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Abstract

The development of finite element vehicle models for crash simulations is a highly
complex task. The main aim of these models is to simulate a variety of crash
scenarios and assess all the safety systems for their respective performances.
These vehicle models possess a substantial amount of data pertaining to the
vehicle’s geometry, structure, materials, etc., and are used to estimate a large set
of system and component level characteristics using crash simulations. It is
understood that even the most well-developed simulation models are prone to
deviations in estimation when compared to real-world physical test results. This is
generally due to our inability to model the chaos and uncertainties introduced in
the real world. Such unavoidable deviations render the use of virtual simulations
ineffective for the calibration process of the algorithms that activate the restraint
systems in the event of a crash (crash-detection algorithm). In the scope of this
research, authors hypothesize the possibility of accounting for such variations
introduced in the real world by creating a feedback loop between real-world crash
tests and crash simulations. To accomplish this, a Reinforcement Learning (RL)
compatible virtual surrogate model is used, which is adapted from crash
simulation models. Hence, a conceptual methodology is illustrated in this paper
for developing an RL-compatible model that can be trained using the results of
crash simulations and crash tests. As the calibration of the crash-detection
algorithm is fundamentally dependent upon the crash pulses, the scope of the
expected output is limited to advancing the ability to estimate crash pulses.
Furthermore, the real-time implementation of the methodology is illustrated
using an actual vehicle model.

Keywords: Virtual vehicle models; Crash tests; Crash simulations; Surrogate
model; Crash-detection algorithm; Reinforcement Learning

Introduction

Developing passive safety systems for automotive applications is a vital and chal-

lenging task because it directly affects the safety of occupants during crucial events.

In the event of a crash, to ensure the optimal safety performance of a new vehicle

under development, it is necessary to subject every system to a comprehensive pro-

cess of design evaluation, testing, and validation. The main aim is to optimize the

system to reduce the impact of a collision on vehicle occupants. It can be achieved

by designing the vehicle’s structure to efficiently dissipate the crash energy and

implementing systems that, when activated at the appropriate time, mitigate the

impact forces on the occupants’ bodies and prevent them from hard impacts with
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interior parts or from ejecting out of the vehicle. Such cases need precise engineering

design considerations and system-level computations.

The interaction of the crash loads with the vehicle structure mainly drives the

crash dynamics and deformation behavior of the vehicle. The crash dynamics and

deformation behavior are the complex system-level characteristics of the vehicle

model which a series of virtual and physical crash tests must determine. Logic dic-

tates that these tests must be designed such that the crash behavior is evaluated at

every statistically significant and system-critical crash scenario. The obtained test

results are measured with the help of various sensors and data is analyzed in different

approaches depending on its aim and scope. For instance, the rate of deformation,

crumpling of the vehicle body, etc can be deduced from strain gauges, and target

tracking using a photogrammetry approach [1, 2], etc., the deceleration behavior

can be recorded using accelerometers [3], the vehicle’s global motion in transla-

tion, yaw, pitch, and roll can be determined by gyroscopic sensors and tracking

using photogrammetry approach, etc. With advances in virtual modeling, stochas-

tic analytical methodologies, and access to significantly extensive computational

capabilities, there is a big advantage in increasing the dependency of passive safety

development on virtual and data-driven techniques. There have been explorations

in this direction by multiple approaches like big-data-based rule-finding analysis to

establish IF-THEN format causality relationships in crash simulation results [4].

Machine learning approaches for component level deformation mode analysis using

Long Short Term Memory (LSTM) Autoencoders are established in [5]. A recurrent

neural network-based AI application is established by the authors for a non-iterative

process to evaluate the behavior of finite element structures [6]. Despite this, it must

be understood that variations from real-world tests may occur in the simulated and

virtual results due to various reasons. These variations can hinder the full use of vir-

tual methods in applications such as the calibration of crash-detection algorithms, a

key focus of this research paper. The onboard, pre-calibrated algorithms that are ca-

pable of detecting and classifying a car crash and triggering the right combinations

of restraint systems are hereby referred to as crash-detection algorithms.

