
Technische Hochschule Ingolstadt

Specialist area (faculty) Informatik

Bachelor’s course Informatik

Bachelor’s thesis

Subject:

Comparison of Rust to Ada and C in regards to

safety-related software

Name and Surname: Philipp von Perponcher

Issued on: 24.12.2021

Submitted on: 11.02.2022

First examiner: Prof. Dr. rer. nat. Franz Regensburger

Second examiner: Prof. Dr. Stefan Hahndel

ii

Declaration

I hereby declare that this thesis is my own work, that I have not presented it elsewhere

for examination purposes and that I have not used any sources or aids other than those

stated. I have marked verbatim and indirect quotations as such.

Ingolstadt, February 11, 2022

Philipp von Perponcher

iii

This thesis was written as the conclusion of a 3.5 year dual program with Technische

Hochschule Ingolstadt and MBDA Deutschland. During my time so far, I met and worked

with a ton of people that helped me find a first and now firm foothold in software devel-

opment.

I would like to thank all of them, first and foremost my supervisors Rico Lieback and

Thomas Britzelmeier for accompanying me throughout my time at MBDA, providing me

with exciting topics that complemented my parallel studies.

I would also like to thank Mr. Prof. Dr. rer. nat. Franz Regensburger for accompanying

this thesis and always being available and helpful whenever questions arose.

A special mention also goes out to my family who supported and helped me throughout

my entire studies.

Finally, I would like like to thank my good friends Dominik Bartl, Nico Borgsmüller, Dario

Köllner, Tycho Mertens, Jan Mottl, Grady Orr, Sebastian Rabau, Javen Thompson, and

Andrea Wiethüchter for proof-reading the thesis thoroughly, allowing me to improve it

even further.

iv

Abstract

The goal of this thesis is to give a basic understanding whether Rust can be suited for

safety-critical systems programming projects where Ada is currently the mainly present

language.

To get an overview over the features that make these languages suitable for safe pro-

gramming, several common programming errors and the languages’ reaction to them will

be looked at. For this comparison part, C is added to get an understanding of how a

programming language that is not targeted at safety handles these errors.

The outcome from these tests were that Rust covers all safety features that Ada has, even

offering additional ways of dealing with certain errors. It also enforces stricter rules in

some places, for example when dealing with concurrent programs and shared resources.

Apart from the technological background, the programming environment is also important

for a language to be suitable for bigger projects. From an official side, Ada has a big

advantage due to its long history and firm foothold in the aerospace industry while Rust

is open-source and does currently not have any kind of certification for its safety features.

Another part of the environment is the developers themselves, where Rust has a clear

advantage due to its fairly young age and a strong online community and popularity.

The question whether Rust can be suited for safety-critical projects or even be a valid

alternative to Ada in that regard can’t really be answered with a clear Yes or No. In case

any official guidelines that require some sort of certification have to be adhered to, Rust

may be a little difficult to use as it does not have any, even though efforts in that direction

are well on the way. If no guidelines have to be followed, Rust can definitely be a realistic

alternative to Ada due to its popularity while still offering very safe programming.

v

Contents

1 Introduction 2

1.1 Introduction to Safe Software . 2

1.2 Motivation and Scope . 3

1.3 Structure . 3

2 Background Information and Environment 5

2.1 Introduction of MBDA Deutschland . 5

2.2 Software Versions . 6

3 Error Classification 7

3.1 General Software Error Classes . 7

3.2 Detailed Description of the Covered Classes 10

3.2.1 Scope . 10

3.2.2 Types and Conversion . 11

3.2.3 Memory and Storage . 12

3.2.4 Arithmetic Errors . 12

3.2.5 Concurrency . 13

4 Programming Languages 14

4.1 Introduction of C . 14

4.2 Introduction of Ada . 18

4.3 Introduction of Rust . 23

5 Comparison of the Languages 31

5.1 Scope . 31

5.1.1 Access to Entities Outside of the Current Scope 31

5.1.2 Ambiguity . 35

5.2 Types and Conversion . 45

5.2.1 Assigning a Wrong Type . 45

5.2.2 Conversion and Type Limits . 50

5.3 Memory and Storage . 62

5.4 Arithmetic Errors . 67

5.5 Concurrency . 75

vi

6 Summary 86

6.1 C . 87

6.2 Ada . 88

6.3 Rust . 88

7 Conclusion 90

Listings 91

Figures 93

Acronyms 94

Bibliography 95

1

1 Introduction

1.1 Introduction to Safe Software

Anyone who has ever written software, whether at home or in a corporate environment,

has encountered errors in their code sooner or later. The most visible error is a program

crash that can occur at some point during execution.

Here, the term “crash” is used when a process terminates unexpectedly. In some appli-

cation areas, such as entertainment, a crash is merely an inconvenience; the software can

simply be restarted. In other scenarios, such as control software for aircraft or military

systems, a crash can have catastrophic consequences, such as the 1996 crash of the first

version of the Ariane 5, estimated to have cost up to $500 million. [JM97]

Just as serious, though not as abrupt as a crash, can be unexpected or unwanted behavior

in general. This can include small errors or inaccuracies that are accepted to some extent,

but also malfunctions that occur during the execution of a program but are theoretically

valid and therefore do not lead to a complete abort. If they go undetected for too long,

small errors that may have been dismissed as irrelevant can add up and have even worse

consequences than a crash, since it is not apparent to outsiders that anything is wrong.

A good example is the failure of a U.S. American MIM-104 Patriot surface-to-air missile

battery in Saudi Arabia during the 1992 Gulf War. Due to a mathematical rounding

inaccuracy that added up over the hours the unit was online, an Iraqi Scud missile managed

to penetrate the defenses, hit a barracks, and kill 28 soldiers. [DC92]

Had the system crashed earlier, it would have been obvious to an observer that something

was wrong and action needed to be taken. By appearing to work as intended, the system

gave its operators a false sense of security, which subsequently led to the 28 casualties

mentioned above.

To ensure that as many errors as possible are removed from such systems, extensive de-

velopment and testing work is required, especially for such critical systems. The earlier a

defect is detected in these stages, the lower the cost to the company, whether in terms of

extended development times or actual damages later on.

2

To help software developers avoid bugs as early as possible, certain programming languages

are designed to be particularly “safe”, leaving very little room for the software to make

mistakes. One of these languages is Ada, which was developed for the United States

Department of Defense from 1977 to 1983 [Bar14, p. 3] . Another language that is also

very strict about security, but at the same time fast and modern, and certainly a newcomer

compared to Ada, is Rust, whose compiler was first released in 2012 [And12] . In order

to also have a comparison with a language that is not focused on security, but leaves a

lot of freedom to the developer, C was chosen. It is also “the classic” when it comes to

programming, since it is still widely used and at the same time the oldest of the three

languages mentioned [Rit93] .

1.2 Motivation and Scope

For companies who have to adhere to safety standards and currently use Ada for that, it

could be beneficial to keep their eyes out for new, more attractive programming languages

like Rust for various reasons. As will be discussed further in chapter 4.2, the introduction

to Ada, it is very difficult to find qualified Ada developers because it is not a very common

programming language.

If, at some point, another more common and modern programming language that is geared

toward safety-critical systems like Rust is certified as ”safe” in some way, it will be ad-

vantageous for an organization that relies on these features to have already tested the

language for usability and applicability for their product area. An educated guess as to

whether these programming languages might even be a realistic alternative to Ada could

give these companies a better estimate for their possible usage in future projects.

This thesis was written in partnership with MBDA Deutschland whose main product area

is missile systems and their surrounding technical components. This requires that a lot of

software is written at the system level, as well as for maintenance and C2 (command and

control) applications for customers. The former, namely systems programming, is discussed

in more detail in this paper, which also led to the selection of the three programming

languages. Examples for software in that area include navigation algorithms on board a

missile or communication between different components of an air defense system such as

radar and launcher.

1.3 Structure

To get a comparison of whether Rust could be an alternative to Ada from a basic techno-

logical background, some of the most common reasons for unexpected behavior of software

3

are presented while the reaction of C, Ada and Rust is covered and explained. This will

then help to draw a conclusion on whether Rust is suitable for software in safety-critical

environments where Ada is currently the established programming language. If that’s not

fully the case, the missing factors that are necessary for it to be a considerable option

will be talked over. During the main part, C is used as a comparison to show how a very

open language reacts to these possible errors, it will not be taken into consideration in the

conclusions.

Each exception is presented considering the three main points:

• Why does this error occur and what consequences could result from running into it?

• How easy is it to encounter this error in C, Ada, and Rust and does the respective

compiler prevent the programmer from doing so?

• Summary how the error is handled by the languages.

It is to be noted that modern Integrated Development Environments (IDEs) help a lot

with programming and are able to identify some mistakes while the code is being written.

As this paper focuses on the compilers and their reactions and not on the development

environments, this factor is not taken into account.

The thesis concludes by summarizing the responses to the errors of each of the three

programming languages, as well as the advantages and disadvantages found. This final

chapter also identifies the pros and cons of why and when a company should or should not

consider that language for a safety-critical project. Additionally, an assessment is then

given in the final conclusion as to whether Rust can be a real alternative to Ada in an

industrial environment.

4

2 Background Information and

Environment

2.1 Introduction of MBDA Deutschland

MBDA Deutschland GmbH is a German company specializing in the defense industry,

particularly missile systems. It is a subsidiary of the European MBDA Group and has

two direct sub-companies: TDW, which develops and maintains effectors, and Bayern-

Chemie, which focuses on propulsion systems. MBDA Deutschland has its main site in

Schrobenhausen, Bavaria, where development and most of the administration are located.

Two smaller sites are worth mentioning, in Aschau am Inn, where Bayern-Chemie has its

main research department, and in Freinhausen, which serves as a test and evaluation site

for cooperation projects with the German Air Force. [Pre]

As NATO countries are MBDA’s largest and most important customers, it is essential for

the company to comply with their official software requirements, such as the DO-178C

standard used by the European Aviation Safety Agency (EASA) for certification purposes

[Eas, Ch. AMC 20-115D] . Since this means that the software must be very safe and

thoroughly tested, using programming languages that already guarantee a certain level of

safety is the first logical step to avoid unnecessary code. Besides, it only makes sense for

any company in this sector to follow strict standards, since different countries may have

varying requirements. If they are as strict as possible from the beginning, it helps sell the

product, as customization for a new customer would only require an integration to the

new platform instead of large changes to the code base to meet any new requirements.

Of course, it is also in the interest of MBDA itself that the products work and do not crash

due to a software error that could have been ruled out in advance, since any negative press

is rather undesirable.

5

2.2 Software Versions

All code examples in this paper were compiled using the following compiler and toolchain

versions:

Language Command Version Language Standard

C gcc 9.3.0 C17

Ada gprbuild 20190517 Ada 2012

Rust rustc (cargo) 1.57.0 Rust 2021

6

3 Error Classification

Since every programming language provides more or less or even no explanations for why

software terminates or behaves unexpectedly, it is difficult to find a general classification for

unwanted behavior. In order not to go beyond the planned scope of this thesis, a reasonable

division and selection is necessary. In this chapter, a rough overview of software errors will

be given, along with a basic classification and selection of errors.

3.1 General Software Error Classes

One of the two main sources of software flaws which are classified and used for this thesis

is The 2021 Common Weakness Enumeration (CWE) Top 25 Most Dangerous Software

Weaknesses, maintained by a subsidiary of The MITRE Company and sponsored by the

U.S. Department of Homeland Security, among others. In order to grade and order them,

the CWE relies on data from the National Vulnerability Database (NVD) and scores them

using the Common Vulnerability Scoring System (CVSS), which is based on characteristics

and severity of software vulnerabilities. [Cwe]

The following list contains the 25 vulnerabilities with the greatest impact in 2021, as

measured by both the NVD and CVSS. [Cwe] Since these weaknesses come from all sorts

of areas of software development, many of them unfortunately do not apply to systems

programming.

Hereby, some of these vulnerabilities can be collected and put under a collective topic,

whereas all of them are included within the classes Memory and Storage, Input Validation,

Improper Access Control, Scope,Permission Management, or Types and Conversion. Going

through all of them, each weakness will be assigned a class while some of the classes will

be singled out and given a more detailed description in the following section:

7

Rank Name Class

1 Out-of-bounds Write Memory and Storage

2 Improper Neutralization of In-

put during Web Page Generation

(‘Cross-site Scripting’)

Input Validation

3 Out-of-bounds Read Memory and Storage

4 Improper Input Validation Input Validation

5 Improper Neutralization of Special

Elements used in an OS Command

(’OS Command Injection’)

Input Validation

6 Improper Neutralization of Special

Elements used in an SQL Command

(’SQL Injection’)

Input Validation

7 Use After Free Memory and Storage

8 Improper Limitation of a Pathname

to a Restricted Directory (’Path

Traversal’)

Input Validation

9 Cross-Site Request Forgery (CSRF) Improper Access Control

10 Unrestricted Upload of File with

Dangerous Type

Input Validation

11 Missing Authentication for Critical

Function

Permission Management

12 Integer Overflow or Wraparound Types and Conversion

13 Deserialization of Untrusted Data Input Validation

14 Improper Authentication Permission Management

15 NULL Pointer Dereference Memory and Storage

16 Use of Hard-coded Credentials Permission Management

18 Missing Authorization Permission Management

19 Incorrect Default Permissions Permission Management

20 Exposure of Sensitive Information

to an Unauthorized Actor

Scope & Improper Access Control

21 Insufficiently Protected Credentials Permission Management

22 Incorrect Permission Assignment for

Critical Resource

Permission Management

23 Improper Restriction of XML Exter-

nal Entity Reference

Input Validation

24 Server-Side Request Forgery

(SSRF)

Input Validation

25 Improper Neutralization of Spe-

cial Elements used in a Command

(’Command Injection’)

Input Validation

8

Another, albeit somewhat smaller, source is a paper by NASA engineers Stacy Nelson

and Johann Schumann on trustworthy code review. The following table represents only

an excerpt from their questionnaire on possible software bugs, but nevertheless offers the

reader a very good selection of errors. They were evaluated on the basis of the rather

subjective criteria “Importance” and “Difficulty”, whereas the latter indicates the effort it

takes to review the code and prove this error to be prevented. [NS04]

As these are quite different from the first example, the new error classes Arithmetic Error,

Clean Programming, Concurrency, Semantic Error, and Data Structures are introduced.

Importance Difficulty Error Property Class

5 3 Divide by zero Arithmetic Error

5 3 Array index overrun Memory and Storage

5 5 Mathematical functions sin, cos,

tanh

Arithmetic Error

5 1 Use of un-initialized variables or

constants

Memory and Storage

3 3 No unused variables or constants Clean Programming

4 2 All variables explicitly declared Memory and Storage

5 5 Proper synchronization in multi-

threaded execution

Concurrency

4 4 Incorrect computation sequence Semantic Error

5 3 Loops are executed the correct num-

ber of times

Semantic Error

5 3 Each loop terminates Data Structures

3 2 All possible loop fall-throughs cor-

rect

Memory and Storage

4 3 Priority rules and brackets in arith-

metic expression evaluation used as

required to achieve desired results

Semantic Error

5 5 Resource contention Concurrency

5 2 Exception handling Clean Programming

5 5 The design implemented completely

and correctly

Semantic Error

4 2 No missing or extraneous functions Clean Programming

5 1 Error messages and return codes

used

Clean Programming

5 1 Good code comments Clean Programming

Of course, these two sources do not give an overview of all possible errors or error sources

in the world of programming, but they provide a good selection to make classifications. For

9

reasons of relevance and not to go beyond the field of system programming, the categories

Input Validation, Permission Management, Improper Access Control, Clean Programming,

Data Structures, and Semantic Errors are omitted. The other classes (Scope, Types and

Conversion, Memory and Storage, Arithmetic Errors, and Concurrency) are presented in

more detail in the following section. If it’s applicable, a short error message in another,

unrelated programming language, will be displayed as an example of how this error could

look like.

3.2 Detailed Description of the Covered Classes

3.2.1 Scope

Following the principle of “You don’t need to know more than the minimum”, sometimes

also known as the “Need-to-know” or “separation of concerns”, it’s good practice to restrict

methods and parameters to the area that they are needed for, they get “encapsulated”

to their scope. This can happen on a bigger scale, such as application areas that only

users with a certain level may access, like in the CWE weakness, or on a much lower level,

which is when programs are being written. Whereas a programming language is unable to

tell the developer which variables should be encapsulated in which scope, it can help with

protecting privately declared entities to the point where a developer cannot accidentally

use it from somewhere outside.

It can also support the developer since function and variable names may be reused as

they are only visible within their small area, as opposed to being visible and callable

from anywhere. An example could be a function for an internal calculation that sets a

parameter, making it only available to other functions inside the same scope. The same

goes for variables. Only those that are necessary to be used from the outside should be

available publicly or, even better, have an access-method that provides the value. That

way, any other object can only get the value instead of being able to do whatever it wants

with it, like change it.

A major topic when it comes to scope is where and when the language and compiler check

whether access to a variable is allowed or not. If it’s at compile-time, it’s fairly easy for the

developer to work with it. On the other hand, it could have quite negative consequences

when a program tries to access it during runtime. Possible outcomes here could be a

termination of the program or the calculation continuing with an undefined value, which

could end up corrupting the program. Java, for example, finds simple errors like accessing

a variable marked as private during compilation, citing an error like the following:

error: y has private access in Test

10

The Scope is closely related to Improper Access Control and Permission Management,

which were more used in the bigger sense with multiple actors in a working system during

the classification. This section here will set a smaller focus, namely variable access in a

program.

3.2.2 Types and Conversion

In higher level programming, there are so-called “types” that tell the language how to

interpret the value stored in a variable. Some example types are 32-bit integers, floating

point values, or Boolean values. Some languages allow the programmer to use their own

types by defining enumerations or structures. Since all values are stored in memory as

bytes, the compiler must be prevented from misinterpreting values when using the wrong

type to “translate” the byte value into its respective value. Three common errors are:

1. Trying to assign a value to a mismatched type or cast it to a type which is unable

to interpret the currently saved value

A typical exception message in Python could look like this (Case: trying to cast the

character ’a’ to an integer value):

ValueError: invalid literal for int() with base 10: ’a’

2. Using a value that has a different type than required as a parameter for a certain

function

Exception message in Python (Case: Taking each character of the string ”123”,

adding it up to get the sum):

TypeError: unsupported operand type(s) for +=: ’int’ and ’str’

3. Over- or underflow of data types

Trying to to add to or subtract from a value whereas this operation results in a

number that exceeds the range of all possible values for this type. Java handles this

by wrapping around any value over the maximum to the absolute minimum of that

type. (Case: Adding 1 to the maximum value of an Integer. The first output shows

the maximum value of that number, whereas the second line is the result of said

number with 1 added to it):

$ java Overflow

x: 2147483647

x: -2147483648

11

3.2.3 Memory and Storage

A large part of programming is memory management, although the focus has shifted in

recent decades. Whereas in the past developers had to especially keep the total available

memory in mind, this factor became irrelevant due to ever larger memory chips. The other

big factor, runtime memory management, including memory allocation and fragmentation,

has always remained an important component. This includes, above all, the guarantee that

data is correctly stored where the program expects it to be. This is relevant with respect

to the question “Can the required memory be fully allocated and has this been done before

the programmer wants to use it?”. If not, other relevant program data may be overwritten

and cause unwanted behavior. Another special case that is very common when dealing

with arrays is an out-of-bounds exception. This occurs when an array is initialized with n

values, but the user wants to access the value at a position > n. Some programming lan-

guages prevent the user from reading these memory cells by terminating the program, while

others do nothing about it. This can be very risky, since values that should not be used

can be read and misinterpreted within functions, resulting in behavior that is not intended.

