Driving mode, DMode

Emergency corridor - DMode, EC Normal driving - DMode, ND

1 ≤ v0, E < 30 kmph 30 ≤ v0, E ≤ 60 kmph

Table 4.5.: Driving Mode

Number of road users

Another important parameter that defines the surrounding environment is the number of road
users in the scenario, q , and it is sampled at random based on discrete uniform distribution
between 0 and the maximum number of road users other than the host vehicle, qmax , as
indicated in equation 4.3. It is assumed, without contradiction, that the maximum number of
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road users in the vicinity of the host vehicle is limited to five as the simulation of the KLE is
only for a few seconds.

q ∼ U { 0, qmax } (4.3)

4.2. Ego characteristics parameters

Ego characteristics thoroughly describe the parameters to describe the initial position and the
driving behavior of the host vehicle including its KLE behavior in the traffic model.

Vehicle centering error

The initial centering error of the host vehicle is sampled from a normal distribution as shown
in equation 4.4. The sampling is based on the assumption, that the results from [47] are
applicable to all highway traffic scenarios. According to this the deviation of the vehicle from
the center line in a highway is less than 25 cm for most of the observations implying that the
6σ limit is within ± 25 cm .

C$ ∼ N ( 0,
0.25

3
2

) ∀$ { $ ∈ All vehicles } (4.4)

Lane assignment

The lane number is assigned to the host vehicle, nLane,E , at random based on a uniform
discrete distribution between 1 and the number of lanes, nLanes , available in the given scenario.
Refer to equation 4.5 for the sampling methodology.

nLane,$ ∼ U { 1, nLanes } ∀$ { $ ∈ All vehicles } (4.5)

Initial emergency lateral shift fraction

The initial emergency lateral shift fraction of the host vehicle, fracshift, E , is the percentage
of lateral offset of the vehicle necessary for the emergency corridor maneuver. And it is
dependent on the initial velocity, v0 of the vehicle, refer to equation 4.6. This is an assumed
relation derived from the trends observed in BMW campaigns, specific to emergency corridor
maneuvers in German highway scenarios.

fracshift, $ =

 1 , if 1 ≤ v0,$ < 20 kmph

1 − 4 ∗ ( v0,$ − 20 )
100 , if 20 ≤ v0,$ ≤ 45 kmph

, ∀$

{ $ ∈ All vehicles }

(4.6)

Initial longitudinal position

It is assumed, with any contradiction, that the initial longitudinal position of the host vehicle
center is zero for the simulations, x0, E = 0 .
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Initial velocity

The initial velocity of the host vehicle is a significant parameter that describes its driving
behavior. All of the model input parameters are sampled for each discrete velocity of the
host vehicle within the ODD, and multiple simulations are carried out for each velocity value.
The probability with which the host vehicle is driving on the highway shown in figure 4.2, is
an assumed distribution from trends observed in BMW campaigns. This is important for the
determination of the overall injury probability.

Figure 4.2.: Velocity distribution of the host vehicle

Keep Lane Error

As there is no data available with regards to the lane-keeping error the distribution function
and limits are assumed in order to quantify the safety risk of L3 Function due to lane-keeping
failure. The sampling of drift radius and duration of the KLE is shown in table 4.6.

KLE duration

The duration of KLE, tKLE , is sampled directly from a uniform distribution where the upper
limit is set based on the assumption that KLE will not occur for more than 5 seconds and
the lower limit is set on the assumption that the KLE have a significant impact on the safety
assessment only when it lasts more than 0.5 seconds.
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KLE radius

The KLE drift radius comprises of both magnitude and sign where the magnitude of the
radius is sampled from a uniform distribution, and the sign is sampled from an equal chance
bi-nominal distribution. The range of the KLE drift radius magnitude is assumed, without
contradiction, to be between 1000 to 5000 meters with respect to the X-Y frame.

KLE drift radius, rKLE KLE drift duration,
| rKLE | signum ( rKLE ) tKLE

∼ U ( 1000, 5000) ∼ B ( n; 0.5 ) ∼ U ( 0.5, 5 )

Table 4.6.: Sampling of KLE drift radius and drift duration

4.3. Neighbor characteristics parameters

Neighbor characteristics comprehensively describe the nature of the neighbor vehicles and their
normal driving behavior along with their braking behavior.

