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Abstract
Fiber reinforced polymers (FRP) provide favorable properties such as weight-specific strength and stiffness that are central
for certain industries, such as aerospace or automotive manufacturing. Liquid composite molding (LCM) is a family of often
employed, inexpensive, out-of-autoclavemanufacturing techniques. Among them, resin transfer molding (RTM), offers a high
degree of automation. Herein, textile preforms are saturated by a fluid polymer matrix in a closed mold.Both impregnation
quality and level of fiber volume content are of crucial importance for the final part quality.We propose to simultaneously learn
three major textile properties (fiber volume content and permeability in X and Y direction) presented as a three-dimensional
map based on a sequence of camera images acquired in flow experiments and compare CNNs, ConvLSTMs, and Transformers.
Moreover, we show how simulation-to-real transfer learning can improve a digital twin in FRP manufacturing, compared to
simulation-only models and models based on sparse real data. The overall best metrics are: IOU 0.5031 and Accuracy 95.929
%, obtained by pretrained transformer models.

Keywords Sequence-to-image learning · Architecture comparison · FRP · LCM · Transfer learning · Industry 4.0 ·
Digital twin

1 RTM and permeability measurements

When it comes to weight-specific mechanical characteris-
tics like strength and stiffness, fiber reinforced polymers
(FRP) are superior to other engineeringmaterials. FRP, espe-
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cially when using carbon fibers, can replace conventional
steel or aluminum, which lowers fuel use and CO2 emis-
sions throughout the product lifecycle. These composite
materials are built up from a polymer matrix that has fiber
reinforcement. Liquid compositemolding (LCM) techniques
are some of the most well-known and cost-effective out-
of-autoclave manufacturing methods for FRP components
production. For medium volumes (1,000 to 10,000 com-
ponents per year), resin transfer molding (RTM, [1]) is a
regularly used manufacturing method. Under pressure, a liq-
uid thermoset polymer (a resin) is injected into a mold cavity
containing the reinforcement material, such as a fabric made
of carbon or glass fibers (called the preform). During the
injection procedure, this results in a “flow front” that sepa-
rates saturated from dry material (cf. Figure 3).

The permeability properties of the preform, which explain
how well a porous medium transmits fluids, have a major
impact on the dynamics of the flow front. In FRP, (i) fiber vol-
ume content (V f ) and (ii) preform layout primarily determine
the preform permeability. Localized changes in preform per-
meability can take place at locations where thewall thickness
varies or at curved sections of the component (compression or
even folding of the preform on the inner surface of the curva-
ture). Additionally, they could result from manual treatment
of the fibrous structure or from thematerial’s flawed qualities
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Fig. 1 Overview of the
sequence-to-instance learning
task: a sequence of flow front
images is mapped to an image
that contains the permeability
values of the material, i.e. the
permeability map

such as missing or misplaced fiber bundles (e.g., fringing of
fiber bundles, breakage of filaments). For one type of textile,
the permeability might vary by up to 20%, according to Tifk-
itsis [2]. Local differences in permeabilitymight result in sub-
par impregnation quality or even dry areas, whichwill reduce
the mechanical performance of the final composite part.
These variations also affect the temporal progression of the
flow front. Before or during an industrial RTM process, these
changes are often unknown for a specific preform; therefore,
it would be ideal to have a map of the permeability and V f

values in order to identify problems as soon as possible.
We suggest using machine learning (ML) models that,

given an observed sequence of flow front images during an
injection procedure in a permeameter, predict changes in the
permeability and V f , resulting in a sequence-to-instance task
(cf. Figure 1). The training data is collected from two sources:
(1) flow experiment data from a permeameter, and (2) flow
simulation data from PAM RTM, a commercially available
FEM simulation tool for RTM processes (see Sect. 2). This
assignment is a component of a broader pipeline that ulti-
mately results in the prediction of a textile property map
from in-mold sensory data. For such, an intermediate step
that converts sensors to flow front images is required, such as
employing transposed convolutions [3], generative models,
or analytical techniques [4]. To sum up, our contributions are
as follows:

• For this sequence-to-instance task in an engineering con-
text, we compare several ML models (see Tables 4 and
5).

• We demonstrate the effectiveness of sim-to-real transfer
learning in low data regimes by using transfer learning
to adapt a model trained in the simulation domain to real
data (see Table 6).

This method can be viewed as a component of the process’
digital twin [5]. The component canbe regarded as acceptable
if it does not exhibit excessive fluctuations in permeability
and V f .

This paper substantially extends preliminary results dis-
cussed in [6]: In order to collect real injection data, we
conducted additional physical experiments.Weused real data
not only for evaluationbut also for trainingpurposes andmea-
sured the quality effects. Finally, we extended the models to
not only predict deviations of V f but also of the permeability
in X and Y direction. We also take into account textiles with
anisotropic characteristicswhich increases both the difficulty
and the realism of the proposed scenario.