Python prevents the user from accessing such a value outside of the defined error by

terminating with the following error:

IndexError: list index out of range

3.2.4 Arithmetic Errors

Arithmetic errors can occur whenever mathematical operations are performed when exe-

cuting code. This always involves the danger of trying to calculate a function with an input

that is not included in the respective domain. Well-known examples of this are negative

values for square roots (with the exception of imaginary numbers) or the division of any

number by 0.

Depending on the function and language, these errors can have quite different effects.

If they are implemented in a very restricted way, trying to compute something like this

will result in an immediate exception and abort the program. Another behavior could be

that the program tries to just go through with the defined operation and computes an

unexpected value without issuing a warning, which can have dire consequences since these

errors can go undetected for a long time. Attempting to use Integers and divide by 0 in

Java would produce the following error:

Exception in thread "main" java.lang.ArithmeticException: / by zero

12

3.2.5 Concurrency

Working with multiple threads always poses a risk to program integrity. One major issue

that anyone working with concurrency must be aware of is the management of shared

resources. Since the execution of compiled code is different on each operating system,

it is very difficult, if not impossible, to predict how a program will run. The ability to

lock resources with mutual exclusion, also called mutex, obviously helps in determining

this, but also introduces new problems, namely deadlocks and livelocks. These can occur

when all processes are waiting for each other or constantly trying to respond to each

other. This is also a type of unwanted behavior and must usually be prevented by the

developer themselves, although some programming languages can support this to some

extent. Specifying a particular error here as an example is difficult, since concurrency that

goes wrong usually results in unexpected behavior rather than a crash itself. As it is more

critical and can pose greater risks to program integrity, this section focuses on access to

shared resources rather than mutual exclusion and the resulting locks.

13

4 Programming Languages

To give a bit more background on C, Ada, and Rust, these three languages will be covered

in more detail, namely regarding the following five points:

• History: How did this language develop, who made this language, and what were

the intentions behind it?

• Structure: What is the general structure of a program in this language?

• Characteristics: What can this language do better than other common program-

ming languages, and what are some special traits it has?

• Environment: What is the general state of the language and its developers?

• Relevance: Why and how is this language relevant in the modern world?

4.1 Introduction of C

History

The development of C was started by Dennis Ritchie at AT&T Bell Laboratories in the

years 1969-1973 [Rit93] . Taking B and BCPL as successors, the development paid close

attention to the pros and the cons of these two languages and took over some of the

proven principles. The first ANSI (American National Standards Institute) standardization

for C was ratified in 1989, swiftly followed by the ISO (International Organization for

Standardization) in 1990. Theoretically, they both refer to different versions, namely C89

and C90, even though the second standard only includes formatting changes. [Sta03,

p. 5]

The first extension, which was officially called Amendment 1, was published in 1995, giving

it the nickname C95. The main changes were the addition of digraphs, improvements to

the library, and macros like STDC VERSION , which expands into the standard number

of the C version being used. [SW, p. 21]

14

Four years later, the updated standard ISO/IEC 9899:1999 was released, which is com-

monly known as C99. Its biggest changes were the support of complex and imaginary

numbers, as well as new core features such as variable length arrays or flexible array mem-

bers. [ISO18, p. 476]

It ended up being updated three times by Technical Corrigenda in 2001, 2004, and 2007

[ISO99] .

It was then fully withdrawn in October 2011 after being revised into the C11 standard

[ISO11] . This time, the update was not as big as beforehand, the most notable addition

were the big improvements towards multithreading and atomic objects [ISO18, p. 476] .

In 2018, the latest version C17 was introduced. It did not add any new features but rather

focused on fixing technical issues and clarifications. [ISO18, p. 476]

Following the usual ISO review period of 5 years, a new version of C is expected around

2023. As there weren’t a lot of new features implemented in the past two editions, C can

be seen as a very stable and well rounded language.

Structure

A C program usually consists of three parts: Preprocessor commands, declarations, and

definitions. It’s good to look at an example to understand their purposes. The following

example includes the function print collatz(int num) which calculates and prints the

Collatz conjecture for the parameter num, which is set in the main function to be 42:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 void print_collatz(int num);

5

6 int main()

7 {

8 print_collatz (42);

9 exit (0);

10 }

11

12 void print_collatz(int num)

13 {

14 // Integer values can be negative or 0 as well which would result

15 // in a non -terminating sequence , thus we need to rule it out

16 if (num <= 0)

17 {

18 printf("Conjecture can not start with a 0 or negative value\n");

19 return;

20 }

21

22 int x = num;

23 while (1)

24 {

15

25

26 // If 1 is reached , the Collatz conjecture terminates

27 if (x == 1)

28 {

29 printf("%d", x);

30 break;

31 }

32

33 // Print the current value of x

34 printf("%d, ", x);

35

36 // Following the definition of the Collatz conjecture

37 if (x % 2 == 0)

38 {

39 // If x is even => x = x/2

40 x = x / 2;

41 }

42 else

43 {

44 // If x is uneven => x = 3x + 1

45 x = 3 * x + 1;

46 }

47 }

48 printf("\n");

49 }

Listing 4.1: Collatz-Conjecture in C

The first statement of this program is the inclusion of the header file of C’s standard

I/O library stdio.h. When the preprocessor goes over the program for the first time, it

replaces this line with the contents of that file, making the functions that were declared

there available to be used. An include-statement might state a filename in angle brackets,

which looks for system header files, or in quotation marks, which searches at the location

of the current file. [SW, pp. 7–8]

After that, the declaration of functions for this file follows. These are optional but leaving

them out prompts the compiler to output a warning. Declarations define the interface of

functions in this file and may, together with other statements that include other parts of

the program, be outsourced to a header file, which would then be included in return [SW,

Ch. 2]. Splitting declarations and preprocessor instructions to a separate file makes sense

in bigger projects as to give a better oversight over the purpose and connections of this

file.

The main body of a C file then holds the definitions of the previously declared structures.

Function names are not being preceded by a certain keyword but rather by the return

type, with it being void if it does not have one (see lines 4 and 12).

16

Characteristics

C is a language that leaves its developers a lot of freedoms while giving them a lot of

possibilities, too. C is made very versatile, offering both high-level structures, for instance

user-defined Structure data types, as well as low-level operations such as directly manipu-

lating memory. This, together with its long history and development parallel to the Unix

system [Rit93, p. 1], made it a long time favorite and currently well prevalent language for

systems programming. The 50+ years of almost continuous development rounded off a lot

of errors which most other programming languages still in use today simply did not have

the time for.

Environment

C uses compilers for and runs on virtually any platform, embedded or not. The long history

and extensive documentation makes it a thorough language that greatly supports its user.

Even though it’s a fairly advanced language for a skilled developer, it’s also suitable for

basic programming classes in tertiary education as many principles such as pointers or the

functionality of basic data structures can be explained very well in C. Especially due to

the age of C, the documentation is very good. Apart from the official ISO standard, there

are plenty of books over the past versions to learn from and work with.

Relevance

C is still very relevant today, both in new development and maintenance of older systems.

The Stack Overflow survey for 2021 ranked C at rank 12, with 21,02% of the users giving

it as an answer to the question Which programming, scripting, and markup languages have

you done extensive development work in over the past year, and which do you want to work

in over the next year?. [Staa]

Given that C is older than almost 90% of the users taking the survey, that is a very

impressive number. With plans being already made for the next review going up in 2023,

it also does not seem very likely that the language is going to become irrelevant in the

foreseeable future.

17

4.2 Introduction of Ada

History

In 1974, the United States Department of Defense (DoD) discovered the need of a new

programming language due to the multitude of currently used languages as well as the

resulting high costs [Bar14, p. 3] . After a lengthy process of development which was

all sponsored by the DoD, the ANSI (American National Standards Institute) standard

for Ada was first released in 1983, thus naming it Ada 83 [ANS83] . After all, ISO

(International Organization for Standardization) certification was not that far away, and

so it became ISO standard 8652 in 1987 [ISO67] .

Shortly thereafter, some work on the language in accordance with ISO provisions led to a

revised standard in 1988. This draft was then contracted to Intermetrics Inc. which led

to the publication of the revised ISO standard in 1995, which became Ada 95. [Bar14,

p. 4]

The next iteration was then handled by the Ada Rapporteur Group (ARG), who are still

responsible for the maintenance of Ada today. Instead of a revised standard, the ARG only

identified and corrected a few flaws, eventually releasing those as Technical Corrigendum

1 on June 1st, 2001. [ISO01]

Working with other programming languages, some additional improvements to Ada were

quickly identified and worked on. These changes were not considered extensive enough

to warrant a fully revised standard and were therefore decided to only be an amendment

to the language, which was then further developed by the ARG into Ada 2005. [Bar14,

p. 4]

With the big steps in computer hardware in the early 2000s, the need for additions, es-

pecially in the direction of multiprocessors, was becoming more and more evident. This

eventually led to the development of a new edition, which became an ISO standard in

December of 2012, thus naming it Ada 2012. [ISO12]

Structure

An Ada program is made up of one to n library units. Each unit can be one of the

following:

• Subprogram (executable algorithm)

• Package (collection of entities such as subprograms, types, etc.)

• Task Unit (concurrent computations)

18

• Protected Unit (Coordination for tasks sharing data)

• Generic Unit (Parameterized template for subprograms)

Usually, a library unit consists of two parts. The first is a specification which, similar to

a header file in C, provides information on the interface to other units. The second one

then contains the implementation of this module. As an example of some Ada code, we

will take a look at a subprogram, as it’s the smallest part of any program.

The following subprogram is designed to print the Collatz conjecture for the input N .

Code comments in Ada are realized by a double minus (−−):

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Collatz

4 (N: Natural := 1) is

5 X: Natural := N;

6 begin

7

8 -- As Natural also allows 0 to be used , we have to exit

9 -- before the loop runs infinitely

10 if X = 0

11 then

12 Put_Line("Conjecture can not start with a 0");

13 return;

14 end if;

15

16 Put_Line("Starting Collatz Conjecture:");

17

18 loop

19 -- If 1 is reached , the Collatz conjecture terminates

20 if X = 1

21 then

22 Put(Natural ’Image(X));

23 exit;

24 end if;

25

26 -- Print the current Value of X

27 Put(Natural ’Image(X) & ",");

28

29 -- Following the definition of the Collatz conjecture:

30 if X mod 2 = 0

31 then

32 -- If X is even => X = X/2

33 X := X / 2;

34 else

35 -- If X is uneven => X = 3X + 1

36 X := 3 * X + 1;

37 end if;

38 end loop;

39

40 end Collatz;

Listing 4.2: Collatz-Conjecture in Ada

19

The code is pretty straight forward and easy to follow for anybody who has experience in

imperative programming. Line 1 contains the import that is necessary for this unit, this

is only the standard library for Input/Output. Line 3 is probably the first time that an

unknown keyword is met, a procedure. This is a subprogram that does not return a result,

contrary to a function [Duf+12, pp. 806, 808] . Between the keywords procedure and is,

the name and parameters are being defined. The latter may have any one of the types in

(default), out, or inout. The details regarding functions, procedures, and parameter types

is better highlighted in an example:

1 function Square_Fun

2 (N: Integer := 1)

3 return Integer is

4 begin

5 return N * N;

6 end Square_Fun;

Listing 4.3: Square Function

1 procedure Square_Proc

2 (N: in Integer := 1;

3 Result: out Integer) is

4 begin

5 Result := N * N;

6 end Square_Proc;

Listing 4.4: Square Procedure

Between is and begin, any variables that are being used inside the function have to be

declared (see the Ada code example, line 4). After that, the body of the actual function

follows, completed by an end. It is optional to state the name of the subprogram at this

point but recommended for clarity.

In the previous, longer code sequence (Listing 4.2), the specification is to be found on the

lines 3 and 4. It states that this subprogram, called Collatz, is a procedure, thus has no

return-parameters and takes one input parameter. Between lines 5 and 42, the implemen-

tation follows. The clear-cut structure was intended to make the code maintainable.

One last notable thing about the structure is that each file may only contain one library

unit, leading to Ada projects tending to get pretty big, as they’re very split up from the

beginning.

Characteristics

Ada was designed to be a language used in both military and civilian applications that

require a high level of safety. At the same time, maintainability and ease of use for the

developer were essential points. [Duf+12, p. xviii]

With all of this in mind, the above presented structure was developed and has kept up

over the past 35 years. Especially the points about ease of use and maintainability are

represented in Ada’s syntax. A few examples for this are the clear-cut structure or the

use of intuitive keywords such as procedure, function, begin, end, etc. that make it easy for

an external developer to get a quick overview of the program. The distribution of units

20

over one file each also helps as functionalities are clearly separated and can be maintained

easier.

Apart from the bigger structure and some keywords, there are a few additional notable

things that stand out when looking at Ada’s syntax, the first being the absence of curly

brackets. This, together with the keyword end to close a control structure, has a simple

reason: It prevents the programmer from accidentally doing something unintended to a

control structure while still having the compiler detect no syntax error. It also helps to keep

an overview over which loop is being closed in which location, again increasing readability.

Regarding the prevention of unintended things, it’s good to imagine what could happen

in other programming languages where a semicolon behind a conditional statement simply

finishes it. The next code block, which would have only been run had the condition been

true, would then run every time, rendering the conditional statement basically useless.

Of course, any good developer would probably be able to find this error by testing thor-

oughly. The compiler on the other hand has no chance of detecting this as due to the very

widespread usage of braces to enclose normal code blocks as well as those after a condition,

the curly brackets are syntactically correct.

That this cannot happen in Ada on the other hand, can be seen in the following example:

1 if Takeoff_Permit = Approved then

2 Roll_To_Position ();

3 Initiate_Takeoff ();

4 end if;

Listing 4.5: Correct code

1 if Takeoff_Permit = Approved then ;

2 Roll_To_Position ();

3 Initiate_Takeoff ();

4 end if;

Listing 4.6: Stray semicolon in line 1, does

not compile

If a semicolon were to be accidentally left in on line 1 in Listing 4.5 as it is in 4.6, it would be

immediately detected by the compiler, which would fail with the warning error: extra

";" ignored, as it’s missing the corresponding end if. This then prevents the developer

from accidentally executing anything inside of the condition.

The second notable topic to look at is the difference in equality and assignment operators

from Ada to most other programming languages. By using := for assignments and = for

equality comparison, the very strange assignment sequence, from a mathematical point of

view, of x = x+ 1 does not exist anymore. The equals sign is therefore being used for the

(mathematically correct) comparison if x and y are equal by evaluating x = y.

To again prevent the developer from accidentally making easy mistakes, Ada forbids as-

signment in expressions such as an if -statement, the condition may only be a boolean

expression [Duf+12, p. 124] . In other programming languages, an assignment within such

21

an expression could then produce results depending on the value that was assigned instead

of the comparison with the value currently stored in the variable.

By forbidding this, and using more precise signs for assignment and equality, an Ada

developer does not have to be as worried about making these by mistake, even though one

should never completely let their guard down. The corresponding code in Ada could look

like this:

1 if Takeoff_Permit = Approved then

2 Roll_To_Position ();

3 Initiate_Takeoff ();

4 end if;

Listing 4.7: Code with equality

1 if Takeoff_Permit := Approved then

2 Roll_To_Position ();

3 Initiate_Takeoff ();

4 end if;

Listing 4.8: Code with assignment in if -

condition, does not compile

These two examples are just a few of the characteristics and ways on how Ada protects the

developer from making easy mistakes that they might be used to doing from programming

in other languages.

Environment

Due to the age and niche application area, Ada is not the first language that a hobby

programmer would get into. This is also reflected in the Stack Overflow Developer Survey

for 2021 which is taken as a reference value for language usage, where Ada is not listed

anywhere, not even under the general point Programming, scripting, and markup languages

[Staa] . A factor for that could be that safety on the level that Ada provides is not really

necessary or is simply ignored or disregarded in the majority of applications, especially

private projects. The documentation around Ada is scarce, the majority of information

can be found in official documentation, reference guides and tutorials from Adacore, the

biggest provider of Ada resources.

Relevance

As previously stated, Ada has its main purpose in the aerospace industry, especially in the

military area. It’s also still relevant today, a few example projects would be the Eurofighter

Typhoon which was at some point the biggest Ada project in Europe, or the navigation

component of the METEOR missile, developed by MBDA. [Adaa; Adab]

For licensing of an aviation product in the EU, the DO-178C standard is a very important

milestone for a programming language to adhere to [Eas] .

22

Ada stands out because it has proven reliable over time and, most importantly, has the

toolchain necessary to successfully develop a program that adheres to these standards,

such as GNATcheck or GNATcoverage. [Gnac; Gnad]

In general, it could theoretically be beneficial for companies to start projects in Ada, simply

due to its reliability. The biggest problem there lies within the rarity of skilled developers

and rather than having each new software engineer go through an extensive training, it’s

usually decided to simply use another, more widespread language.

4.3 Introduction of Rust

History

Compared to C and Ada, Rust is definitely a newcomer. It was originally started as just

a side-project by Graydon Hoare, an employee at Mozilla, in 2006. Over the next three

years, the language was improved until basic functionalities were guaranteed. At this point,

Mozilla started to sponsor the language and initiated the Servo project, an experimental

browser engine, which was one of the first two big Rust projects. Over time, the language

evolved with the work of thousands of contributors, being open-source, and had its first

stable release, Rust 1.0 in May 2015. [Rusb; Rusd]

In 2017, an edition system was introduced to enable developers to shift between specific

versions of the language without breaking existing code. Usually, new features are pushed

to all current versions that are compatible with it, which is why the changes are not as

big as in C or Ada. The changes that would require extensive rework of existing code are

collected and released with a new edition. In retrospect, version 1.0 was titled Rust 2015

and had the theme of “stability”. The next big release was Rust 2018, under the topic of

“productivity”. The biggest change here was the rework of the module system, which is

the way that multiple files and parts are included within a project. The current release is

Rust 2021, which does not have a specific theme but is aimed to “bring new capabilities

and more consistency”. Probably the biggest change includes the method of iterating over

an array, changing an implicit call that would otherwise break Rust 2015 and Rust 2018

code. To easily switch between versions, each edition comes with an automatic migration

tool which highlights the changes that have to be rewritten in order to be compatible with

the new version. [Rush]

In August of 2020, Mozilla laid off around 250 employees, some of which were working on

Rust [Tea20]. This prompted the Rust Core Team to create a Rust Foundation to hold

all trademarks and the financial responsibility. From April of 2021 onwards, anybody can

support and donate along the five founding member companies AWS, Huawei, Google,

23

Microsoft, and Mozilla. [Wil21]

Two months later, Meta, formerly known as Facebook, joined the foundation to support

the development of Rust [Kam21] .

