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Abstract 

Methods for managing uncertainty and fuzziness caused by a turbulent and volatile corporate environment play an important role for ensuring 
long-term competitiveness of producing companies. It is often difficult for practitioners, to choose the optimal approach for modelling existing 
uncertainties in a meaningful way. This contribution provides a guideline for classification of uncertain information and fuzzy data based on a 
flowchart and proposes suitable modelling methods for each characterized uncertainty. In addition, a measure for modelability, the degree to 
which an uncertain or fuzzy parameter can be modelled, is proposed. The method is based on a literature review comprising a discussion of the 
terms uncertainty and fuzziness.  
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Globalization, shorter product lifecycles and growing need 
for individualized products lead to higher complexity in 
manufacturing systems [1]. The major challenge arising from 
this increasingly complex manufacturing environment is 
uncertainty [2].  The steadily increasing numbers of scientific 
papers concerning uncertainty published every year [3] 
confirm the eminent importance of this topic in research. If 
uncertainty is neglected in management decisions, this can 
lead to severe consequences including the risk of business 
failure. Therefore, companies are forced to apply methods for 
incorporating uncertainty in their decision making processes 
in order to stay profitable.  

It is often difficult, however, for researchers and 
practitioners to determine the type of uncertainty they are 
dealing with as it depends on the context of application. To 
the best knowledge of the authors a general guideline to 
classify the uncertainty based on the available information 
and data doesn’t exist so far. [4] explicitly demands for an 
“investigation that incorporates all types of uncertainty in an 
integrated manner”. To achieve this, a profound analysis of 
existing classification schemes for uncertainty and fuzziness 
is essential. The basis for the main part of the contribution is 
provided in chapter 2 where “uncertainty”, “fuzziness” and 

related terms are defined and differentiated. The objective of 
this paper is to achieve three main benefits: (1) A literature 
review is presented to analyze the different existing 
classification schemes for uncertainty and fuzziness (chapter 
3). (2) A guideline which helps practitioners and researchers 
identify the type of uncertainty they are coping with and (3) a 
decision support model are developed to choose a valid and 
useful form for modelling the context-specific uncertainty 
based on the available data and information (chapter 4). 

Chapter 5 provides a conclusion and further research 
directions. 

2. Fuzziness, uncertainty and related terms: definition and 
differentiation 

The objective of this chapter is to introduce common 
definitions used in the sequel of this paper. This is especially 
important as the terms related to fuzziness and uncertainty are 
used in many different, often arbitrary and inconclusive ways 
[5]. It is not the goal to profoundly analyze linguistic aspects 
of the relevant terms (the interested reader is referred to [6]). 

The term “fuzziness” is the nominalization of the adjective 
“fuzzy” which means “not firm or sound in substance, or 
fringed with loose fibers” according to [7]. As [6] correctly 
point out, the definition of “fuzzy” which can be found in 
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common dictionaries, doesn’t reflect the meaning of the word 
in a mathematical sense. In this case, “fuzzy” is used as a 
supplement for adjectives (“large is fuzzy”) or data (“the 
material flow is fuzzy”) if their meaning or value is not 
precise or crisp. “Fuzzy” also relates to the idea of partial 
membership and gradual transition from one state to another 
[8]. In this sense, “fuzzy” is more similar to the meaning of 
“vague”, whereas “vague” includes more non-crisp concepts 
according to [7], like ambiguity. [9] defines “ambiguity” as 
being related to situations where several alternatives exist and 
it is not specified, which one is the best to choose. [10] 
describe vagueness as an umbrella-term for fuzziness and 
possibility. [11] elaborates that vagueness describes the 
“difficulty of making sharp or precise distinctions in the 
world” and lists the following expressions as being connected 
with vagueness: fuzziness, haziness, cloudiness, unclearness, 
indistinctiveness, sharplessness. According to [8] gradualness 
must be added. He argues that there are many concepts to 
which a vague notion only applies partly. This “gradualness” 
is modelled in fuzzy membership functions. Thus, in 
accordance with [7] we call this gradualness phenomenon 
inherent in vagueness fuzziness. Therefore, the membership of 
a concept to a certain fuzzy notion can be “true to a degree” 
[7].  

