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Abstract

An important task of pathologists is to assign a grade during a tumor diagnosis. The grade
correlates with a prognosis, that indicates the chances of survival. This prognosis plays a
central role in therapy selection and prospects. Breast carcinomas have many histological
subtypes, which are quite similar among themselves. Nevertheless, the pathologists need
to perform the grading as accurately as possible. There are multiple grading schemes
available. All schemes evaluate the 3 criteria: tubule formation, nuclear pleomorphism
and mitotic count. During the evaluation, a label between 1-3 is assigned to each criterion.
Afterward, the sum of all labels determines the tumor grade. Whereas the mitotic count
is a rather objective evaluation, the tubule formation and nuclear pleomorphism labels
are subjective decisions and therefore a strong inter-observer variability exists. Having
an algorithm that could provide a deterministic evaluation, would improve reliability and
could also improve diagnostic accuracy. The goal of this bachelor thesis is to develop
a machine learning-based framework, that on the one hand classifies the grade of the
subjective criteria (i.e., tubule formation and nuclear pleomorphism) and on the other
hand semantically segments important tissue regions used for the prediction. The overall
goal of this framework is to support pathologists in clinical decision-making by providing
not only a score for each category per image, but also segmentation information and thus
providing a more detailed and interpretable decision support. The dataset provided for
this thesis contains mammary tumors in dogs. Due to the similarity between canine and
human mammary tissue, successes achieved with canine tissue could be directly transferred
to humans. Since annotating many images to train a supervised model is time-consuming,
a relatively small dataset is provided. According to that limitation, the first research topic
is how to overcome this problem by using transfer learning, image augmentation and image
preprocessing. Secondly, it will be evaluated whether the outputs of the segmentation and
classification tasks are precise enough to be used by a pathologist.
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Prediction of Histopathological Markers for Computer-Aided Grading of Mammary
Carcinoma

1 Introduction

In recent years, tumors have become one of the main diseases, causing the deaths of many
dogs [1]. Among the most common types of tumors concerning female dogs are mammary
tumors, which are mostly diagnosed around the age of 6–18 years [1]. To determine the
prognosis and treatment options for these neoplasms at an early stage, the histologic
grade plays a significant role. Therefore, the grading schema by Peña et al. [2] evaluates
the three criteria: tubule formation (TF), nuclear pleomorphism (NP) and mitotic count
(MC). A score between 1 and 3 is assigned to each criterion. The sum of all scores then
yields the tumor’s malignancy grade. A grade of 1 means "low malignancy" [3], whereas a
grade of 3 indicates "high malignancy" [3] of the cells.

The schema helps to standardize the diagnoses, but there is still an inter-observer
variability between pathologists when assigning the malignancy grade [4]. The study by
Ginter et al. [4] compares the grading results of six experts from different institutes
on digital whole slide images (WSIs). When assigning the scores, pathologists have the
highest agreement rate on the tubule formation score (0.503 kappa), followed by nuclear
pleomorphism (0.403 kappa) and mitotic rate with the lowest agreement rate (0.281 kappa)
[4]. Regarding the resulting tumor grade, grade 1 had the highest similarity (0.705 kappa)
compared to grades 2 (0.375 kappa) and 3 (0.491 kappa) [4]. All in all, it becomes clear
that prognoses by different pathologists vary, but in order to find the optimal treatment
for the patient, they need to be stable and also replicable [4]. Having an algorithm that
could provide a deterministic evaluation on those complex tissue images, would improve
reproducibility and might also improve diagnostic accuracy. Although the dataset of
this thesis consists of mammary tumors images of dogs, the algorithm can be applied to
human breast cancer too, due to the "[similarities] in their pathological, molecular, and
visual characteristics"[5].

The problem with neural network algorithms is, that they are mostly not fully in-
terpretable, making it difficult to evaluate and trust them. Other separate studies have
already implemented the segmentation of all 3 biomarkers. Especially when assessing the
mitotic count, previous studies have demonstrated good results with machine learning
models. Hence, this marker was excluded from the present research, which instead con-
centrates on evaluating tubule formation and nuclear pleomorphism scoring. Later, the
mitotic count can be added to the scores in order to compute the final tumor grade.

The main problem that confronted this work was the limited amount of annotated
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samples and the uneven distribution of classes in the provided dataset. According to that
limitation, the first research topic was how to overcome this problem by using transfer
learning, image augmentation, and image preprocessing. Secondly, it should be evaluated
whether the outputs of the segmentation and classification tasks were precise enough to
be used by a pathologist.

This thesis is structured as follows: In the second chapter, mammary tumors will be
introduced. Within, the risk factors are explained and an overview about the different
types of mammary carcinomas is provided. Next, the importance of histologic grading is
emphasized, and an overview of treatment options provided. Moreover, the field of pathol-
ogy is introduced, detailing the production of histopathological images and highlighting
the recent technological advancement: digital pathology. Additionally, the grading schema
used in this study is described and the challenges associated with grading mammary tu-
mors are identified. Chapter 3 discusses the results of previous studies, their materials
and approaches. Afterward, we will look at the different datasets, further materials, and
applied methods within Chapter 4. Then, in Chapter 5, the results for the different models
are summarized and explained. Chapter 6 evaluates and discusses the results of the final
models. Finally, in Chapter 7, a conclusion is drawn considering the research questions,
and an outlook is provided.

Laura Klose 1. Introduction 2
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2 Theoretical Background

This chapter, starts with an overview about Canine Mammary Tumors. In the next
section, the field of histopathology will be introduced. Within the last section, the grading
scheme used in this thesis to perform the histologic grading will be presented. Furthermore,
issues that are relevant for either pathologists or algorithms while performing the overall
grading will be mentioned. Finally, problems that occur specifically in the tubule formation
and nuclear pleomorphism scoring, that were addressed in similar studies, will be outlined.

2.1 Canine Mammary Tumors

This section provides a more in depth overview about Canine Mammary Tumors (CMTs).
At first, I will summarize the main risk factors that contribute to such a diagnosis and
further introduce the histologic types that occur most commonly. In the final paragraph,
the importance of histopathological examination will be highlighted.

2.1.1 Risk Factors

Canine mammary tumors originate from the mammary gland, which is composed of glan-
dular and connective tissue, and can be classified as either benign or malignant [6]. As
stated by Sorenmo et al. [7], there are several risk factors that can contribute to the
development of CMTs in dogs. 1. Age: Incidences of mammary tumors in dogs increases
with age, with most cases occurring in dogs that are over 5 years old [7]. 2. Hormonal Ex-
posure: Hormonal factors, including exposure to estrogen and progesterone, are thought
to play a significant role in the development of CMTs [7]. Female dogs that have not been
spayed or have been spayed later in life have an increased risk of developing CMTs [7]. 3.
Breeds and Genetic Susceptibility: Smaller breeds of dogs are at higher risk of developing
CMTs than larger ones [7].

2.1.2 Histologic Types

CMTs are classified into different histologic types based on their cellular characteristics
and growth patterns [3]. Most of the mammary tumors are either adenomas (simple or
complex), mixed tumors (benign) or carcinomas [3]. Canine mammary carcinomas (CMCs)
are the topic of this thesis. For them, the grading scheme can be applied to determine the
malignancy [3]. CMCs can be divided into different subtypes again, like ductal tubular
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adenocarcinoma, ductal tubulopapillary adenocarcinoma, ductal solid adenocarcinoma,
comedocarcinoma, lymphangiosis carcinomatosa, and complex adenocarcinoma. The ex-
istence of different subtypes makes grading more difficult for experts. All the mentioned
subtypes are part of the dataset, used in this work.

2.1.3 Importance of Histopathological Examination and Treatment Options

The first step in tumor identification is physical examination, during which each mammary
gland is examined and palpated [6]. Furthermore, a fine needle aspiration (FNA), in
which tissue fluid is removed with a needle, can be performed to check for cancer cells [6].
Physical examination and FNA are low-cost options to ensure that a tumor is present, but
in order to define the type, grade, and stage of CMTs, the histopathological examination
is a critical component [6]. The parameters for type, grade, and stage of the tumor are
crucial in determining the appropriate treatment plan for each individual case. Several
treatment options are available, including surgery, radiation therapy, and chemotherapy
[6].

2.2 Histopathology

In the previous section, the importance of histopathological examination for canine mam-
mary tumor diagnosis and research has been emphasized. Now, the generation of histopatho-
logical images with the commonly used Hematoxylin and Eosin staining technique will be
described. Afterward, the recently emerged alternative to a manual evaluation of these
images by a pathologist, the field of digital pathology, will be introduced.