Structure

The structure of a Rust program is very similar to C or C++. A big difference is the

abstraction of a program over multiple files, which have to be declared as modules if they

want to be used somewhere else. When keeping everything within one file, the code looks

very similar to C:

1 fn main() {

2 print_collatz (42);

3 }

4

5 fn print_collatz(num: i32) -> () {

6 // Integer values can be negative or 0 as well which would result

7 // in a non -terminating sequence , thus we need to rule it out

8 if num <= 0 {

9 println!("Conjecture can not start with a 0 or negative number")

;

10 return;

11 }

12

13 let mut x = num;

14

15 loop {

16 // If 1 is reached , the Collatz conjecture terminates

17 if x == 1 {

18 print!("{}", x);

19 break;

20 }

21

22 // Print the current value of x

23 print!("{}, ", x);

24

25 // Following the definition of the Collatz conjecture

26 if x % 2 == 0 {

27 // If x is even => x/2

28 x = x / 2;

29 } else {

30 // If x is uneven => 3x + 1

31 x = 3 * x + 1;

32 }

33 }

34 println! ();

35 }

Listing 4.9: Collatz-Conjecture in Rust

24

Compared to the other languages, Rust does not have any declarations of functions or

variables that are located in a separate part of the program. Regarding the code, the

syntax looks to be a mix of Ada and C, both using braces to declare code blocks like in

C and not needing parentheses for conditional control structures like if or for-loops in

Ada.

Characteristics

Rust’s uniqueness lies in its way of handling variables and ownership. When a variable is

declared, it’s marked as immutable by default [KN18, Ch. 3.1] . This is similar to constants

in other programming languages and can prevent the accidental changing of variables that

were not meant to be changed. If they are supposed to be mutable, the keyword mut can

be preceded between let and the identifier. In case a variable is marked as mutable even

though it is never changed, the Rust compiler will detect that and alert the developer

that the program can be restricted even more. The following example together with the

compilation output shows the reaction by the compiler:

1 fn main() {

2 let mut var = 1;

3 println!("var: {}", var);

4 }

Listing 4.10: Code with an unused mutability

Compilation output:

$ cargo build

Compiling introduction v0.1.0 (/home/philipp/workspace/Rust/Other/

introduction)

warning: variable does not need to be mutable

--> src/main.rs:2:9

|

2 | let mut var = 1;

| ----^^^

| |

| help: remove this ‘mut ‘

|

= note: ‘#[warn(unused_mut)]‘ on by default

warning: ‘introduction ‘ (bin "introduction ") generated 1 warning

Finished dev [unoptimized + debuginfo] target(s) in 0.29s

This is only a warning and will not cause the compilation to fail. For good code quality

though, any project would emphasize all compiler warnings to be solved before a code

gets merged into a production branch. In the rare case that a warning like this has to be

ignored, the check can be turned off using the #[allow(unused mut)] command.

25

Apart from mutability, another big emphasis in Rust is the ownership of variables, which

is checked and validated at compile-time. Instead of using a garbage collector or leaving

the task of freeing up memory up to the developer, every pointer that is allocated has

one dedicated variable that is considered its owner. Once the owner goes out of scope,

which usually happens at the closing bracket after a code block, a function called drop is

automatically called, which then frees all the memory that is not used anymore. To ensure

that no two owners try to free the same memory at the same time, the one-owner-per-

variable rule was implemented. While it can simply be copied, the ownership can also be

fully transferred to the new scope which happens whenever a variable is assigned or passed

as a parameter.

The following example highlights it quite well:

1 fn main() {

2 let str_1 = String ::from("foo");

3

4 // str_1 is moved into the scope of do_stuff_with_string and is

invalid after this statement

5 do_stuff_with_string(str_1);

6

7 // str_1 is now invalid and can ’t be printed out

8 println!("str_1 outside: {}", str_1);

9 }

10

11 fn do_stuff_with_string(s: String) {

12 println!("s in function: {}", s);

13 }

Listing 4.11: Invalid ownership

Compilation output:

$ cargo build

Compiling introduction v0.1.0 (/home/philipp/workspace/Rust/Other/

introduction)

error[E0382]: borrow of moved value: ‘str_1 ‘

--> src/main.rs :8:35

|

2 | let str_1 = String ::from("foo");

| ----- move occurs because ‘str_1 ‘ has type ‘String ‘, which

does not implement the ‘Copy ‘ trait

...

5 | do_stuff_with_string(str_1);

| ----- value moved here

...

8 | println !(" str_1 outside: {}", str_1);

| ^^^^^ value borrowed here after

move

For more information about this error , try ‘rustc --explain E0382 ‘.

error: could not compile ‘introduction ‘ due to previous error

26

The compiler is very strict on these kinds of errors as it ensures memory safety in Rust.

Obviously, using a variable only once cannot be the solution to gain security, which results

in the concept of references and borrowing. References work just like in C, where a pointer

to the variable is passed to a function. This transfers a value to a function without it

taking ownership for it.

To correct the example above, only the parameter type and way of passing it in the main

function have to be changed for this code to successfully compile:

1 fn main() {

2 let str_1 = String ::from("foo");

3

4 // A reference of str_1 is passed into the scope of

do_stuff_with_string

5 do_stuff_with_string (& str_1);

6

7 // str_1 is still valid and can thus be printed out

8 println!("str_1 outside: {}", str_1);

9 }

10

11 fn do_stuff_with_string(s: &String) {

12 println!("s in function: {}", *s);

13 }

Listing 4.12: Valid ownership

Program output:

$./ target/debug/introduction

s in function: foo

str_1 outside: foo

Just like variables, references are also immutable by default. Due to this, there is no limit

to the number of these immutable references as they do not pose a risk to the integrity of

the program. In case it’s necessary, there’s also the possibility to pass a mutable reference

but it’s only possible to have one for each variable within one scope.

The following examples highlight the difference pretty well:

1 fn main() {

2 let mut str_1 = String ::from("foo");

3

4 // A mutable reference of str_1 is passed into the scope of the

function

5 do_stuff_with_string (&mut str_1);

6

7 do_stuff_with_string (&mut str_1);

8

9 // str_1 is still valid and can thus be printed out

10 println!("str_1 after function call: {}", str_1);

11 }

12

27

13 fn do_stuff_with_string(s: &mut String) {

14 s.push_str("bar");

15 }

Listing 4.13: Valid mutable reference

Program output:

$./ target/debug/introduction

str_1 after function call: foobarbar

This example compiles and runs without problem, due to the ownership being applied

correctly. Both in line 5 and 7 of Listing 4.13, the str 1 variable is mutably borrowed but

as the reference goes out of scope again after each function call is finished, the multiple

borrowing is no problem.

In a case where it does not go out of scope, the compiler reacts accordingly as can be seen

in the following example:

1 fn main() {

2 #[allow(unused_mut)]

3 let mut str_1 = String ::from("foo");

4

5 let str_2 = &mut str_1;

6 let str_3 = &mut str_1;

7

8 println!(

9 "str_1 , 2, 3 after function call: {}, {}, {}",

10 str_1 , str_2 , str_3

11);

12 }

Listing 4.14: Invalid mutable reference

Compilation output:

$ cargo build

Compiling introduction v0.1.0 (/home/philipp/workspace/Rust/Other/

introduction)

error[E0499]: cannot borrow ‘str_1 ‘ as mutable more than once at a time

--> src/main.rs :6:17

|

5 | let str_2 = &mut str_1;

| ---------- first mutable borrow occurs here

6 | let str_3 = &mut str_1;

| ^^^^^^^^^^ second mutable borrow occurs here

...

10 | str_1 , str_2 , str_3

| ----- first borrow later used here

error[E0502]: cannot borrow ‘str_1 ‘ as immutable because it is also

borrowed as mutable

--> src/main.rs :10:9

28

|

5 | let str_2 = &mut str_1;

| ---------- mutable borrow occurs here

...

10 | str_1 , str_2 , str_3

| ^^^^^ ----- mutable borrow later used here

| |

| immutable borrow occurs here

Some errors have detailed explanations: E0499 , E0502.

For more information about an error , try ‘rustc --explain E0499 ‘.

error: could not compile ‘introduction ‘ due to 2 previous errors

Here in Listing 4.14, both str 2 and str 3 are still in scope at the same time and would

both hold the reference to str 1. This prompts the compiler to fail, citing two errors,

with the first one being the multiple mutable borrow, which happens in lines 5 and 6. The

second one is directly related as it forbids the immutable reference in the print-statement

in line 10, as the mutable reference from line 5 is still active.

Any operations that are against Rust’s rules are not completely disabled, the feature of

so-called “unsafe” code blocks is able to circumvent these checks. Within such areas, the

compiler does not enforce memory safety and will trust the developer to do the right thing.

This, of course, breaks any guarantees that Rust can give in regards to that safety and

by that a core language concept. In case a bigger project needs to use mechanics that are

disallowed by the compiler, the code areas that need to be manually audited are limited

to the unsafe code blocks.

Whenever a Rust program encounters an error status that is unrecoverable, a Panic value

is thrown, leading to the immediate termination of the program [KN18, p. 9.3] . In the

case that the developer thinks that a situation might be recoverable, they can secure their

functions by using Result or Option types which can then be handled at the function

call.

Environment

Rust’s environment is very modern compared to C and Ada, with a lot more online re-

sources than books. This is of course due to the age of the programming language itself but

probably also because of the continuous release of new Rust versions, rather than big ones

with huge changes every couple of years. An advantage of the copious amount of online

resources is that actively working with and learning the language is a lot more comfortable

than C or Ada. Forums like Stack Overflow are also very active, which is not surprising,

given that its survey ranked Rust as the most loved language for six years in a row [Staa]

. There’s also various free e-books provided by the Rust Language itself, two very popular

ones being The Rust Programming Language [KN18] and Rust by Example [Rusc].

29

One notable environmental factor that makes it very comfortable to work with Rust is

the package manager cargo. From creating packages over downloading dependencies to

compiling and running code in various configurations, it’s a very diverse tool that takes a

lot of manual work off of the developer’s shoulders.

Relevance

Looking at the Stack Overflow Developer Surveys over the past years, it is clear that Rust

has both been very relevant over the past years and will probably remain so [Stab] . This,

as well as quite a few people stating that they would like to start or continue working

with Rust over the next year as opposed to nobody currently working with it showing

interest in another language [Staa, Survey topic Worked with vs. want to work with],

demonstrates that there’s definitely a need for Rust, within private or business projects

alike. For companies, there’s of course always an incentive to work with programming

languages focused on safety and security, as it shows off a good image to customers, being

able to promote their programs as safe. Because of this, Rust can definitely be a good

choice due to its memory safety and popularity within the community at the same time.

This can help companies to find employees who have already worked with the language,

during either tertiary education, previous employments, or private projects. Even though

the spread of Rust is, just like Ada, not as high as C, it has a big advantage due to being

young and promising for the future. However, any argument regarding Rust is only really

applicable for companies which are not involved in an industry with strict requirements

to certain safety standards as it does not have an ISO certification. Another argument

against Rust can be the steady change of the language with updates every six weeks. For

being able to work around this, the ability to work with fixed editions was introduced,

enabling projects to be set to a certain version to guarantee functionalities and big code

bases not having to be completely re-written.

30

5 Comparison of the Languages

This chapter contains the comparison of errors and especially the reaction by the compilers

and runtime environments of C, Ada, and Rust. When dealing with any of the following

errors, a certain level of intelligence by the programmer is assumed. Additionally, no means

that prevent the standard compiler from finding the error like unsafe-blocks in Rust are

being used, as using these structures invalidates the entire point of this thesis.

The main point herein lies on possible errors made by developers with a standard knowl-

edge level of the respective programming languages, as there may be complex methods of

provoking these errors that fall outside the general knowledge scope. It’s mainly focused

on the question “Could this error occur in standard, every-day programming?”.

5.1 Scope

5.1.1 Access to Entities Outside of the Current Scope

Description

There are plenty of reasons to restrict single modules to only be able to access their

minimum necessary scope, like preventing them from doing what they want to across the

entire program. Another small advantage of limiting functions and variables as much as

possible is that identifiers may be used multiple times if they are only visible in their

respective scope. In general, keeping strict scopes also supports the developer to not let

them accidentally do things that were not intended, like changing or using a variable that

was supposed to be private.

The example that will be shown to highlight how C, Ada, and Rust approach this topic,

especially the final bit, is going to include a simple file structure with two files (main and

baz). Here, one module will include the other and try to access both a public (foo) and

a local (bar) variable or function.

31

C

In C, limiting variables or functions to the local file is realized by preceding the static

keyword. This limits the identifier to having internal linkage, not making it accessible to

anything outside of the current translation unit. [ISO18, p. 29]

The following code shows an example, where bar is supposed to be invisible to an outside

function:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main()

5 {

6 printf("foo: %d\n", foo);

7 printf("bar: %d\n", bar);

8 exit (0);

9 }

Listing 5.1: Variable access outside

of the scope - main.c

1 int foo = 13;

2 static int bar = 37;

Listing 5.2: Variable access outside

of the scope - baz.c

This can only work if baz.c is correctly incorporated in the project structure. The seem-

ingly easiest way of doing so would be simply including the file by using #include "baz.c",

which would replace the command with the contents of baz.c, making both variables avail-

able to our main function [SW, p. 7].

As this would be the same as simply copy/pasting the contents into the main file, there is

no real use behind doing so. If a program unit is supposed to be shared between multiple

other files, C uses header files which contain declarations and describe the interface of their

respective unit [SW, Ch. 2].

This would change the code above to this:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #include "baz.h"

5

6 int main()

7 {

8 printf("foo: %d\n", foo);

9 printf("bar: %d\n", bar);

10 exit (0);

11 }

Listing 5.3: main.c using a header

file for baz.c

1 int foo;

2 static int bar;

Listing 5.4: baz.h

1 #include "baz.h"

2

3 int foo = 13;

4 static int bar = 37;

Listing 5.5: baz.c with header

32

To make use of the limited scope within separate translation units and also have the baz file

run and assign the values, both files need to be compiled, for example using the command

gcc main.c baz.c -o output.

This results in the compiler not throwing any errors, giving the following output:

$./ output

foo: 13

bar: 0

This is due to both foo and bar being declared and initialized with zero as soon as

the header file is included in main.c [ISO18, p. 101]. When running the program, both

variables are defined in baz whereas the value of bar never leaves the scope of its current

translation unit.

This could be circumvented by a policy that states static variables be declared in the

source file instead of the header file, thus leading to the compiler not finding bar in the

main unit:

$ gcc main.c baz.c -o output

main.c: In function ’main ’:

main.c:9:25: error: ’bar ’ undeclared (first use in this function)

9 | printf ("bar: %d\n", bar);

| ^~~

main.c:9:25: note: each undeclared identifier is reported only once for

each function it appears in

In general, declaring variables within a header file could end up leading to a lot of confusion

as the compiler does not say anything about bar being private to the other scope if declared

in baz.h. This could lead to a developer mistakenly trying to use that variable, which

contains the initialized value of zero instead of the one set in the unit.

33

Ada

In Ada, packages are separated into two files, an .ads one, which describes and specifies

the specifications of the package, as well as one with the ending .adb, which then holds the

package implementations [Och, Ch. 7]. To now draw a line between visible and invisible

parts of the program, everything inside the .ads-file is public by default, whereas a private

part may be defined. Anything that should not be visible to the outside of the library unit

can be declared here. In practice, this could look like the following code:

1 with Baz;

2

3 procedure Main is

4

5 begin

6 Baz.Foo;

7 Baz.Bar;

8 end Main;

Listing 5.6: Visibility in Ada, main.adb

1 package Baz is

2

3 procedure Foo;

4

5 private

6

7 procedure Bar;

8

9 end Baz;

Listing 5.7: Visibility in Ada, baz.ads

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 package body Baz is

4

5 procedure Foo is

6 begin

7 Put_Line ("foo");

8 end Foo;

9

10 procedure Bar is

11 begin

12 Put_Line ("bar");

13 end Bar;

14

15 end Baz;

Listing 5.8: Visibility in Ada, baz.adb

The compilation of this code fails, citing the following reason:

$ gprbuild ./src/main.adb -o output

using project file default.gpr

Compile

[Ada] main.adb

main.adb :7:07: "Bar" is not a visible entity of "Baz"

gprbuild: *** compilation phase failed

This is exactly what a developer would want, as it’s directly forbidden at compile time,

instead of something happening during the execution.

Rust

Rust has a similar approach to Ada using the concept of private and public instances, with

the only big difference being that the private scope is the default, instead of the other way

34

around. In case a variable, struct, or function needs to be public, the keyword pub can be

preceded:

1 mod baz;

2

3 fn main() {

4 baz::foo();

5 baz::bar();

6 }

Listing 5.9: Access outside of scope,

main.rs

1 pub fn foo() {

2 println!("foo");

3 }

4

5 fn bar() {

6 println!("bar");

7 }

Listing 5.10: Access outside of

scope, baz.rs

The compilation fails and tells us that the function we want to use is private. This is

exactly what is intended, not leaving a chance up to unexpected behavior at runtime.

Summary

Trying to access a private variable is a fairly simple error to detect and Ada and Rust make

sure to fully prevent the developer from accidentally accessing an entity that shouldn’t be.

Working with C header files on the other hand, it is definitely possible to use them just

slightly incorrectly, resulting in the program compiling but values being used wrongly.

The access to the variable that is limited to the internal scope is ultimately prevented, but

the program does not mind calling them as they are theoretically correctly instantiated.

An inexperienced developer might run into this mistake which could also go a long way

without being detected as its effect on the execution is not clearly visible.

5.1.2 Ambiguity

Description

Another mistake that falls under this topic would be the possible ambiguity of a function.

Having the same name for two separate procedures may produce outputs that could be

very unexpected, especially if a program were to just use one of the two without giving a

reason as to why it chose the one it did.

The following scenario is used to simulate how this mistake could occur: A program has

two separate sub-units, called foo and bar, which are both imported by a main file. Each

unit has a function print name which prints a unique line. The key question in this case is

if a developer is able to mistake these two functions for each other or if the programming

35

languages force them to distinguish between them. Another small point that will be looked

at is the question if it’s possible to implement a function twice within one module.

C

The implementation in C is pretty straight forward and easy. After importing both files, the

main function calls print name on line 7, even though it’s unclear which one is meant:

1 #include <stdlib.h>

2 #include "foo.h"

3 #include "bar.h"

4

5 int main()

6 {

7 print_name ();

8 exit (0);

9 }

Listing 5.11: Ambiguity - main.c

1 void print_name ();

Listing 5.12: foo.h

1 #include <stdio.h>

2 #include "foo.h"

3

4 void print_name ()

5 {

6 printf("Foo\n");

7 }

Listing 5.13: foo.c

1 void print_name ();

Listing 5.14: bar.h

1 #include <stdio.h>

2 #include "bar.h"

3

4 void print_name ()

5 {

6 printf("Bar\n");

7 }

Listing 5.15: Ambiguity - bar.c

When compiling this program using gcc main.c foo.c bar.c -o output, the following

output is returned:

$ gcc main.c foo.c bar.c -o output

/usr/bin/ld: /tmp/ccUnYt9p.o: in function ’print_name ’:

bar.c:(. text+0x0): multiple definition of ’print_name ’; /tmp/ccv8gZbp.o:

foo.c:(. text+0x0): first defined here

collect2: error: ld returned 1 exit status

This output is, compared to the others, not raised by the compiler but by the linker,

which can be seen by the errors not appearing in the .c-file but rather in the object file

with a .o-ending, which is located in the /tmp/ folder. The reason for it not being found

by the initial compilation is the separate translation of each unit. Within their scope,

36

the function name is unique and thus no problem. As soon as the project is being linked

together though, the same names are detected and the entire process is halted.