The centering error of the neighbor vehicles, its lane assignment, and its initial emergency
lateral shift factor are sampled similarly to the host vehicle using equations 4.4 - 4.6. The
neighbor vehicles which are assigned the same lane as the host vehicle are disregarded in the
scenario simulation, as the focus of the study is only on the collisions due to the aberration
of the lane-keeping functionality, causing the host vehicle to drift away from its own lane to
another.

Neighbor vehicle type

The vehicle type for each neighbor vehicle for a given scenario is sampled from a discrete
multi-nominal distribution as shown in equation 4.7. The probability of each vehicle type is
assumed for the purpose of this study, without contradiction, as listed in table 4.7.

Ntyp, β ∼ M3 ( n; p1, .., p3 ) ∀β

{ β ∈ All neighbors : nLane,β ̸= nLane,E }
(4.7)

Neighbor vehicle type, Ntyp, β

Car Truck/Bus Motorbike
90.5 % 9 % 0.5 %

Table 4.7.: Likelihood of neighbor vehicle type

The nature of the neighbor vehicle is essential for the traffic model as the dimensions of each
of the vehicle types are drastically different from each other as shown in table 4.8, where these
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average dimensions are assumed to be the same for all vehicles of the same vehicle type. And
this consequently influences the relative distances between the vehicles in the simulation.

Dimension Vehicle type, Ntyp, β

Car Truck/Bus Motorbike
Wheelbase, WB 5 m 9 m 1.9 m
Track width, TW 2 m 2.6 m 1 m

Mass, m 1032 kg 1.2x104 kg 175 kg

Table 4.8.: Dimensions of different vehicle types

Neighbor time headway

The neighbor time headway, tHW, β , is sampled at random from a gamma distribution for each
neighbor vehicle as given by equation 4.8. The gamma distribution parameters are estimated
by fitting the measured relative distances of a vehicle from the host vehicle in the time headway
metric for a random subset of data from BMW campaigns. Figure 4.3 indicates a time headway
distribution that is derived based on the trend observed from the analysis of data from BMW
Campaigns. It is assumed, without contradiction, that this distribution can be adapted for all
highway traffic scenarios.
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Figure 4.3.: Distribution of distance to the vehicle ahead as a measure of time headway

tHW,β ∼ Γ ( a, b ) ∀β

{ β ∈ All neighbors : nLane,β ̸= nLane,E }
(4.8)
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Initial lane-wise longitudinal position

The initial longitudinal position of the first neighbor vehicle, q = 1, on every lane, is denoted
as ˜d0, nLane,l

. It is assumed, without contradiction, that the initial longitudinal position of the
first neighbor on every lane is positioned within 10 meters from the initial longitudinal position
of the host vehicle and it is sampled from a uniform distribution as given in equation 4.9.

˜d0, nLane,l
∼ U ( 0, 10 ) ∀l

{ l ∈ All lanes : nLane,l ̸= nLane,E }
(4.9)

Initial lane-wise neighbor velocity

The magnitude of the relative velocity of the neighbor vehicles with respect to the host vehicle
is sampled separately for the two driving modes. A uniform distribution is used for DMode, EC ,
as the velocities of all vehicles during an emergency corridor situation are in a comparable range
and it is assumed as ± 5 kmph. For DMode, ND , a multi-nominal distribution based on a rela-
tive velocity matrix indicating the likelihood of discrete relative velocity values of the neighbor
vehicle corresponding to the velocity of the host vehicle for each discrete velocity of the host
vehicle. The relative velocity matrix as listed in table A.1, is an assumed distribution derived
based on the trend observed from BMW campaigns, indicating the likelihood of each relative
velocity of the neighboring vehicle for each discrete velocities of the reference vehicle recording
the data.

In the simulation model, the initial velocities of all the neighbors along a lane regardless of
the vehicle type are considered to be the same. Therefore, the initial relative velocities of
the neighbor are sampled lane-wise for each scenario corresponding to the host velocity. It is
assumed, without any further contradiction, that the initial velocity of neighbor vehicles in the
simulation can be both slower or faster than the host vehicle. Thus, the sign of the relative
velocity for each lane is sampled using an equal chance bi-nominal distribution.