Virtual models used for crash simulations are designed to compute complex crash

behavior including deformations, stresses, energy dissipation, and overall vehicle

kinematics. Therefore, the model must be defined very precisely and in great de-

tail in order to accurately compute such a wide variety of results. However, when

it comes to the calibration process of a crash-detection algorithm, it is only de-

pendent on one output parameter: the acceleration crash pulse. While estimating

crash pulses for a given crash scenario can be done straightforwardly using Finite

Element Analysis, variations may occur between the crash pulses generated by sim-

ulation and those from real-world crash tests. A crash pulse prediction technique

using regression analysis as presented in [7] could be a good alternative, but it is

limited by the scope and quality of training data. If the calibration is done only

using simulation results, these variations can lead to the misclassification of crashes

and result in the misactivation of restraint systems (e.g. delayed triggering times for

airbags). In an ideal world, one possible solution would be to analyze the root cause

of such variations, improve the simulation models to be a more accurate represen-

tation of a real-world vehicle under test (VUT) and re-simulate all the crash pulses
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to calibrate the crash-detection and classification algorithm. However, the process

of establishing the root cause, changing the models, and validating the results in

the current architecture, would be extremely time-consuming and would require

a lot of computational power. Within the scope of this research, the authors pro-

pose a methodology to generate an optimally simplified virtual vehicle model that

specifically targets the computation of one output parameter (i.e., crash pulse in

frontal crash scenarios) and its mathematical dependencies, such that an AI-based

reinforcement learning algorithm can be used to fine-tune the said model in order

to improve the accuracy of its behavior using crash test observations of VUT. A cal-

ibrated model of this nature could be highly advantageous in increasing the range

of scenarios that can be tested and evaluated for validating the crash-detection

algorithm, as a favorable accuracy to computational cost could be achieved.

Methodology

The basic framework of the reinforcement learning technique is as shown in Fig. 1.

There are four fundamental components that are necessary to adapt the vehi-

cle crash simulation models into models that are compatible with reinforcement

learning-based AI analysis:

1 Defining the environment: Definition of a simplified environment with goal-

specific and minimum relevant dimensionality for an appropriate representa-

tion of the vehicle crash structure that allows for fast re-iterations.

2 State space modeling: Modelling of a system to evaluate the state of the

environment due to policy-based actions.

3 Action space modeling: Modeling the possible set of actions that an agent can

make to strategically alter the state of the environment.

4 Defining the reward function: Definition of a crash pulse-based reward function

to evaluate the new state of the environment.

Figure 1 Fundamental framework of a reinforcement learning AI application

Defining the environment

The environment is a rule-based and (partially) deterministic formulation of a sys-

tem, meaning that it follows a set of predetermined rules, and the outcomes of

actions are calculated based on these rules [8]. The goal is to formulate the vehicle

structure as an environment with independent physical parameters that can influ-

ence the crash pulse computation. Crash pulse is the measure of deceleration of the

vehicle during a crash and the ultimate structural parameter that influences the

crash pulse is the stiffness of the deforming car body. The stiffness of the car body

in the event of a crash is studied deeply for analysis and reconstruction of accidents

[9, 10] with considerations for the potential nonlinearities in the behavior [11].

As the scope of this research is limited to frontal crash scenarios, the methodol-

ogy, and results are demonstrated using crash data from simulations and physical

crash tests of these scenarios. To filter the region of interest, the car body can

be split into two zones namely the passenger compartment and the frontal vehicle

region as shown in Fig. 2 (a). The design principle of these zones is based upon
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the strategy of mitigating the impacts on occupants. Hence, the frontal vehicle

region is designed to deform and absorb the crash impact energies, and the pas-

senger compartment is designed to stay undeformed so that there is a lower risk

for occupants to make hard contact with the inner car surfaces [12]. This a priori

knowledge can be used to simplify the model by defining the rigid zone as one per-

fectly rigid block and the deformable zone can be appropriately discretized into cells

to constitute the local stiffness as shown in Fig. 2 (b). The authors in publications

[13, 14, 15] discuss methodologies to discretize the vehicle body to formulate first

and second-order mathematical models that are capable of representation of energy

distribution patterns. These models are defined without any prior knowledge of the

vehicle structure and assume a uniform ability of all the cells to absorb and trans-

mit energy. In the proposed methodology of this paper, an in-depth dependency

of the definition of cells with the vehicle structure is established, and the energy

absorption/transmission parameters are initialized with due consideration to the

geometrical and material properties of the encompassed components.