1.1 RelatedWork

The composites processing literature has taken an interest
in online measurements of permeability or its variation. The
issue of in-situmonitoring the filling status ofRTMprocesses
using lineal sensors is taken into consideration by Tifkitsis et
al. [2]. They use Kriging models to forecast the arrival times
of the flow front at specific sensors. The same simulation pro-
gram we used, PAM-RTM�, is utilized to generate the RTM
simulations that are needed to fit these substitute models.
However, we take into account the entire spatial expansion
of the flow front (i.e., a high-dimensional prediction) while
they just take into account two measurement lines across a
plate. By using Darcy’s law [7] to calculate it, Wei et al.[8]
estimate global and local permeability during the injection
with pressure and flow front sensors:

υ= − 1
η
K∇ p, (1)

with volume-average flow velocity υ, fluid viscosity η, per-
meability tensor K, and pressure gradient ∇ p. Simulating
liquid composite molding relies heavily on Darcy’s law. The
planar, anisotropic permeability tensor is modeled as fol-
lows for 2-dimensional flow (which is covered in the work
at hand):

K2D,aniso =
[
kx kxy
kxy ky

]
(2)
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kx and ky represent the permeability in the x and y direc-
tions, respectively, whereas kxy describes how the flow in
one major direction is dependent on a pressure gradient in
the other major direction. A Regularising Ensemble Kalman
filter Algorithm (RENKA) was demonstrated by Matveev et
al. [9] as a means of detecting permeability changes through-
out anRTMprocess. To reduce the computational complexity
of pure Bayesian inversion, they introduce this filtering tech-
nique. However, the algorithm is less usable than a fully
data-drivenMLapproach because it requires nontrivialmath-
ematical steps and must be modified for new component
designs. CNNs were utilized by Gonzales et al. [10] to mon-
itor changes in the flow front caused by pressure sensors
to detect permeability changes. However, they are only able
to identify discrete, rectangular changes in permeability by
using the data of all recorded runs. Our method is more flex-
ible since it creates the full permeability map of the preform
rather than just identifying specific elements of the patch, like
its length, width, or center point. Moreover, the flow fronts
in each of the aforementioned works differ because they all
employ a lineal injection gate rather than a central one. CNNs
are used by Caglar et al. [11] to measure the permeability
of textiles at the microscopic level. Other papers integrate
RTM analysis and ML in addition to online permeability
estimation: Stieber et al. [3] describe a learning-based dry
spot classifier that solely operates on simulated data. Transfer
learning from simulated to actual data is a suggested research
area, particularly for low-data regimes. Weiss et al., Stieber
and Hofer et al. [12–14] All the above works employ recti-
linear flow, whereas our work employs radial flow. From the
manufacturing perspective, this a more realistic case since it
is two dimensional instead of one dimensional and thus is
applicable to a broader range of processes. Besides online
permeability estimation, other papers combine RTM analy-
sis and ML: Stieber et al. [3] present a learning-based dry
spot classifier, working only on simulated data. Especially
for low-data regimes, transfer learning from simulated to real
data is a suggested research direction [12–14].

2 Data regime

Training neural networks for online prediction of preform
textile properties usually requires a large amount of data
paired with knowledge about material properties and experi-
mental parameters. Such data sets are rarely available, as (i)
RTM runs are elaborate in terms of experimental time as well
as cost, and (ii) RTM molds, that are industrially employed
and not prototypically or in landmark research projects, typ-
ically show a very limited number of sensors, that are mostly
limited to only temperature and pressure signals [15–17].

In this work, we propose to use data sets from both, real
experiments and simulation runs, in order to outperform

models based on simulation data only. In particular, the data
sets used for this work stem either from the optical perme-
ameter testrig depicted in Fig. 3 or from an FEM-based flow
simulation, run in PAM-RTM�.

2.1 Materials

2.1.1 Test fluid

Comparative rheometric tests revealed that the color pigment
does not affect the viscosity of the test fluid.

For the flowexperiments on the optical permeameter, stan-
dard plant oilwas used as a test fluid. This is commonpractice
in experimental permeability characterization [18] to avoid
handling of chemically reactive thermosets. The viscosity of
the test fluid was experimentally characterized in a temper-
ature range between 15 and 30 °C, which covers the range
typically seen in non-conditioned research labs. In this range,
a nearly linear decreasing trend was found between about 90
and 48 mPas. Thus, the viscosity of the test fluid is well
comparable to that of uncured (this is the relevant condi-
tion during impregnation of the fibrous preform) epoxy resin
commonly used in RTM. In our flow experiments, the fluid
temperature was measured in the feeding line and then inter-
polated into the above-mentioned characteristics in order to
obtain the fluid viscosity relevant for the respective experi-
ment. In order to enhance the contrast of saturated against
unsaturated preform regions in the digital images acquired
during the flow experiments, the test fluid was colored with
a red color pigment (Sudanred IV, Sigma Aldrich). Compar-
ative rheometric tests revealed that the color pigment does
not affect the viscosity of the test fluid.

2.1.2 Fabric

The experiments were run with a glass fiber, 2/2 twill woven
fabric, type Hexion 1202 of Hexcel, with a nominal areal
weight of 290 g/m2 and in-plane permeability characteristics
as listed in Table 1. The material is commercially available
and well known from recent international benchmark exer-
cises (IBE) on in-plane permeability characterization [18].
The research group co-authoring this paper has participated
in these IBE with their optical permeameter and the in-plane
permeability data used for the simulation runs were found

Table 1 Preform setup for real-world trials: it is created by homoge-
neous stacking the fabric layers in uniform orientation

Region # of layers V f [%] kx [mm2] ky[mm2]
Preform mat 11 41.7 72.47e−6 17.21e−6

Patch region 16 60.7 1.19e−6 15.32e−6
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Fig. 2 Left: Geometric
measures of an exemplary
chosen test configuration.
Middle: Three properties
combined as channels of the
output image. Right: V f , kx and
ky

by interpolating into the corresponding results of principal
in-plane permeability kx and ky vs. volume-averaged fiber
volume content V f . This V f was estimated according to

V f = nmA

hρ f
(3)

with the number of layers n, areal weight (grammature) mA,
cavity height h and fiber mass density ρ f . The areal weight
was determined by weighing each preform prior to the flow
experiment. The mass density of the glass fibers was taken
from the technical data sheet with 2550kg/m3. The material
shows principal flow directions well aligned with the ori-
entation of the woven fiber bundles and thus: kxy ≈ 0, cf.
Equation 2.