2.2.1 Histopathological Images

Histopathological images are generated through a process that involves the collection,
processing, and staining of tissue samples. Hematoxylin and Eosin (H&E) staining is the
most commonly used staining technique, producing images with high contrast and detail
[8]. The process of generating histopathological images begins with the collection of tissue
samples from patients, which are typically obtained through biopsy or surgical resection
[9]. Once the tissue has been collected, it is processed through a series of steps to prepare
it for staining and imaging, which are described by Slaoui et al. [10]:

1. Fixation: First, the tissue is fixed in a solution, typically formalin, which preserves
the tissue structure and prevents decay. 2. Trimming: Afterward, samples are trimmed to
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a size suitable for the further steps. 3. Pre-embedding and 4. Embedding: The samples
are then soaked and embedded in paraffin wax to remove water and prevent them from
moving. 5. Sectioning: The embedded tissue is then sliced into thin sections, typically 4-5
µm-thick, using a microtome. 6. Staining and Mounting: Finally, these almost transparent
sections are mounted on glass slides and stained using the H&E technique. [10]

In the H&E staining process, the tissue sections are first stained with hematoxylin,
which binds to the acidic components of the tissue, such as nuclei, and stains them in
a blue tone [11] [12]. Afterward, the sections are stained with eosin, which binds to the
basic components of the tissue, such as proteins, and stains them purple to pink [11] [12].
The resulting histopathological images show the detailed structures within the sample,
allowing medical professionals to identify abnormalities and make a diagnosis.

2.2.2 Digital Pathology

Microscopic evaluation of tissue images is an important procedure for diagnostic evaluation
[13]. Currently, this is mostly done manually by a pathologist and requires "long training
[. . . ], quality control by peer reviews, and personal experience" [13]. However, in recent
years, there has been great technical progress in the field, so that preparations can now be
digitized with the aid of a scanner. The virtual microscopy method is also known as digital
pathology and provides whole slide images that can now be analyzed digitally [13]. Another
advantage, besides the high-resolution digital images, is that the patients’ metadata is also
available digitally. This and the recent progress in image analysis algorithms are paving
the way for the automation of the analysis of histopathological images.

2.3 Histologic Grading of Canine Mammary Carcinomas

Histopathological examination of mammary tumors is crucial for accurate diagnosis, prog-
nosis, and treatment planning. A common grading system is the Elston and Ellis method
[14], also known as the Nottingham method [2]. The Elston and Ellis method is primarily
used for humans [2]. The grading scheme developed by Peña et al. [2] is a minor modifi-
cation of this method to be used in canine mammary tumors. Peña et al. [2] state that an
adjustment of the criteria is required due to a lower spread of cancer cells, different proba-
bility distributions of tumor types and different markers to define the grade of malignancy
for dog tumors.

Laura Klose 2.3 Histologic Grading of Canine Mammary Carcinomas 5
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Table 1. Criteria for Histologic Malignant Grade adapted from Peña et al. [2].

Score Tubule Formation Nuclear Pleomorphism Mitoses per 10 HPF1

1 point TF > 75% of the specimen Uniform or regular small nu-
cleus and occasional nucleoli

0-9 mitoses/10 HPF

2 points Moderate TF 10-75% of
the specimen admixed
with areas of solid tumor
growth

Moderate degree of variation
in nuclear size and shape, hy-
perchromatic nucleus and pres-
ence of nucleoli

10-19 mitoses/10 HPF

3 points Minimal or no TF (<10%) Marked variation in nuclear
size and hyperchromatic nu-
cleus, often with one or more
prominent nucleoli

> 20 mitoses/10 HPF

The grading scheme according to Peña et al. [2] is based on the assessment of three
criteria: tubule formation, nuclear pleomorphism, and mitoses per 10 HPF. Each criterion
is assigned points from 1 to 3 in the analysis based on the indicators visualized in Table
1. The sum of all points yields the malignancy grade of the tumor [2]. A grade of 1 (3-5
points) means the malignancy grade is "low" [2], 2 (6-7 points) stands for "intermediate"
[2] and a grade of 3 (8-9 points) points out a "high" [2] grade.

2.4 Challenges in Canine Mammary Carcinoma Grading

Challenges for Pathologists The grading of CMTs can be challenging. Although
the grading scheme helps to standardize the diagnosis, there is still an inter-observer
variability between pathologists when assigning the malignancy grade [4]. One reason
for discrepancies in the grading of tumors is that the mammary carcinoma is a very
heterogeneous tumor type [2]. This can make it difficult to assign an accurate grade to
the tumor. Furthermore, the grading of tubule formation and nuclear pleomorphism are
subjective tasks, leading to considerable differences in the interpretation among different
experts.

Challenges for AI A machine-learning algorithm could help standardize the grading
process. In order to achieve good results on such complex and heterogeneous images, the

1HPF, high-power field

Laura Klose 2.4 Challenges in Canine Mammary Carcinoma Grading 6



Prediction of Histopathological Markers for Computer-Aided Grading of Mammary
Carcinoma

algorithm needs large amounts of high-quality data. To be used in a clinical diagnosis, it
should also be interpretable.

The annotation process for a supervised learning approach is labor-intensive, which is
why pathologists can only provide a small dataset. Additionally, due to the rarity of some
mammary neoplasms, only a limited amount of sample images can be provided per type.
This needs to be taken in consideration, because an uneven distribution in the dataset,
can lead to overfitting or biased models.

Besides data shortage, the algorithm needs to function effectively for a wide range of
patients and generalize over variations in staining and image artifacts that can arise in
the "sample preparation [. . . ] and during the imaging process" [15]. Finally, challenges
can occur due to the different scanners that exist on the market, using different settings
such as "different compression types and sizes, illumination, objectives, and resolution"
[15]. This can also cause problems when developing the algorithm and needs to be kept
in mind during the image preprocessing [15].

Challenges in Segmentation of Tubule Formation Tekin et al. [16] point out
the challenges in segmentation of tubule formations. Tubule formations are unevenly
distributed within tumoral regions and can have various shapes. Within the creation
process of H&E images, it is not always possible to ensure exact shapes, which can result
in reduced size, unclear borders, and blurring of the lumen. Furthermore, the lumen can be
surrounded by more than one layer of nuclei, and thus an algorithm would have problems
identifying the correct borders. Lastly, machine learning systems could misidentify tubules
as "[other] structures with a lumen, such as adipose tissue, blood vessels [. . . ] [or] other
mammary glands" [16].

Challenges in Scoring of Nuclear Pleomorphism While challenges can occur when
segmenting tubule formations, the scoring of nuclear pleomorphism can be difficult to
learn for a network. When assigning a nuclear pleomorphism score, an inter-observer
variability between pathologists exists. To capture a wider range of perspectives in the
training dataset, incorporating annotations from multiple pathologists can be beneficial
in developing an algorithm that predicts more precise and reproducible scores. [17]

Laura Klose 2.4 Challenges in Canine Mammary Carcinoma Grading 7
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3 Related Work

In recent years, deep learning has emerged as a powerful tool for solving complex computer
vision problems and has been increasingly used in digital pathology applications like breast
tumor grading. Traditionally, breast cancer grading has been a subjective process that
can be influenced by factors such as inter-observer variability and fatigue. The motivation
in newer studies is to develop an algorithm that can help standardize and automate this
process, and thus provide more accurate and reproducible results. Within this chapter
the popular grading schemes and accomplishments in other works, working on scoring
each histopathological marker, will be evaluated. Additionally, the used materials and
model architectures will be summarized. Afterward, I will present how other studies use
the transfer learning method to overcome limitations of a smaller dataset and introduce
methods that were applied to address the challenges in segmenting tubule formations and
nuclear pleomorphism.

Scoring of Histopathological Markers Previous studies have already worked on AI
systems that are relevant for the grading like segmenting tumor areas [18], counting mi-
tosis ([19, 20, 21, 22, 23]), scoring nuclear pleomorphism [18] [17] [24] and scoring [24] or
detecting tubule formations [18] [16].

While some studies focused on predicting single biologic markers, Jaroensri et al. [18]
and Wetstein et al. [24] built model pipelines to predict the overall tumor grade. When
predicting the overall grade, Wetstein et al. [24] showed that better results were reached
when scoring all three grading components (tubule formation, nuclear pleomorphism, mi-
totic count) separately first and sum them up to receive the overall tumor grade afterward.
On the other hand, a training dataset that provided only the final tumor grade in the su-
pervised training, lead to more mistakes in the evaluation and is also less explainable
[24].

Individual kappa scores comparing pathologists and the models’ output in the works
of Wetstein et al. [24] and Jaroensri et al. [18] indicate, that the best results per category
were achieved for mitotic count, followed by tubule formation. In contrast, both reached
lower scores for nuclear pleomorphism scoring. Especially with mitotic count, further
studies (i.e., [19, 20, 21, 22, 23]) could demonstrate good results.
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Results and Provided Dataset Although a supervised learning approach, that con-
tains a score for all three markers in the dataset has yield better results, it makes the
dataset creation process more time-consuming.

A recent study by Jaroensri et al. [18] relied on 498 slides with different grades of
nuclear pleomorphism examples and 499 slides with different grades for tubule formation
within the training dataset. With their model, they reached quadratic-weighted kappa
scores of 0.45 for nuclear pleomorphism and 0.70 for tubule formation.

Another approach by Wetstein et al. [24], achieved accuracy scores of 0.70 (±0.02) on
both, the tubular and nuclear score. For the training 99 samples of nuclear scores and 100
samples of tubule formation scores were available [24].