Figure 2 Generalized representation of remodeling and simplification process of virtual vehicle
model

Each cell represents a specific volume on the vehicle frontal region and these cells

must be parameterized to represent the stiffness behavior of the parts or section of

parts that are enveloped by the respective cell. This is done in two steps:

• Spatial definition of cells

• Mathematical definition of the behavior of cells

In the pre-processing stage of FEM simulations, the virtual vehicle model is cre-

ated by geometrically simplifying the CAD model and defining the properties like

mesh, material models, contacts, etc. The spatial and mathematical definitions of

the discretized cell model can be established using this virtual vehicle model. A

detailed explanation of the methodology is as follows:

Spatial definition

The goal of the spatial definition for developing the discretized cell model is to

create a grid of cells correlated to the vehicle structure as shown in Fig. 3.

Figure 3 Transformation of the VUT virtual model into a generalized cell structure

As mentioned, such a derivation can be done using the pre-processed FEM simu-

lation model using the following steps:

Discretization of the model:

The discretization of the vehicle structure is limited to the region of interest as

shown in Fig. 2. The discretization is constrained by certain physical parameters

dependent upon the crash scenarios. The crash scenario defines the overlap of the

frontal impact with the barrier during the crash test. The impact loads are com-

puted and defined as an input for the model over the initial impact region. Hence

the discretized cells must be structured such that the input forces can be accurately
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Figure 4 Crash scenario overlap induced constraints for the discretization of the frontal vehicle
region

defined over the complete cell region instead of partial regions. As the overlap is a

percentage of width, this constrains the definition of some section planes in the y di-

rection as shown in Fig. 4, where y0 is the longitudinal axis, y1 and −y1 are overlaps

in medium overlap crash tests and y2 and −y2 are overlaps in small overlap crash

tests. The locations of acceleration sensors are represented using bright-colored dots.

To fully discretize the remaining region of interest, the following two methodolo-

gies can be utilized:

1 Uniform discretization: The general principle here is to divide the deformable

zone uniformly into smaller cells. The constraints on the section planes perpen-

dicular to the y-axis are considered and the refinement level is appropriately

chosen. The advantage of this methodology is that an in-depth structural un-

derstanding of the components is not required for discretization. It is simple

to compute and would result in an uncomplicated cell interaction model as

cell boundaries are perfectly shared with the adjoining cells. However, such a

discretization strategy leads to inefficiencies in material distribution between

cells and also results in a complex cell behavior model. The complexity increase

is due to an increase in the probability of the assignment of the components

from different sub-assemblies into one cell. The computation and fine-tuning

of the aggregate stiffness behavior in such cases would be moderately difficult.

2 Optimized discretization: In this approach, the discretization occurs at the

sub-assembly level. Each sub-assembly is segmented into n cells such that the

volume of each cell is approximately equal to a pre-defined target volume. Af-

ter all the sub-assemblies are discretized, the region that is not enveloped by

any cell is considered and these are discretized and defined as null cells. The

null cells have no state equations and have no capacity to absorb or transmit

any energy in their initial condition. This formulation simplifies the definition

of the cell behavior model as there is a higher probability of coherence in

properties like material, geometry, contacts, etc. The cell interaction model

is also relatively simple due to the efficient modeling of empty space within

the region of interest. Under the scope of this research work, the optimized

discretization approach is utilized.

Extraction of geometric data:

The pre-processed FEM simulation model has the geometric information of all the

parts, sub-assemblies, and assemblies in a vehicle structure. The embedded data

follows the standard output architecture of the respective pre-processing simulation

software tools. But irrespective of the development software, a general representa-

tion of the data modeling architecture is as shown in Fig. 5. The geometric data

at the fundamental level is in the form of nodal coordinates. These nodes form

different elements and the elements come together to form beam, shell, and solid

components.
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Figure 5 Data storage architecture of pre-processed FEM simulation model

The geometry can be effectively extracted by mining the spatial coordinates of

nodes and the correlations between respective components, from the simulation

models. For example, the nodes and their relation with respective elements, elements

and their relation with respective beams, shells, & solids, etc. Therefore, the end

result of this step is a data matrix as represented in the following equation:

N =











N1 X1 Y1 Z1

N2 X2 Y2 Z2

: : : :

Ni Xi Yi Zi











, E =











E1 t1 N1 N2 N3 . .