Pretty much the same error would come up if a function were to be defined more than

once within one file, this time during the initial compilation process:

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 void print_name ();

5

6 int main()

7 {

8 print_name ();

9 exit (0);

10 }

11

12 void print_name ()

13 {

14 printf("Foo\n");

15 }

16

17 void print_name ()

18 {

19 printf("Bar\n");

20 }

Listing 5.16: main.c with an ambiguous function name

Compilation Output:

$ gcc main.c -o output

main.c:16:6: error: redefinition of ’print_name ’

16 | void print_name () {

| ^~~~~~~~~~

main.c:12:6: note: previous definition of ’print_name ’ was here

12 | void print_name () {

| ^~~~~~~~~~

37

Ada

This error is only partially applicable in Ada. With each file containing only the unit that

is the same as its filename, having two files and thus two library units with an identical

filename in the same place is not possible. To try and circumvent this, two files with the

same name will be placed in different subfolders foo/ and bar/ :

main.adb

foo/

baz.adb

bar/

baz.adb

Both files contain the following code, only with a slight difference in the printed line (“Baz

in Foo/Bar folder!”):

1 with Ada.Text_IO;

2 use Ada.Text_IO;

3

4 procedure Baz is

5

6 begin

7 Put_Line("Baz in Foo folder!");

8 end Baz;

Listing 5.17: Content of file baz.adb

When Ada compiles using gprbuild, it uses a project file and goes through the directories

specified under Source Dirs. In case it stumbles upon a file that has already been compiled

with that same name, it is skipped. [Gpr, Ch. 2.2.2]

With the following project file, this results in src/foo/baz.adb being compiled as the first

baz.adb and src/bar/baz.adb not being touched:

1 project Structure_Ambiguity is

2 for Source_Dirs use ("src/foo", "src/bar", "src");

3 for Object_Dir use "obj";

4 for Main use ("main.adb");

5 end Structure_Ambiguity;

Listing 5.18: Project file for Structure Ambiguity

38

This can also be seen in the compilation output, where only one file called baz.adb is

being compiled:

$ gprbuild

using project file structure_ambiguity.gpr

Compile

[Ada] main.adb

[Ada] baz.adb

Bind

[gprbind] main.bexch

[Ada] main.ali

Link

[link] main.adb

As expected, the output is the following:

Baz in Foo folder!

Not saying anything about the second component not even compiling and not giving an

error message is definitely a flaw that can be raised when talking about Ada. It of course

makes it very safe by not even giving in to the possibility of an ambiguity but puts this

burden onto the developer to make sure they do not accidentally have two modules with

the same name within one project.

The equivalent for the second part of the question would be trying to define two procedures

with the same name within one package. An implementation could look like this:

1 with FooBar; use FooBar;

2

3 procedure Main is

4 begin

5

6 PrintName;

7

8 end Main;

Listing 5.19: Ambiguity in Ada,

main.adb

1 package FooBar is

2

3 procedure PrintName;

4

5 end FooBar;

Listing 5.20: Ambiguity in Ada,

foobar.ads

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 package body FooBar is

4

5 procedure PrintName is

6 begin

7 Put_Line("Foo");

8 end PrintName;

9

10 procedure PrintName is

11 begin

12 Put_Line("Bar");

13 end PrintName;

14

15 end FooBar;

Listing 5.21: Ambiguity in Ada,

foobar.adb

39

The Ada compiler detects this easy mistake as expected, giving the following response:

1 $ gprbuild main.adb -o output

2 using project file /usr/share/gpr/_default.gpr

3 Compile

4 [Ada] foobar.adb

5 foobar.adb :10:05: duplicate body for "PrintName" declared at foobar.ads

:3

6 gprbuild: *** compilation phase failed

For this second part, Ada only tells the developer where the repetition takes place and not

where all of the definitions are, like C did. Nevertheless, it fully detects the mistake and

fails to compile.

Rust

Similar to Ada, the first problem is only applicable in Rust via a few detours. Trying

to use the same function name found in different files would not carry much value for

this test as calls to an external namespace must always be distinguished by preceding a

<namespace>::. To circumvent this, we try to have the same filename and thus namespace

name (in this case baz::) by implementing the following file structure:

main.rs

foo/

baz.rs

bar/

baz.rs

A structure like that would not work if we want to use the baz-files. Looking at the reason

behind it will also answer the question why an ambiguity like that cannot happen that

easily. Importing another module in Rust is done by using the keyword mod <modulename>.

This prompts the compiler to look for a file named modulename.rs or modulename/mod.rs

based on the current directory. [KN18, Ch. 7.5]

In our case this would mean that a file named foo.rs or foo/mod.rs would be necessary.

Thus, the final structure could look like this:

main.rs

foo.rs

foo/

baz.rs

bar.rs

bar/

baz.rs

40

This new file (in our case foo.rs) then acts as the interface to the module and its contents.

Depending on the use-case, these can be kept private by only using another mod, or be made

available to the higher scope by using pub mod. Calling a function called print name()

in foo/baz.rs, which prints out the String “Baz in Foo folder!”, can now be done in two

different ways.

Using mod:

1 mod foo;

2

3 fn main() {

4 foo:: print_baz_name ();

5 }

Listing 5.22: Call using mod, main.rs

1 mod baz;

2

3 pub fn print_baz_name () {

4 baz:: print_name ();

5 }

Listing 5.23: Call using mod, foo.rs

Or using pub mod:

1 mod foo;

2

3 fn main() {

4 foo::baz:: print_name ();

5 }

Listing 5.24: Call using pub mod,

main.rs

1 pub mod baz;

Listing 5.25: Call using pub mod,

foo.rs

Continuing with pub mod and using the keyword use foo::baz in the main file, we can

now tell our namespace to include the content of baz to be able to use it directly. For this,

the interface to baz.rs has to be made public. We can now skip the foo:: and directly

call the print name()-function:

1 mod foo;

2 use foo::baz;

3

4 fn main() {

5 baz:: print_name ();

6 }

Listing 5.26: Using namespace foo::baz

41

To now try to run into an ambiguity, we do the same thing with the bar-module. That

way, the namespace would be confused as to which of the two possible baz:: needs to be

evaluated:

1 mod foo;

2 use foo::baz;

3 mod bar;

4 use bar::baz;

5

6 fn main() {

7 baz:: print_name ();

8 }

Listing 5.27: Trying to import a namespace with the same name twice

The Rust compiler is good enough to detect this ambiguity, if maliciously provoked or not,

and fails with the following message:

$ cargo build

Compiling incorrect v0.1.0 (/home/philipp/workspace/Rust/Code/

Comparison/Scope/Ambiguity/incorrect)

error[E0252]: the name ‘baz ‘ is defined multiple times

--> src/main.rs:4:5

|

2 | use foo::baz;

| -------- previous import of the module ‘baz ‘ here

3 | mod bar;

4 | use bar::baz;

| ^^^^^^^^ ‘baz ‘ reimported here

|

= note: ‘baz ‘ must be defined only once in the type namespace of this

module

help: you can use ‘as ‘ to change the binding name of the import

|

4 | use bar::baz as other_baz;

| ~~~~~~~~~~~~~~~~~~~~~

warning: unused import: ‘bar::baz ‘

--> src/main.rs:4:5

|

4 | use bar::baz;

| ^^^^^^^^

|

= note: ‘#[warn(unused_imports)]‘ on by default

For more information about this error , try ‘rustc --explain E0252 ‘.

warning: ‘incorrect ‘ (bin "incorrect ") generated 1 warning

error: could not compile ‘incorrect ‘ due to previous error; 1 warning

emitted

The error message gives clear feedback to the developer that a module (and thus names-

pace) name must only be defined once. Including multiple imports with the same name

can still work by changing the identifier using the keyword as.

42

The second part of the ambiguity-question is the multiple definition of a certain function

within the same module. The implementation is again very simple:

1 fn main() {

2 print_name ();

3 }

4

5 fn print_name () {

6 println!("Foo");

7 }

8

9 fn print_name () {

10 println!("Bar");

11 }

Listing 5.28: Ambiguity attempt in Rust

As expected, the compilation fails with the following output:

$ cargo build

Compiling incorrect v0.1.0 (/home/philipp/workspace/Rust/Code/

Comparison/Scope/Ambiguity_2/incorrect)

error[E0428]: the name ‘print_name ‘ is defined multiple times

--> src/main.rs:9:1

|

5 | fn print_name () {

| --------------- previous definition of the value ‘print_name ‘ here

...

9 | fn print_name () {

| ^^^^^^^^^^^^^^^ ‘print_name ‘ redefined here

|

= note: ‘print_name ‘ must be defined only once in the value namespace

of this module

For more information about this error , try ‘rustc --explain E0428 ‘.

error: could not compile ‘incorrect ‘ due to previous error

Looking at both compilation outputs, Rust gives a lot of background details as to where

and why it failed by giving the location of both occurrences.

Summary

The first part of this question was whether the same function name may appear twice in

different files and if this could lead to some kind of mix up when using them. None of

the three languages ended up being non-deterministic about their execution by somehow

including and executing both. C fully detected this mistake during the linkage process,

successfully compiling the individual units but failing as soon as these were connected

to each other. Due to the rules that Ada has for naming units, and Rust has for using

namespaces, these two languages had to be approached by trying to work with subfolders.

Ada, on the one hand, was very interesting as the compilation only translated the first

43

occurrence of a unit but skipped the rest. This really puts the burden onto the developer

to make sure that any two modules are not named the same, especially as the compilation

was successful and did not raise any errors. This could lead to unexpected behavior, as

those two modules might not necessarily behave the same, even though they have the same

name. Rust, on the other hand, is very strict when using external modules. The attempt

to get around the problem of the preceding namespace name was detected and prevented

by the compiler. This forces the developer to use different namespace names and by that

breaks apart any chance of accidentally running into an ambiguity.

The second part of this topic checked whether the same function is able to be defined

multiple times within one unit. All three compilers were able to detect this easily made

mistake. While Ada only gave the location of the repetitions, the compilation outputs of C

and Rust gave a lot more details about what went wrong and where it failed by presenting

all occurrences, not just the ones that are faulty, helping the developer to fix it.

44

5.2 Types and Conversion

5.2.1 Assigning a Wrong Type

Description

Assigning variables and storing values is one of the key concepts of imperative program-

ming. To determine how these saved bytes are being interpreted, every programming

language has types, the most known ones being Integers, Floating Point values, and char-

acters.

It could now happen that a developer tries to assign to a variable but unknowingly passes

a value using the wrong type. An example could be wanting to assign ’9’, which is written

as a character with the single quotation marks, to a variable with the type Integer. If the

programming language does not prevent a developer from doing so, it has two approaches

at using this value. The first one is simply parsing it as a number which is what the devel-

oper would want in this case. This would only work with the characters ’0’ - ’9’ though,

making it a not really practical way of dealing with characters. The other one would be

taking the memory value of how the Char ’9’ is stored and interpret it as if it was an

Integer. This would result in the number 57 being assigned as that is the ASCII-value of

the character ’9’ [ISO03, Part 7: Latin/Greek alphabet, Ch. 6.1].

This example will also be used for this section and is going to be tested in C, Ada, and

Rust.

C

Taking the same example from above, we try to assign the value ’9’ to a variable of type

int:

45

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 int main()

5 {

6 int number = 9;

7 printf("Number: %d\n", number

);

8 exit (0);

9 }

Listing 5.29: Correctly assigning a

number to an int variable

Output:

Number: 9

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 int main()

5 {

6 int number = ’9’;

7 printf("Number: %d\n", number

);

8 exit (0);

9 }

Listing 5.30: Attempting to assign a

character

Output:

Number: 57

As already talked about in the beginning, C is a language that leaves a lot of power

and responsibility to the programmer. This is the case here as well, by behaving just

like the introduction predicted. The compilation finishes without any warnings as this is a

perfectly valid assignment [ISO18, p. 73]. This means that the character ’9’ is automatically

converted to Integer, assigning the representing ASCII value to the variable number.

Ada

The Ada implementation is very similar:

1 with Ada.Text_IO;

2 use Ada.Text_IO;

3

4 procedure Main is

5 Number: Integer;

6 begin

7 Number := 9;

8 Put_Line("Number:" &

Integer ’Image(Number));

9 end Main;

Listing 5.31: Correctly assigning

a number to an Integer

variable

1 with Ada.Text_IO;

2 use Ada.Text_IO;

3

4 procedure Main is

5 Number: Integer;

6 begin

7 Number := ’9’;

8 Put_Line("Number:" &

Integer ’Image(Number));

9 end Main;

Listing 5.32: Attempting to assign a

character

While the correct implementation compiles and executes as expected, the incorrect code

part returns the following error:

$ gprbuild ./src/main.adb -o output

using project file assignment.gpr

Compile

46

[Ada] main.adb

main.adb :7:14: expected type "Standard.Integer"

main.adb :7:14: found a character type

gprbuild: *** compilation phase failed

Ada’s strong typing system prevents the developer from (accidentally) converting values

to a different type when assigning it to a variable. This rule can be found in section 5.2

of the Ada Reference Manual - 2012 Edition which states that the type of the value to be

assigned has to be the same as the variable’s [Duf+12, p. 140].

47

Rust

The following Code tries to assign a value in Rust. The result would also compile if the

:i16 identifier were to be left out but would then assign the type char to the variable. As

we want to force two different types, the Integer type is explicitly stated:

1 fn main() {

2 let number: i16 = 9;

3 println!("Number: {}", number

);

4 }

Listing 5.33: Correctly assigning a

number to an i16 variable

1 fn main() {

2 let number: i16 = ’9’;

3 println!("Number: {}", number

);

4 }

Listing 5.34: Attempting to assign a

character

As expected, the compilation fails, citing “mismatched types”:

$ cargo build

Compiling assignment v0.1.0 (/home/philipp/workspace/Rust/Code/

Comparison/Types/assignment)

error[E0308]: mismatched types

--> src/main.rs :2:23

|

2 | let number: i16 = ’9’;

| --- ^^^ expected ‘i16 ‘, found ‘char ‘

| |

| expected due to this

For more information about this error , try ‘rustc --explain E0308 ‘.

error: could not compile ‘assignment ‘ due to previous error

Trying to assign the value in this place falls under the pretty strict Rust concept of coercion,

which is an implicit way of converting a value at assignment [Coe]. As int and char are not

compatible [The, Ch. 10.7], the coercion that were to take place here is invalid, prompting

the compiler to exit with a mismatched types warning.

48

Summary

The example in C shows why it’s important for programming languages focusing on safety

and security to have a strong typing system. Detecting things like mismatched types during

compilation is fairly easy and it’s always better to have a compilation fail rather than have

the program do unexpected things during runtime. Ada solves it by being very strict,

not allowing assigning any different type without an explicit conversion expression. Rust

leaves a bit more freedom by allowing an implicit conversion using the concept of coercion,

even though the types that may be converted are pretty strict. This allows both those

languages to be pretty safe regarding accidental implicit type conversions when assigning

values that could cause unexpected behavior during runtime. Explicit conversion and type

casting will be further discussed in section 5.2.2 Conversion and Type Limits. Rust is also

the only one of the three languages that allows a variable to be assigned without explicitly

stating a type, even though the type is still implicitly decided behind the scenes [Rusc,

Ch. 5.2].

49

5.2.2 Conversion and Type Limits

Description

Every variable takes up space in a machine’s memory. How much that eventually adds

up to is determined by the type, which defines how many bytes are reserved to store the

value.

When talking about Integers, types with more space can usually also store a bigger value

range. An unsigned (only positive values) 8-bit number can therefore represent 28 = 256

different values, whereas a 16-bit unsigned integer has one of 216 = 65536 possible values.

Floating point types can also vary in size, determining both the value range as well as the

accuracy of the stored number [Inf, Ch. 3.3].

When writing a program, the need to convert between these types can often arise, like

parsing an array of characters into their number representation or converting an Integer into

a floating point number for more accurate calculations. Whenever such a conversion takes

place, it could always happen that the value to be parsed exceeds the maximum boundaries

of the type of the target variable. The following section will check each language for the

types it has, how conversion works, how it reacts to an overflow, and which problems could

arise. They will mainly focus on the Integer types as converting Integer to floating point

values is a little more complex due to various levels of accuracy defined by the language

implementation.

50

C

C has five signed integer types, namely char, short int, int, long int, and long long

int, all having an unsigned variant as well. Together with char and the three floating

point types float, double, and long double, they make up the basic types of C. [ISO18,

p. 31]

Table 5.1 below shows the minimum size of the integer types defined in <limits.h> and the

limits of the number ranges that can be displayed with these types. [ISO18, pp. 20 sqq.]

These sizes are not the ones that will also be used in every operating system, they are

just the minimum. The final size is determined by the operating system, whereas the only

constraint is that the following equation about the types’ sizes still applies: [ISO18, pp. 31,

37]

char ≤ short int ≤ int ≤ long int ≤ long long int

As the type size may be redefined by the individual implementation, the eventual type

sizes on a machine can be bigger and thus display more values. These sizes can then found

out by looking at the ranges, for example using the constants INT MIN to INT MAX. [ISO18,

p. 369]

type Bit size sign min limit max limit

char 8
signed −(27 − 1) 27 − 1
unsigned 0 28 − 1

short int 16
signed −(215 − 1) 215 − 1
unsigned 0 216 − 1

int 16
signed −(215 − 1) 215 − 1
unsigned 0 216 − 1

long 32
signed −(231 − 1) 231 − 1
unsigned 0 232 − 1

long long 64
signed −(263 − 1) 263 − 1
unsigned 0 264 − 1

Table 5.1: Minimum type sizes in C

Hereby, the char-type is special as its signed variant is large enough and also used for

storing any of the basic character set. [ISO18, p. 31]

51

A typecast in C is realized by preceding the value that is to be converted with the new

type within parentheses [ISO18, pp. 65 sq.]. As the range of a type is automatically a

subrange of a type of the same signedness but higher conversion rank, which follows the

same order as the above equation, casting for example from an int to a long value does not

hold any issues. The other way is also not an issue as long as the value does not exceed

the maximum range of the target type. The following example shows what happens if that

occurs:

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4

5 int main()

6 {

7 signed int number = 4660;

8

9 signed short new_number = (

signed short)number;

10

11 printf("Original Number: %d\n

", number);

12 printf("Cast number: %hd\n",

new_number);

13

14 exit (0);

15 }

Listing 5.35: Typecast that stays within

range

Output:

Original Number: 4660

Cast number: 4660

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4

5 int main()

6 {

7 signed int number = 4660;

8 number += pow(2, 18);

9 signed short new_number = (

signed short)number;

10

11 printf("Original Number: %d\n

", number);

12 printf("Cast number: %hd\n",

new_number);

13

14 exit (0);

15 }

Listing 5.36: Typecast that exceeds the

type range

Output:

Original Number: 266804

Cast number: 4660

From getting the sizes beforehand, it was determined that signed int is 4, while signed

short is 2 bytes long. The number 4660 in binary representation is 00010010 00110100

and within the range of a 16-bit signed number. This means that it fits well within the

variable new number. What happens if the same operation is now attempted but with

a number too large for a 2-byte type can be seen in the second example. To make sure

that the new number is out of the range for short int, 218 is added to it. In the signed

int-variable, this simply switches the 18th bit to a 1. If the number is now cast to short

int, the value it holds is still 4660 as if nothing had been added. This is due to the other

2 bytes at the “front” of the number being cut off, leading to the 218 being discarded.