In contrast to previous studies, my training dataset incorporated 195 regions of interest
for nuclear pleomorphism and 60 regions of interest for tubule formation. Therefore, the
contribution of this thesis was to prove whether good results can still be achieved with a
smaller dataset, to potentially reduce annotation workload in the future.

Model Architecture A model architecture, that is widely used in segmentation tasks
and was developed for the application in biomedical images is the U-Net, published by
Ronneberger et al. [25] in 2015. It was developed to improve localization and fine boundary
detection of Convolutional Neural Networks [25]. However, Tekin et al. [16] pointed out,
that the traditional U-Net architecture might not be enough to detect fine boundaries of
tubule structures. When testing different architectures, they noticed that a Tubule-U-
Net framework based on the EfficientNetB3-U-Net achieved better measurement results,
compared to a traditional U-Net [16]. Similarly, the Tumor Segmentation Model by Wilm
et al. [26] is also using a modified U-Net implementation with a ResNet encoder.

Transfer learning Another common practice in medical imaging is transfer learning.
Transfer learning can help to increase the models’ performance, when only a limited num-
ber of images is available. The idea of transfer learning is to use a pre-trained model that
has been trained on a large dataset as a base for training a new model for another task.
The pre-trained model has already adapted its parameters to recognize a wide range of
features from the data. Those features can be used as a starting point for the new task.
Previous research has shown that the use of transfer learning, enables higher starting per-
formance and a faster and better convergence towards a local minimum can be expected.
[27]

Laura Klose 3. Related Work 9



Prediction of Histopathological Markers for Computer-Aided Grading of Mammary
Carcinoma

Focusing on the similarity of datasets in the training and pretraining, one can dis-
tinguish between "homogeneous and heterogeneous transfer learning" [28]. Homogeneous
transfer learning happens, if the model is fine-tuned with a dataset from the same domain
as the initial training dataset. Popular breast tumor grading approaches, e.g., Wetstein et
al. [24] have also achieved good results on heterogeneous, cross-domain transfer datasets,
e.g., with the ImageNet dataset [29]. The ImageNet dataset compromises a wide range
of images and studies have shown that models, that learned from it, can be applied on
datasets from other domains as well ([30], [31]).

Addressing Tubule Formation Segmentation challenges Besides using a more
complex model architecture, Tekin et al. [16] addressed the difficulties of segmenting
tubule formations, using a mirror technique. The primary objective of this approach was
to preserve more intact tubule structures that would otherwise be cut off during the patch
creation [16]. In their study, Tekin et al. [16], work with detailed annotations, for each
tubule formation.

Addressing Nuclear Pleomorphism Scoring challenges Recent papers have treated
inter-observer variability in the scoring of pleomorphism differently. Some have translated
the scoring from labels 1-3 into a binary classification between "low/intermediate and high"
[24]. This approach reduces complexity and generates more informative outputs [24]. In
contrast, Mercan et al. [17] chose to transform the discrete scores into a continuous figure
to map trends in the decision process of the annotators. This provided more information
for the model. By utilizing this technique, the output scores of the network by Mercan et
al. [17] achieved higher agreement rates between different experts during testing.

Laura Klose 3. Related Work 10
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4 Materials and Methods

My algorithm was designed to classify and segment the three grades of tubule forma-
tion and nuclear pleomorphism in H&E-stained samples of Canine Mammary Carcinomas
(CMCs). I was provided with annotated regions of interest of digital histopathological im-
ages, showing different types of CMCs. The main dataset utilized was the CMC dataset,
referred to as Mamma-Ca dataset. Due to the time-consuming nature of annotating
whole slide images, only a limited number of annotation masks were available.

Limited data can cause the model to either overfit or underfit, which will result in a
low accuracy on the test data. Therefore, the training dataset was enhanced with a second
open-source dataset, provided by Wilm et al. [26]. This additional dataset, consisting of
annotated WSIs of squamous cell carcinoma, will be referred to as SCC dataset. The
dataset was chosen due to the similar structure of squamous cell carcinomas and mammary
carcinomas.

In the following, materials and methods will be presented in detail.

Table 2. Dataset characteristics for training, evaluation and testing.

SCC dataset

Data Train Valid Test

No. of H&E WSIs 35 5 10

Slide-level tumor class: tumor/no tumor 35/35 5/5 10/10

(Annotated area in percent) (0.32/ 0.66) (0.36/0.63) (0.30/0.69)

Mamma-Ca dataset

Data Train Valid Test

No. of H&E ROIs 176 61 63

Slide-level tumor class: tumor/no tumor 118/162 51/58 43/57

(Annotated area in percent) (0.72/0.28) (0.75/0.24) (0.75/0.25)

Slide-level TF score: other/tubular 170/60 61/26 63/23

(Annotated area in percent) (0.90/0.10) (0.93/0.07) (0.92/0.08)

Slide-level NP score: 1/2/3 69/95/31 25/38/13 20/30/15

(Annotated area in percent) (0.06/0.22/0.06) (0.09/0.21/0.06) (0.03/0.15/0.10)
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Materials

4.1 U-Net Implementation

For the segmentation tasks, the Kaggle implementation of a U-Net with ResNet Blocks 2

was used. The network architecture is visualized in Figure 1.

Fig. 1. U-Net with ResNet Blocks architecture adapted from [32].

4.2 Canine Cutaneous Tumor Segmentation Model

The publicly available Canine Cutaneous Tumor Segmentation Model, published by Wilm
et al. [26], served as the foundation for initializing the weights of my Tumor Segmentation
Baseline Model. It was initially built for the segmentation and classification of Canine
Cutaneous Tumors (CCTs) and should help to further increase the robustness of my model.

Dataset To train, test and validate the Canine Cutaneous Tumor Segmentation Model,
Wilm et al. [26] employed a dataset of 350 whole-slide images, containing 50 samples
for "seven cutaneous tumor subtypes: melanoma, mast cell tumor (MCT), squamous cell
carcinoma (SCC), peripheral nerve sheath tumor (PNST), plasmacytoma, trichoblastoma,
and histiocytoma" [26]. The images were 16-fold down-sampled to a resolution of 4 µm

px

2https://www.kaggle.com/code/ateplyuk/pytorch-starter-u-net-resnet
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(2.5X), in order to provide "more context" [26]. To determine the "background" class,
Otsu’s adaptive thresholding [33] was used by Wilm et al. [26].

Model architecture For the segmentation, the "fastai U-Net implementation with a
ResNet18 [encoder][. . . ] pre-trained on ImageNet "[26] was applied. The down-sampled in-
put patches had a size "of 512×512 pixels at a resolution of 4µm

px (2.5X), which corresponds
to a tissue size of 2048 × 2048 µm2" [26].

Evaluation The model reached "a class-averaged Jaccard coefficient of 0.7047" [26] and
a "frequency-weighted coefficient of 0.9001" [26]. When comparing the class scores, "[back-
ground and tumor] scored high Jaccard coefficients of 0.9757 and 0.9044, respectively" [26],
whereas non-tumor cells were often misclassified as malignant, with a Jaccard coefficient
of 0.3023 [26].

4.3 SCC dataset

The SCC dataset, which was part of the study by Wilm et al. [26] was utilized, to retrain
the Canine Cutaneous Tumor Segmentation Model to perform the segmentation of the
"tumor", "no tumor" and "background" classes.

4.3.1 Sample selection

The SCC dataset, which contained 50 cutaneous tissue samples of squamous cell carci-
noma, was provided by "the biopsy archive of the Institute for Veterinary Pathology of
the Freie Universität Berlin" [26]. It is available online and can be downloaded following
the instructions in the ReadMe file of the corresponding GitHub repository3.The slides
"were routinely fixed in formalin, embedded in paraffin, and tissue sections were stained
with H&E" [26]. The samples were scanned using two similar scanners at a resolution of
around "0.25 µm

px (40X objective lens)" [26].

4.3.2 Annotation workflow

The open-source software SlideRunner was used by one pathologist and medical students
(8th semester) to annotate the images. The polygon annotations were saved as an SQLite

3https://github.com/DeepPathology/CanineCutaneousTumors/blob/main/README.md
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database and transferred into an MS COCO (Microsoft Common Objects in Context)
format using the provided Python file4 in the repository. [26]

4.3.3 Records and classes

I divided the SCC dataset so that there were 35 WSIs in the training, 5 in the validation,
and 10 slides in the test set (Table 2). All slides contained the classes "tumor" and "no
tumor". Upon examining the class distribution percentages in Table 2, it is noticeable
that the "no tumor" class occupied a greater area within the dataset.