δv0,nLane,l
∼

B ( n; 0.5 ) ∗ U ( 0 , 5 ) , if DMode, EC

B ( n; 0.5 ) ∗ Mk, v0, E
( n; p1, .., pk ), if DMode, ND

∀l

{ l ∈ All lanes : nLane,l ̸= nLane,E }

(4.10)

The initial velocity of the neighbors is assigned to the neighbors in the simulation as described
in equation 4.11.

v0, β = v0,E + δv0,nLane,l
, ∀β

{β ∈ All neighbors: nLane,β = nLane,l & nLane,β ̸= nLane,E }
(4.11)
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Driver brake reaction time

The braking behavior of the neighbor vehicle is characterized by the driver brake reaction time,
tRT, β , which is the time taken by the driver to decelerate the vehicle from the perception of
an immediate threat. Lane intrusion due to the KLE is characterized as a surprise event based
on the results [48, 49, 50], as there is no indication to the neighbor driver via indicator or
brake light signal about the lane intrusion of the host vehicle. The reaction times are generally
represented as gamma distributions, so a gamma distribution is used for sampling the driver
brake reaction time in this traffic model. As an exact fit of the results of [48] using a gamma
curve was not possible, so for the purpose of this thesis work a trade-off between the deviation
in the fitting of the 50th and 95th percentile value was considered. The driver reaction time is
assumed, without any further contradiction, to be a gamma distribution having a cumulative
distribution as shown in figure 4.4.
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Figure 4.4.: Estimated gamma distribution for driver brake reaction time

The sampling of the driver brake reaction time is as shown in equation 4.12.

tRT, β ∼ Γ ( 2.68, 0.41169 ) ∀β

{ β ∈ All neighbors : nLane,β ̸= nLane,E }
(4.12)
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5. Results and Discussion

5.1. Traffic model simulation

5.1.1. Traffic model simulation overview

Simulation of the AD function in highway traffic conditions is very complex in nature and so
the first and foremost step is to define all of the boundary conditions and the bounding box
of the functional scenario that is to be simulated. The next important step is to systemat-
ically break down the functional scenario into a multi-layered rule-based logical model such
that every sequential decision involved in the simulation is based on the logic inferred from
expert knowledge, literature studies, and/or from expected driving behavior. And the final
crucial step is to develop a mathematical model which can track the trajectories of the traffic
participants as it is essential to determine the relative positioning and relative distances of the
host vehicle with respect to the other traffic participants and also with respect to the road
infrastructure. Figure 5.1 provides an overview of the workflow of the traffic simulation model.

Initialize model
parameters

Determine
maximum
permissible
lateral drift

Determine
time to reach
the road edge

Track traffic
participants’
trajectories

Modify
trajectories

due to vehicle
controllability

Detect
collision in

the simulation

Determine
collision type

Estimate injury
risk probability

Figure 5.1.: Workflow of the traffic simulation model

The model workflow begins with the parameter initialization, which is the sampling of the
model input parameters. After which the traffic model determines the maximum permissible
lateral drift for the host vehicle along the KLE drift direction and the time required to cover
this permissible lateral drift. The aim of the simulation is to determine the probability of
collision and its injury level due to KLE in L3 Function, thus the model is simulated only until
either the host vehicle reaches the edge of the road or the sampled KLE duration, depending
on whichever comes earlier for each scenario. As the next step, the model determines the
individual trajectories of all the vehicles in a scenario for the entire duration of the simulation
and then identifies if the host vehicle has a collision with any of the other neighboring vehicles.
In case of a potential collision, the logic for neighbor vehicle braking along with ASC function
is checked for every instant of the simulation to determine whether braking is necessary for
the host and/or the neighbor vehicle(s). With the updated trajectories, the model once again
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checks for potential collisions between the host vehicle and the neighbors. Based on the
trajectories of the vehicles, the positioning of the vehicles, and collision detection, the model
then determines the type of collision. This is important to formulate injury risk functions that
can estimate the injury risk probabilities for the different collisions. The traffic simulation
model is iterated multiple times for different combinations of the model input parameters
which are sampled at random, based on their distributions described in chapter 4 using MCS
methodology. The mean value from the multiple iterations is the overall injury estimation for
L3 Function in the context of lane-keeping failure.