In this contribution we follow the definition of [11] who 
uses fuzziness as a synonym for vagueness.  

Whereas “vagueness” or “fuzziness” is mostly related to 
signs of natural language (so-called linguistic variables, [1]), 
the term “imprecision” is used for measurements, where data 
is collected and often documented in the form of numbers. 
This data does not precisely reflect the situation in reality as 
no measurement can provide unlimited accuracy [7].  

The most general term to be defined in this context is 
“uncertainty”. It is often used as an umbrella-term for the 
concepts defined above [6]. In decision theory, the cases of 
certainty and uncertainty are differentiated. Uncertainty is the 
case of incomplete information and can be further broken 
down into risk and ignorance, whereas risk refers to situations 
where possible outcomes of an event and their probabilities 
are known [12]. In case of ignorance, the probabilities are 
unknown. As a third term “total ignorance” [13] can be 
attributed to the umbrella-term uncertainty, describing a 
situation in which neither the probabilities nor the possible 
future environmental states are known. 

In order to define uncertainty and fuzziness, a clear 
distinction has to be drawn. In accordance with [14] we define 
uncertainty as being related only to the occurrence of events 
(future environmental states), whereas fuzziness can be 
attributed to different reference objects (RO), e.g. models, 
data, linguistic variables. For the sequel of this paper, 
uncertainty is therefore defined as follows: A lack of 
knowledge or information that causes the occurrence of an 
event or future environmental state not to be known with 
certainty. Uncertainty can further be differentiated by the 
degree to which each state is known and can be attributed a 
probability of occurrence (risk, ignorance, total ignorance). 

In contrast, fuzziness can only be defined together with its 
object of reference [14]. In this contribution, three concepts 
are distinguished: 

Fuzzy data: A set of data that is inexact, i.e. differs from 
reality. 

Fuzzy parameter: One single value which is inexact, i.e. 
differs from reality. 

Fuzzy linguistic variable: A notion or term (i.e. one or a 
group of words) of which different persons have varying 
perceptions regarding its meaning (ambiguity) or that reflects 
a state which cannot be sharply differentiated from other 
states (“gradualness phenomenon” / vagueness). 

Fuzziness can be attributed to both measurable 
(quantitative) as well as non-measurable (qualitative) 
reference objects and arises as a consequence of uncertainty. 

In the following elaboration, these definitions are used. 
However, differing nomenclature by other authors is not 
altered to keep citations authentic. Wherever we deem it 
necessary, deviations from the definitions above are indicated. 

3. Review of existing classification schemes for fuzziness 
and uncertainty 

In literature, fuzziness and uncertainty are distinguished 
regarding different characteristics. These can be aggregated 
into three meta-characteristics, namely nature, level and 
source of fuzziness and uncertainty (the two terms are 
mentioned together as depending on the author one or the 
other is applied). 

3.1. Nature of uncertainty/fuzziness 

The nature of uncertainty or fuzziness refers to the 
question:  “Is uncertainty reducible with extra effort or at 
additional cost (e.g. for collecting more data or increasing the 
quality/resolution of a measurement) or whether the outcome 
of a situation is random?” The first case (uncertainty is 
reducible) is referred to as “epistemic uncertainty” [15, 16], 
“lack of knowledge”  [17], “subjective” [18], “reducible”, 
“type B” [19] or “type 2” uncertainty [20]. The second case 
(uncertainty is not reducible) is designated as “aleatory” [15, 
16], “ontological” [21] or “ontic” uncertainty [22], 
“variability” [17], “stochastic” [18], “irreducible”, “type A” 
[19] or “type 1” uncertainty [20]. In the sequel of this paper 
the expressions epistemic and aleatory uncertainty are used, 
as they appear to be the most commonly applied in literature. 