2.1.3 Preform and Patches

Theflowexperiments and resulting data presented inSect. 2.2
are based on specifically manipulated preforms of the woven
fabric. The preform is created by homogeneous stacking of
the fabric layers in uniform orientation A rectangular patch
of the fabric was introduced in a particular location of the

preform, varying in terms of: (i) number of layers, (ii) orienta-
tion of the fabric, (iii)V f , and thus, (iv) in-plane permeability.
Table 1 lists themost relevant properties of preform and patch
region.

Several different patch locations were chosen for the flow
experiments to provide a meaningful data set for the sub-
sequent training of the neural network. Figure2 shows the
geometric details of such a configuration.

2.2 Data from flow experiments

2.2.1 Optical permeameter

For the study at hand, an optical permeability characteriza-
tion cell (briefly termed permeameter for the remainder of
the work) was used, which follows the radial flow technique
combined with optical flow front tracking. Using an optical
permeameter offers the advantage that almost the entire flow
front can be tracked in the form of planar images instead of
sensory time series at certain locations only or, in current
industrial practice, even no in-mold sensors at all. Moreover,
the flow front images acquired (cf. Figure 3) align closely

Fig. 3 Permeameter
experiments: Left: In-plane
permeameter testrig with an
optically transparent upper mold
half. Middle: Beginning of the
injection trial in permeameter, a
dark spot is visible between the
frame. Right: the injection is in
progress, with a visible
deviation of the flow front
caused by the patch with
changed permeability to provide
a test ground. This is part of the
the experimental test plan
described in Sect. 2.2.3
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Fig. 4 Evaluation procedure on
an example image: raw camera
image (left), label image
(center) and locally completed
label image (right)

with those from an FEM-based process simulation (cf.
Figure 1) which enables a sim-to-real transfer approach.

The experimental data used for this work was acquired
with the permeameter depicted in (Fig. 3). The mold of this
cell can be seen as a flat plate RTM mold with a central
injection gate and optically transparent top mold half, which
allows for tracking of the flow front using an industrial cam-
era system [19].

2.2.2 Image and data processing

To use the experimental data for passing them through a
model trained on simulation-only data, the acquired sequence
images had to be pre-processed (cf. Figure 4): (i) The images
were rotated to align themwith the images created by the sim-
ulation, (ii) empty zones outside the fabricwere removed, (iii)
image areas showing the stiffening frame of the mechanical
setup were removed and (iv) parts of the flow front, occluded
by the stiffening frame, were supplemented by a specifically
developed, automated mechanism. The latter involves fitting
an elliptical geometry model to selected data points along the
fluid flow front [19] and extrapolating parabolic models for
the major and minor ellipse axis length [20], respectively.

2.2.3 Experimental test plan and data augmentation

Two series of flow experiments were run with specific
dedication for the work at hand which are briefly termed
RealPermSmall (from 2020) and RealPermLarge (from

2021). Table 2 provides an overview of the entirety of data
sets.

To benefit the most from this limited number of real-
world samples, the injection experiments were designed such
that the patches were located in one quadrant of the pre-
form only. Data augmentation through flipping the resulting
image sequences along the x− and y−direction, respectively,
yielded additional image sequences

2.3 Data from flow simulation runs

To obtain data from simulation runs, briefly termed the sim-
ulated data, a strategy comparable to previous works of
the authors, in particular, [3] and [6], was followed involv-
ing an automated pipeline: Starting with a two-dimensional
representation of a preform with anisotropic material prop-
erties, briefly termed preform, small patches (rectangular or
circular)with varying in-plane permeability andV f were ran-
domly inserted. Subsequently, fluid flow through the preform
was numerically predicted through a commercial RTM sim-
ulation software, resulting in a sequence of “label images”,
or briefly labels (see Fig. 1), over the percentage of preform
filling.

Simulation data were generated in several evolutionary
stages, Table 3 gives an overview of the evolution of data
sets generated for this work. The difference in V f of the
2021 and 2022 data, respectively, and the setup specified in
Table 1 arises from slight deviations between nominal and
real values of the areal weight of the fabric. The latter were
measured directly before starting the flow experiments and

Table 2 Datasets - Reality:
Textile: HexForce1202 by
Hexcel

Dataset Year # of Runs V f Preform / Patches (in %) Properties

RealPermSmall 2020 6 40 / 56..61 Evaluation of simulation-
trained model on real data
(no transfer learning) [6]

RealPermLarge 2021 92 40 / 56..61 Study specifically designed
for this work
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Table 3 Datasets - Simulation

Dataset Year # of Runs (ca.) V f Preform; Patches (in %) Textile Properties

SimIso 2019 40k 26.8; 20..80 Natural Fiber (iso.) First dataset, for [3]

SimIsoCustom 2020 10k 26.8; 20..80 Natural Fiber (iso.) Custom uniform subsam-
pling, for [6]

SimAniso 2021 10k 40; 56..61 HexForce1202 (aniso.) Closer to reality through use
of preform data from flow
experiments (Section 2.2)

SimAnisoChannel 2022 10k 40; 56..61 HexForce1202 (aniso.) Introduction of flow chan-
nels to represent “race track-
ing” effects

were found within the tolerances specified in the technical
data sheet of the material.