5.1.2. Traffic model visualization

The traffic simulation model described in this thesis work is developed on the Matlab platform.
To visualize the traffic scenarios simulated in the model, the trajectories of each traffic partic-
ipant’s center along with the road infrastructure with respect to the inertial reference frame
of the traffic model are depicted in figure 5.2. It describes a traffic scenario in a four-laned
road, having the curvature of the road towards the right, comprising of two neighbor vehicles
driving along the road on their designated lanes where the host vehicle starts to drift towards
the left side of the road due to KLE. The instant at which the neighbor vehicle 1 collides with
the host vehicle is given by tC , and tB,E is the instant when the necessary conditions for
the ASC function are satisfied and the host vehicle begins to decelerate to avoid a side-way
collision with neighbor vehicle 1.

Figure 5.2.: Traffic simulation model visualization in MATLAB

The change of velocity of all the vehicles in the scenario under discussion over time is indicated
in figure 5.3. Here the velocity of the host vehicle alone is reduced during the simulation
because in the given scenario conditions for the ASC function alone are satisfied. The braking
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of the vehicle is modelled as a reduction of the speed at a constant deceleration rate. As soon
as the braking conditions are no longer satisfied, the deceleration of the individual vehicles
stops.
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Figure 5.3.: Velocity of the vehicle during simulation

5.2. Simulation results

The injury risk of L3 Function due to KLE is determined using a MCS of the highway traffic
model. The overall injury estimation is the weighted average of injury risk over the entire
ODD, depending on its collision probability. It is assumed, without contradiction, that the
exposure rate of KLE is every 3000 hours. The accuracy of the MCS result is dependent on
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Figure 5.4.: Convergence of MCS
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the number of sampling points, as the variance of the result reduces by a factor of the number
of random samples considered in the simulation, thereby increasing the accuracy.

1 10 20 30 40 50 60 70 80 90 100

Number of Simulations 

0

0.2

0.4

0.6

0.8

1

1.2

1.4
In

ju
ry

 r
is

k
 p

ro
b
a
b
ili

ty
/ 
h
r 

in
 L

3
 M

o
d
e
 

10-8 MCS result convergence

IL 1 & above

IL 2 & above

IL 3 & above

(b) MCS result precision for 10,000 simulation samples

Figure 5.4.: Convergence of MCS (conti.)

The fluctuation of the overall injury estimation of different injury levels, based on the MCS
of the traffic model, with respect to the number of random samples points for the model’s
input parameters considered in the simulation, is depicted in figure 5.4(a). It is evident that
the degree of fluctuations reduces as the number of samples increases. Furthermore, it can
also be inferred from the trend that MCS having a higher number of samples tends to oscillate
and average its result around 10,000 samples. The MCS results of the traffic model stabilizes
with reasonable precision for simulations that use 10,000 samples, as shown in figure 5.4(b).
Hence, the traffic simulation model proposed in this thesis work delivers results with reasonable
precision and accuracy while using 10,000 samples. The corresponding overall injury estimation
of L3 Function is as summarized in table 5.1.

Number of Error frequency, Injury risk probability of L3 Function (10−8/hr)
samples fKLE (1/hr) IL1 & above IL2 & above IL3 & above
10,000 1/3000 1.10804 0.67723 0.15119

Table 5.1.: Traffic model simulation results

It is important to note that the model input parameters are sampled based on empirical and/or
hypothesized distributions specific to the assumed ODD of the L3 Function. This ensures that
most, if not all, of the scenarios generated by the combination of random input samples, are
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relevant and contribute to the final result. However, further improvements in the accuracy of
the results are possible by implementing the concept of either importance sampling or stratified
sampling.

5.3. Discussion

The highway traffic model described in this thesis work comprises a number of parameters
that are necessary to completely define the scenario, as discussed in chapter 4. Each of
the parameters has an effect on the injury risk of the L3 Function. This section provides
a detailed discussion of the influence of specific hypothesized and empirical distributions of
input parameters on the estimated injury risk. The inferences gained from understanding the
dependencies of these parameters on the injury risk are essential for statistically defining a
tolerable limit for each hypothesized parameter, in order to establish the safety goals for the
L3 Function. To study the individual effects of a parameter on the injury risk, the traffic model
is simulated for 10,000 randomized sample points, generating different combinations of traffic
scenarios through MCS methodology. The model input parameters are sampled as described
in chapter 4, except for the parameter under examination.