4.4 Mamma-Ca Dataset

4.4.1 Sample selection

The MammaCa Dataset is my main dataset and was created for the tubule formation and
nuclear pleomorphism grading algorithms. It consisted of 294 slides from 226 dogs and in-
cluded breast tumor types such as: ductal tubular adenocarcinoma, ductal tubulopapillary
adenocarcinoma, ductal solid adenocarcinoma, comedocarcinoma, lymphangiosis carcino-
matosa, and complex adenocarcinoma. Similar to the study of Wilm et al. [26], the biopsy
archive of the Institute for Veterinary Pathology of the Freie Universität Berlin prepared
the H&E-stained images along with corresponding annotations within the regions of in-
terest. The images were scanned with the Aperio Scanscope CS2 at a resolution of 0.253
µm
px (40X objective lens) [26].

4.4.2 Annotation workflow

The annotations were performed by a single pathologist (C.P.) using the SlideRunner
software and stored in an SQLite database.

4.4.3 Records and classes for Tumor Segmentation

The Mamma-Ca dataset was divided into three parts: the training set consisted of 170
slides, the validation set included 61 slides, and the test set comprised 63 slides (Table
2). The dataset was used to fine-tune the pre-trained SCC Baseline Model. Therefore,
the annotations were grouped into the two categories "tumor" and "no tumor", while any
irrelevant labels were assigned to the "other" category. The "other" category was not

4https://github.com/DeepPathology/CanineCutaneousTumors/tree/main/annotation_conversion
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considered in the training and validation of the Tumor Segmentation Model. Compared
to the SCC dataset, Table 2 indicates that the "tumor" class now occupied a considerably
larger area than the "no tumor" class.

4.4.4 Records and classes for Tubule Formation Segmentation

For the segmentation of tubule formations, the super-categories "tubule" and "other" were
created. The "tubule" class combined the different tubule formations inside the tumor
regions: single-layer tubules (tubules that have only one cell layer), multi-layer tubules
(tubules with at least 2 cell layers), and the tubulo-papillary [2]. Because, the model
should distinguish between tubule formation regions and those that are not within that
class, the "other" class was now relevant for the training. The tubule formations covered
a smaller area than the "tumor" or "no tumor" classes from the pre-trained model. Only
109 samples contained tubule formations, as visualized in Table 2.

4.4.5 Records and Classes for Nuclear Pleomorphism Segmentation

For the segmentation of nuclear pleomorphism, I created the super-categories: "pleo 1",
"pleo 2", "pleo 3" and "other". "Pleo 1" indicates regions containing "uniform or regular
small nucleus and occasional nucleoli" [3]. Within regions of "pleo 2" there is a "moderate
degree of variation in nuclear size and shape, hyperchromatic nucleus, and presence of
nucleoli" [3]. The class with the most deformations is "pleo 3" [3]. The grades of nuclear
pleomorphism were observed in the following tissue structures: single layer tubules, multi-
layer tubules, tubulo-papillary and solid. Different from the Tumor Segmentation model,
the "other" category was relevant in the training.

Nuclear pleomorphism, was not annotated in all slides. The "pleo 1" class was present
in 114 slides, the "pleo 2" class in 163 and 59 slides contained "pleo 3" (Table 2). In
contrast to that distribution, the areas that are covered by the different grades of nuclear
pleomorphism were distributed differently. Although "pleo 1" appears relatively often
throughout the dataset, its area made up only 6 percent of all annotated regions. Areas
of "pleo 3", also made up around 6 percent. On the contrary, 22 percent of the annotated
areas were labelled as "pleo 2" in the training dataset.
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4.5 Computational Setup

During the training and code development for the Canine Cutaneous Tumors project, I was
fortunate to receive support from the High Performance Compute System from AImotion
Bavaria in Ingolstadt. The resources they provided included access to a single NVIDIA
A100 GPU with 80 GB of VRAM, which was shared among the students. The GPU server
was running the Linux Ubuntu operating system. The code was written in Python version
3.8.10 and utilized PyTorch version 1.12.1. The code can be found on GitHub5.

Methods

4.6 Data Collection and Dataframe Manipulation

The process of collecting and manipulating data for this project involved two distinct
datasets: the SCC dataset, obtained from the study by Wilm et al. [26], and the Mamma-
Ca dataset, prepared by the Institute for Veterinary Pathology of the Freie Universität
Berlin. Both datasets were annotated, but since the Mamma-CA dataset only had an-
notations in regions of interest (ROIs), the images were cropped accordingly. For each
dataset, the polygon annotations were stored in an SQLite database, which was then con-
verted to an MS COCO (.json) format in order to prepare the database for the dataloader.
In that file, all annotation classes were saved under "categories" with their corresponding
"id" and "name" from the original database. Additionally, the label "supercategories" was
added to group the classes for the different training steps. Furthermore, I added an "area"
label to the file to be able to analyze the size of the annotated areas. Finally, a "bbox"
column was added to the new dataframe, which contained the minimum and maximum x,
y coordinates for each polygon area. The bounding box is used in the sampling process
to randomly select a position for the next training patch that contains a specific class.

4.7 Techniques to overcome data challenges

In the Chapter 2.4 challenges that occur when using histopathological images to develop a
multi-class segmentation algorithm were mentioned. Furthermore, the Chapter 4 examined
that a limited amount of images was provided and classes were unevenly distributed, which
can lead to problems in the generalization of the machine learning model. In order to

5https://github.com/IngolstadtMedicalImaging/BiomarkersInCanineMammaryTumors
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overcome these challenges and increase the probability of training an accurate model, the
following techniques were applied:

4.7.1 Transfer Learning Pipeline

In my setup, I consider heterogeneous transfer learning because the datasets contain sam-
ples from the same domain (histopathological images).

There is currently no state-of-the art strategy about which layers to freeze and which
layers to train in the transfer learning [34]. However, existing research has observed that
features in the starting layers seem to be more generic than those in the later layers, which
are then more task-specific [35]. Therefore, two steps were used for the fine-tuning. In
the first step, the Pre-Training, the model should learn to segment the tumor regions.
In the second step, the Head Training, all layers of the tumor segmentation model were
frozen. Only the last convolutional layers (the head) of the network were trained with the
task-specific datasets. The final step resulted in the Nuclear Pleomorphism Segmentation
Model and the Tubule Formation Segmentation Model.

In the following, the Pre-Training and Head Training will be described in more detail.
Within the segmented classes and the layers that were frozen throughout the training will
be mentioned.

Baseline Model The overall goal of the Pre-Training was to train a U-Net with ResNet
Blocks to segment the "tumor", "no tumor", and "background" classes. To benefit from
the advantages of transfer learning, the U-Net model was initialized with the pretrained
parameters from the Canine Cutaneous Tumor Segmentation Model by Wilm et al. [26].
This model was chosen as a starting point, because task and datasets were similar to my
approach. The model by Wilm et al. [26] was also trained on H&E-stained histopatho-
logical images and had to segment tissue classes within cutaneous tumor subtypes [26].
However, there were some differences, specifically in terms of image resolution. The cuta-
neous tumor images had a resolution of 4 µm

px , whereas my mammary tumor images had a
lower resolution of 0.5µm

px in order to learn the detailed information on a nuclear level.

Pre-Training with the SCC dataset Due to the limitation that the Mamma-Ca
dataset was quite small, I decided to fine-tune the Canine Cutaneous Tumor Segmenta-
tion Model by Wilm et al. [26] with a dataset of squamous cell carcinoma first. The
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SCC dataset, was already part of the network in [26], but was now resized to a lower
magnification level (0.5µm

px ). The SCC dataset was chosen due to its biological similarities
to mammary carcinomas.

Transfer Learning with the Mamma-Ca dataset In the next Pre-Training step,
all parameters until (including) the third residual block were frozen. The following layers
were fine-tuned with the main Mamma-Ca dataset.

Final Head Training with the Mamma-Ca dataset After the Pre-Training stage,
the encoder and decoder layers were frozen to proceed with the Head Training. The goal
of the Head Training was to train two separate models, one for the segmentation of tubule
formations and the other one for the segmentation of nuclear pleomorphism. In this step,
only the weights and biases of the last convolutional layers were fine-tuned.

4.7.2 Image Augmentation and Preprocessing

The segmentation models were trained using supervised learning. Therefore, each image
had a corresponding annotation mask.

The image preprocessing and augmentation approaches were an adaptation of the
pipeline in the study by Wilm et al. [26], because my dataset structure and segmentation
task were similar.

Preprocessing In the preprocessing step, areas without a relevant annotation for a
specific training step, were labelled as "other". Additionally, the "background" class was
added to the target mask.

The "background" class was necessary for the algorithm to be able to distinguish be-
tween background and tissue. It was extracted using a fixed "white" value threshold of
210. This way, pixels that had a gray value of 210 or above were considered "background"
pixels.

Next, the patches for the training were prepared. Since the whole images were too
big to be processed in a CNN, patches with a size of 512×512 pixels at a resolution of
0.5µm

px were extracted. The chosen resolution corresponded to a down-sampling rate of
2. At this magnitude, the nuclei are presented in great detail. Information about the
nuclei was important for the further segmentation steps of tubule formation and nuclear
pleomorphism, which is why this level had been selected.
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Sampling Only patches with relevant context were extracted from the slides, to avoid
patches that solely contain the "background" or "other" class label.