E2 t2 : : : : :

: : : : : : :

Ej tj Na Nb Nc . .











,

Asub =











P1 M1 E1 E2 E3 . .

P2 M2 : : : : :

: : : : : : :

Pk Mk Ea Eb Ec . .











, A =











Asub1

Asub2

:

Asubl











, (1)

where

N is a i × 4 matrix comprising of i nodes Nx and their cartesian co-ordinates

Xi, Yi, Zi,

E is a j × m matrix comprising of j elements Ex, their thickness tx (only for 2D

elements) and their corresponding nodes [Na, Nb, Nc, ...]. The number of nodes in

each element depends upon the type of element,

Asub is a k × n matrix comprising of k parts Px, materials Mx and their corre-

sponding elements [Ea, Eb, Ec, ...]. The number of elements in each part depends

upon the size of the part and the refinement level of the mesh, and

A is a l × 1 matrix comprising of l sub-assemblies Asubx .

Extraction of material data:

The pre-processed FEM simulation model also contains the material models that are

assigned to individual parts and substantially drive their dynamic behavior under

different loading conditions. As illustrated in Fig. 5, the material models can com-

prise a range of material properties convoluted with various mathematical models

to represent the complex material behavior. The goal of this step is to extract the

fundamental parameters that influence energy absorption and dissipation during

the process of deformation in the event of a crash. But, as a cell can envelope multi-

ple parts that could be made of different materials, an aggregate material behavior

matrix must be derived. This matrix can be an approximate estimation as there is a

scope for refinement during the iterations of the reinforcement learning phase. The

data available in the material cards are extracted and some undefined/dependent

parameters can be calculated if not explicitly defined. A general representation is
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as follows:

Mx =
[

ρx Y x Gx Kx σx
y σx

u σx
f νx

]

, (2)

where

ρ is the mass density,

Y,G, and K are the Young’s, Shear, and Bulk moduli respectively,

σy, σu, and σf are yield strength, ultimate strength, and fracture point respectively,

and

ν is the Poisson’s ratio.

Mathematical definition

Every 3D cell defined in the previous step has a spatial association with a specific

discretized volume on the vehicle frontal region (region of interest). A mathematical

model must be defined and initialized to represent the behavior of each cell under

the influence of loads. There are two main components of such behavior namely (i)

cell behavior and (ii) cell interaction.

Cell behavior

The key objective is to establish a mathematical function that qualitatively repre-

sents the stiffness of the region enveloped by each cell. The function must also be

compatible with the iteration and learning methodologies used during the training

and testing phase of reinforcement learning. With due consideration to the goals

and constraints, the cell’s behavior is defined by a function based on the tempo-

ral relationship between input energy, energy dissipation, and energy transmission

of cells under crash loads. The mathematical computations of crash energies in

crash simulations and physical crash tests are illustrated in [16]. The key compo-

nent of consideration from the total crash energy is the energy component spent

on the deformation of the vehicle structure. This deformation energy is absorbed

and eventually dissipated in various forms. Fundamentally each cell interacts with

the deformation energy in two ways, a part of the energy is absorbed and the rest

is dispersed into adjoining cells following the laws of conservation. This behavior

is dependent on various factors like aggregate stiffness, reaction forces, etc for each

cell. The modeling of the energies-based parameters and its use for defining the cell

behavior is a utilization and extension of the technique presented in [17]. The cell

behavior can generally be represented by a relation as shown in Fig. 6.

Figure 6 Cell behavior: Relation between energy absorption and energy transmission, where E is
input energy, Ea is absorbed energy, Et is transmitted energy, Ex is the onset of transmission and
Es is the saturation point

In the interest of faster convergence, an approximate initialization of the cell

behavior parameters is done based on the properties of the components enveloped

by each cell as recorded in Eq. (2). The curvature and slopes of individual pieces

of the curve are dependent on the defined parameters and during the reinforcement

learning process, these parameters are iterated as actions.
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Cell interaction

The transmitted energy component from the cell behavior model must be considered

as an input for all adjoining cells. The transmission of energy between adjoining cells

is modeled with the following boundary conditions:

1 The flow of energy is prohibited in the negative direction of the x-axis.

2 Cells that envelop empty space do not have the capacity for any energy trans-

fer.