3.2. Levels of uncertainty/fuzziness 

The level is the second meta-characteristic of uncertainty 
targeting the question “To what degree is uncertainty or 
fuzziness quantifiable?” In the light of available data an 
experiment is based on, [23] distinguishes six levels, from 
“scientific laboratory experiment suitable to develop an 
analytical model” to “weak quasi-rational or intuitive 
judgment”. The conceptual framework for classifying 
uncertainties developed by [24] is based on these modes of 
thought, aggregating them into four levels: empirical 
(monitoring or measurement data available), theoretical 
(mathematical models, simulation, etc.), virtual (integrated 
assessment models, output metrics, etc.) and perceptual 
(scenario definitions, policy impacts, etc.) uncertainty.  

In the simplest case only quantitative and qualitative 
uncertainty is distinguished (e.g. [1, 25]). This differentiation 
of quantifiable und non-quantifiable uncertainty is also 
addressed by different authors under the term probability 
theory, i.e. classical statistics, and possibility theory, i.e. fuzzy 
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programming and optimization [11, 26, 27]. [21] developed a 
more detailed framework, addressing four levels of 
uncertainty: statistical uncertainty (all future environmental 
states and their probabilities are known), scenario uncertainty 
(a range of some plausible future states are known, their 
probabilities are unknown), qualitative uncertainty (not all 
future states necessarily known, no statistical modelling 
possible) and ignorance (awareness that there are unknown 
future environmental states). [13] adds the level total 
ignorance (no awareness about the unknown) to the levels 
defined by [21].  
[28] elaborate on probability distributions and distinguish 
hard or objective (can be determined by measurement) from 
soft or subjective distributions (are chosen by experts based 
on logical reasoning). 

3.3. Sources of uncertainty/fuzziness 

The third meta-characteristic “source” of uncertainty and 
fuzziness answers the question: “Where does uncertainty/ 
fuzziness originate?” As the source mainly depends on the 
context of application, examples relating to manufacturing are 
given. A comprehensive review of these sources is not the aim 
of this section.  

[21] refer to sources as “locations of uncertainty” and 
distinguish context uncertainty, expert judgment, four types of 
model uncertainty, data and output uncertainty. [20] further 
elaborates on model uncertainties: Uncertainty in model 
quantities include input data and parameters, uncertainty 
about the model form refers to uncertain equations and model 
structure and uncertainty about model completeness 
comprises levels of confidence and model validity.  

[29] and [30] state sources of uncertainty related to 
manufacturing and distinguish system or internal (arises 
within the manufacturing process, e.g. maintenance and 
queueing times, rework, defects, etc.) from environmental or 
external uncertainty (originates from external conditions 
which are not influenced by the company itself, e.g. demand, 
product mix, supplier reliability, etc.). There is a plethora of 
literature building on these types of uncertainties and 
proposing different mechanisms to compensate them 
adequately, namely flexibility, transformability, adaptability, 
etc. (see i.a. [30, 31, 32, 33]). [34] differentiates these 
manufacturing-related sources into input (supply), production 
system (process times, quality, capacity) and output (demand, 
market share, orders) uncertainty. 
[35] lists three groups of sources of fuzziness in the context of 
data modelling. The first group primarily addresses the 
complexity of real systems, the limits of human perception 
about future environmental conditions and the difficulty of 
precisely formulating utility functions or requirements. The 
second group according to [35] refers to fuzziness due to the 
use of natural language in terms of expressing thoughts (big, 
small, etc.) and relations (e.g. “much smaller than”). In 
addition, fuzziness due to erroneous or ill-suited measuring 
methods, high volatility and differences depending on 
location and environment are considered. The third group of 
sources is fuzziness due to abstraction (isolating and 
structuring relevant system characteristics on an aggregated 
level to reduce complexity) and transformation (transforming 
real processes into e.g. a simulation model) in modelling.  