Classes in the training and evaluation datasets should be distributed evenly. In order
to achieve this, a label was chosen randomly. Each label had the same probability of
being depicted from the files that contained the label in their annotation mask. The file
was selected randomly. Within that file, coordinates for the patch were chosen in an area
that contained a polygon annotation of that type. The training and evaluation patch
preparation happened similarly.

Augmentation Finally, patch augmentation was applied to the training dataset using
common image augmentation techniques for histopathological images. This should help
to avoid the overfitting on the training patches. Spatial augmentations, like horizontal
flip, vertical flip, and 90-degree rotations, were used to enhance robustness in terms of
shaping with a probability of p = 0.75. To enhance robustness in terms of deformation,
transformations such as: optical distortion, grid distortion and affine transformations
were applied with a probability of 0.75 for all datasets, except for nuclear pleomorphism,
as those scores measure the deformation. To increase color and staining diversity, the
HedLighterColorAugmenter by Otálora et al. [36] for histopathology images (p = 0.3) was
used. Finally, all patches were normalized with the same RGB statistic that had been
applied in [26].

Addressing Tubule Formation Segmentation challenges Tekin et al. [16] were
able to improve their results in the segmentation of tubule formations, using a mirror
technique. I decided against this approach within this work. Reasons are, that a mirror
technique leads to unnatural shapes of the tubule areas, on the one hand. On the other
hand, complete structures can still not be guaranteed every time. Within my dataset,
tubules close to each other were sometimes combined into one annotation area, which
would make a mirror technique more inaccurate. Instead, my sampling process should
ensure that entire tubule formations were located in the middle of a patch, so that there
were less incomplete forms.

Addressing Nuclear Pleomorphism Scoring challenges Recent studies that focus
on the scoring of nuclear pleomorphism, adjusted the scores in the training process. Mercan
et al. [17] transformed the discrete labels into a continuous figure, while Wetstein et al.
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[24] decided to translate the grading schema into a binary classification. For my study,
the dataset provided labels only from one pathologist, which is why no continuous label
could be calculated. Furthermore, in order to follow the grading scheme by Peña et al.
[2], the traditional score was needed.

4.8 Evaluation Metrics

Metrics for Training The multiclass Cross-Entropy Loss is computed for the output
of the model to compare a prediction against the ground truth. The overall goal of the
network is to reduce the loss. The mean Cross-Entropy Loss function, meanCE, is defined
as follows:

meanCE = − 1
n

·
n∑

i=1
[yi ∗ ln(S(ŷi))]

Within that formula n is the total number of inputs and y is the desired output. ŷ is
the prediction of the model and S stands for the Softmax probability that is calculated
from ŷ.

The final loss function includes Cross-Entropy Loss on the one hand and Jaccard Loss
on the other. The Jaccard index [37] calculates the similarity between classes. An index of
0 indicates no overlap between the classes, whereas an index of 1 means the output mask
is identical to the expected output. The following formula is used to measure the Jaccard
similarity between the output mask A and the expected mask B. The Jaccard similarity
is also known as intersection over union (IoU):

J(A, B) = |A ∩ B|
|A ∪ B|

The final costs of this network are computed as the sum of meanCE and the inverted
Jaccard similarities J between the predicted class J and Cpred ground truth class Cgt for
all classes c.

C(f) = α · meanCE + β ·
∑

c

(1 − J(Cpred, Cgt))

In order to put more emphasis on the rare samples in my dataset, I also used the Focal
Loss instead of meanCE. Focal Loss is an adaptation of Cross-Entropy Loss and was used
for the segmentation of nuclear pleomorphism. The parameter γ can be tuned in order
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to put more focus on poorly classified classes. The probability that is predicted by the
model is pi. [38]

FocalLoss = −
n∑

i=1
(1 − pi)γ log(pi)

Metrics for Testing To describe the performance of the multiclass classification model,
I included confusion matrices in the evaluation. The rows of the matrix correspond to the
actual classes, and the columns correspond to the predicted classes. Accuracy is a measure
of how many of the samples were correctly classified overall. It is calculated as the sum of
the diagonal entries of the confusion matrix (the number of true positives for each class)
divided by the total number of samples.

Accuracy = TN + TP

TP + FP + TN + FN

Another measure that indicates how many of the predicted samples actually belong to
a particular class is the precision. It is calculated as the number of true positives (samples
correctly predicted to be in a class) divided by the total number of predicted positives
(samples predicted to be in the class, whether correctly or incorrectly).

Precision = TP

TP + FP

Furthermore, Recall is another measurement that can be computed from a confusion
matrix. It measures the ability of the classification model to identify all pixels of a target
class in a dataset. Specifically, recall represents the proportion of true positive predictions
(i.e., instances of the target class that were correctly identified by the model) out of all
instances of the target class in the dataset, both true positives and false negatives (i.e.,
instances of the target class that were incorrectly classified as a different class by the
model).

Recall = TP

TP + FN

4.9 Model Training

In the following sections, the hyperparameter settings of the different segmentation models
will be presented.
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4.9.1 SCC Baseline Model

Dataset The SCC Baseline Model was trained using the SCC dataset. Because it con-
sisted of more annotated regions than the initial Mamma-Ca dataset, it was used to pre-
train the Tumor Segmentation Model. To instantiate the weights, the Canine Cutaneous
Segmentation Model developed by Wilm et al. [26] was used.

The output layer had four dimensions: "tumor", "no tumor", "background" and a fourth
"other" class. Here, "other" included all non-annotated areas and was ignored within the
training and evaluation.

For the training, a total of 50 patches of 512×512 pixels were extracted from each
of the 35 whole-slide images, which were downsampled to a resolution of 0.5 µm

px . The
downsampling was performed, because the further training steps required a high resolution
of 0.5µm

px , to properly display the detailed nuclear and tubule formations. The training
dataset consisted of 1750 patches, and updates were performed on mini-batches of seven
patches. Due to the relatively small batch size, I decided to freeze the Batch Normalization
Layers for testing purposes first, to determine if the results would be more accurate.
However, when comparing the results, it was observed that the results improved when
including the Batch Normalization Layers. Therefore, in the final training, the Batch
Normalization Layers were not frozen. Furthermore, all patches were pre-processed and
sampled using the methods described in Chapter 4.7.2. All classes were sampled with the
same probability. As illustrated in Table 3 the training dataset then consisted of 0.06,
0.43, 0.2 and 0.31 percent of the classes "other", "background", "tumor" and "no tumor".

Table 3. Class-wise distribution of pixels in the training samples for the SCC Baseline
Model.

SCC Baseline Model

class pixels percentage

other 25.428.207 0.06

background 198.980.197 0.43

tumor 91.872.300 0.2

no tumor 142.209.152 0.31
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Hyperparameter setting To achieve the goal of minimizing the cost function to a
local minimum, the training process utilized stochastic gradient descent (SGD) with a
learning rate of 0.001 and a momentum parameter of 0.9. The loss function employed was
a combination of Cross-Entropy Loss multiplied by 1.0 and intersection over union (IoU)
loss from all 3 relevant classes multiplied by 0.5. The chosen hyperparameters, along with
the SGD optimizer, served to optimize the weights of the model throughout the training
process. To address the issue of fluctuating loss updates on mini-batches, momentum was
incorporated into the optimizer, facilitating a better convergence of the model.

4.9.2 Mamma-Ca Baseline Model

Dataset In this study, the Mamma-Ca dataset was utilized to fine-tune the pretrained
SCC Baseline Model. In order to preserve the generalization performance of the pre-
trained SCC model, the U-Net parameters of all layers until (including) the third residual
block were frozen. The same classes as in the SCC Baseline Model ("tumor", "no tumor",
"background", "other") were segmented. The size of the patches, which were extracted
from a total of 170 ROIs, was 512×512. Because the ROIs were much smaller than the
WSIs, only 7 patches per image could be extracted. Consequently, an epoch consisted
of 1232 patches, that were again grouped into batches of seven samples. Again, the
sampling procedure happened as described in Chapter 4.7.2, while all classes had the
same probability to be in the dataset. The training dataset then consisted of 0.16, 0.18,
0.49 and 0.16 percent of the classes "other", "background", "tumor" and "no tumor" pixel
areas as visualized in Table 4.

Table 4. Class-wise distribution of pixels in the training samples for the Mamma-Ca
Baseline Model.

Mamma-Ca Baseline Model

class pixels percentage

other 52.266.285 0.16

background 59.528.506 0.18

tumor 159.540.506 0.49

no tumor 51.363.967 0.16
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Hyperparameter setting To calculate the loss, the Cross-Entropy Loss function was
utilized, along with an IoU loss from the three relevant classes multiplied by 0.3. The
impact of the IoU loss should be smaller, because it can become less accurate in regions
with more "other" areas. Specifically, when a prediction is performed within an "other"
area that has no annotation, even if a prediction is correct, the IoU would be low, because
the ground truth label is "other". Compared to the SCC dataset, the Mamma-Ca dataset
contains more "other" areas. Additionally, a learning rate of 0.0001 to be multiplied with
the loss gradient was defined. Furthermore, stochastic gradient descent (SGD) with a
momentum rate of 0.95 was applied.