The most important aspects of the data sets are speci-
fied in the “properties” column of Table 3. It is an evolution
towards more realistic flow simulations. The first campaign,
SimIso in 2019, represents a very first try targeting a single
image classification task, where the sampling over time did
not matter. The SimIsoCustom data set from 2020 intro-
duced regular sampling but was still based on isotropic
material with (unrealistically) strong changes in V f . With
the creation of the SimAniso data set in 2021, the simulation
was driven further towards reality: preform properties were
chosen according to real flow experiments and anisotropic
in-plane permeability was introduced as an extra layer of
complexity. Furthermore, V f for both, preform and patch

region, was sampled according to the probability found in
the flow experiments (cf. Figure 12 in theAppendix). Finally,
SimAnisoChannel represents a data set covering geometri-
cally small (i.e. 1..2mm) flow channels along the patch edges
in order to reflect “race tracking”, an effect well known for
LCM [21].

In Fig. 5 we show the timing of simulation and reality
in two different cases: one without a patch of different V f ,
thus homogenous preform and one with a patch of higher
V f . It shows great correspondence of the simulation carried
out with PAM RTM and the real experiment, the flow in y
direction in the particular examplewith patch is a little slower.

In the following subsections, particularities of flow
simulations in preforms with (i) anisotropic in-plane perme-
ability and (ii) inhomogeneities introduced by patches with

Fig. 5 Comparison of two cases in simulation and reality: one without a patch of changed V f and one with a patch of changed V f . Comparisons
are made at four different points in time
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properties deviating from the preform are described. These
are particularly important for the application of machine
learning techniques in the FRP domain as the simulation-
reality gap is widened, if not taken care of.

2.3.1 Flow in isotropic preforms

In flow simulations on isotropic material, the material prop-
erties can directly be derived from each other, i.e. increasing
V f results in a lower in-plane permeability, and the changes
are equivalent in x− and y− direction. In other words, an
ML model predicting V f would automatically allow for an
analytic computation of in-plane permeability, assuming that
a corresponding equation is known for a certain material. In
addition, the orientation of the patch is irrelevant as it does
not affect directional permeability values.

2.3.2 Flow in anisotropic preforms

Restricting anMLmodel to predict only V f in an anisotropic
material, information about in-plane permeability and their
principal directions cannot be deduced. However, it is cru-
cial to know the principal flow directions of the fabric to be

able to reason from fluid flow, in particular when introducing
patches with unknown fabric orientation. Hence, considera-
tion of in-plane anisotropy was the major driver towards a
model that predicts all three properties, i.e. V f , kx , and ky ,
from sequences of flow front images.

In Fig. 6 (left), the effect of anisotropic in-plane perme-
ability in a preform with a rectangular patch is highlighted
with twodifferent patch locations. The patch exhibits a higher
number of fabric layers and thus, a higher level of V f . More-
over, the orientation of the fabric layers in the patch is rotated
by 90◦ with respect to the remaining preform, which is indi-
cated by the arrows pointing in the direction ofmajor in-plane
permeability. The top left image shows the expected impact:
the flow front is trailing inside the patch region as a result of
reduced permeability in the vertical flow direction. However,
the bottom left image shows an opposite situation: the flow
front inside the patch region is leading compared to the sur-
rounding preform. This effect is caused by (i) the particular
relation of in-plane permeability values (see Table 1) and (ii)
the level of pressure gradient driving the fluid flow in this par-
ticular region of preform and patch, respectively. Although
numerically correct, this flow pattern is not observed in the
flow experiments. There, the flow front is trailing inside the
patch region, which is explained by an additional effect,
known as “race tracking”.

Fig. 6 Filling factors from flow
simulation for two different
patch locations (left column)
revealing the effect of
anisotropic in-plane
permeability. Impact of
considering “race tracking”
channels on the flow pattern in
the flow simulation for two
different patch locations (right
column). Arrows indicate the
orientation of major in-plane
permeability in preform and
patch regions, respectively
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Fig. 7 An overview of the three proposed models: 1) A simple fully 2D convolutional network, 2) a Transformer based approach with a 2D
convolutional encoder and decoder and 3) a 2D convolutional LSTM network

2.3.3 Race tracking

In the simulation environment, the edges along the patch
region can be implemented as “ideal”, i.e. without any gap
between preform and patch. The mesh properties change
instantaneously from a cell of the preform to a cell in the
patch region. However, this is not reflecting reality. There,
despite the highest possible efforts in manual handling, a
gap remains which forms a flow channel around the patch.
This channel, typically in the size of 1..2 mm, shows a level
of axial permeability which is typically one to two orders
of magnitude higher compared with the surrounding fibrous
and thus, causes the fluid flow to advance along the edges of
the patch. This effect is well-known for LCM and referred to
as “race tracking” [21].

To reflect this effect in the flow simulation, 2 mm wide
flow channels were added around the rectangular patches
of the data set SimAnisoChannel. The permeability of the
corresponding mesh cells was specified with an equivalent
isotropic permeability, also employed in this context byBick-
erton et al. [21] which is one order of magnitude higher
than the major in-plane permeability of the preform. The
results of these changes are shown in Fig. 6 (right) and are
considered to be well in line with observations in the flow
experiments.

2.4 Final remarks

Although a fairly “basic” situation with strictly two-
dimensional flow in a plate-shaped mold and homogeneous
fabric material was considered in this work, flow simulations
meeting the real-world situation require a decent amount of
expert knowledge.However, suchflowsimulations scale very
well. Flow experiments by contrast are very costly in a lab
or industrial environment and they do scale only linearly. As
a result, limited data is available.

To combine data from flow experiments and flow simula-
tions, image and data pre-processing are required as shown in
Fig. 4. These pre-processing steps also include the sampling
of the image sequences over the filling percentage of the vis-
ible flow front, while adding padding to create sequences of
the same length.