52

Something similar can be observed when looking at an overflowing Integer value. The

following code simply sets a variable to the maximum of its type and then adds 1 to it:

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <limits.h>

4

5 int main()

6 {

7 unsigned short int number = USHRT_MAX;

8 printf("Number: %d\n", number);

9

10 number += 1;

11 printf("Number: %d\n", number);

12

13 exit (0);

14 }

Listing 5.37: Causing an Integer overflow in C

Program Output:

Number: 65535

Number: 0

The addition is regularly executed and the value is being stored back into the variable.

As the value is now 17 bits long, exceeding the 16 bit length of short int, the first bit is

being cut off, resulting in the final value being 0.

The biggest issue with this behavior is that C does this without hesitation or crashing the

program. This is a big downside of a programming language giving a lot of power to its

developer. If they do not know how to correctly use it, it’s easy to make mistakes that

might go a long way without being detected. A more experienced developer could on the

other hand use this feature to their advantage, as it is very deterministic.

53

Ada

Ada pre-defines a type system that follows categories organized like a tree. The ones to

focus on in our case are the scalar types. The full structure can be found in Chapter 3.2

of the Ada 2012 Reference Manual.

scalar

discrete

enumeration

character

boolean

other enumeration

integer

signed integer

modular integer

real

floating point

fixed point

ordinary fixed point

decimal fixed point

Focusing on the integer types, the distinction of modular and signed types catches the eye.

The difference between those is the maximum value range as well as the behavior when an

overflow takes place. Variables with a modular type are unsigned and will wrap around as

soon as their limits are exceeded [Duf+12, p. 47]. The behavior of a signed type will be

looked at in the following code examples.

Additionally to the predefined ones, an implementation may provide additional types.

Similar to C, the only restraint is that the ranges of “smaller” types must not be wider

than their next bigger neighbor [Duf+12, p. 47].

Working with the GNAT compiler, the following types are defined additionally:

Type Byte size (signed)

Short Short Integer 1

Short Integer 2

Integer 4

Long Integer 4

Long Long Integer 8

Long Long Long Integer 8

Long Integer and Long Long Long Integer are a bit special as they do not always have the

same size, it depends on the system’s architecture. Long Integer has a guaranteed size of

32 bits and a size of 64 bits on most 64-bit targets, while Long Long Long Integer is 16

54

bytes wide on 64-bit targets instead of 8. [Gnaa, Ch. 7]

Ada’s type system also allows the developer to implement their own subtypes. Two pre-

defined ones are Natural and Positive, staying close to the mathematical sets N and N+,

whereas the former implements a range from 0 to the Integer Max, the latter the same but

starting at 1.

A typecast or conversion of two values is only allowed following rules that are pretty strict,

the one that is important to us being “The operand type shall be covered by or descended

from the target type [...]” [Duf+12, pp. 126 sqq.]. This essentially means that the value

range of the type to be cast to must be equal to or greater than the original type. The

difference is illustrated in the following two examples:

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Main is

4 Number: Integer := Integer ’Last;

5 Number_Long: Long_Integer;

6 begin

7 Put_Line("Number:" & Integer ’Image(Number));

8 Number_Long := Long_Integer(Number);

9 Put_Line("Number Long:" & Long_Integer ’Image(Number_Long));

10 end Main;

Listing 5.38: Typecasting in Ada from a smaller to a larger type

Compilation Output:

$ gprbuild src/main.adb

using project file typecast.

gpr

Compile

[Ada] main.adb

Bind

[gprbind] main.bexch

[Ada] main.ali

Link

[link] main.adb

Program Output:

Number: 2147483647

Number Long: 2147483647

55

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Main is

4 Number: Integer := Integer ’Last;

5 Number_Short: Short_Integer;

6 begin

7 Put_Line("Number:" & Integer ’Image(Number));

8 Number_Short := Short_Integer(Number);

9 Put_Line("Number Short:" & Short_Integer ’Image(Number_Short));

10 end Main;

Listing 5.39: Typecasting in Ada from a larger to a smaller type

Compilation Output:

$ gprbuild src/main.adb

using project file typecast.gpr

Compile

[Ada] main.adb

main.adb :8:20: warning: value not in range of type "Standard.

Short_Integer"

main.adb :8:20: warning: "Constraint_Error" will be raised at run time

Bind

[gprbind] main.bexch

[Ada] main.ali

Link

[link] main.adb

Program Output:

Number: 2147483647

raised CONSTRAINT_ERROR : main.adb :12 range check failed

The first example (Listing 5.38) compiles and runs without any problem, as expected. This

is due to the range of Integer being contained within the possible values of Long Integer.

The second code snippet (Listing 5.39) shows the illegal conversion, trying to fit a value

into a smaller type. Ada recognizes the large number that will be cast to the smaller type

and outputs a warning, already foreshadowing the Constraint Error that will be thrown as

soon as this conversion is attempted. That this warning can only work if there’s a value

written as a number literal will be shown in the following example that deals with a type

overflow.

56

When trying to store a number too large for its type, Ada has two different reactions to the

addition that would lead to the number being outside of the maximum range. The only

difference in these two code snippets is that the number that has to be added is written as

a number literal in the first example, while in the second one, it’s coming from an external

function:

1 with Ada.Text_IO; use Ada.Text_IO;

2

3

4 procedure Main is

5 Number: Integer := Integer ’Last

;

6 begin

7 Number := Number + 1;

8 Put_Line("Max Integer:" &

Integer ’Image(Number));

9 end Main;

Listing 5.40: Directly adding a number

Compilation Output:

$ gprbuild ./src/main.adb

using project file overflow.gpr

Compile

[Ada] main.adb

main.adb :7:21: warning: value not

in range of type "Standard.

Integer"

main.adb :7:21: warning: "

Constraint_Error" will be

raised at run time

Bind

[gprbind] main.bexch

[Ada] main.ali

Link

[link] main.adb

1 with Ada.Text_IO; use Ada.Text_IO;

2

3

4 procedure Main is

5 Number: Integer := Integer ’

Last;

6 begin

7 Number := Number + 1;

8 Put_Line("Max Integer:" &

Integer ’Image(Number));

9 end Main;

Listing 5.41: Adding the result of a

function

Compilation Output:

$ gprbuild ./src/main.adb

using project file overflow.gpr

Compile

[Ada] main.adb

Bind

[gprbind] main.bexch

[Ada] main.ali

Link

[link] main.adb

The compilation is successful both times, even though Ada again recognizes the explicit

value of 1 in the first example and outputs a warning that it will overflow the variable

Number, similar as it does for typecasting. It does not do so in the second part where

the value to be added comes from an external module. Regardless of that, both programs

terminate at the addition operation, citing a CONSTRAINT ERROR.

57

Rust

Types in Rust are quite a bit more intuitive as their size can be directly derived from the

name. The standard pre-defined types include the signed Integer values i8, i16, i32, i64,

i128 together with their unsigned counterparts (u8, u16, ...), the two floating point values

f32 and f64, bool, and char. The only types that are dependent on the computer’s

architecture are isize and usize, primarily used for indexing some kind of collection.

[KN18, Ch. 3.2]

Typecasting in Rust can be explicit and implicit, whereas the latter was already briefly

covered in section 5.2.1 Assigning a Wrong Type. Explicit conversions can be done using

either as or from, whereas the former is an operator and the latter a trait implemented

for the numeric types. The following two short examples show the difference in usage:

1 fn main() {

2 let number: i32 = i32::MAX;

3 let number_long: i64 = i64::from(number);

4 }

Listing 5.42: Rust Typecast using from

1 fn main() {

2 let number: i32 = i32::MAX;

3 let number_long: i64 = number as i64;

4 }

Listing 5.43: Rust Typecast using asr

As long as the target type is able to include the entire range of the origin type, both these

casts have the same result. The other direction is more interesting as this is where errors

could occur. Depending on how the program is supposed to react to a typecast that might

be too big for the value, the operator can be chosen. While as simply truncates the value

and cuts off any bits that are larger than the target type [The, Ch. 8.2.4], the trait From

is not implemented for typecasts in the “wrong” direction. This can be seen when trying

to cast an i32-value into an i16-type:

1 fn main() {

2 let number: i32 = 1;

3 let number_short: i16 = i16::from(number);

4 }

Listing 5.44: Typecasting a larger into a smaller type using from

58

Compilation Output:

$ cargo build

Compiling typecast v0.1.0 (/home/philipp/workspace/Rust/Code/

Comparison/Types/typecast)

error[E0277]: the trait bound ‘i16: From <i32 >‘ is not satisfied

--> src/main.rs :3:29

|

3 | let number_short: i16 = i16::from(number);

| ^^^^^^^^^ the trait ‘From <i32 >‘ is not

implemented for ‘i16 ‘

|

= help: the following implementations were found:

<i16 as From <NonZeroI16 >>

<i16 as From <bool >>

<i16 as From <i8 >>

<i16 as From <u8 >>

note: required by ‘from ‘

--> /home/philipp /. rustup/toolchains/stable -x86_64 -unknown -linux -gnu/

lib/rustlib/src/rust/library/core/src/convert/mod.rs :373:5

|

373 | fn from(_: T) -> Self;

| ^^^^^^^^^^^^^^^^^^^^^^

For more information about this error , try ‘rustc --explain E0277 ‘.

error: could not compile ‘typecast ‘ due to previous error

The help within the output tells the developer that the trait From<i32> is not implemented

for i16 but instead for those types whose ranges are smaller than the own. This can of

course also be a disadvantage in case the developer has that in mind but wants to cast

the value nevertheless. To not cut that opportunity completely and force them to use the

more error-prone and undetermined as, the trait TryFrom is implemented for all numeric

types. Instead of the target type directly, it returns a Result which is set to Ok() or

Err(), depending on whether the value fits into the new type or not.

59

Regarding an overflow, Rust has an interesting approach that involves its two compile

modes Debug and Release. The following code will be compiled in both modes:

1 fn main() {

2 let mut number: i16 = i16::MAX;

3 println!("Number: {}", number);

4

5 number += 1;

6 println!("Number after addition: {}", number);

7 }

Listing 5.45: Triggering an Integer overflow in Rust

This code compiles fine with either no flag (Debug mode), or the –release-flag appended

to the cargo build command. A difference lies within the execution of both programs:

Program output from running the code in Debug :

$./ target/debug/overflow

Number: 32767

thread ’main ’ panicked at ’attempt to add with overflow ’, src/main.rs

:5:5

note: run with ‘RUST_BACKTRACE =1‘ environment variable to display a

backtrace

Program output from running the code in Release

$./ target/release/overflow

Number: 32767

Number after addition: -32768

While the Debug mode, which is usually used by programmers during the development

cycle, crashes, the build using the Release flag keeps running and acts like C by wrap-

ping around the added value using the two’s complement [KN18, Ch. 3.2]. This is due

to performance reasons as calculations and assignments are used plenty of times during

programming and checking each one for an overflow can be time- and labor-intensive [Rusi,

RFC #0560] and are thus left out. In case a wraparound is the intended behavior, other

methods like wrapping add are implemented as relying on the overflow wrapping is con-

sidered an error. Using that function on the above example returns the same, overflowing

output:

1 fn main() {

2 let mut number: i16 = i16::MAX;

3 println!("Number: {}", number);

4

5 number = number.wrapping_add (1);

6 println!("Number after addition: {}", number);

7 }

Listing 5.46: Triggering an Integer overflow using wrapping add

60

Output:

$./ target/debug/overflow

Number: 32767

Number after addition: -32768

To make sure that even after thorough testing, no unexpected results are happening, a set

of checked * methods are also provided by the Numeric types which return an Option

value with the value None in case an overflow occurs.

Summary

This is probably the topic with the most diverse reaction by all three programming lan-

guages. C starts off with the most liberal approach. Any type conversion or cast within

Integer values is not explicitly taking place, the bytes are simply copied over, whereas any

bits that are excess are cut off. The same happens in case of an integer overflow, the

number within the memory cell is simply calculated and then evaluated as the data type,

no matter if the result of the calculation fits within the type.

Ada already implements a set of rules for the conversion of types. These state that only

smaller types shall be converted into bigger types, even though the compiler allows both

directions. In the case of a bigger ranged type being converted into a smaller type, Ada can

already predict that that value may not be within the value range and express a warning

while continuing with the compilation. This is only possible if there’s an explicit value

written within the code that can be evaluated by the compiler. The same behavior was

also visible in the overflow example, where a warning was raised when the value 1 was to

be added to the variable but not if that value came from an external module. During both

typecasting and evaluation of mathematical expressions, the program terminates as soon

as a value outside the type of a variable has to be stored back into it, though this is only

the case with Ada’s signed integers. A Modular type would simply wrap around if the

value gets larger than its limits.

Rust combines aspects of both C and Ada, leaving the developer some freedom but still

being strict at the same time. The keyword as can be used for a completely unchecked

conversion of types, like C, whereas the Trait From is only implemented in the correct

“direction” of casting. Utilizing its Option-type, Rust also offers methods for various

versions of arithmetic expressions, depending on what the developer wants to do in case

the value exceeds the type limits. This gives the developer more freedom than for example

Ada to safely do certain operations but at the same time provides them with options to

handle any mistakes. For an unknowing developer, the only real downside of Rust in this

case is the different behavior depending on the compilation configuration. This could lead

to confusion and testing errors when running the same code in different modes like Debug

or Release.

61

5.3 Memory and Storage

Description

Memory management is an essential point of every programming language as it has a

direct impact on the abilities and determinability of said language. In this part, the

typical management of a standard construct within programming is being shown, namely

that of an array, a construct where multiple elements of the same type are saved within

a structure and can be indexed to access it. Depending on how it is stored inside the

memory, one approach for accessing something inside such an array could be counting the

bytes within the memory, starting from the initial element at position zero. If no checks

were to be performed, indexing anything further than the maximum length of the array

could then access other variables and instances sitting within the memory.

The problem that is to be looked at is whether a program can access anything outside of

the boundaries of a declared and defined array by simply trying to index one too far. This

can easily happen in everyday programming, especially within loops for example.

62

C

C probably has the most straightforward approach to using arrays. Its memory man-

agement is just like explained in the introduction, all elements are next to each other

in the memory. The pointer to the array itself is the address of the element at index

0, the position of the ones behind it are calculated by address of element at index n =

address of element at index 0 + n ∗ sizeof(element type). [ISO18, p. 58]

The following code example creates an array and then iterates over the values, exceeding

both the low and the high bounds:

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 int main()

5 {

6 int other_number = 8;

7

8 int array [5] = {1, 2, 3, 4, 5};

9

10 for (int i = -1; i < 6; i++)

11 {

12 printf("array at index %d:

%d\n", i, array[i]);

13 }

14

15 exit (0);

16 }

Listing 5.47: Accessing index outside of the

defined array

Program output:

$./ output

array at index -1: 8

array at index 0: 1

array at index 1: 2

array at index 2: 3

array at index 3: 4

array at index 4: 5

array at index 5: 32767

C does not check whether the accessed index is within the previously defined array. It

simply follows the rules for how to return the value at a certain index and runs with it.

This can be seen with the previously defined variable other number, which can be seen in

the memory right before the array at index −1. The value after the array changes every

time the program is run, it’s not directly used by this code snippet. This again follows C’s

philosophy of giving power to the developer who then has to deal with it. This is not only

the case for arrays, as pointers can simply be edited and played around with, this example

just highlights the freedoms and responsibilities of the developer pretty well.

63

Ada

Ada has, compared to a lot of other programming languages, a very unique approach to

arrays. It is not automatically initialized with a range of 0 to n but rather by a specified

index range which can be of any type or subtype, making this very similar to a dictionary

in other programming languages [Duf+12, Ch. 3.6.1]. This concept makes a check if the

index is valid inevitable in any case, as the type is not necessarily a numeric value that can

be used to calculate a memory address like in C. What happens in case an invalid access

is being attempted anyway can be seen in the following example:

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Main is

4 Number_Array: array (Integer range 1..5) of Integer := (1,2,3,4,5);

5 begin

6 for I in 1..6 loop

7 Put_Line("array at Index" & Integer ’Image(I) & ":" & Integer ’

Image(Number_Array(I)));

8 end loop;

9 end Main;

Listing 5.48: Accessing index outside of the defined range

Program output:

$./obj/main

array at Index 1: 1

array at Index 2: 2

array at Index 3: 3

array at Index 4: 4

array at Index 5: 5

raised CONSTRAINT_ERROR : main.adb:7 index check failed

The raised error confirms the suspicion that every access needs to be checked by stating

that the index check failed. This of course can have a negative effect on the runtime

performance. On the other hand, a big advantage of the concept of types and especially

subtypes being used for indexing arrays is that exactly those subtypes can then be used

for an iteration later on.

64

With this in mind, the previous example could be re-written like this:

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Main is

4 type Index_Range is range 1..5;

5 Number_Array: array (Index_Range) of Integer := (1,2,3,4,5);

6 begin

7 for I in Index_Range loop

8 Put_Line("array at Index" & Index_Range ’Image(I) & ":" & Integer

’Image(Number_Array(I)));

9 end loop;

10 end Main;

Listing 5.49: Using a subtype to define and then iterate over an array

Rust

The checks regarding arrays in Rust have to be done in two parts, checking the lower and

upper boundaries. The reason for this is the different approach of the compiler, which can

be observed in the following example:

1 fn main() {

2 let array: [i32; 5] = [1, 2, 3, 4, 5];

3

4 println!("array at index -1: {}", array [-1]);

5 }

Listing 5.50: Attempting to index an array at a negative position

Compilation output:

$ cargo build

Compiling array_boundaries v0.1.0 (/home/philipp/workspace/Rust/

Memory_Storage/array_boundaries)

error: negative integers cannot be used to index on a ‘[i32; 5]‘

--> src/main.rs :4:45

|

4 | println !(" array at index -1: {}", array [-1]);

| ^^ cannot use a negative

integer for indexing on ‘[i32; 5]‘

|

help: to access an element starting from the end of the ‘[i32; 5]‘,

compute the index

|

4 | println !(" array at index -1: {}", array[array.len() -1]);

| +++++++++++

error: could not compile ‘array_boundaries ‘ due to previous error

The attempt to access an element in an array with the index being < 0 is being shut down

fairly quickly by the compiler, as the index number must be of the type usize, which is

65

unsigned [The, Ch. 8.2.6]. If this is attempted to be calculated during runtime, which the

compiler cannot detect, a type error like in 5.2.2 Conversion and Type Limits would be

thrown. An upper boundary would be within the type limits of usize, which is why the

following program compiles without any errors, even though the execution does not run

without flaw:

1 fn main() {

2 let array: [i32; 5] = [1, 2, 3, 4, 5];

3 for i in 0..6 {

4 println!("array at index {}: {}", i, array[i]);

5 }

6 }

Listing 5.51: Attempting to exceed array boundaries

Program output:

$./ target/debug/array_boundaries

array at index 0: 1

array at index 1: 2

array at index 2: 3

array at index 3: 4

array at index 4: 5

thread ’main ’ panicked at ’index out of bounds: the len is 5 but the

index is 5’, src/main.rs:4:46

note: run with ‘RUST_BACKTRACE =1‘ environment variable to display a

backtrace

Trying to access a value outside of the array will lead to a panic of that thread, as expected

[The, Ch. 8.2.6]. There are also no predefined access methods using a checked method

like the various types offered for arithmetic operators. On the other hand, Rust offers,

apart from using a range from zero to the array length, a for . . . in loop to iterate

over the elements of the array. This, together with immutable maximum ranges and the

usage of constant values, offers various safe ways for an iteration. In case a specific index is

wanted, this simply has to be checked manually or caught with a function like catch unwind

[Rusa].