4.9.3 Tubule Formation Segmentation Model

Dataset After the Pre-Training, all the base layers of the Tumor Segmentation Model
were frozen, and only the parameters within the model’s head, the last two convolutional
layers of the U-Net, were allowed to be updated. This approach should enable the model
to first differentiate between "tumor" and "no tumor" areas and subsequently, segment the
tubule formations within the tumor region in the last layers. The final two convolutional
layers of the model were trained to accurately segment two distinct classes, namely, "tubu-
lar" and "other". Notably, a separate background class was not explicitly extracted, as the
tubule formations contain a lumen that belongs to the tubular structure and should not
be erroneously classified as background. Therefore, the "other" class included both the
surrounding tissue and background areas. This time the "other" class, representing all
non-tubular areas, was included into the training. Regarding the patch sampling process,
seven patches of size 512×512 were extracted from each image and batches of size eight
were used during the training process. To avoid redundant patches, they were exclusively
sampled from areas labeled "tubule" since the "other" regions are present in every patch.
Per epoch, a total of 1232 patches were utilized during the training process. In detail, the
training dataset then consisted of 0.58 and 0.42 percent of the classes "other" and "tubular"
as visualized in Table 5. All classes were sampled with the same probability.
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Table 5. Class-wise distribution of pixels in the training samples for the Tubule Formation
Segmentation Model.

Tubule Formation Segmentation Model

class pixels percentage

other 134.551.743 0.58

tubular 95.872.833 0.42

Hyperparameter setting Optimizer and Loss Criterion were the same as in Chapter
4.9.2, this time enhanced with a momentum rate of 0.9. Furthermore, a learning rate of
0.001 was used and a weight decay rate of 0.001 was added to avoid overfitting.

4.9.4 Nuclear Pleomorphism Segmentation Model

Dataset For the segmentation of nuclear pleomorphism, the smallest amount of data was
available. To avoid overfitting, the transfer learning approach, freezing all the base layers
of the pre-trained Mamma-Ca Baseline Model and only fine-tuning the parameters of the
last two convolutional layers, was adopted. As in the segmentation of tubule formations,
the model should first separate "tumor" and "no tumor" areas and then segment the nuclear
pleomorphism within the tumor region.

This time the dataset was separated in five classes, including the different grades of
nuclear pleomorphism ("pleo 1", "pleo 2" and "pleo 3"), "background" and "other".

The patch and batch creation happened in the same way as for the Tubule Formation
Segmentation Model and resulted in a total of 1232 patches per epoch. Since "pleo 2"
regions made up a 4 times larger area than "pleo 1" and "pleo 3", the minority classes in
the segmentation were up-sampled. Therefore, weights were applied to each class to be
chosen in the sampling process. Weighting factors were defined as the following: "pleo 1"
= 0.8, "pleo 2" = 0.5, and "pleo 3" = 0.7. Consequently, the training dataset consisted of
0.36, 0.14, 0.12, 0.21 and 0.17 percent of the classes "other","background", "pleo 1", "pleo
2" and "pleo 3" as visualized in Table 6.
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Table 6. Class-wise distribution of pixels in the training samples for the Nuclear Pleo-
morphism Segmentation Model.

Nuclear Pleomorphism Segmentation Model

class pixels percentage

other 83.186.285 0.36

background 31.742.415 0.14

pleo 1 27.469.555 0.12

pleo 2 48.655.139 0.21

pleo 3 39.371.182 0.17

Hyperparameter setting The Hyperparameters were the same as in the Tubule For-
mation Segmentation Model training. This time, the Cross-Entropy Loss was exchanged
with Focal Loss to put more emphasis on classes with a low IoU score. Again, the IoU
score was added with a weighting factor of 0.3.
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5 Results

This chapter presents the performance of the trained models. Each algorithm was trained
for 25 epochs or until convergence. Finally, the model with the lowest validation loss was
stored. The chapter is organized into five sections. The first two sections will present
the baseline models, that were trained to segment "tumor", "no tumor" and "background"
areas, while the following two sections will provide the results for the Tubule Formation
Segmentation and Nuclear Pleomorphism Segmentation Models. The evaluation of each
model includes the IoU scores achieved for each class, the confusion matrix and further
performance measures of the model. The chapter concludes with example segmentation
masks produced by each model. Example images are presented in patch size and also
merged together into the initial image size, along with an implementation of the scoring.

5.1 SCC Baseline Model

The SCC Baseline Model achieved a test IoU of 0.58 for all classes combined. Separate
classes achieved IoU scores of 0.89, 0.38, and 0.46 for "background", "tumor" and "no
tumor", respectively (Table 7). When examining the confusion matrix in Figure 2, it
became apparent that the "background" class had the highest level of overlap between
predicted and ground truth labels along with a high precision (0.91) and recall score
(0.95). In contrast, the "tumor" and "no tumor" classes were mixed up in certain areas,
which resulted in lower precision and recall scores. Although some pixels of the "tumor"
and "no tumor" classes were misclassified, the accuracy reached a score of 73.19 percent.

5.2 Mamma-Ca Baseline Model

With the Mamma-Ca Baseline Model, an overall IoU of 0.44 and separate IoU scores of
0.52, 0.57, and 0.24 for "background", "tumor" and "no tumor" were reached on the test
dataset (Table 7). Comparing the different classes, it was noticeable that the "tumor"
class reached the highest IoU score and had the highest overlap with the ground truth
pixels, visible in the confusion matrix (Figure 3). Nevertheless, the "tumor" label was
often incorrectly assigned to the other classes as well. This can also be noticed in the high
recall of 0.91, but in contrast a lower precision of 0.49 for the "tumor" class.

Similar to the SCC Baseline Model, the "background" predictions achieved a high
degree of overlap with the ground truth regions (precision = 0.94). The "no tumor" class
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Table 7. Class-wise evaluation measures per model on the test dataset on patch-level.

SCC Baseline Model

Segmented class IoU score Overall IoU score Precision Recall Overall Accuracy

background 0.89 0.58 0.91 0.95 73.19%

tumor 0.38 - 0.65 0.59 -

no tumor 0.46 - 0.63 0.66 -

Mamma-Ca Baseline Model

Segmented class IoU score Overall IoU score Precision Recall Overall Accuracy

background 0.52 0.44 0.94 0.61 62.81%

tumor 0.57 - 0.49 0.91 -

no tumor 0.24 - 0.74 0.37 -

Tubule Formation Segmentation Model

Segmented class IoU score Overall IoU score Precision Recall Overall Accuracy

other 0.56 0.48 0.60 0.79 63.5 %

tubular 0.39 - 0.70 0.48 -

Nuclear Pleomorphism Segmentation Model

Segmented class IoU score Overall IoU score Precision Recall Overall Accuracy

other 0.4 0.25 0.31 0.80 37.39%

background 0.62 - 0.98 0.66 -

NP score 1 0 - 0 0 -

NP score 2 0.21 - 0.24 0.42 -

NP score 3 0 - 0 0 -

was harder to identify by the model, with a recall of 0.37, instead the majority of "no
tumor" labels were labeled as "tumor".

5.3 Tubule Formation Segmentation Model

On the test dataset, an overall IoU of 0.48 was reached with the Tubule Formation Seg-
mentation Model. The two classes "other" and "tubule" achieved IoU scores of 0.56 and
0.39, respectively (Table 7). The recall of 0.48 shows, that the model had problems find-
ing tubule formations, but reached a higher precision of 0.70 when predicting the "tubule"
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Fig. 2. Confusion matrix of the SCC Baseline Model that segments "back-
ground", "tumor" and "no tumor" class. The "other" class was ignored in the training
and evaluation. The results are normalized between 0 and 1 along the true labels.

Fig. 3. Confusion matrix of the Mamma-Ca Baseline Model that segments
"background", "tumor" and "no tumor" class. The "other" class is ignored in the
training and evaluation. The results are normalized between 0 and 1 along the true labels.
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class. Nevertheless, the precision score for the "other" class was only 0.60, because tubule
formations could not be found in many cases. This can be observed in Figure 4.

Fig. 4. Confusion matrix of the Tubule Formation Segmentation Model that
segments "other" and "tubule formation" classes. The "other" class contains back-
ground and tissue areas. The results are normalized between 0 and 1 along the true labels.

5.4 Nuclear Pleomorphism Segmentation Model

The Nuclear Pleomorphism Segmentation Model reached an overall IoU score of 0.25 and
the scores of 0.4, 0.62, 0.00, 0.21 and 0.00 for the classes: "other", "background", "pleo
1", "pleo 2", "pleo 3" (Table 7). Both, "pleo 1" and "pleo 3" classes showed a very low
IoU of less than 0.01 in the test dataset, while in the training dataset, the IoU score for
"pleo 1" remained close to zero, and for "pleo 3", there were some peaks at an IoU of
0.04, despite being close to zero as well. Contrary, the nuclear pleomorphism classes were
mostly assigned to the "other" or "pleo 2" label. With a precision of 0.24 the "pleo 2" class
was not often identified correctly (Figure 5). Regarding transfer learning, the pretraining
process helped the model to converge quickly, but it stagnated after ten epochs. Since the
"pleo 1" class predictions did not improve, the training was not continued after 25 epochs.
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Fig. 5. Confusion matrix of the Nuclear Pleomorphism Segmentation Model
that segments "other", "background", "pleo 1", "pleo 2", "pleo 3" classes. The
results are normalized between 0 and 1 along the true labels.