3 Approach

The modified textile property maps provoke altered flow
fronts and need to be rediscovered by the ML models. These
models get a sequence of flow front images as input, as shown
in Fig. 1. In previous work [6], we predicted the kx perme-
ability as a first feasibility check of this approach. In this
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Table 4 Results: Simulation
Data Test Set - Model
Comparison for 3 properties
goal: kx , ky and V f ; including
Training Time for one Epoch of
10k samples on 4 GPUs

Model Acc. Tot IOU (Mean) Training Time (One Epoch) Parameters

CNN 85.802 0.1406 0:24m 225,315

Transformer 92.191 0.4068 1:45m 17,293,691

ConvLSTM 96.893 0.6943 27:30m 328,491

work, we predict all three major properties of the fluid flow
through the textile:

• V f - volume-averaged fiber volume content
• kx - permeability in x direction
• ky - permeability in y direction

3.1 Data split

The training/test and validation set were fixed over all experi-
ments. All real data samples flipped both in x and y direction
made up the test set, while the training and validation sets
were made up of the remaining three flip configurations: not
flipped, flipped in x , and flipped in y direction.

This is a reasonable split of the data since all our models
use convolutions for feature extractions. Convolutions are
invariant to translation but, in general, not to rotation [22],
so the model must generalize well, to be able to predict dry
spots in places with a different flow front direction.

3.2 Sim-to-real transfer learning

We use Sim-to-Real Transfer Learning for our models. First,
the models are trained on a larger data set from simulation
only.Then, the trainednetworks are trained again on a smaller
data set containing data from real experiments with a smaller
learning rate. Decreasing the learning rate in the second train-
ing step helps to not alter the weights of the network too
much, which can lead to decreasing performance. In gen-
eral, this approach enables the usage ofmuch larger andmore
capable models for data sets that are normally too small, as
described in Sect. 1.1. In this Transfer Learning approach,
the model trained on simulated data is used as an initializa-

Table 5 Results: Simulation-pretrained networks with real data as test
set and pretrained networkswith retrainingwith 10 real samples -Model
comparison for 3 properties, goal: kx , ky , V f

Model Acc. Tot IOU (Mean)

CNN (Real Data Test Set) 64.901 0.1985

CNN (Transfer) 81.964 0.2262

Transformer (Real Data Test Set) 93.404 0.3321

Transformer (Transfer) 95.331 0.3826

ConvLSTM (Real Data Test Set) 91.783 0.3375

ConvLSTM (Transfer) 94.148 0.3333

tion point or warm start for the model trained on real-world
data. This helps the model trained on real-world data to learn
faster and achieve better performance.

3.3 Models

All models are trained end-to-end, from the input sequence
of flow front images to the property map (cf. Figure 7).

Several neural networks are suitable to address this 3-
dimensional sequence-to-instance task. As a baseline model,
we employed a convolutional neural network (CNN) with
four conv2D layers. From a subsampling step, we get 100
single-channel images of the time steps of the injection
process. Since 2D convolutions work over any number of
channels, we use the 100 time steps as independent channels
for the first convolutional layer.

The second proposed model relies on the Transformer
mechanism [23] which works on one-dimensional embed-
dings. Hence, the input image sequence needs to be converted
into an embedding sequence. To do so, a fully convolutional
encoder creates feature vectors for the individual images and
is trained end-to-end in the sequence-to-instance pipeline. For
the encoder part, the sequence length is fused with the batch
dimension, so the convolutionsworkover every single picture
separately. After the encoder, the dimensions are restored to
utilize the sequence capabilities of a Transformer (cf. Fig. 7).
The Transformer output vector is used to create the prop-
erty map using 2D transposed convolutions. Summarizing,
themodel has an encoder -- Transformer -- decoder structure.

The last approachemphasizes the temporal aspect byusing
a Convolutional Long Short Term Memory (ConvLSTM)
architecture [24]. In contrast to regular LSTMs, ConvLSTMs
work over sequences of two-dimensional matrices, instead of
one-dimensional vectors, which makes them suitable for our
task.

Table 6 Overview: Effects of Sim-to-real pre-training for the Trans-
former

Model Acc. Tot IOU (Mean)

Real data only: 240 samples 80.323 0.2143

Sim data only + No re-training 93.404 0.3321

Transfer: 10 real Samples 95.331 0.3826

Transfer: 240 real samples 95.929 0.5031
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Fig. 8 Excellent example: Input
data (top row) Label and output
of best model: Transformer,
pretrained on
SimAnisoChannel, retrained
on real data. The labels and
outputs are in the following
order: Second row: 3 properties
together, V f , kx , ky ; Third row:
Outputs in the same order. This
specimen shows very
well-defined patches with sharp
borders

We improved all models compared to [6] by using leaky
ReLU instead of ordinary ReLU activation functions in the
image reconstruction part and by adding batch normalization
to the network. These changes resulted in faster and more
stable training.

4 Evaluation

Based on Stieber et al.’s work [6], which involved using net-
works trained on simulated data for inference on real data,
we wanted to investigate the following research questions:

Fig. 9 Underwhelming example
in comparison to Fig. 8, here the
borders of the patches are not as
well defined
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Table 7 Transformer model
pre-trained on two different data
sets of different levels of
simulation fidelity: SimAniso
(SA) and SimAnisoChannel
(SAC)

Model Data set Acc. Tot IOU (Mean)

Transformer SA 92.079 0.1648

Transformer (Transfer on 10 samples) SA 93.974 0.3036

Transformer SAC 93.404 0.3321

Transformer (Transfer on 10 samples) SAC 95.331 0.3826

1. How do the network architectures proposed in Sect. 3.3
compare against each other?

2. Are the real-world samples enough to learn the task by
themselves and how can simulation data help?

3. How much performance can be added by retraining neu-
ral networks with real data that have been pre-trained on
simulated data?