Another option could be using a vector object Vec<T>, a growable array type, which offers

access methods using Option types as a result, instead of panicking [Rusg].

Summary

Just like with the previous errors, C strictly follows what the programmer writes down.

Doing this, there is no warning in case an element in an array that was not even part

of it, is accessed. This could lead to a program accidentally corrupting other parts of a

program unless the array size is manually checked each time. Ada’s approach to arrays

was more similar to how other programming languages implement a map or dictionary.

66

An advantage of this is that these ranges can easily be used for an iteration, possibly

increasing the readability of bigger programs. Rust went with the same direction as C

in regards to indexing with numbers but with a lot more restrictions. The one kind of

possible out-of-bounds errors, which are any indexes lower than zero, is secured by the

type for indexing being unsigned, thus leading to either the compiler detecting it, or to a

type error at runtime. Any access that might exceed the index range by being larger will

make the thread panic during the execution of the program. This could be prevented by

a try-catch structure or by pre-empting this attempted access, either with a condition in

each iteration, or using the size of the array for indexing.

5.4 Arithmetic Errors

Description

Using mathematical functions in a program always entails some risk, as only finite numbers

are able to be stored within a program’s memory. Infinite values have to be rounded at

some point, possibly leading to inaccuracies. The error that will be highlighted in this

section will be an example of programs trying to use values outside a function’s domain.

In mathematics, a domain Df describes a set of values for which the current function

f : X → Y is defined. Two well-known examples include the square root (considering that

we do not work with imaginary numbers)

f : x →
√
x with Df = R+

0

and the common division.

f : x → 1

x
with Df = R ̸=0

To keep it as simple as possible and not have to use a math package for the square root,

we will focus on the division.

Regarding arithmetic errors, one distinction can be made when looking at how a mathe-

matical expression is being evaluated by the compiler.

Using binary numbers, an addition or subtraction can be realized by simple register op-

erations on the assembler-level [Kor02, pp. sqq.13]. Using them, it is also possible to

implement simple versions of multiplication and division of two numbers. The interesting

question is now if the programming language in question adds checks before an arithmetic

operation is attempted in case something illegal is being attempted. If not, the register

will attempt to continue with the operation which could lead to unexpected results.

If checks like these are added, the program should crash during runtime to prevent the

67

assembler program from attempting to calculate it. To simulate this, each program will run

from −5 to 5 in steps of 1 and print out the results. To make sure that the programming

languages have a certain continuity, this calculation will be performed with different data

types, namely floating-point and regular integer values.

C

The C program is pretty easy to understand. To ensure that the type float is being used

in the first example, the division is performed with 1.0f as the dividend:

1 #include <stdio.h>

2

3 void divide_by_zero_float ()

4 {

5

6 for (int i = -5; i <= 5; i++)

7 {

8 float divisor = (float)i;

9 float division_result = 1.0f / divisor;

10 printf("i as float: %4.1f, result: %5.2f \n", divisor ,

division_result);

11 }

12 }

Listing 5.52: Floating Point Division by zero in C

1 #include <stdio.h>

2

3 void divide_by_zero_integer ()

4 {

5

6 for (int i = -5; i <= 5; i++)

7 {

8 int divisor = i;

9 int division_result = 1 / divisor;

10 printf("i as int: %2d, result: %2d \n", divisor , division_result

);

11 }

12 }

Listing 5.53: Integer Division by zero in C

The division using floating point values returns the following results:

$./ output

i as float: -5.0, result: -0.20

i as float: -4.0, result: -0.25

i as float: -3.0, result: -0.33

i as float: -2.0, result: -0.50

i as float: -1.0, result: -1.00

i as float: 0.0, result: inf

68

i as float: 1.0, result: 1.00

i as float: 2.0, result: 0.50

i as float: 3.0, result: 0.33

i as float: 4.0, result: 0.25

i as float: 5.0, result: 0.20

As one can see, the division by zero returns infinity, a constant which can be found in

math.h [ISO18, p. 350]. This operation is following IEEE 754, the Standard for Floating-

Point Arithmetic, which defines the result of a division by zero as ∞ [Inf, p. 49].

Using integers for the division returns quite a different result:

$./ output

i as int: -5, result: 0

i as int: -4, result: 0

i as int: -3, result: 0

i as int: -2, result: 0

i as int: -1, result: -1

Floating point exception (core dumped)

This is expected and can be found in the C standard to be undefined behavior, resulting

in the termination of the program [ISO18, §6.5.6].

From a technical standpoint, this is a fairly easy error to prevent by simply checking for

the divisor being zero when using integers. But also when working with floating point

numbers and then casting them, a developer should not be lulled into a false sense of

security due to two major things. First off is the special case of 0/0 with a result being

Not a Number instead of infinity. Secondly, when trying to cast this or an infinite value

to an integer type, no warning is being raised while the value is still converted. For 1-

and 2-byte values, it is set to zero (e.g. 000000002), while 4- and 8-byte values display the

minimum value (1, followed by n− 1 zeroes).

In any case, this is very far away from a somehow close approximation for infinity for any of

those data types and will inevitably result in miscalculations and inaccurate results if the

normal calculations are just being continued. So even though the program will not crash

when using floating-point types to calculate division results, it should still be checked for

edge-cases like x/0 and also 0/0 as continuing with those results may corrupt the program

outcome.

69

Ada

The Ada implementation is very similar to C:

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Div_Float is

4 Dividend: Float := 1.0;

5 Divisor: Float;

6 Division_Result: Float;

7 begin

8

9 for I in -5 .. 5 loop

10 Divisor := Float(I);

11 Division_Result := Dividend / Divisor;

12 Put_Line ("1 / " & Float ’Image (Divisor) & " = " & Float ’Image (

Division_Result));

13 end loop;

14

15 end Div_Float;

Listing 5.54: Floating Point Division by zero in Ada

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Div_Int is

4 Dividend: Integer := 1;

5 Divisor: Integer;

6 Division_Result: Integer;

7 begin

8

9 for I in -5 .. 5 loop

10 Divisor := I;

11 Division_Result := Dividend / Divisor;

12 Put_Line ("1 / " & Integer ’Image (Divisor) & " = " & Integer ’

Image (Division_Result));

13 end loop;

14

15 end Div_Int;

Listing 5.55: Integer Division by zero in Ada

The result is the same as in C, where the floating point division returns infinity while the

integer division terminates due to a failed Division Check, as per 3.5.4 (20) and 11.5 (13/2)

in the Ada Reference Manual [Duf+12, pp. 47, 275].

70

Division using Float numbers:

$./obj/output

1 / -5.00000E+00 = -2.00000E-01

1 / -4.00000E+00 = -2.50000E-01

1 / -3.00000E+00 = -3.33333E-01

1 / -2.00000E+00 = -5.00000E-01

1 / -1.00000E+00 = -1.00000E+00

1 / 0.00000E+00 = +Inf *******

1 / 1.00000E+00 = 1.00000E+00

1 / 2.00000E+00 = 5.00000E-01

1 / 3.00000E+00 = 3.33333E-01

1 / 4.00000E+00 = 2.50000E-01

1 / 5.00000E+00 = 2.00000E-01

Division using Integer numbers:

$./obj/output

1 / -5 = 0

1 / -4 = 0

1 / -3 = 0

1 / -2 = 0

1 / -1 = -1

raised CONSTRAINT_ERROR : div_int.

adb :11 divide by zero

When trying to convert the floating point infinity to its respective value for the integer

type, the program will also fail, raising a Constraint Error, this time from a failed Overflow

Check [Duf+12, p. 275]. This is due to the value of infinity being bigger than 215 − 1,

the maximum value for Integer [Duf+12, p. 47]. Conversion errors like these were already

covered in 5.2.2 Conversion and Type Limits.

Just like in C, Ada will also have to check each division for the divisor being zero. Another

option could be adding an exception handler wherever such an operation takes place. A

function performing a safe division could also be implemented to avoid code repetition in

case the entire program has more than a handful of such operations.

71

Rust

The implementation in Rust looks very straightforward as well, the only small point that

might be confusing for the reader is the operator ..= in the loop declaration, which indi-

cates an inclusive range:

1 pub fn divide () {

2 for i in -5..=5 {

3 let divisor: f64 = i as f64;

4 let division_result: f64 = 1.0 / divisor;

5 println!("i as f64: {:5.2} , result: {:5.2}", divisor ,

division_result);

6 }

7 }

Listing 5.56: Floating Point Division by zero in Rust

1 pub fn divide () {

2 for i in -5..=5 {

3 let divisor: i16 = i;

4 let division_result: i16 = 1 / divisor;

5 println!("i as i16: {:2}, result: {:2}", divisor ,

division_result);

6 }

7 }

Listing 5.57: Integer Division by zero in Rust

Compiling this does not raise any warnings or errors, executing both programs is where a

difference can be spotted. The division using a float value returns the following output:

$./ target/debug/int_float_diff

i as f64: -5.00, result: -0.20

i as f64: -4.00, result: -0.25

i as f64: -3.00, result: -0.33

i as f64: -2.00, result: -0.50

i as f64: -1.00, result: -1.00

i as f64: 0.00, result: inf

i as f64: 1.00, result: 1.00

i as f64: 2.00, result: 0.50

i as f64: 3.00, result: 0.33

i as f64: 4.00, result: 0.25

i as f64: 5.00, result: 0.20

Just like C and Ada, Rust follows IEEE 754 regarding the division by zero and returns

infinity, an f64 constant [F64]. Converting this to an integer variable returns the maximum

value of the respective type, like 32767 for i16 [The, Ch. 8.2.4].

Let’s look at the same division but with i16 values instead of f64:

$./ target/debug/int_float_diff

i as i16: -5, result: 0

72

i as i16: -4, result: 0

i as i16: -3, result: 0

i as i16: -2, result: 0

i as i16: -1, result: -1

thread ’main ’ panicked at ’attempt to divide by zero ’, src/div_int.rs

:4:36

note: run with ‘RUST_BACKTRACE =1‘ environment variable to display a

backtrace

This time, the division fails as soon as the division by zero is attempted, just like in C

and Ada. To prevent a crash like that but also stay away from manually checking every

division for a divisor of zero, the trait num::CheckedDiv was implemented which returns

a None-value in that case [Che]. This is the one of the traits that were already mentioned

in the end of 5.2.2 Conversion and Type Limits when type overflows were covered.

The infinity value in Rust is, fortunately, very deterministic. When converting it to any

other type, it is set to the maximum value of said type, although one has to always be

aware of when the conversion takes place. If additional calculations like adding a value

x to our result are performed after the division, a developer might want his program to

follow the rules of ∞+ x = ∞. Using the f64 constant, this is implemented exactly as so

and will return correct results. As soon as the type cast to an integer value is completed

though, the now cast value will represent the maximum of that type, which is a regular

number. Trying to add a value x > 0 to it will result in an overflow like talked about in

5.2.2 Conversion and Type Limits.

Summary

What any developer calculating with numbers that might ever become zero has to watch

out for are conversion errors. One might think that dividing using integers or floats might

be the same if the result is cast accordingly afterwards. This could get problematic af-

ter looking at the non-deterministic behavior of the division-operator, depending on the

datatype (integer or floating-point). An example for that might be a Rust developer cal-

culating in float values, converting to integer afterwards. Having the division by zero in

mind, they secure the function with a Result value. In the edge-case of dividing by zero,

instead of an error that would have been caught and could have for example been skipped,

the method now returns the maximum value for the datatype that infinity was converted

to.

73

The following code snippet highlights the difference between the division using an f64 type

and then casting that to i16 and using the integer division directly:

1 pub fn divide () {

2 for i in -3..=3 {

3 let divisor_float: f64 = i as f64;

4 let division_result_float: f64 = 2.0 / divisor_float;

5 let division_result_casted = division_result_float as i16;

6 let i16_div_result = (2 as i16).checked_div(i).ok_or_else (|| "

Div by zero");

7 println!(

8 "Div: 2/{:2} , f64 result: {.2}, cast to i16: {:2}, i16

direct result: {:?}",

9 divisor_float , division_result_float , division_result_casted

, i16_div_result

10);

11 }

12 }

Listing 5.58: Comparison of f64- to i16-division

Program output:

$./ target/debug/int_float_diff

Div: 2/-3, f64 result: -0.67, cast to i16: 0, i16 direct result: Ok(0)

Div: 2/-2, f64 result: -1.00, cast to i16: -1, i16 direct result: Ok(-1)

Div: 2/-1, f64 result: -2.00, cast to i16: -2, i16 direct result: Ok(-2)

Div: 2/ 0, f64 result: inf , cast to i16: 32767 , i16 direct result: Err("

Div by zero")

Div: 2/ 1, f64 result: 2.00, cast to i16: 2, i16 direct result: Ok(2)

Div: 2/ 2, f64 result: 1.00, cast to i16: 1, i16 direct result: Ok(1)

Div: 2/ 3, f64 result: 0.67, cast to i16: 0, i16 direct result: Ok(0)

Continuing to calculate with 32767 could now result in an overflow error as covered in

5.2.2 Conversion and Type Limits.

To sum it up, Arithmetic Errors are not really possible to catch during the compilation

but have to be watched out for when the calculation is performed. Hereby, the three

languages offer different levels of support. While preventing the error in C would only

really work by checking whether the calculation could end up being invalid by verifying

that all values are within the function domain, Ada goes further and is able to catch the

specific Constraint Error if an operation during or after the calculation were to be invalid.

Rust is probably the most comfortable of all three languages to deal with. By being

deterministic with its constants, even continuing the calculation by converting infinity can

be a valid approach. In case an invalid operation, like the division by zero using Integer

types, is being attempted, it can be secured even further by features like ok or else.

74

5.5 Concurrency

Description

When working with programs on a processor with multiple cores and threads, using their

full capabilities is often up to the developer and cannot be done automatically. Apart from

the advantages of speeding up the program’s execution, concurrency can also bring a lot of

dangers to program reliability and expectability as schedulers and memory access calls are

not deterministic and may perform differently each time a program is executed. This also

includes common resources which have to be shared following some kind of ruleset to keep

up the program’s integrity. An example of that can be seen in the following example:

Thread 1 Thread 2

Read value = 2
Increase value
by one
Write back
value = 3

Read value = 3
Increase value
by one
Write back
value = 4

(a) Each thread increases the value by one,
in sequence

Thread 1 Thread 2

Read value = 2
Increase value
by one

Read value = 2

Write back
value = 3

Increase value
by one
Write back
value = 3

(b) Each thread increases the value by one,
concurrent

Figure 5.1: Concurrency example

The problem occurs as the value is not locked while one thread is using it. This can be

secured against by using mechanisms like semaphores and mutual exclusion which will

also be briefly presented, together with an example covering the question if the language

theoretically allows such a behavior.

The following problem will try to provoke a situation where a program does not perform

as expected due to an insecure resource. A bank account has a balance of 100e. There are

now three threads spawned that both want to buy something for 70e. They will do this

by first checking if the available balance is over those 70e after which the transaction will

be taking place. Afterwards, the balance will be reduced by the cost of whichever object

was bought and the thread finishes.

In case the variable which represents the account balance is not secured properly, all three

threads might check it and perform the transaction, even though only one of them should

be allowed to do so.

75

C

Implementing a simple prototype in C is pretty straightforward. The balance is defined as

a normal local variable in the main function and passed to the function used in the threads

when they are created using pthread create:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <pthread.h>

5

6 void *threadFunction(void *args)

7 {

8 int *balance = (int *)args;

9

10 int currentBalance = *balance;

11

12 if (currentBalance < 70)

13 {

14 printf("Insufficient balance: %d\n", currentBalance);

15 return NULL;

16 }

17

18 printf("Balance before starting transaction: %d\n", currentBalance);

19 sleep (5); // "transaction time"

20 *balance = currentBalance - 70;

21 printf("Transaction successful , balance after transaction: %d\n", *

balance);

22 }

23

24 int main()

25 {

26 int balance = 100;

27 int number_of_threads = 3;

28 pthread_t thread_id[number_of_threads];

29

30 printf("Initial balance: %d\n\n", balance);

31

32 for (int i = 0; i < number_of_threads; i++)

33 {

34 pthread_create (& thread_id[i], NULL , threadFunction , &balance);

35 sleep (1);

36 }

37

38 for (int i = 0; i < number_of_threads; i++)

39 {

40 pthread_join(thread_id[i], NULL);

41 }

42

43 printf("\nFinal balance: %d\n", balance);

44

45 exit (0);

46 }

Listing 5.59: Unsafe concurrency in C

76

For the compilation, -pthread has to be added to the usual gcc -main.c -o output to

be able to use said module. The execution then has the following output:

$./ output

Initial balance: 100

Balance before starting transaction: 100

Balance before starting transaction: 100

Balance before starting transaction: 100

Transaction successful , balance after transaction: 30

Transaction successful , balance after transaction: 30

Transaction successful , balance after transaction: 30

Final balance: 30

This is even more problematic than the bank balance simply going below zero. By saving

the current balance in its own variable which is then used to write back to the actual

balance, the three transactions seem to go through but the final balance is still 30, which

does not represent the actual value that would be deterministic (-110), similar to Figure

5.1. To prevent this, the variable should have been locked in some way to prevent access

to the balance while the current thread is working with it.

The accessing problem could be fixed by using a mutex, for example the one provided

by the UNIX pthread. By adding a global mutex variable that is locked when entering

and unlocked when leaving the function, the entire function body of editing the variable

would be secured, as only one thread at a time is able to access it [Pth]. The fixed

threadFunction could look like the following:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <pthread.h>

5

6 pthread_mutex_t account_mutex = PTHREAD_MUTEX_INITIALIZER;

7

8 void *threadFunction(void *args)

9 {

10 pthread_mutex_lock (& account_mutex);

11

12 int *balance = (int *)args;

13

14 int currentBalance = *balance;

15

16 if (currentBalance < 70)

17 {

18 printf("Insufficient balance: %d\n", currentBalance);

19 pthread_mutex_unlock (& account_mutex);

20 return NULL;

21 }

22

23 printf("Balance before starting transaction: %d\n", currentBalance);

24 sleep (5); // "transaction time"

25 *balance = currentBalance - 70;

77

26 printf("Transaction successful , balance after transaction: %d\n", *

balance);

27 pthread_mutex_unlock (& account_mutex);

28 }

Listing 5.60: Securing the program with a mutex

Program output:

1 $./ output

2 Initial balance: 100

3

4 Balance before starting transaction: 100

5 Transaction successful , balance after transaction: 30

6 Insufficient balance: 30

7 Insufficient balance: 30

8

9 Final balance: 30

This is the result that was originally intended, as the balance is only accessed and edited

by one thread at a time. The other two wait until its their turn after which the value is

already too low to pass the condition, thus not getting it below zero.