5.3.1. Injury risk Vs v0, E

The velocity of the vehicle is directly proportional to the collision probability of the L3 Function
vehicle, given a KLE, as shown in figure 5.5(a). The distance covered by the vehicle both
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Figure 5.5.: Injury risk trend with vehicle velocity
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longitudinally and laterally increases, as the velocity of the vehicle increases. This increased
distance can cause the vehicle to leave the road and collide with the road edge hazards. As the
distance traveled by the L3 Function vehicle, given a KLE, increases, the likelihood of collision
also increases. It is important to note that the highest percentage of collision observed in
the simulations is lower than 7%, indicating that the likelihood of a collision arising from the
lane-keeping failure is extremely low, given that the extreme characteristics of the KLE are
within the specified bounds.

Injury risk Vs Vehicle velocity
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Figure 5.5.: Injury risk trend with vehicle velocity (conti.)

The average injury estimation of the host vehicle for each specific velocity in L3 Function,
given a KLE, is shown in figure 5.5(b). As expected, the trend of the injury risk probabilities is
also directly proportional to the host vehicle velocity. This is because the injury risk functions
depend on the impact velocity, in addition to the collision percentage. Notably, the injury
risk values are very low or even negligible for velocities up to 35 kmph and begin to increase
steeply thereafter.

5.3.2. Injury risk Vs fKLE

As expected, the injury probability decreases drastically with the decrease in fKLE , as seen
in figure 5.6. The relation between the injury risk and failure rate is linear, as the overall
injury estimation is the mean injury risk from the MCS of the traffic model weighted by
the occurrence rate of the failure. Based on the injury probability arising from different error
frequencies, the safety goal of L3 Function in terms of acceptable lane-keeping failure frequency
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can be defined. This ensures that the injury probability, based on the current accident statistics
is on a comparable scale to the injury estimation of L3 Function arising from KLE.
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Figure 5.6.: Injury risk trend with KLE occurrence rate

5.3.3. Injury risk Vs tKLE

The effect of tKLE on the injury probability is very straightforward as with the increase
in the duration, the probability of collision also increases. Multiple iterations of the traffic
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Figure 5.7.: Injury risk trend with KLE duration
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model are simulated by fixing only the KLE duration parameter in order to study its influence.
The exponential increase in the trend is due to the combined effect of the higher collision rate
observed at higher velocities, as explained in section 5.3.1, along with the effect of the increase
in error duration for each simulation, leading to an overall increase in the collision probability.
Based on the trend of the injury risk with respect to the error duration, the safety goal of the
L3 Function in terms of acceptable duration for lane-keeping error can be defined.

5.3.4. Injury risk Vs rKLE

The effect of the rKLE on the injury risk is not linear, as shown in figure 5.8. Evidently, the
injury risk is very high for a low drift radius. This is because the probability distribution of the
road curvature indicates a higher likelihood of very large road curvatures, implying straighter
roads. When combined with a very small KLE drift radius, it leads to a significant lateral
drift of the automated vehicle during KLE, resulting in the collision of the automated vehicle
with either the neighboring vehicle or road edge hazards. As the drift radius increases, the
automated vehicle is more likely to follow a relatively straighter path compared to the road
curvature, resulting in an oscillating trend for the overall lateral drift as the KLE drift radius
increases. A similar trend can be observed in the injury risk as the KLE drift radius increases.
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Figure 5.8.: Injury risk trend with KLE drift radius

The inferences from this trend are not straightforward, and it is not possible to directly adopt
these interpretations to establish a tolerable limit for the KLE drift radius. This is because the
measurement of the drift radius is with respect to an inertial reference in the traffic model,
and it is not relative to the road curvature.
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5.3.5. Injury risk Vs tHW, β