3.4. Existing approaches for mapping uncertainty and deficits 

This chapter shortly introduces three relevant existing 
approaches for mapping uncertainty with the aim of providing 
support for context-specific uncertainty classification and 
modelling. [36] developed the uncertainty mode and effect 
analysis, short UMEA (derived from failure mode and effect 
analysis), in order to analyze uncertainty within the product 
life cycle with a focus on development. The UMEA-method 
includes five steps of which the second “identification of 
uncertainty and its causes” is of relevance for this paper. [36] 
first distinguishes between quantitative and qualitative 
uncertainty and proposes different methods for their 
identification (e.g. process analysis, estimation, statistics, 
etc.). The method includes an analysis of cross-links between 
different uncertainties via matrices. The user is not provided a 
detailed guideline for case-specific classification and 
modelling, relevant steps are listed but not explained further. 

A second, more sophisticated approach is developed by 
[37] based on the work of [21]. The proposed uncertainty 
matrix includes sources (context, expert judgment, model, 
data and output uncertainty) in one dimension and levels 
(statistical, scenario uncertainty and ignorance) as well as the 
nature (epistemic and aleatory) in the other dimension. 
Additionally, the matrix provides a column to estimate the 
“qualification of the knowledge base” (strengths and 
weaknesses of the assessment of uncertainty) and “value-
ladenness of choices” (biases occurring in the assessment). 
The aim of this matrix, according to [37, p.81] is to provide an 
“overview of where one expects the most important 
uncertainties […], how they can be further characterized and 
[…] where a more elaborate uncertainty assessment is 
required”. However, the application of this matrix might be 
hampered as the user has to be aware of the meaning of the 
terms connected to uncertainty in the matrix, especially 
correctly determining the level and nature of case-specific 
uncertainties poses a challenge to practitioners. 

The third approach for classifying uncertainties is provided 
by [1] who distinguishes decisions under certainty, 
uncertainty (further subdivision into risk and ambiguity) and 
risk as deviation from set targets and proposes modelling 
methods for each situation. For instance, according to [1] a 
situation where risk occurs, i.e. future environmental 
conditions and their probabilities are known, this can be 
modelled via probability distributions. In this contribution, the 
idea of attributing a range of modelling options to each class 
of uncertainty or fuzziness is further developed. The objective 
of this paper is to provide a comprehensive guideline for the 
classification and modelling of uncertainties and fuzziness for 
persons without profound knowledge about terminology and 
modelling in this field. In addition to existing approaches, a 
metric for comparing how well different ROs’ fuzziness or 
uncertainty can be modelled, is introduced.  

4. Guideline for classification and modelling of fuzziness 
and uncertainty 

The guideline developed at iwb follows the logic of a 
simple flowchart and is displayed in fig. 1. It consists of 
junctions that contain questions to be answered by the user 
with ‘yes’ or ‘no’. Depending on the specific case of 
uncertainty or fuzziness, the user is lead through the guideline 
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and finally a modelling technique is proposed for each 
individual case. The result not only contains a suggestion for a 
certain probability distribution or membership function, but 
also aggregates the different modelling techniques and 
attributes the relevant theoretical domain to the results. Three 
domains are differentiated: Fuzzy set theory, Intervals and 
Probability theory (grey boxes in fig. 1). 

To illustrate the procedure how the guideline is applied, an 
example is employed in the following (dotted lines in fig. 1): 
The user wants to model the fuzziness of a machine’s mean 
time to repair (MTTR). As MTTR as reference object (RO) is 
clearly defined and has a generally known meaning, question 
1 can be answered positively. MTTR is quantifiable, i.e. 
question 2 is positive. MTTR is not a discrete event or FEC 
(future environmental condition) and not a time series 
(questions 5 and 11 are negative). In our example, a MTTR 
monitoring system has just recently been installed in the 
company. However, there is not yet sufficient data available 
to derive a distribution directly or to produce a sample 
(questions 12 and 17 negative). The operator of the machine 
can describe the behavior of MTTR on this machine from his 
experience, so that a probability distribution can be estimated 
(question 24 positive). This leads to question 28, the 
distribution can be characterized as continuous. Questions 35 
and 36 have to be negated in this case. The operator states that 
mostly, MTTR varies within a certain corridor with rare 
exceptions exceeding the average time, i.e. the outliers 
(question 38) are mostly positive. Thus, a lognormal 
distribution can be assumed in this exemplary case. The steps 
for deriving subjective probability distributions are adapted 
from and in accordance with [38]. 