3 In neighboring cells that are along the principal direction of force (PDOF)

and have a continuity of material, the energy distribution factor is set at a

higher value than the lateral directions.

4 In cells adjacent to each other that have a continuity of material, the energy

distribution factor is proportional to the ratio of cross-sectional areas at the

boundary of the adjoining cells.

5 The summation of all factors of energy distribution should be equal to one.

A general representation is as shown in Fig. 7 (a). The factors of distribution

associated with each direction are represented as follows:

Ei = ki ∗ Etrans , (3)

where i ={x, y, y′, z, z′} such that
∑

ki = 1, y′ and z′ are negative y and z axes

respectively and Etrans is the component of the total transmitted energy from a

cell. However, the proportion of energy transmission in the five directions must

be determined for each cell. The methodology employed can be explained using a

discretized vehicle sub-assembly as shown in Fig. 7 (b).

Figure 7 Cell interaction for a discretized cell model using a vehicle sub-assembly.

With reference to Fig. 7, consider the following examples to illustrate the modeling

of cell interaction factors with the defined boundary conditions:

• Cell A1: There are three adjoining cells to A1 and an interaction model must

be defined for each pair. The cells A1 and A2 are connected in the progression

of the x-axis and have continuity of the component between them. Generally

speaking, the principal direction of force is along the x-axis, the factor of

energy distribution in the x-axis would proportionately be much higher than

in the other directions. Cells A1 and B1 are connected in the progression of the

y-axis and have a continuity of material. However, cell A1 is located further

than cell B1 and the direct crash energy interaction would be earlier for B1.

With reference to the boundary conditions, a reverse flow is eliminated; hence

the factor of energy distribution in the y-axis would be initialized to 0. Cells

A1 and B2 are connected in the progression of the y-axis but do not have a

continuity of material. Hence, there is no possibility of any transmission of

the energies and the factor of energy distribution along the y-axis would be

initialized to 0. Therefore, as per the boundary condition of the summation

of factors (ki), the factor kx would be initialized to 1.

• Cell B1: There are two adjoining cells to B1. Cells B1 and A1 are connected

in the progression of the negative y-axis (y′) and have a continuity of material.
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Cell B1 and B2 are connected in the progression of the x-axis but there is

no continuity of material. Hence, the factor of transmission in the negative

y-axis would be set to 1 and others would be set to 0.

• Cell D1: There are three adjoining cells to D1. As there is no continuity of

the component between cells D1 and D2, the transmission factor between

them is set to 0. Cells C1 and E1 both have a continuity of the component

from cell D1. Hence, according to the boundary conditions, the respective

factors of transmission should be proportional to the cross-sectional area of

the component at the common cell boundary:

ky =
AD1E1

AD1C1 +AD1E1
, (4)

ky′ =
AD1C1

AD1C1 +AD1E1
, (5)

where

AD1E1 is the cross-sectional area of the component at the cell boundary be-

tween cells D1 and E1,

AD1C1 is the cross-sectional area of the component at the cell boundary be-

tween cells D1 and C1,

ky and ky′ are the transmission factors in y and y′ directions respectively.

State space modeling

The evaluation of the state of the environment is essential to learn the configuration

of the cells that lead to a certain end result. The fundamental parameter that

represents the state of the environment is the estimated crash pulse based on the

configuration of the discretized cell model. A minimum of three acceleration sensors

are installed in the VUT as shown in Fig. 2 which record three crash pulses at their

respective positions. In order to retain an association with the reference signal the

state equation is represented in terms of the y-intercept for every relative time

reference to the time of impact (t0). Hence the state vector s can be represented by

Eq. (6), where ±dx1 is the difference in the y-direction between the reference signal

and the estimated signal at time t1; i,j, and k are the number of recorded time

intervals in the respective crash pulse; a, b, and c are indicators for crash pulses

recorded from three different acceleration sensors:

s = [(±da1 ,±da2 ,±da3 ........,±dai ), (±db1 ,±db2 ,±db3 ........,±daj ),

(±dc1 ,±dc2 ,±dc3 ........,±dck)] . (6)

Action space modeling

The means of interaction and learning for a Reinforcement learning agent is to

observe the environment and take some policy-based actions [8]. According to the

modeling architecture of the environment, every cell has a total of seven configurable

parameters. If there are n cells in an environment, then a matrix of all configurable

parameters can be written as follows:
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A =





















Ex1
Es1 fx1

fy1
fy′

1
fz1 fz′

1

Ex2
Es2 fx2

fy2
fy′

2
fz2 fz′

2

. . . . . . .