The influence of tHW, β on the injury risk is shown in figure 5.9. It can be inferred that the
time headway of the neighbor alone does not influence the injury risk in an impactful manner.
The reduction in the distance between the neighbor doesn’t necessarily lead to a collision be-
tween the host vehicle and the neighbor. This is because there are multiple lanes available in a
traffic scenario, and the densely populated lane doesn’t necessarily have to be the immediate
lane of the host vehicle.
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Figure 5.9.: Injury risk trend with KLE duration

One of the most influential characteristics of the neighboring vehicles in the injury estimation of
lane-keeping failure for an automated vehicle is the traffic density. Traffic density is introduced
into the proposed highway traffic model using a combination of the different input parameters,
such as the relative velocity of the neighbors, the number of neighboring road users, the
distance between the two neighbor vehicles, and the starting position of the neighbor vehicles
with respect to the automated vehicle. Therefore, these parameters individually would not
significantly influence the injury estimation of an automated vehicle due to lane-keeping failure.
Nevertheless, the combined effects of these parameters are innately incorporated into MCS of
the proposed highway traffic model described in this thesis work.
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6. Conclusion and Future work

6.1. Conclusion

This thesis contributes to the SOTIF analysis of a highly automated driving function, specif-
ically the L3 Function, by quantifying the safety risk of the function while considering the
deviation or failure of the lane-keeping functionality of the system. The primary focus of this
thesis is on assessing the safety risk resulting from the failure of the function, rather than
investigating the cause of the failure. Due to the challenges and limitations of conducting
vehicle testing during the development phase, the proposed risk quantification method in this
work is based on simulations of lane-keeping failure in various highway traffic scenarios. The
safety assessments carried out by simulations are both prospective and statistically significant,
owing to their data-driven approach.

For the simulation of the lane-keeping failure, a structured methodology is defined in this
thesis. The goal is to create a highly parameterized highway traffic model that can simulate
the interactive behavior of an automated vehicle equipped with the L3 Function experiencing
a lane-keeping failure, as well as the interactive behavior of manually driven vehicles by other
road users in the traffic scenario. The objective is to determine the probability of collision and
the severity of injuries resulting from these collisions using the MCS methodology.

The overall injury estimation results from the simulation of the highway traffic model de-
scribed in this thesis work are well within the tolerable limits based on the MEM principle.
The comparative study of the influence of different traffic scenario parameters on safety risk
indicates that the velocity of the vehicle has the most significant impact, followed by the
duration of the failure, and then the failure occurrence rate. These individual trends aid in
establishing tolerable limits for each of the parameters that define lane-keeping failure behavior.

The framework established in this thesis work is built on assumptions that are justified based
on the available knowledge and understanding of lane-keeping errors in automated vehicles.
These assumptions form the basis for creating the traffic model and conducting simulations.
However, it is important to acknowledge that these assumptions may not fully capture the
complexity of real-world scenarios and could potentially introduce biases or inaccuracies in the
results. Furthermore, the data used in the current work are sourced from literature references
and various BMW campaigns. Even though these sources provide valuable insights into the
highway traffic scenario comprehension, it is important to acknowledge that the results may not
be 100% reliable. The data obtained from the literature might be based on specific conditions
or experimental setups that may not fully represent all of the real-world scenarios. Similarly,
the data collected from BMW campaigns might be influenced by specific driving conditions,
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limiting the ability to generalize the findings to a broader context.

To address these limitations, future research could consider expanding the data collection to
include a more diverse range of sources and real-world driving scenarios. Conducting extensive
field studies could enhance both scenario comprehension and data credibility, thereby increasing
the reliability and generalizability of the results. By acknowledging the limitations of the study
and identifying the opportunities for improvement, the thesis work establishes a solid foundation
for further advancements in the simulation of lane-keeping failure in automated vehicles.

6.2. Future work

The objectives of the thesis were successfully achieved by developing a methodology to quantify
the risk of lane-keeping failure in automated vehicles using a parameterized highway traffic
model. However, there are several potential avenues for further extension and exploration, as
discussed below.

• Refine model parameters: The legitimacy of the highway traffic model can be enhanced
by refining the model parameters through the incorporation of more empirical data.
Rather than relying solely on hypothesized distributions, the utilization of empirical data
can provide more accurate representations of the model parameters when generating
random samples using MCS.

• Interactive behavior: Incorporating all possible collision mitigation behavior of the road
users, such as steering, acceleration, braking, and combinations thereof, into the traffic
model.