This does not prevent the developer from being able to make the mistake due to oversight

though. The mutex variable only helps with but does not fully solve the problem of an

incorrect value stored in currentBalance being used. The access to the variable, which

happens in line 14, must take place within the safe space that only one thread may enter

at a time. If that’s not the case, it will have the same result as seen in the prior example

(Listing 5.59).

78

Ada

Concurrency in Ada works by executing one or more task instances which then run inde-

pendently. In our case, the declaration body of Main includes the procedure Subtract 70

which is then executed within the task body (Listing 5.61, lines 23-26). Just like in C,

a delay, which is Ada’s equivalent to a sleep-function, represents the “transaction” that

needs to take place. The task is then declared and defined using task type and task

body. In the execution part of the Main procedure, the three threads are being declared

in their own declaration-block. This could have been done in the Main declaration as well

but then the final output message would not have waited for the threads to finish. By

wrapping them inside their own block (lines 30-34), this will be executed and waited for

to finish before continuing with the execution:

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Main is

4

5 Balance: Integer := 100;

6

7 procedure Subtract_70 is

8 CurrentBalance: Integer;

9 begin

10 CurrentBalance := Balance;

11 if CurrentBalance >= 70 then

12 Put_Line("Balance before transaction: " & Integer ’Image(

CurrentBalance));

13 delay 5.0;

14 Balance := CurrentBalance - 70;

15 Put_Line("Transaction successful , balance after transaction:

" & Integer ’Image(Balance));

16 else

17 Put_Line("Insufficient balance: " & Integer ’Image(

CurrentBalance));

18 end if;

19 end Subtract_70;

20

21 task type Transaction;

22

23 task body Transaction is

24 begin

25 Subtract_70;

26 end Transaction;

27

28 begin

29

30 declare

31 T1 , T2 , T3: Transaction;

32 begin

33 null;

34 end;

35

36 Put_Line("Final balance: " & Integer ’Image(Balance));

79

37

38 end Main;

Listing 5.61: Unsafe concurrency in Ada

The output ends up being essentially the same as in C:

$./obj/output

Balance before transaction: 100

Balance before transaction: 100

Balance before transaction: 100

Transaction successful , balance after transaction: 30

Transaction successful , balance after transaction: 30

Transaction successful , balance after transaction: 30

Final balance: 30

This means that Ada also is not actively forcing its developer to protect its variable from

concurrent and simultaneous access. There are mechanics in place, like protected units

which can coordinate access to shared data [Duf+12, p. 215] but they are not enforced.

An example for this could be a protected type Mutex which is added to the main unit.

By using a condition, the entry barrier, anything that does not fulfill the condition is

forced to wait for it [Duf+12, Ch. 9.5.2]. As soon as the barrier is lifted by unlocking this

variable, the next task in the queue is able to take it, effectively implementing a Mutex

variable just like C:

1 with Ada.Text_IO; use Ada.Text_IO;

2

3 procedure Main is

4

5 protected type Mutex is

6 entry Lock;

7 procedure Unlock;

8 private

9 Locked : Boolean := False;

10 end Mutex;

11

12 protected body Mutex is

13 entry Lock when not Locked is

14 begin

15 Locked := True;

16 end Lock;

17 procedure Unlock is

18 begin

19 Locked := False;

20 end Unlock;

21 end Mutex;

22

23 Balance: Integer := 100;

24 Mut: Mutex;

25

26 procedure Subtract_70 is

27 CurrentBalance: Integer;

80

28 begin

29 Mut.Lock;

30 CurrentBalance := Balance;

31 if CurrentBalance >= 70 then

32 Put_Line("Balance before transaction: " & Integer ’Image(

CurrentBalance));

33 delay 5.0;

34 Balance := CurrentBalance - 70;

35 Put_Line("Transaction successful , balance after transaction:

" & Integer ’Image(Balance));

36 else

37 Put_Line("Insufficient balance: " & Integer ’Image(

CurrentBalance));

38 end if;

39 Mut.Unlock;

40 end Subtract_70;

41

42 task type Transaction;

43

44 task body Transaction is

45 begin

46 Subtract_70;

47 end Transaction;

48

49 begin

50

51 declare

52 T1 , T2 , T3: Transaction;

53 begin

54 null;

55 end;

56

57 Put_Line("Final balance: " & Integer ’Image(Balance));

58

59 end Main;

Listing 5.62: Concurrency in Ada using a protected type

Program output:

$./obj/output

Balance before transaction: 100

Transaction successful , balance after transaction: 30

Insufficient balance: 30

Insufficient balance: 30

Final balance: 30

Just like C, the place where the locking process takes place, is important. If CurrentBalance

was to be initialized with Balance before the variable is locked, it would again have the

same output as in Listing 5.61.

81

Rust

Looking at this question in Rust could get problematic, simply because of the way that

memory is managed, as it was introduced in chapter 4.3. It is going to be attempted

anyway, using the thread::spawn function:

1 use std:: thread;

2 use std::time:: Duration;

3

4 fn main() {

5

6 let mut balance: i32 = 100;

7

8 let handle = thread :: spawn (|| {

9 let current_balance: i32 = balance;

10 if current_balance > 70 {

11 thread :: sleep(Duration :: from_secs_f32 (5.0));

12 balance = current_balance - 70;

13 }

14 });

15

16 handle.join().unwrap ();

17 }

Listing 5.63: Concurrency attempt in Rust

Compilation Output:

$ cargo build

Compiling balance v0.1.0 (/home/philipp/workspace/Rust/Multithreading

/balance)

error[E0373]: closure may outlive the current function , but it borrows ‘

balance ‘, which is owned by the current function

--> src/main.rs :8:32

|

8 | let handle = thread ::spawn (|| {

| ^^ may outlive borrowed value ‘

balance ‘

...

12 | balance -= 70;

| ------- ‘balance ‘ is borrowed here

|

note: function requires argument type to outlive ‘’static ‘

--> src/main.rs :8:18

|

8 | let handle = thread ::spawn (|| {

| __________________^

9 | | let current_balance: i32 = balance;

10 | | if current_balance > 70 {

11 | | thread :: sleep(Duration :: from_secs_f32 (5.0));

12 | | balance -= 70;

13 | | }

14 | | });

| |______^

82

help: to force the closure to take ownership of ‘balance ‘ (and any other

referenced variables), use the ‘move ‘ keyword

|

8 | let handle = thread ::spawn(move || {

| ++++

For more information about this error , try ‘rustc --explain E0373 ‘.

error: could not compile ‘balance ‘ due to previous error

Already when trying to spawn a single thread, the compilation fails. The reason that is

given is that the value is simply borrowed, there is nothing preventing the main thread

from manipulating or even dropping the value, thus possibly corrupting the execution of

the thread. A solution attempt is also provided, suggesting to move the value inside of the

function. This works and compiles totally fine, also with multiple threads:

1 use std:: thread;

2 use std::time:: Duration;

3

4 fn main() {

5 let mut handles: Vec <std:: thread :: JoinHandle <() >> = Vec::new();

6

7 let num_of_threads = 3;

8

9 let mut balance: i32 = 100;

10

11 for _ in 0.. num_of_threads {

12 let h = thread :: spawn(move || {

13 let current_balance: i32 = balance;

14 if current_balance > 70 {

15 println!("Balance before transaction: {}",

current_balance);

16 thread :: sleep(Duration :: from_secs_f32 (5.0));

17 balance = current_balance - 70;

18 println!("Transaction successful , balance after

transaction: {}", balance);

19 } else {

20 println!("Insufficient balance: {}", current_balance)

21 }

22 });

23 handles.push(h);

24 }

25

26 for handle in handles {

27 handle.join().unwrap ();

28 }

29

30 println!("Final balance: {}", balance);

31 }

Listing 5.64: Rust concurrency when moving a variable inside a thread

The only issue is that in line 17, it’s not the actual variable balance that is being edited,

but only the moved copy with its ownership now belonging to that thread. This is why

83

the “fixed” program produces the following output:

$./ target/debug/balance

Balance before transaction: 100

Balance before transaction: 100

Balance before transaction: 100

Transaction successful , balance after transaction: 30

Transaction successful , balance after transaction: 30

Transaction successful , balance after transaction: 30

Final balance: 100

To fix this example using mutual exclusion, the standard way provided by Rust makes

use of the structs Mutex and Arc, both included in std::sync. Hereby, the memory

management is handled by an object of type Arc which is passed into the thread instead

of a direct reference to the shared object, while the excluding access to the variable is

handled by a Mutex object: [Ruse; Rusf]

1 use std::sync ::{Arc , Mutex};

2 use std:: thread;

3 use std::time:: Duration;

4

5 fn main() {

6 let mut handles: Vec <std:: thread :: JoinHandle <() >> = Vec::new();

7

8 let num_of_threads = 3;

9

10 let outside_balance = 100;

11

12 let lock = Mutex::new(outside_balance);

13

14 let arc = Arc::new(lock);

15

16 for _ in 0.. num_of_threads {

17 let cloned_arc = Arc:: clone(&arc);

18

19 let h = thread :: spawn(move || {

20 let mut balance = cloned_arc.lock().unwrap ();

21 let current_balance:i32 = *balance;

22

23 if current_balance > 70 {

24 println!("Balance before transaction: {}",

current_balance);

25 thread :: sleep(Duration :: from_secs_f32 (5.0));

26 *balance = current_balance - 70;

27 println!("Balance after transaction: {}", balance);

28 } else {

29 println!("Insufficient balance: {}", current_balance)

30 }

31 });

32 handles.push(h);

33 }

34

35 for handle in handles {

36 handle.join().unwrap ();

37 }

84

38

39 println!("Final balance: {}", *arc.lock().unwrap ());

40 }

Listing 5.65: Rust concurrency with Mutex and Arc

As it is forbidden to use the same Arc object in each thread (see Listing 5.63), it is cloned

in each iteration and used by the spawned thread. The original as well as the cloned Arc

objects all point to one memory location, thus allowing to edit the same variable instead

of a copied value like in the previous example (Listing 5.64). The excluding capabilities

of the Mutex object can then be used by using lock(), while the containing value can

be accessed by an additional unwrap() operation. This locks the access until the variable

that it was assigned to either goes out of scope or is manually unlocked.

Using this, the program output is as followed:

./ target/debug/balance_mut

Balance before transaction: 100

Transaction successful , balance after transaction: 30

Insufficient balance: 30

Insufficient balance: 30

Final balance: 30

Looking back at the final remarks of C and Ada, it is notable that the mistake of reading

the value of balance before applying the lock is not possible in Rust, as the Mutex is

directly applied and tied to the variable. It is not completely impossible though, as the

lock could manually be opened after assigning the variable current balance, which does

go against the logic of a mutual exclusion though.

Summary

Concurrency is always big risk for program integrity, especially because of consequences

and possible unwanted behavior regarding locks and race conditions. While the latter is

only really enforced in Rust, using its very strict memory management system, all three

languages offer good ways of working with multiple threads and shared resources, even

though some are a bit more tedious than others. In C and Rust for example, a mutual

exclusion can quite easily be realized using predefined structures and methods, namely

pthread and Mutex / Arc, whereas in Ada, a whole protected type has to be created by

the developer themselves.

85

6 Summary

The past chapter talked about how C, Ada, and Rust deal with different kinds of program-

ming errors. This section will now serve as a small summary of arguments for and against

each of the three languages, ended by a final estimation as to how and why this language

could be helpful for companies regarding safety-critical projects.

The following table summarizes the errors that were dealt with:

Topic C Ada Rust

Outside of Scope ∼ ✓ ✓
Ambiguity ✓ ✓ ✓
Assigning wrong type ✗ ✓ ✓
Type conversion ✗ ∼ ∼
Array boundaries ✗ ∼ ∼
Arithmetic ∼ ∼ ∼
Race conditions ∼ ∼ ✓

Table 6.1: Summary of potential error sources and the programming languages’ reactions
to them

Legend:

✓: This error does not cause any unintended behavior during runtime.

∼ : The programming language provides special procedures or rules to safely implement

this feature, but does not enforce them (this does not include simple if-clauses). This

symbol is also used in case an error is thrown as that can easily be caught.

✗: This error can be provoked quite easily and will lead to unexpected behavior by the

program.

There are, of course, certain official standards and rulesets that have to be applied to any

project, depending on the industry. This is also going to be briefly talked about in each

section, how much restriction each language would need to be applicable for a safety-critical

project.

86

6.1 C

One of the biggest advantages of C in general is the freedom that a software developer

gets when writing a program. As long as there’s a very experienced and knowledgeable

person sitting in front of the code editor, it can be a very powerful tool with the ability to

do more than other programming languages, simply due to the close connection with the

machine. This at the same time is also C’s biggest disadvantage, as this can very quickly

lead to unintended behavior when dealing with topics like pointers. This is reflected in

the summary (Figure 6.1), where C is only really able to catch an attempt at provoking

ambiguity. The first ∼-mark in this case mean that for the scope, the compilation has to

be studied and used correctly. The second one, regarding arithmetic errors, could also be a

checkmark. Due to the inconsistency when converting certain constant values like Infinity,

the entire topic is marked only semi-good though.

Looking at the rest of the results, the philosophy of freedom for the developer has been

reflected very well in the past chapter. A good example for this is the conversion of

values, which trusted the developer to know what they’re doing, interpreting the value as

it is written in the memory cell. It’s simply doing what it’s told to do, without checking

whether that would corrupt the program.

In case C is supposed to be used in a corporate environment, a lot of precautions in the

form of standards or processes have to be taken. An example here could be MISRA C, the

“de facto standard for developing software in C where safety, security and code quality are

important”, according to their website. [Mis] In general, this can be a good idea, getting

the entire power of the C language while still being suitable for safety-critical systems.

Another advantage can be the reputation of such frameworks being very high due to a

long history in the industry, giving the product a certain code quality level off the bat in

case it’s used. On the other hand, working with a tight framework inevitably means the

restriction of the programmer. The learning hurdle of getting used to the strict framework

which new employees would need to climb is of course never as big as learning a language

completely new but also means that an experienced C developer may not be able to start

to their fullest extent right away.

For this thesis, C was only chosen as a comparison for how a language that is not focused

on safety-critical applications reacts to certain errors. The main focus lies on Ada and

whether Rust could be a valid alternative in a corporate environment. This is why C is

not going to be considered any further when talking about applicability for companies.

87

6.2 Ada

Looking back at the previous chapter, Ada performed very well and caught nearly every

error either at compile time or terminated during runtime. Even though it’s usually better

to get notified of these before a project is ran, throwing errors also offers a way of dealing

with them by catching them and acting depending on the situation. This was visible when

the Type errors and Array boundaries were talked about, as the program immediately

terminated as soon as something illegal was attempted. In both cases, just like C, Ada

trusted the developer to know what they’re doing. The only difference is that when the

value would not fit into the type constraints, if array index or value range of a type, the

program terminated with an error instead of running with corrupted values.

Developing in Ada has the big advantage of the giant reputation of usage in countless

critical systems. It’s of course not perfect, as the comparison in this thesis and examples

like the Ariane 5 crash in 1996 showed [JM97] but the additional effort around the basic

language when writing safe software is a lot less compared to C. Apart from the basic

compiler that already checks a lot of potential error sources, certain tools like the GCC

Ada Compiler can even be expanded using flags and Pragmas to improve the development

even more, like the -gnatwa flag that activates more warnings [Gnab, Ch. 4.3.3]. Due to

the already strict compiler and the general design of Ada, any standards or guidelines do

not affect and restrict the every-day development as much as one would in C.

Probably the biggest disadvantage of Ada is the scarcity of developers on the job market.

Due to the very niche application area, there is no real ambition for universities to teach

it, simply because other languages are far more relevant for the students both as a basic

education and on the job market later on. Apart from the aerospace and military industry

and other critical application areas like traffic control systems or power plants, there are

not many areas where Ada is relevant [Fel14]. Especially in private projects, factors like

widespread usage, ease-of-use, and speed are more important than long-term security and

safety. This leads to a snowball effect where companies that do not necessarily need to

use it will use a more popular language, not really helping to develop a demand for Ada

developers.

6.3 Rust

The language with the best responses to the possible errors that were looked at in the

previous chapter was Rust. The only factor where both Ada and Rust have the same

reaction was the indexing of arrays. The other error sources where the compiler did not

interfere with a piece of code were type conversion and arithmetic errors, even though these

were more deterministic, like the infinity constant. Furthermore, Rust offers methods and

88

functions for a safe implementation which can extend the general error handling that Ada

has even more, using Option and Result types.

The latter is also, together with memory safety, probably the biggest advantage of Rust.

The provided ways of easily dealing with possible panics of a program make it easy for

a new developer to get into safe code. In the beginning, it might be a bit overwhelming,

since there are a lot of basic things that have to be paid attention to, but once the first

steep ascent of the learning curve is left behind, it’s fairly simple to get better and better.

This is only encouraged by the infrastructure that Rust provides, some examples include

the two books The Rust Programming Language and Rust by Example, or the usually very

extensive output in case the compilation fails. Using the command rustc --explain,

every error can be explained by showing an example in the command shell. The outputs

are always very verbose, making it easier for the developer to find where and why the

compilation failed. Additionally, the online community surrounding Rust has only steadily

been growing over the past years, which is reflected in both the state of the libraries written

for Rust [Stac], as well as in the annual Stack Overflow developer surveys, which voted

Rust as the most loved language for its 6th year in a row in 2021 [Staa].

The biggest argument against using Rust in an industrial environment is probably the fact

that it does not have anything comparable to a standardization. Due to the language being

open-source and only reviewed instead of completely updated by a central instance, any

company that has to adhere to certain guidelines would rather stick to other programming

languages that have an official standardization, taking their guarantee that the language

performs in a certain way. Taking it on themselves to prove that Rust does what it’s

supposed to do or risk consequences in case any problems arise can be a big obstacle in

the way of anybody who has to deliver code according to some guideline.

Due to the promising future of Rust, there are of course other entities in the form of

independent agencies or companies like Ferrous Systems GmbH that realized the potential

of Rust and aim to offer toolchains that adhere to important industrial standards, as early

as the end of 2022. [Mun19; Fer] In February of 2022, this company even announced

a partnership together with AdaCore to support the development as both realized the

common business and technical background and knowledge [OG22].

89

7 Conclusion

The central question that started the study of the errors within all three programming

languages was whether Rust can be a good alternative to Ada in safety-critical projects.

From a technical standpoint, Rust definitely matches Ada, if not exceeds it in certain

areas. A big plus here was the extended capabilities when dealing with errors, as well as

the memory safety. In terms of the programming environment, Rust also has an advantage,

as the community interest is a lot higher compared to Ada.

The biggest arguments in favor of Ada are both its good reputation due to the long history

of the language as well as the full certifications and background with the United States

Department of Defense. This makes it easy to decide in favor of continuing to use it when

it has worked well in recent years. Switching to another programming language involves

laborious certification processes and supporting tasks such as selecting tools for static

code analysis or continuous integration. Therefore, it may be easier to take the safe route

with an established, proven language than to change the entire development process and

environment.