. . . . . . .

. . . . . . .

Exn
Esn fxn

fyn
fy′

n
fzn fz′

n





















. (7)

It is evident that the possible permutations of all possible actions in the action

space for an algorithm to test are colossally enormous. Hence, efficient environment

modeling is highly critical. An active attempt is done to avoid defining cells in

regions with no components, transmission factors are hard set to 0 where energy

transfer is not feasible, etc.

Secondly, a criterion is defined for the agent that forbids taking actions on the cells

that are not in the primary or secondary region of impact. For example, in the

initial duration of a driver-side small overlap crash test scenario, the cells in the

front of the vehicle on the passenger’s side would not be relevant for the end results.

Hence, no attempt will be made to fine-tune those parameters.

Finally, the preference for parameter fine-tuning shifts from cell behavior parameters

to cell interaction parameters, once the saturation point has been reached as all the

input energy would be transmitted to the adjoining cells capable of reception. Hence,

the effect on the output would be high. Therefore, the action space and the actual

matrix of configurable parameters could be effectively diminished and convergence

could be efficiently achieved.

Reward function

The output parameter evaluated from the environment is the estimated crash ve-

locity signal. The measured reference signal during the crash simulations and crash

tests is the acceleration signal. However, in the current implementation, the first

integral of a filtered crash acceleration signal dimensioned as velocity (v) is used as

a reference. Hence, the key mathematical computation is to quantify the similarity

between the reference signal and the estimated signal from the environment and re-

ward the configuration/actions that improve the similarity of the estimated signal

to the reference signal.

There is a range of mathematical techniques that can be used to quantify the

similarities between two curves, as illustrated in [18]. But, there are some specific

considerations for the reward function in the current scenario. Consider the curves

shown in Fig. 8. In all the curves shown, one possible method to quantify the

similarity could be the area between the curves. It would be a positive scalar quantity

computed using Eq. (8), where Q(x) is the estimated signal, P (x) is the reference

signal, a and b are the limits within which the curve segments exist. Although the

area between curves is a good indicator of the similarity, it has certain drawbacks.

The area between the curves shown in Fig. 8 (a), (b), and (c) is quantitatively

almost the same, but the curves are qualitatively very different. To evaluate the

effectiveness of different actions in different states and to learn the best course of
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Figure 8 Illustration of curve comparison requirements and possible suitable quantification models

action given the state of the environment, the reward function must be able to

effectively distinguish the desirable outcomes from the undesirable ones:

A =

∫ b

a

|Q(x)− P (x)| dx . (8)

Hence, an additional mathematical function is considered i.e. the Discrete Fréchet

Distance (DFD). If the loci of two points that are connected with a leash, were to

simultaneously trace the two curves without any backward movements, the DFD

can be defined as the minimum length of leash required that would allow both points

to fully trace the curves. Fréchet distance is computed using Eq. (9) where F (Q,P )

is the Fréchet distance of two curves Q (estimated signal), and P (reference signal),

q and p are reparameterizations of Q and P to be continuous and non-decreasing,

t could be thought of as the ’time’ variable that only allows forward propagation

along the curves, and d is the distance function of the metric space S [18]. The DFD,

which is used in the modeling of the reward function is computed as illustrated by

[19] using the following equations:

F (Q,P ) = inf
q,p

max
t∈[0,1]

(

d
(

Q
(

q(t)
)

, P
(

p(t)
)

)

)

(9)

dF (Q,P ) = min ∥L∥ (10)

where dF is the discrete Fréchet distance, L is a coupling between Q and P , and

length ∥L∥ of the coupling L is the length of the longest link L.

In conjunction with area between the curves, DFD would be effective in distin-

guishing the curve similarity quantification between the curves in Fig. 8 (a) and

(b). The DFD of the former would be smaller than that of the latter. In addition to

the aforementioned methodologies, root means squared euclidean error (RMSEE)

is also used as an indicator of the similarity between two curves and computed as

follows:

RMSEE =

√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2

n
, (11)

where px and qx are the discrete points from the curves P and Q at time tx.