5.5 Example Patches and Grading Results

5.5.1 Tubule Formation

In order to grade tubule formations based on the grading scheme proposed by Peña et
al. [2], it is necessary to determine the percentage of tubule formation within each whole
slide image. However, since the model only accepts inputs at the size of 512×512 pixels,
the samples were divided into separate patches. To quantify the tubule formation areas
relative to "other" pixels on whole ROIs, the prediction masks of each patch got merged
together again. Due to the receptive field of convolutional neural networks, pixels in the
center of the image receive more attention during the prediction process. Therefore, an
overlap of 50 pixels was applied when combining the patches into the prediction mask
for the whole image. Given the entire sample, the percentage of the tubule formation
area could be calculated and the corresponding grade could be assigned. Examples of the
prediction masks and grades are presented in the following two paragraphs:

Predictions on single patches In the evaluation of the Tubule Formation Segmenta-
tion model, it was noticeable that problems with the segmentation of tubules occurred.
Tubule formations were correctly identified in less than 50 percent of the cases. The output
images in Figure 6 show, that tubule formation areas with a large lumen could be iden-
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tified, whereas tubule structures without or with small lumen were ignored. Furthermore,
areas that contain background, but are not a tubule formation were often misclassified as
"tubular".

Fig. 6. Example segmentation results of the Tubule Formation Segmentation
Model on the test dataset on 512×512 patches. The first image shows the original
patch, followed by the expected output mask and the actual prediction mask.

Grading on whole slides Likewise, when combining the 512×512 patches into the full
prediction mask, the algorithm achieved only low accuracy. In order to test the grading
pipeline, I visualized the outputs, which yielded the example images in Figure 7.
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Fig. 7. Example segmentation results of the Tubule Formation Segmentation
Model on the test dataset on the whole slide. The first image shows the original
patch, followed by the expected output mask and the actual prediction mask. In the
ground truth masks, tubules were only annotated within tumor regions. The percentage
of tubule formation within the tumor region yields the grading points [2]. The Tubule
Formation Segmentation Model achieved low accuracy on the test data, which is why the
prediction masks contain wrongly classified pixels.

5.5.2 Nuclear Pleomorphism

In order to define the nuclear pleomorphism grades, the Nuclear Pleomorphism Segmenta-
tion Model was trained. The scores had been assigned by an expert following the grading
scheme by Peña et al. [2]. Consequently, the supervised learning model should learn to
segment relevant tissue areas and assign a score in the range of 1-3.

Predictions on single patches Unfortunately, the accuracy for the nuclear pleomor-
phism results was low and the classes could not be separated well. In most cases, the
predicted mask assigned the "pleo 2" label. "pleo 1" and "pleo 3" classes, that occurred less
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in the dataset, were mostly ignored by the segmentation network. Examples of the output
patches compared to the ground truth annotation are presented in Figure 8.

Fig. 8. Example segmentation results of the Nuclear Pleomorphism Segmen-
tation Model on the test dataset on 512×512 patches. The first image shows the
original patch, followed by the expected output mask and the actual prediction mask.

Grading on whole slides Although the predictions did not match with the ground
truth masks in many cases, the grading logic was still implemented. In order to define the
final grade, a list of all nuclear pleomorphism scores appearing in the image is created from
the final prediction mask. Subsequently, the maximum value within that list is returned
as the corresponding score above the output image in Figure 9.
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Fig. 9. Example segmentation results of the Nuclear Pleomorphism Segmen-
tation Model on the test dataset on the whole slide. The first image shows the
original patch, followed by the expected output mask and the actual prediction mask.
The maximum value within the mask yields the final score [2]. The Nuclear Pleomor-
phism Model could not learn the pleomorphism grades 1 and 3 properly, which is why the
output is always grade 2.

6 Discussion

This section reviews the methods to improve the performance of each segmentation model
and the final results achieved. Moreover, the limitations and problems of this work and
what could be changed in future works will be presented. For the main grading tasks, the
results will be compared to previous studies.
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SCC Baseline Model The SCC dataset was the first dataset which was used to train a
model for the segmentation of the "tumor", "no tumor" and "background" classes. Having
the weights initialized with the weights of a prior segmentation model, that already in-
cluded the SCC dataset, an improvement in IoU scores was expected. Due to the fact that
the initial model, which was used as a baseline, had a low IoU score for the "no tumor"
class, one could have expected the model to overfit towards "tumor", which did not hap-
pen. In contrast to the expected outcomes, the overall IoU score was lower, but the score
improved for non-tumorous tissue. With the help of transfer learning and pre-initialized
weights, the "background" class achieved high precision and recall values. Nevertheless,
the IoU score of 0.89 was lower than in the initial Canine Cutaneous Tumor Segmentation
Model [26] (IoU = 0.97). An explanation for this behavior could be the different ways the
"background" class was determined. In the SCC Baseline Model training, a fixed white
threshold value of 210 was chosen, whereas Wilm et al. [26] extracted the "background"
class with the help of Otsu’s adaptive thresholding. Consequently, the white was not
constant. Furthermore, I applied color augmentations, that could have also increased dif-
ficulty in finding the background class. The network also had difficulties differentiating
between "tumor" and "no tumor" classes. The IoU score for non-tumorous tissue improved
from 0.30 to 0.46 compared to the initial model, while the "tumor" class IoU decreased
from being 0.90 to a score of 0.38.

One reason for the difficulty to distinguish between the 2 classes could be the change
in resolution. The new SCC images had an 8-times higher resolution of 0.5 µm

px than the
samples of the baseline model. Because the tissue regions were available in greater detail
now, the network had to update its parameters and lost the previously learned accuracy.

Furthermore, the U-Net architectures were different. The Canine Cutaneous Tumor
Model was build using a fastai U-Net implementation with a ResNet18 encoder, while
my approach utilized another U-Net adaptation with residual blocks. Therefore, some
weights could have been irritating and needed to be changed in the back-propagation
process, which could have led to lower accuracy too. It is not yet clear whether the output
IoU would have been better without setting the baseline weights, and thus avoiding a shift
in resolution and a different architecture.

Mamma-Ca Baseline Model After the fine-tuning step, the transfer method was used.
Therefore, only the last layers of the SCC Baseline Model were fine-tuned, this time using
the Mamma-Ca dataset.
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Although the Mamma-Ca Baseline Model was initialized with the parameters of a
very similar segmentation task, it only achieved a Jaccard score of 0.44 for all segmented
classes combined. That means that the overall IoU score decreased from being 0.58 in
the SCC Segmentation Model. Considering only the values of the Jaccard score, the
model seems to give quite good IoU scores for "background" (0.52) and "tumor" (0.57).
In contrast, "no tumor" predictions did not overlap with the expected output often (IoU
= 0.24). Compared to the SCC Baseline Model, despite the"tumor" class, all IoU scores
got worse. When evaluating the confusion matrix in Figure 3 it becomes clear, that the
model was overfitting towards the "tumor" class. In fact, in most cases it labelled tissue
areas, that did not belong to the background class, as tumorous. This can also be noticed
at a recall score of 0.91, but only a precision of 0.49 for the "tumor" class, while non-
malignant tissue only reached a recall of 0.37. Because the data analysis in Chapter 4.4.3
revealed that the dataset contained larger areas of tumorous tissue than non-tumorous,
equal sampling was applied to avoid overfitting towards the predominant class. However,
an explanation for the low accuracy towards the "no tumor" class, may be the size of
areas the two classes covered in the dataset. Table 2 indicates that an around three times
higher percentage of "tumor" area covered the images used for training, validation and
testing. This leads to the assumption, that although a sample was extracted, because it
contained the "no tumor" class, in most cases it also contained parts of malignant tissue.
In more detail this can be seen in Table 4, which shows that despite an equal sampling
method, the percentage of "tumor" pixels was about three times higher (49 %) than for
the "no tumor" area (16%), what could be the reason for the overfitting. Due to this
limitation of "no tumor" areas, better results could not be achieved with this approach. In
future works, a larger and more variable dataset could prevent an overfitting towards the
majority class. Furthermore, an oversampling of the minority class could also increase the
performance. Another technique could be the use of cost-sensitive learning, which assigns
different misclassification costs to different classes to reflect the importance of each class.