4. How does the simulation fidelity affect the output of the
trained models?

4.1 Metrics

But first, we had to select a set of suitable metrics apart from
the “expert eye” thatwere used on the output images. Find-
ing a statistic that accurately reflects observed performance
proved to be more challenging than anticipated because, for
example,pixelwise accuracy frequently emphasizes “blurry”
forecasts. Since a significant section of the property maps
had nearly similar base properties, accuracy alone was not
enough. Therefore, we permitted ε-tolerances to continue
classifying specific pixels as correct. This ε between predic-
tion and label was manually determined to be 0.03. Values
above 3 % reduce the metric’s sensibility, whereas values
below 3 % increase it. Aside from that, intersection over
union (IOU) was our method. This metric is concerned
with the size and position of the introduced patch, which
is the extent of the observed variation in the attributes.
To calculate it, we introduced certain thresholds for every

property, based on the label, for instance: for V f , within
the RealPermLarge dataset (from 2021), the lower bound
would be 0.38 whereas the upper bound is 0.41. As listed in
Table 2, V f was designed to be 0.4, but manual handling of
the textile leads to this (measured) spread between 0.38 and
0.41. These values stem from inspecting the overall dataset
for one property (here V f ), binning it into 100 between 0 and
1, and taking the bins with the most entries as the bins that
represent the most of the textile. Thus, for V f in this case, the
border values are 0.38 an 0.41. Afterward, a binary image is
made with pixels falling into the desired window of values
and values out of that window, i.e. black pixels would be all
values > 0.41 and < 0.38 and white pixels would be the
rest. Then the IOU is calculated according to Eq. 4, with this
binary image and a binary version of the label.

I OU = area of overlap

area of union
= (4)

Fig. 10 Label and output of aggregated channels from different simulation datasets: SimAniso (SA) has no channels for race tracking, SimAn-
isoChannel (SAC) has channels. Matches Table 7
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The IOU metric is calculated for all three different prop-
erties independently and we also produce the mean of the
three values. For accuracy, we also calculate both the three
independent values and one of all channels together. In most
tables in the following, we show the aggregated metrics of
the values but we also addedmore extensive evaluations with
all independent metrics to Sect. 1 (appendix).

4.2 Results

How do the network architectures proposed in Section 3.3
compare against each other?
To start with the first research question, we show the resulting
metrics from all three proposed architectures on the SimAn-
isoChanneldata set inTable 4. It shows that theConvLSTM
yields the best results on the simulation test set in terms of
both accuracy and IOU, albeit at the longest training duration.
Are the real-world samples enough to learn the task by
themselves and how can simulation data help?
Table 5 shows that the Transformer outperforms the ConvL-
STM when only using real data as a test set and when using
only 10 real samples for re-training, which answers research
question 2. These were sampled from the RealPermSmall
and RealPermLarge datasets (cf. Section2.2) to have a
good starting point of what only few samples can do. For the
retraining step, no weights were frozen and the learning rate
was kept constant at 1e-4. It is also important to state that
the Transformer trains much faster than the ConvLSTM and
thus yields results more promptly during development and
evaluation (cf. Table 4).
How much performance can be added by retraining neu-
ral networks with real data that have been pre-trained on
simulated data?
From this point, we investigated, how much the best model
– the retrained Transformer benefits from additional real
data for training. This is a particularly interesting question
since the question before implementing data-driven models
for specialized use cases often is: “How much real data are
you going to need?” We address this question by using our
augmented training data set of 288 injections and training
the Transformer model both from scratch and from a check-
point stemming from the training on the simulated data. An
overviewof how themodels benefit frompre-training is given
in Table 6. The results can also be seen in Fig. 11. A possi-
ble explanation is that when the Transformer is trained from
scratch using only the real data, it is only able to predict dry
spot presence, ignoring the offset to left or right and the ori-
entation of the patch. However, it can differentiate between
dry spot locations in the Y direction. The number of sam-
ples has seemingly no impact on the overall performance;
the metrics are erratic and stay on a certain level. When the
training is started with a sim-data-only checkpoint, the per-
formance is much better: predictions of orientation, location,

Fig. 11 Accuracy and IOU over different data set sizes (from
RealPermLarge and RealPermLarge) on with CNN and Trans-
former (Transfer from models pretrained on SAC)

and extent are much more accurate which is also reflected by
the metrics. Additionally, the performance increases almost
linearly with the number of real data samples used.

When using different networks on different amounts of
data, we take into account that the Transformer has many
parameters and thus may show underwhelming performance
on a data set as small as the real-world data set we use. There-
fore we utilize the CNN with its much smaller parameter
number as a second baseline for real-data-only training. In
Fig. 11 we compare the CNN and the Transformer regard-
ing real-data-only learning and transfer learning capabilities.
The figure shows that while the parameter-wise smaller CNN
outperforms the bigger Transformer accuracy-wise, they are
on par in terms of IOU. But when leveraging the simulation
data via pre-training, the Transformer outperforms the CNN
by far.