An episode can be defined as the set of policy-based actions an RL agent makes

to interact with the environment and eventually reaches a termination condition.

The reward factor R for the generated estimations for each iteration in an episode
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can be defined by Eq. (12), where ∆A, ∆DFD, and ∆RMSEE are the differences

in the area between the curves, Discrete Fréchet Distance and root mean squared

euclidean error respectively, of the current and the previous episode. The factors a,

b, and c can be determined using a simple regression analysis:

R = f(∆A, ∆DFD, ∆RMSEE)

=
a

∆A
+

b

∆DFD
+

c

∆RMSEE
.

(12)

Conditions of Termination

Termination of an episode is necessary to be defined in three conditions:

1 The fine-tuning of the environment parameters would ideally lead to a state

where a perfectly close fit of the estimated crash pulse with the reference signal

is reached. However, realistically an acceptable range of accuracy must be

defined so that the agent avoids reaching deep into the regions of diminishing

returns. Hence, a termination condition must be set to end the process once

the curve similarity parameters achieve a pre-defined threshold.

2 During the learning process, the RL agent may reach a highly undesirable state

due to multiple bad actions and it becomes very inefficient to let the agent

keep trying to recover. In such cases, it’s beneficial to terminate the current

episode and begin a new one. Hence, the curve similarity parameters must

also have a pre-defined higher limit threshold that must result in termination.

3 In every episode of the training exercise, a maximum limit of iterations must

be defined, after which the episode must be forced to terminate. It avoids

potential looping scenarios and acts as a positive reinforcement for the agent

to learn to reach the desired outcomes faster.

Results

The methodology proposed in this research paper is fully implemented using virtual

vehicle models and analyzed using the simulation results. To illustrate the imple-

mentation process and to explain the methodology with reference to a practical

example, individual steps are presented in this section. The illustrations mainly

concentrate on the process of adaptation of a conventional FEM simulation model

into a reinforcement learning compatible surrogate model with the aim of estimating

the crash pulses for calibration of the crash-detection algorithm.

Defining the environment

The virtual vehicle model used for the creation of the reinforcement learning envi-

ronment is an ESI Virtual Performance Solution pre-processing stage model. The

details are as shown in Table 1. The nodes, elements, shells, solids, parts, sub-

assemblies, and assembly matrices are extracted by following the respective stan-

dard software architecture. The vehicle model is cropped for separating the region

of interest (ROI). The front vehicle region is considered for further discretization

to complete the spatial definition of the cells and Table 2 shows some of the basic

parameters used. Fig. 9 (a) shows the transition of the virtual vehicle model from
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Table 1 Technical details of the used virtual vehicle model and crash scenario used for reference
signals

Parameter Value
Vehicle type B-segment
Vehicle mass 1600 kg

Order of number of nodes 106

Order of number of 2D elements 106

Order of number of 3D elements 105

Crash scenario
Velocity 40 kph

Overlap 100 %
Relative angle 0 deg

pre-processing FEM software environment to the Matlab environment using the

extracted matrices.

Fig. 9 (b) shows the development of individual cells to represent discretized vol-

umes of the components in the frontal vehicle region. The mass of the material

enveloped by each cell and their aggregate material properties are stored in as-

sociation with individual cells. The interaction models are also defined using the

boundary conditions.

Table 2 Parameters used for discretization and definition of the environment

Parameter Value
ROI crop limit 1.20 m
ROI Volume 2.15 ∗ 109 mm3

Threshold cell volume 3 ∗ 105 mm3

Uniform discretization 7165 cells
Optimised discretization 531 cells

Figure 9 (a) Virtual vehicle model used for illustrations and cropping the model to separate ROI.
(b) Process of the spatial definition of cells by discretization of the individual structural
components.

State space

The state of the environment is computed based on the estimated crash pulse gen-

erated as a result of the respective configuration. For the purpose of simplicity,

only one acceleration sensor is assumed for illustration. During the discretization

process, the acceleration sensors are clustered individually as separate cells such

that the energy transmitted to the sensor locations can be computed accurately.