Tubule Formation Segmentation Model With the pre-trained Tumor Segmentation
Model, good results when fine-tuning the last layers for the Tubule Formation Segmenta-
tion Model were expected. Within the first layers the model should distinguish between
"tumor", "no tumor" and "background" areas and learn to segment tubule areas afterward.
The overall Jaccard score on the test dataset was 0.48. The two classes, "other" and
"tubule", reached scores of 0.56 and 0.39, respectively. The "other" class reached a recall
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of 0.79, whereas "tubule formation" reached only 0.48, because tubule formation regions
were often misclassified as "other". When reviewing the confusion matrix in Figure 4, the
model seemed to be biased and preferred predicting the "other" class in most cases. This
could be, because the model is underfitting. Another reason could be, that the tubule for-
mations were only annotated within tumor regions. Consequently, if the model recognized
a tubule formation outside a tumor area, it would be considered as false. However, the
patches for training, validation and testing were sampled from only relevant areas. Hence,
missing annotations outside of tumor areas should not have a high impact on the results
within patch size.

Another reason could be, that the model had problems distinguishing between lumen
and background, as they are both white. Looking at the example patches in Figure 6, the
model seems to find tubule formations, with a large lumen and misses tubule formations,
that have only a small lumen area. Furthermore, when evaluating the segmentation masks
on the whole images in Figure 7, it looks like the model focused on the background area
when segmenting the tubule. Areas that were misclassified as tubule formations mostly
contained a white region within. As my images only contained regions of interest on a
whole slide, there were only a few ROIs that contained large areas of background, so that
the model could not identify background areas properly. As a consequence, in the Tubule
Formation Head Training, the model could have mistaken background pixels for lumen.

Furthermore, there are many shapes of tubule formations (e.g., single-layer tubules,
multi-layer tubules and tubulo-papillary) in the dataset, but only a small amount of ex-
amples per shape. Consequently, the model could not learn the different shapes of tubule
formations properly and was rather focusing on the lumen, which most tubule forma-
tions contain. Compared to the previous work by Jaroensri et al. [18], that relied on
499 images for the training, my training dataset was limited to 60 images with tubule
formations. Another factor that might have contributed to the accuracy of predictions
is the way tubule formations were annotated within the training dataset. In contrast to
previous studies (e.g., [16]), that circled each tubule on its own, tubule formations that
were next to each other in my dataset, were annotated as one region. This issue and
the aforementioned problem of missing examples could probably be resolved with a larger
dataset. Furthermore, my pre-trained model was not accurate in distinguishing tumor
and non-tumor regions, it segmented tubules in healthy cells too. This is a problem when
defining the grade, because only the tubule formations within the tumor region are rele-
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vant for grading. Regarding the limitation of implementation time, it was not possible to
implement anymore, but in the future the tumor regions could be extracted beforehand,
so that the tubule formations will only be segmented in this area.

Nuclear Pleomorphism Segmentation Model Similar to the Tubule Formation Seg-
mentation Model, only the last layers of the Mamma-Ca Baseline Model were trained for
the segmentation of nuclear pleomorphism scores. Again, within the first layers the model
should distinguish between "tumor" and "no tumor" areas and learn to segment nuclear
pleomorphism areas within the tumor, afterward. Regarding the segmentation of nuclear
pleomorphism, compared to the Mamma-Ca Baseline Model, the "background" IoU had
further improved, now reaching an IoU of 0.62 instead of 0.44. Nevertheless, the algorithm
had big problems distinguishing between the "other" and nuclear pleomorphism classes.

In the confusion matrix in Figure 5, it becomes apparent that the algorithm has a
relatively high recall value for the "other" class (0.80), and the "background" class (0.66).
However, many false positives were observed, with classes misclassified as "other". Conse-
quently, the precision for "other" was only 0.31. The "pleo 2" class had a precision of only
0.24. False positive values often occurred, because the model could not properly distin-
guish between the pleo scores and was labelling every nuclear structure as "pleo 2". The
IoU for the other pleomorphism scores was lower than 0.01 for the test dataset. The low
performance of the model in accurately detecting the "pleo 1" and "pleo 3" classes is most
probably attributed to the limited number of samples. In Table 2 it is noticeable, that
only 195 regions of interest for the different nuclear pleomorphism scores 1,2 and 3 were
provided, whereas another recent study by Jaroensri et al. [18] relied on 498 slides con-
taining nuclear pleomorphism. For the nuclear pleomorphism scores, that are difficult to
identify even by experts, a model would need more data to learn from. Furthermore, there
are significant differences between the classes of nuclear pleomorphism, such as single-layer
tubules, multi-layer tubules, tubulo-papillary structures, and solid structures. Since the
Tubule Formation Segmentation model already had problems identifying tubule areas, the
Nuclear Pleomorphism Model with even more shapes and classes did not perform better.
Two methods that were applied in addition to transfer learning in order to overcome the
issue of limited samples, were Focal Loss and oversampling techniques applied on minority
classes. However, the results did not improve in the test dataset. To improve the models’
performance in the future, increasing the number of samples would be necessary. Addi-
tionally, as described in the tubule formation segmentation approach, it would also be
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necessary to first extract tumor regions and then look for nuclear pleomorphism within,
because the annotations can only be found in malignant areas.

For the nuclear pleomorphism it is important to note, that due to inter-observer vari-
ability it could be important to label the dataset by different pathologists, to create more
stable results, which was performed in a recent study by [17].
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7 Conclusion and Outlook

The goal of this thesis was to build a classification model that segments the two histopatho-
logical markers, tubule formation and nuclear pleomorphism, on histopathological images
of Canine Mammary Carcinoma.

Canine Mammary Tumors are common in female dogs and can be caused by various
factors. Besides other evaluation options, the histopathological examination of the tumor
is a critical component in defining the tumor type, grade and stage. Although grading
schemes exist, there is still an inter-observer variability, when identifying such features.
With the new field of digital pathology, it is now possible to scan tissue samples and utilize
them to develop classification algorithms, to aid pathologists when grading tumors.

Compared to other studies, my algorithm had a relatively small set of training data
and thus the first research question was how to overcome this limitation by using transfer
learning, image augmentation and image preprocessing. The second question was how
precise the segmentation results would be and whether they are accurate enough to be
used by a pathologist. To overcome the limitation of a smaller dataset I built a transfer
learning pipeline, that was composed of 2 different datasets and a network trained within
another study by Wilm et al. [26], to initialize the weights for the first training. The first
training step was to segment "tumor", "no tumor" and "background" classes. Therefore,
a squamous cell carcinoma dataset and my mammary carcinoma samples, were used. In
the second step, only the last convolutional layers of the Tumor Segmentation Model were
trained, while the other layers were frozen. The training resulted in two different models,
one to segment tubule formations and the other one to segment nuclear pleomorphism
scores.

In the image preprocessing I extracted patches at a resolution of 0.5 µm
px , so that nuclei,

which were important for the final training steps, were displayed in detail.
To avoid an unequal distribution of classes within my training, validation and test

dataset, I built a sampling method to only create patches from relevant areas and select
class areas with the same probability. Furthermore, to enhance the dataset and avoid
overfitting, I applied different augmentation techniques, like spatial augmentation, defor-
mation techniques and color staining. All patches were also normalized with an RGB
statistic. Because, the analysis of the dataset showed, that nuclear pleomorphism samples
mainly consisted of "pleo 2" regions, I additionally applied focal loss and oversampling of
the minority classes.
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Although a transfer learning pipeline was build, images were augmented using different
popular techniques and samples were preprocessed, only low overall IoU scores for the seg-
mentation of tubule formation (0.48) and nuclear pleomorphism (0.23) were reached on the
test samples. The evaluation of the outputs showed, that the models were oversimplified.

In the case of tubule formations, the model recognized some tubule areas, but could not
segment them in detail. Furthermore, the output masks showed that the model focussed
on the lumen and thus also wrongly segmented background areas as tubule formations.

For nuclear pleomorphism scoring, the model labelled all pleomorphism areas as "pleo
2" and ignored other pleomorphism scores. An additional application of focal loss and
oversampling of the minority classes did not improve the results.

Compared to other studies using similar techniques on a larger dataset, my results were
less accurate. My approach showed, that the accuracy of the model highly depends on the
size of the dataset. Due to the variability and complex structures of nuclear pleomorphism
and tubule shapes, it is important to provide a diverse dataset, that contains enough
examples for every shape. Although I applied transfer learning, image preprocessing and
augmentation techniques, my model could not achieve similar or better results compared
to other studies with a larger dataset.

Considering the second research question, the outputs with an accuracy of 63.5% for
tubule formation segmentation and 37.39% for nuclear pleomorphism segmentation are
not precise enough to be used by a pathologist and would need further samples to achieve
good results and avoid a bias in the output images.

According to my findings, the conclusion that can be drawn is that my dataset, that
contained only 60 ROIs of tubule formation and 195 ROIs of nuclear pleomorphism was
not sufficient. Although transfer learning, image preprocessing and image augmentation
techniques were applied, good results could not be achieved.

Interesting questions for future research would include investigating the extent to which
additional data could enhance the algorithm’s results and exploring whether more detailed
annotations could improve the segmentation outcomes. Additionally, it would be valuable
to explore the application of transfer learning methods using different pipelines or datasets.
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