• Wider risk assessment scope: Inclusion of injury risk from all road users directly involved
in a collision, as well as the road users who are passively affected by the collision, while
quantifying the risk of the L3 Function.

• Piecemeal failure modelling: Consideration of the lane-keeping failure as an error that
is introduced into the traffic model intermittently and erratically over a period of time,
rather than introducing the error as a constant value throughout the failure duration.

• Special collision cases: Integrating additional special collision cases for automated vehi-
cles in the context of keep lane failure, such as collisions with a lane divider, collisions
near exit lanes, collisions with road obstacles, collisions with cyclists, etc.

• Broadening the operating domain: Expanding the scope of the automated driving func-
tion to include urban traffic conditions when estimating the safety risk of highly auto-
mated driving function. Furthermore, the proposed traffic model can be further expanded
to also include higher-level automated driving functions.
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A. Appendix

Reference Likelihood of relative velocity in kmph (%)
velocity
(kmph)
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30 5 35 15 15 10 5 0 5 0 0 5 5 0 0 0 0 0 0 0
31 10 10 20 30 10 5 0 5 0 0 0 5 0 0 5 0 0 0 0
32 15 30 10 15 20 5 0 0 0 0 5 0 0 0 0 0 0 0 0
33 10 25 15 20 10 0 0 5 5 0 5 0 5 0 0 0 0 0 0
34 0 40 30 10 5 5 0 5 0 5 0 0 0 0 0 0 0 0 0
35 15 10 45 5 15 10 0 0 0 0 0 0 0 0 0 0 0 0 0
36 10 15 15 15 10 15 0 10 10 0 0 0 0 0 0 0 0 0 0
37 15 25 20 10 15 5 0 0 5 0 0 5 0 0 0 0 0 0 0
38 5 30 20 15 15 0 0 5 0 5 0 0 5 0 0 0 0 0 0
39 10 35 20 10 15 0 10 0 0 0 0 0 0 0 0 0 0 0 0
40 5 35 5 15 15 10 0 5 0 10 0 0 0 0 0 0 0 0 0
41 10 20 15 25 5 0 5 0 0 5 0 5 0 5 0 0 5 0 0
42 20 30 30 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 10 35 20 15 5 0 0 5 0 5 5 0 0 0 0 0 0 0 0
44 5 35 15 20 5 0 0 0 15 0 0 0 0 0 0 0 5 0 0
45 10 10 35 15 10 5 5 5 0 0 0 0 0 0 0 0 0 0 0
46 0 20 0 15 10 20 10 10 10 0 5 0 0 0 0 0 0 0 0

Continued on next pageVIII



Appendix

Table A.1 – continued from previous page
Reference Likelihood of relative velocity in kmph (%)
velocity
(kmph)
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86-
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47 0 15 40 10 10 10 5 5 0 5 0 0 0 0 0 0 0 0 0
48 0 20 35 15 10 10 0 10 0 0 0 0 0 0 0 0 0 0 0
49 0 15 30 15 25 0 5 0 5 0 5 0 0 0 0 0 0 0 0
50 20 15 15 10 10 5 5 5 0 0 0 0 5 0 5 5 0 0 0
51 10 20 25 15 5 15 5 0 0 0 0 0 0 5 0 0 0 0 0
52 0 35 30 25 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0
53 5 20 10 30 10 5 5 5 0 5 0 0 0 0 0 0 5 0 0
54 20 15 5 15 25 10 10 0 0 0 0 0 0 0 0 0 0 0 0
55 0 30 20 10 20 15 0 0 0 0 0 0 0 0 5 0 0 0 0
56 20 20 30 0 15 7.5 7.5 0 0 0 0 0 0 0 0 0 0 0 0
57 5 40 10 20 10 5 0 0 5 5 0 0 0 0 0 0 0 0 0
58 10 15 20 15 10 0 10 0 5 0 5 5 0 0 5 0 0 0 0
59 10 35 20 10 10 0 0 0 10 5 0 0 0 0 0 0 0 0 0
60 10 15 15 35 10 5 5 0 0 5 0 0 0 0 0 0 0 0 0

Table A.1.: Relative velocity likelihood matrix
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