The resultant relative discrete displacement is used to generate the estimated crash

pulse. The sensors mounted on the VUT operate at a frequency of 2000Hz. Hence,

each iteration has a time interval of 0.5ms and the state space equation is a vector

of discrete delta values between reference and estimated signals as shown in Fig. 10.

Figure 10 Evaluation of the state of the environment based on the difference between estimated
and reference velocity signals.

Reward function

The evaluation of the effectiveness of an action in a particular state is quantified

by the curve similarity factors: (i) Area between the curves, (ii) Discrete Fréchet
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Distance, and (iii) Root Mean Squared Euclidean Error. Table 3 shows an example

of the computation of curve similarity factors for six consecutive iterations of an

episode and the respective reward factors. In Eq. (12), the factors a, b, and c are

initialized to one for the sake of these calculations. If one considers the base con-

figuration’s estimation as I0, then the reward factor for iteration I1 is evaluated

with reference to its previous state. A relative increase in the reward factor is de-

sirable and is rewarded and a relative decrease is undesirable and is punished. The

actions taken to change the state from I4 to I5 show a largely positive shift in the

reward factor hence gaining a high reward. In contrast, the actions from I5 to I6

suffer large punishment. Therefore a policy is formulated as the RL-agent interacts

with the environment over a large set of episodes, learning about the state-action

combinations that result in large rewards.

Table 3 Comparison of the curve similarity parameters between iterations of a reinforcement learning
episode

I1 I2 I3 I4 I5 I6
Area between the curves 0.0259 0.0311 0,0363 0,0189 0,0015 0,0415
Discrete Fréchet Distance 0,423 0,455 0,487 0,411 0,335 0,519

RMSEE 0,2585 0,2737 0,2889 0,22 0,1511 0,3041
Reward factor 44,84 38,00 33,06 59,89 676,27 29,31

Conclusion and Open Problems

The research paper presented a methodology to adapt the crash simulation models

into a reinforcement learning-compatible architecture, with the goal of estimating

the crash pulses for calibration of the crash-detection algorithm. The modeling of

fundamental blocks of reinforcement learning architecture viz., Environment, State,

Actions, and Rewards are illustrated in detail. A wide range of established rein-

forcement learning agents could be used to interact with the environment using the

current architecture. The results from a variety of crash simulations can be used as

a reference during the learning phase and further expanded using the results from

physical crash tests. Hence a policy could be learned that can modify the virtual

environment model to behave in accordance with known and accurate real-world

observations. This opens up a great opportunity to develop surrogate virtual models

that are calibrated using simulations and physical test results with the help of AI.

These models would be highly useful in calibrating the standard crash-detection al-

gorithm and also validating its performance in a large set of statistically significant

crash scenarios. As the scope of this paper is limited to presenting an adaptation

technique, the results presented are intended to demonstrate the methodology in

action. The initial implementations show good compliance with the expected out-

comes.

Future work will be focused on the extended validation of the method to get more

insights, particularly into its limitations. The coherence of aggregating complex

structural and material properties to represent the energy absorption and trans-

mission behavior of a cell is being tested for possible limitations or drawbacks. A

detailed study of the accuracy of estimations and the computing power and time

required to achieve them is ongoing. The non-convergent cases are to be studied to

identify new boundary conditions to improve the process efficiency.
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Figures

Figure 1

Fundamental framework of a reinforcement learning AI application

Figure 2

Generalized representation of remodeling and simpli�cation process of virtual vehicle model



Figure 3

Transformation of the VUT virtual model into a generalized cell structure

Figure 4

Crash scenario overlap induced constraints for the discretization of the frontal vehicle region



Figure 5

Data storage architecture of pre-processed FEM simulation model



Figure 6

Cell behavior: Relation between energy absorption and energy transmission, where E is

input energy, Ea is absorbed energy, Et is transmitted energy, Ex is the onset of transmission and Es is the
saturation point

Figure 7

Cell interaction for a discretized cell model using a vehicle sub-assembly



Figure 8

Illustration of curve comparison requirements and possible suitable quanti�cation models



Figure 9

(a) Virtual vehicle model used for illustrations and cropping the model to separate ROI.

(b) Process of the spatial de�nition of cells by discretization of the individual structural

components



Figure 10

Evaluation of the state of the environment based on the difference between estimated and reference
velocity signals
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