The overall best metrics are hit at a data set size of 240:
IOU 0.5031 (up 0.12 from 10 samples) and Accuracy 95.929
% (up 0.6 % from 10 samples). This answers research ques-
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tion 3, one example of very well defined property maps is
shown in Fig. 8 and another in Fig. 9, with less perfect out-
comes. The latter occurs much more seldom than the former,
but we wanted to include imperfect outcomes in the evalua-
tion as well.
How does the simulation fidelity affect the output of the
trained models (SA vs SAC)?
To investigate research question 4, on how the quality of
the simulation influences the overall performance of the
Sim-to-Real Model, we took the best-performing model,
the Transformer, and tested it on a lower-quality simula-
tion data set. In Table 3, and the paragraph on anisotropy
(2.3.2), we explain why using anisotropic textile features
changes the phenomenology of flow fronts drastically and
why we introduced channels to simulate race-tracking. To
test our model on a dataset that is farther away from show-
ing realistic phenomena, we tested the Transformer on a
dataset without channels for race-tracking. The compari-
son can be made in Table 7. The accuracies are all over
90 %, with better values for the transfer-learning models
each, and the models pre-trained on the more elaborate
SimAnisoChannel data are each better than their SimAn-
iso counterpart. When inspecting the IOU values, it becomes
obvious, that the SimAnisoChannel data models perform
better than the SimAniso models. This difference can also
be observed in Fig. 10. While both transfer learning models
show better results than the models trained on simulation
data only, there are obvious differences in performance
when observing “R1”: The Transfer SA (T/SA) model pro-
duces a misaligned patch compared to the Transfer SAC
(T/SAC) model. When inspecting the models that were
only trained on simulation data and have never seen real
data in training, the differences are even more apparent:
In “R2”, the No Transfer SA (NT/SA) model produces
strong artifacts whereas the No T/SAC model shows light
artifacts and produces the patch in the almost correct size
and position. These excerpts from the dataset reinforce the
claim taken from the metrics, that better simulation datasets
ease the transfer learning process from simulation to reality
(Fig. 11).

5 Discussion and future work

In-mold sensor data would be necessary to apply the results
of this paper to an industrial setting [5]. A modular approach
could first take sensor data andmap them to flow front images
and then feed those outputs directly into themodels presented
here. Alternatively, the mapping from sensor data to perme-
ability deviation maps could be learned end-to-end, given a
small dataset of respective real data.

6 Conclusion

We set out to investigate howmachine learning can be used to
infermaterial properties during theRTMprocess. Generating
huge amounts of real data for the RTM process is time-
consuming, expensive, and therefore undesirable. Instead,
we chose to leverage sim-to-real learning, by generating
large amounts of simulated RTM data, and only a small
amount of real data. We trained three different models, a
simple Conv2D net, a ConvLSTM, and a novel Encoder-
Transformer-Decoder and evaluated their performance. Our
research shows that leveraging simulated data for pretrain-
ing can greatly improve performance compared to a model
trained solely on a small amount of real data. Further, we
investigated how little data is truly needed to have a real-
world improvement. We found that even as little as 10
samples can be enough if the data is generated carefully with
respect to expert knowledge. To add a little more detail, using
10 real samples with a network that was pre-trained with a
well-crafted simulation, we gain 25 percent points in accu-
racy on a non-pretrained network. In terms of IOU, we gain
0.20 points. The difference between two data sets based on
better or worse simulations is 1.4 percent points in accuracy,
from 93.9 to 95.3 and 0.08 in IOU, from 0.30 to 0.38. That
shows that only small amounts of data can be used when a
simulation for pretraining is available and better simulations
leverage the results even further. Additionally, we showed
how the quality of the simulated data can impact model per-
formance. Our results suggest that keeping the domain shift
between real and simulated as small as possible can help to
improve the quality of the predictions.
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Appendix

Detailed results

Table 8 No pre-training Transformer - detailed results with different amounts of data; Aggregated values shown in Fig. 11

Samples Loss Acc. Tot Acc. V f Acc. kx Acc. ky IOU V f IOU kx IOU ky IOU Mean

10 0.0165422 68.099% 72.523% 50.257% 81.516% 0.034013 0.344049 0.246932 0.208331

20 0.0158130 78.690% 82.139% 61.143% 92.788% 0.044389 0.339176 0.153751 0.179105

30 0.0159587 75.717% 82.690% 54.952% 89.510% 0.043476 0.354622 0.211363 0.203154

40 0.0161202 82.501% 89.477% 67.178% 90.847% 0.073880 0.340391 0.190077 0.201449

50 0.0164062 64.440% 71.970% 33.255% 88.094% 0.034064 0.37213 0.234532 0.213575

60 0.0161861 80.329% 88.660% 60.618% 91.708% 0.065708 0.357713 0.186732 0.203384

70 0.0161451 81.508% 88.427% 64.143% 91.955% 0.065586 0.336541 0.168408 0.190178

80 0.0161155 86.332% 90.629% 75.347% 93.021% 0.108479 0.297488 0.125445 0.177137

90 0.0166188 71.991% 86.392% 38.661% 90.921% 0.047686 0.38306 0.287587 0.239444

100 0.0163216 83.778% 90.016% 68.560% 92.756% 0.071704 0.32526 0.141037 0.179334

110 0.0166828 73.637% 81.038% 48.240% 91.631% 0.033620 0.369688 0.288263 0.230524

120 0.0187994 76.010% 86.828% 49.563% 91.640% 0.039363 0.366596 0.214816 0.206925

130 0.0160387 74.607% 83.895% 47.241% 92.685% 0.040746 0.378602 0.309703 0.243017

140 0.0177869 78.064% 88.949% 53.281% 91.963% 0.057633 0.370932 0.173969 0.200845

150 0.0170197 84.299% 91.089% 69.182% 92.626% 0.074312 0.353615 0.203177 0.210368

160 0.0168831 78.123% 88.521% 53.275% 92.574% 0.046457 0.369295 0.162155 0.192636