The outlined procedure yields a subjective continuous 
probability distributions for which parameters have to be 
estimated. In another case, if empirical data is available 
(question 12 positive) and exact (question 15 positive), a 
distribution can be derived by comparison of typical paths and 
parameters are generally calculated with the method of least 
squares or the maximum likelihood method (continuous 
distribution). Special cases, like lifetime or reliability 
indications, which are typically modelled with exponential or 
Weibull distributions [39] are considered in separate questions 
(30, 35). The domain, in which the parameters of the 
distributions can be calculated, is referred to as ‘objective 
probability distributions’ in fig. 1. The steps for deriving 
objective distributions are adapted from and in accordance 
with [39].  

If neither objective nor subjective probability distributions 
can be derived due to lack of data (question 12) or because the 
RO is not quantifiable (question 2), intervals or fuzzy set 
theory can be applied respectively. If e.g. a sample exists 
(question 17), methods from inductive statistics can be used to 
deduce information about the data distribution in the basic 
population. If the RO is a linguistic variable and terms like 
weak, medium and strong are attributable to the outcomes of 
the RO, fuzzy membership functions can be applied to assign 
numeric intervals to each term. The membership functions can 
take different shapes, e.g. trapezoid, triangular, uniform, etc. 
The selection of a suitable form of membership function goes 
beyond the scope of this paper and is discussed in [7] and [5] 

amongst others. For classifying the fuzziness or uncertainty of 
the RO, the positive answers given during the procedure are 
registered. In the given example these are question 1, 2, 24 
and 28. This combination contains all the necessary 
information for classification: The user deals with a fuzzy 
quantifiable reference object, for which empirical data lacks 
but a subjective continuous probability distribution function 
can be provided by experts.  

Questions 1, 2, 4, 6, 7, 8, 10, 12, 13, 15, 17, 19 and 20 to 
25 are directly related to the modelability, meaning how well 
fuzziness or uncertainty can be modelled. These questions are 
called modelability-related questions in the following. The 
ratio between modelability-related questions answered 
positively and those answered negatively is used as a measure 
for modelability M of fuzziness and uncertainty (formula (1)): 
Every negative answer implies a drawback for modelability, 
e.g. if question 12 is answered negatively, i.e. there is no 
empirical data available, it is harder to model the underlying 
fuzziness as if data could be used to calculate a probability 
distribution. This metric allows a comparison of different 
ROs’ fuzziness and uncertainty regarding their modelability. 

In contrast to the level of uncertainty, which is different 
according to the individual context of application, the metric 
for determining modelability proposed in this contribution is 
generally valid.  
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1                      (1)  
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An exemplary calculation of the modelability of two 
different ROs’ fuzziness is illustrated in the following: In the 
above applied example regarding MTTR, modelability-related 
questions 1, 2 and 24 are answered positively, whereas 
questions 12, 13 and 17 are answered negatively, yielding a 
modelability of 0.5. If empirical data would have been 
available and question 15 and 25 could also be answered 
positively, modelability M=1 would be the result. Thus, M=0 
indicates that the uncertainty or fuzziness cannot be modelled 
at all, whereas M=1 indicates very good modelability. 

5. Conclusion and research directions 

In this contribution, a literature review has been conducted 
with the aim of defining fuzziness and uncertainty and 
drawing a differentiation from related terms.  
In addition, relevant classification schemes for fuzziness and 
uncertainty are presented. On this basis, a guideline consisting 
of simple questions is developed to enable practitioners and 
researchers to easily identify a possible way of modelling 
context-specific uncertainty and fuzziness based on the 
available data. Furthermore, a metric for comparing how well 
fuzziness or uncertainty of different ROs can be modelled 
(modelability) is introduced. 
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The developed guideline needs to be applied in different 
situations in manufacturing industry to identify potential for 
improvement and to develop single aspects further. Whereas 
detailed steps for choosing probability distributions are given, 
methods for modelling time series and a decision support for 
selecting a specific form of fuzzy set should be integrated into 
the method in more detail in future research. 
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