If a company does not have to adhere to certain standards, Rust can be a good choice

for new projects. Apart from the fact that there is a larger selection of developers to hire

from, it can also be helpful for the company’s good image, presenting itself as modern and

up-to-date. But also for corporations who do rely on these certifications, it can be worth

looking into Rust and doing some basic research for it in case a standardization is reached

at some point in the future.

90

Listings

4.1 Collatz-Conjecture in C . 15

4.2 Collatz-Conjecture in Ada . 19

4.3 Square Function . 20

4.4 Square Procedure . 20

4.5 Correct code . 21

4.6 Stray semicolon in line 1, does not compile 21

4.7 Code with equality . 22

4.8 Code with assignment in if -condition, does not compile 22

4.9 Collatz-Conjecture in Rust . 24

4.10 Code with an unused mutability . 25

4.11 Invalid ownership . 26

4.12 Valid ownership . 27

4.13 Valid mutable reference . 27

4.14 Invalid mutable reference . 28

5.1 Variable access outside of the scope - main.c 32

5.2 Variable access outside of the scope - baz.c 32

5.3 main.c using a header file for baz.c . 32

5.4 baz.h . 32

5.5 baz.c with header . 32

5.6 Visibility in Ada, main.adb . 34

5.7 Visibility in Ada, baz.ads . 34

5.8 Visibility in Ada, baz.adb . 34

5.9 Access outside of scope, main.rs . 35

5.10 Access outside of scope, baz.rs . 35

5.11 Ambiguity - main.c . 36

5.12 foo.h . 36

5.13 foo.c . 36

5.14 bar.h . 36

5.15 Ambiguity - bar.c . 36

5.16 main.c with an ambiguous function name 37

5.17 Content of file baz.adb . 38

91

5.18 Project file for Structure Ambiguity . 38

5.19 Ambiguity in Ada, main.adb . 39

5.20 Ambiguity in Ada, foobar.ads . 39

5.21 Ambiguity in Ada, foobar.adb . 39

5.22 Call using mod, main.rs . 41

5.23 Call using mod, foo.rs . 41

5.24 Call using pub mod, main.rs . 41

5.25 Call using pub mod, foo.rs . 41

5.26 Using namespace foo::baz . 41

5.27 Trying to import a namespace with the same name twice 42

5.28 Ambiguity attempt in Rust . 43

5.29 Correctly assigning a number to an int variable 46

5.30 Attempting to assign a character . 46

5.31 Correctly assigning a number to an Integer variable 46

5.32 Attempting to assign a character . 46

5.33 Correctly assigning a number to an i16 variable 48

5.34 Attempting to assign a character . 48

5.35 Typecast that stays within range . 52

5.36 Typecast that exceeds the type range . 52

5.37 Causing an Integer overflow in C . 53

5.38 Typecasting in Ada from a smaller to a larger type 55

5.39 Typecasting in Ada from a larger to a smaller type 56

5.40 Directly adding a number . 57

5.41 Adding the result of a function . 57

5.42 Rust Typecast using from . 58

5.43 Rust Typecast using asr . 58

5.44 Typecasting a larger into a smaller type using from 58

5.45 Triggering an Integer overflow in Rust . 60

5.46 Triggering an Integer overflow using wrapping add 60

5.47 Accessing index outside of the defined array 63

5.48 Accessing index outside of the defined range 64

5.49 Using a subtype to define and then iterate over an array 65

5.50 Attempting to index an array at a negative position 65

5.51 Attempting to exceed array boundaries . 66

5.52 Floating Point Division by zero in C . 68

5.53 Integer Division by zero in C . 68

5.54 Floating Point Division by zero in Ada . 70

5.55 Integer Division by zero in Ada . 70

5.56 Floating Point Division by zero in Rust . 72

5.57 Integer Division by zero in Rust . 72

92

5.58 Comparison of f64- to i16-division . 74

5.59 Unsafe concurrency in C . 76

5.60 Securing the program with a mutex . 77

5.61 Unsafe concurrency in Ada . 79

5.62 Concurrency in Ada using a protected type 80

5.63 Concurrency attempt in Rust . 82

5.64 Rust concurrency when moving a variable inside a thread 83

5.65 Rust concurrency with Mutex and Arc . 84

List of Figures

5.1 Concurrency example . 75

93

Acronyms

ANSI American National Standards Institute

ARG Ada Rapporteur Group

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DoD United States Department of Defense

EASA European Aviation Safety Agency

IDE Integrated Development Environment

ISO International Organization for Standardization

NVD National Vulnerability Database

94

Bibliography

ISO Standards

[ISO01] ISO/IEC. ISO/IEC 8652:1995/COR 1:2001 Information technology — Pro-

gramming languages — Ada — Technical Corrigendum 1. Tech. rep. Interna-

tional Organization for Standardization, June 2001.

[ISO03] ISO/IEC. ISO/IEC 8859-7 Information technology — 8-bit single-byte coded

graphic character sets. Tech. rep. International Organization for Standardiza-

tion, Oct. 2003.

[ISO11] ISO/IEC. ISO/IEC 9899:2011: Information technology - Programming lan-

guages - C. 2011. url: https://www.iso.org/standard/57853.html (visited

on 12/09/2021).

[ISO12] ISO/IEC. ISO/IEC 8652:2012 Information technology — Programming lan-

guages — Ada. Tech. rep. International Organization for Standardization, Dec.

2012.

[ISO18] ISO/IEC. ISO/IEC 9899:2018(E) Programming languages - C. Tech. rep. In-

ternational Organization for Standardization, July 2018.

[ISO67] ISO/IEC. ISO 8652:1987 Programming languages - Ada. Tech. rep. Interna-

tional Organization for Standardization, June 1967.

[ISO99] ISO/IEC. ISO/IEC 9899:1999: Programming languages - C. 1999. url: https:

//www.iso.org/standard/29237.html (visited on 12/08/2021).

Other Standards

[Eas] Easy Access Rules for Acceptable Means of Compliance for Airworthiness of

Products, Parts and Appliances (AMC-20). Mar. 2021. url: https://www.

easa.europa.eu/document-library/easy-access-rules/online-publications/

easy-access-rules-acceptable-means (visited on 01/24/2022).

[Inf] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Re-

vision of IEEE 754-2008) (2019). doi: 10.1109/IEEESTD.2019.8766229.

95

https://www.iso.org/standard/57853.html
https://www.iso.org/standard/29237.html
https://www.iso.org/standard/29237.html
https://www.easa.europa.eu/document-library/easy-access-rules/online-publications/easy-access-rules-acceptable-means
https://www.easa.europa.eu/document-library/easy-access-rules/online-publications/easy-access-rules-acceptable-means
https://www.easa.europa.eu/document-library/easy-access-rules/online-publications/easy-access-rules-acceptable-means
https://doi.org/10.1109/IEEESTD.2019.8766229

Articles

[Adaa] AdaCore Case Study - BAE Systems Eurofighter Typhoon. Oct. 2011. url:

https://www.adacore.com/uploads/customers/CaseStudy_Eurofighter.

pdf (visited on 11/12/2021).

[Adab] “ARTiSAN - Software Development on Meteor missile program”. In: Ada User

Journal 26.3 (Sept. 2005), 158–159. issn: 1381-6551.

[DC92] Information Management and Technology Division and Ralph V. Carlone. Pa-

triot Missile Defense: Software Problem Led to System Failure at Dhahran,

Saudi Arabia. United States General Accounting Office, Feb. 1992. url: https:

//www.gao.gov/assets/imtec-92-26.pdf (visited on 11/10/2021).

[Fel14] Michael B Feldman. Who’s using Ada? Real-World Projects Powered by the

Ada Programming Language. Nov. 2014. url: https://www2.seas.gwu.edu/

~mfeldman/ada-project-summary.html (visited on 12/21/2021).

[Fer] Ferrocene. url: https://ferrous- systems.com/ferrocene/ (visited on

02/01/2022).

[JM97] J.-M. Jazequel and B. Meyer. “Design by contract: the lessons of Ariane”. In:

Computer 30.1 (1997), pp. 129–130. doi: 10.1109/2.562936.

[Kam21] Kathy Kam. Facebook Joins the Rust Foundation. Apr. 2021. url: https:

//developers.facebook.com/blog/post/2021/04/29/facebook-joins-

rust-foundation/ (visited on 01/09/2022).

[Mis] MISRA. url: https://www.misra.org.uk (visited on 01/24/2022).

[Mun19] James Munns. Ferrocene: Part 1 - The Pitch. June 2019. url: https : / /

ferrous-systems.com/blog/sealed-rust-the-pitch/ (visited on 02/01/2022).

[OG22] Quentin Ochem and Florian Gilcher. AdaCore and Ferrous Systems Joining

Forces to Support Rust. Feb. 2022. url: https : / / blog . adacore . com /

adacore-and-ferrous-systems-joining-forces-to-support-rust (vis-

ited on 02/03/2022).

[Rit93] Dennis M. Ritchie. “The Development of the C Language”. In: SIGPLAN Not.

28.3 (Mar. 1993), 201–208. issn: 0362-1340. doi: 10.1145/155360.155580.

[Staa] Stack Overflow Developer Survey 2021. Aug. 2021. url: https://insights.

stackoverflow.com/survey/2021 (visited on 12/23/2021).

[Stab] Stack Overflow Developer Surveys. url: https://insights.stackoverflow.

com/survey (visited on 12/23/2021).

[Stac] State of the rust/cargo crates ecosystem. url: https://lib.rs/ (visited on

01/15/2022).

96

https://www.adacore.com/uploads/customers/CaseStudy_Eurofighter.pdf
https://www.adacore.com/uploads/customers/CaseStudy_Eurofighter.pdf
https://www.gao.gov/assets/imtec-92-26.pdf
https://www.gao.gov/assets/imtec-92-26.pdf
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
https://ferrous-systems.com/ferrocene/
https://doi.org/10.1109/2.562936
https://developers.facebook.com/blog/post/2021/04/29/facebook-joins-rust-foundation/
https://developers.facebook.com/blog/post/2021/04/29/facebook-joins-rust-foundation/
https://developers.facebook.com/blog/post/2021/04/29/facebook-joins-rust-foundation/
https://www.misra.org.uk
https://ferrous-systems.com/blog/sealed-rust-the-pitch/
https://ferrous-systems.com/blog/sealed-rust-the-pitch/
https://blog.adacore.com/adacore-and-ferrous-systems-joining-forces-to-support-rust
https://blog.adacore.com/adacore-and-ferrous-systems-joining-forces-to-support-rust
https://doi.org/10.1145/155360.155580
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey
https://insights.stackoverflow.com/survey
https://lib.rs/

[Tea20] The Rust Core Team. Laying the foundation for Rust’s future. Aug. 2020. url:

https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-

rusts-future.html (visited on 01/09/2022).

[Wil21] Ashley Williams. Hello World! Feb. 2021. url: https://foundation.rust-

lang.org/posts/2021-02-08-hello-world/ (visited on 01/09/2022).

Official References

[ANS83] ANSI. ANSI/MIL-STD-1815A-1983, MILITARY STANDARD - Ada Program-

ming Language. Tech. rep. American National Standards Institute, Inc, Jan.

1983.

[Bar14] John Barnes. Programming in ADA 2012. 6th printing 2017. Cambridge Uni-

versity Press, 2014. isbn: 978-1-107-42481-4.

[Duf+12] Robert A. Duff et al. Ada 2012 Reference Manual. Language and Standard

Libraries, International Standard ISO/IEC 8652/2012 (E). Springer, 2012.

[Gnaa] GNAT Reference Manual. url: https : / / docs . adacore . com / gnat _ rm -

docs/html/gnat_rm/gnat_rm.html (visited on 01/26/2022).

[Gnab] GNAT User’s Guide for Native Platforms. url: https://gcc.gnu.org/

onlinedocs/gnat_ugn/index.html (visited on 01/26/2022).

[Gnac] GNATcheck. url: https://www.adacore.com/gnatpro/toolsuite/gnatcheck

(visited on 01/26/2022).

[Gnad] GNATcoverage. url: https://www.adacore.com/gnatcoverage (visited on

01/26/2022).

[Gpr] GPRbuild and GPR Companion Tools User’s Guide. url: https://docs.

adacore.com/gprbuild-docs/html/gprbuild_ug.html (visited on 01/26/2022).

[KN18] Steve Klabnik and Carol Nichols. The Rust Programming Language. USA: No

Starch Press, 2018. isbn: 978-1-59327-828-1.

[Rusc] Rust by Example. url: https://doc.rust-lang.org/rust-by-example/

index.html (visited on 02/04/2022).

[Rush] The Edition Guide. url: https://doc.rust-lang.org/edition-guide/

(visited on 01/10/2022).

[Rusi] The Rust RFC Book. url: https://rust-lang.github.io/rfcs/ (visited on

01/23/2022).

[Sta03] Richard M. Stallman. Using the GNU Compiler Collection. Oct. 2003. url:

https : / / gcc . gnu . org / onlinedocs / gcc - 9 . 2 . 0 / gcc . pdf (visited on

01/18/2022).

97

https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
https://blog.rust-lang.org/2020/08/18/laying-the-foundation-for-rusts-future.html
https://foundation.rust-lang.org/posts/2021-02-08-hello-world/
https://foundation.rust-lang.org/posts/2021-02-08-hello-world/
https://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm.html
https://docs.adacore.com/gnat_rm-docs/html/gnat_rm/gnat_rm.html
https://gcc.gnu.org/onlinedocs/gnat_ugn/index.html
https://gcc.gnu.org/onlinedocs/gnat_ugn/index.html
https://www.adacore.com/gnatpro/toolsuite/gnatcheck
https://www.adacore.com/gnatcoverage
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html
https://doc.rust-lang.org/rust-by-example/index.html
https://doc.rust-lang.org/rust-by-example/index.html
https://doc.rust-lang.org/edition-guide/
https://rust-lang.github.io/rfcs/
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc.pdf

[SW] Richard M. Stallman and Zachary Weinberg. The C Preprocessor. url: https:

//gcc.gnu.org/onlinedocs/cpp.pdf (visited on 01/15/2022).

[The] The Rust Reference. url: https://doc.rust-lang.org/1.57.0/reference/

introduction.html (visited on 02/04/2022).

Online References

[Che] Trait num::CheckedDiv. url: https://docs.rs/num/0.4.0/num/trait.

CheckedDiv.html (visited on 02/03/2022).

[Coe] Rfcs/0401-coercions.md at master · Rust-Lang/rfcs. url: https://github.

com/rust-lang/rfcs/blob/master/text/0401-coercions.md (visited on

02/02/2022).

[F64] Primitive Type f64 1.0.0. url: https://doc.rust-lang.org/std/primitive.

f64.html#associatedconstant.INFINITY (visited on 02/03/2022).

[Pth] UNIX Specification - pthread mutex lock. 1997. url: https://pubs.opengroup.

org / onlinepubs / 7908799 / xsh / pthread _ mutex _ lock . html (visited on

01/27/2022).

[Rusa] catch unwind in std::panic. url: https://doc.rust-lang.org/std/panic/

fn.catch_unwind.html (visited on 01/06/2022).

[Rusb] Frequently Asked Questions. url: https://prev.rust-lang.org/en-US/

faq.html (visited on 11/10/2021).

[Rusd] Rust Releases. url: https://github.com/rust-lang/rust/blob/master/

RELEASES.md (visited on 01/06/2022).

[Ruse] Struct std::sync::Arc. url: https://doc.rust-lang.org/std/sync/struct.

Arc.html (visited on 01/27/2022).

[Rusf] Struct std::sync::Mutex. url: https://doc.rust- lang.org/std/sync/

struct.Mutex.html (visited on 01/27/2022).

[Rusg] Struct std::vec::Vec. url: https://doc.rust-lang.org/std/vec/struct.

Vec.html (visited on 01/12/2022).

Other References

[And12] Brian Anderson. The Rust compiler 0.1 is unleashed. Jan. 2012. url: https:

//mail.mozilla.org/pipermail/rust-dev/2012-January/001256.html

(visited on 01/20/2022).

98

https://gcc.gnu.org/onlinedocs/cpp.pdf
https://gcc.gnu.org/onlinedocs/cpp.pdf
https://doc.rust-lang.org/1.57.0/reference/introduction.html
https://doc.rust-lang.org/1.57.0/reference/introduction.html
https://docs.rs/num/0.4.0/num/trait.CheckedDiv.html
https://docs.rs/num/0.4.0/num/trait.CheckedDiv.html
https://github.com/rust-lang/rfcs/blob/master/text/0401-coercions.md
https://github.com/rust-lang/rfcs/blob/master/text/0401-coercions.md
https://doc.rust-lang.org/std/primitive.f64.html#associatedconstant.INFINITY
https://doc.rust-lang.org/std/primitive.f64.html#associatedconstant.INFINITY
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_mutex_lock.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_mutex_lock.html
https://doc.rust-lang.org/std/panic/fn.catch_unwind.html
https://doc.rust-lang.org/std/panic/fn.catch_unwind.html
https://prev.rust-lang.org/en-US/faq.html
https://prev.rust-lang.org/en-US/faq.html
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://mail.mozilla.org/pipermail/rust-dev/2012-January/001256.html
https://mail.mozilla.org/pipermail/rust-dev/2012-January/001256.html

[Cwe] 2021 CWE Top 25 Most Dangerous Software Weaknesses. July 2021. url:

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

(visited on 11/02/2021).

[Kor02] Israel Koren. Computer Arithmetic Algorithms. 2ed. A.K.Peters, 2002. isbn:

1-56881-160-8.

[NS04] S. Nelson and J. Schumann. “What makes a code review trustworthy?” In:

Proceedings of the 37th Annual Hawaii International Conference on System

Sciences, 2004. 2004, 10 pp.–. doi: 10.1109/HICSS.2004.1265711.

[Och] Quentin Ochem. Ada for the C++ and Java Developer. 2021-12. AdaCore.

url: https://learn.adacore.com/pdf_books/courses/Ada_For_The_CPP_

Java_Developer.pdf (visited on 01/22/2022).

[Pre] MBDA Deutschland - Standorte. July 2017. url: https://www.mbda-deutschland.

de/das-unternehmen/standorte/ (visited on 11/02/2021).

99

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://doi.org/10.1109/HICSS.2004.1265711
https://learn.adacore.com/pdf_books/courses/Ada_For_The_CPP_Java_Developer.pdf
https://learn.adacore.com/pdf_books/courses/Ada_For_The_CPP_Java_Developer.pdf
https://www.mbda-deutschland.de/das-unternehmen/standorte/
https://www.mbda-deutschland.de/das-unternehmen/standorte/

	Introduction
	Introduction to Safe Software
	Motivation and Scope
	Structure

	Background Information and Environment
	Introduction of MBDA Deutschland
	Software Versions

	Error Classification
	General Software Error Classes
	Detailed Description of the Covered Classes
	Scope
	Types and Conversion
	Memory and Storage
	Arithmetic Errors
	Concurrency

	Programming Languages
	Introduction of C
	Introduction of Ada
	Introduction of Rust

	Comparison of the Languages
	Scope
	Access to Entities Outside of the Current Scope
	Ambiguity

	Types and Conversion
	Assigning a Wrong Type
	Conversion and Type Limits

	Memory and Storage
	Arithmetic Errors
	Concurrency

	Summary
	C
	Ada
	Rust

	Conclusion
	Listings
	Figures
	Acronyms
	Bibliography