170 0.0169577 80.149% 84.661% 63.163% 92.623% 0.047978 0.375136 0.190836 0.204650

180 0.0170416 80.345% 89.339% 59.471% 92.223% 0.068956 0.367028 0.189216 0.208400

190 0.0172743 81.931% 92.167% 62.078% 91.547% 0.067358 0.364322 0.220082 0.217254

200 0.0159881 87.352% 91.832% 77.182% 93.042% 0.082572 0.316509 0.110834 0.169972

210 0.0164499 81.665% 89.767% 62.699% 92.531% 0.061473 0.375503 0.174768 0.203915

220 0.0147800 83.130% 93.862% 62.403% 93.124% 0.078310 0.352127 0.163489 0.197975

230 0.0137620 69.460% 90.057% 49.717% 68.607% 0.041242 0.381856 0.383208 0.268769

240 0.0149745 80.323% 93.218% 54.109% 93.642% 0.096225 0.355923 0.190733 0.214294

250 0.0160068 76.830% 94.091% 44.708% 91.690% 0.097430 0.378871 0.213739 0.230013

260 0.0188773 81.699% 91.560% 60.962% 92.577% 0.051598 0.371917 0.189565 0.204360

270 0.0141966 78.513% 91.595% 52.164% 91.779% 0.062836 0.367261 0.197622 0.209240

280 0.0150943 74.397% 94.389% 38.747% 90.056% 0.061794 0.376857 0.290734 0.243128

288 0.0182947 77.929% 93.754% 48.260% 91.772% 0.068721 0.384171 0.335697 0.262863

123

1530 The International Journal of Advanced Manufacturing Technology (2023) 128:1517–1533

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Table 9 Pretrained Transformer - transfer learning from simulation data - detailed results with different amounts of data; Aggregated values shown
in Fig. 11

Samples Loss Acc. Tot Acc. V f Acc. kx Acc. ky IOU V f IOU kx IOU ky IOU Mean

10 0.0133460 95.331% 97.173% 92.650% 96.171% 0.612649 0.292418 0.242679 0.382582

20 0.0129446 96.118% 98.076% 93.549% 96.730% 0.621275 0.253385 0.418366 0.431009

30 0.0129888 95.955% 98.143% 92.732% 96.990% 0.651668 0.234002 0.367467 0.417712

40 0.0121212 95.546% 97.518% 92.551% 96.569% 0.600641 0.230532 0.372306 0.401160

50 0.0108170 95.888% 97.806% 93.110% 96.748% 0.623077 0.247487 0.307187 0.392584

60 0.0104289 95.682% 97.411% 93.076% 96.558% 0.550819 0.274899 0.327013 0.384244

70 0.0110687 96.243% 97.905% 93.896% 96.928% 0.646681 0.248117 0.422256 0.439018

80 0.0106635 95.918% 97.996% 92.885% 96.874% 0.684139 0.274285 0.448208 0.468877

90 0.0094973 94.933% 97.918% 90.084% 96.795% 0.648591 0.255770 0.419495 0.441285

100 0.0096477 95.921% 97.689% 93.384% 96.690% 0.603805 0.245180 0.397894 0.415626

110 0.0087622 96.131% 97.833% 93.824% 96.734% 0.662984 0.322421 0.334758 0.440054

120 0.0094640 94.832% 97.886% 89.805% 96.804% 0.660667 0.300703 0.379054 0.446808

130 0.0087991 95.962% 98.008% 92.982% 96.895% 0.666404 0.326243 0.416300 0.469649

140 0.0102821 95.913% 97.787% 93.136% 96.816% 0.622517 0.357582 0.426917 0.469005

150 0.0094783 96.354% 97.961% 94.064% 97.036% 0.680125 0.384144 0.441130 0.501800

160 0.0103803 95.868% 97.476% 93.478% 96.649% 0.578461 0.340827 0.380739 0.433342

170 0.0101718 95.896% 97.992% 92.654% 97.043% 0.684960 0.378962 0.412551 0.492158

180 0.0097338 96.248% 97.620% 94.343% 96.780% 0.611421 0.387581 0.461896 0.486966

190 0.0109057 95.905% 97.851% 92.958% 96.905% 0.630847 0.338971 0.391042 0.453620

200 0.0089327 95.791% 97.984% 92.462% 96.928% 0.677504 0.356018 0.409484 0.481002

210 0.0135155 95.793% 97.406% 93.160% 96.812% 0.561755 0.323209 0.361790 0.415585

220 0.0090755 95.904% 97.981% 92.615% 97.117% 0.676223 0.377183 0.435174 0.496193

230 0.0105710 96.066% 97.802% 93.543% 96.853% 0.653986 0.374656 0.415561 0.481401

240 0.0095079 95.929% 97.660% 93.163% 96.965% 0.672315 0.395464 0.441653 0.503144

250 0.0103522 94.946% 97.705% 90.302% 96.831% 0.604031 0.340273 0.378697 0.441000

260 0.0098892 96.459% 97.790% 94.708% 96.880% 0.591426 0.360057 0.433019 0.461501

270 0.0101265 95.339% 97.763% 91.322% 96.933% 0.622377 0.373093 0.387097 0.460856

280 0.0098410 96.187% 97.826% 93.760% 96.975% 0.611177 0.376601 0.411001 0.466260

288 0.0099005 96.312% 97.891% 93.961% 97.083% 0.656179 0.373017 0.449664 0.492953
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Further information on real data

Fig. 12 Distribution of V f in the preform (top) and the patch region
(bottom) in the real-world permeameter experiments
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