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ABMUS is a workshop where urban and geo-spatial modellers get together in a focused
session, during the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). The central goal of this workshop is to bring together the community of researchers
and practitioners who use agent-based models and multi-agent systems to understand and man-
age cities and urban infrastructure systems. Through the exchange of ideas and state-of-the-art
within this area, we will pool together current thinking to discuss avenues of fruitful research
and methodological challenges we face in building robust, realistic, and trusted models of ur-
ban systems. Drawing from recognised challenges faced by the modeling community through
the COVID-19 pandemic and similar public policy crises, the overarching theme for the work-
shop this year will be ‘Trust, Transparency and Translation’. Participants will be asked
to describe how their models are creating a bridge between the synthetic and real worlds, and
making their way into real-world policy and decision-making. This year, we invite presentations
that describe how researchers construct their models, demonstrate results, work with policy and
decision-makers, and how these processes either facilitate or hinder the process of urban sys-
tems model building from the modeller’s perspective. We will discuss challenges associated with
model development, data interoperability, consistent representation of space and time, as well
as developments in interfaces and stakeholder engagement.

Further details are available at: http://modelling-urban-systems.com/abmus2022/
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Synthetic generation of individual transport data: the case of Smart

Card data

Minh Kieu, Iris Brighid Meredith, Andrea Raith
University of Auckland, New Zealand

March 11, 2022

1 Introduction

The acquisition and dissemination of individual data are key for research in many disciplines, including
social simulation. Wide access to individual data has unprecedented benefits for the analysis and modelling
of heterogeneous individual behaviour and is highly valuable when supporting decision making. However,
governments across the globe have increasingly become concerned over privacy and the exchange of
personal data. Simple data de-identification measures such as data-masking, top-coding, adding noise
or random data swapping are not sufficient to protect individual confidentiality Drechsler and Reiter
(2011). This poses a major risk of privacy breaches for vulnerable individuals and thus prevents the wider
dissemination of personal data to the wider research community and limits the impacts of research on
policymaking. On the other hand, as the risks of personal data disclosure increase, the alterations made
by data owners may impact the usefulness of the released data.

To address the limitations of standard de-identification measures, literature has offered various ap-
proaches aiming at generating partially synthetic or fully synthetic data from real data. The idea is
to retain the probability distributions in the data, but each synthetic data sample does not represent a
real person in the raw data. Synthetic data enables public dissemination of the data while protecting
individual privacy and preserving data utility. With higher quality synthetic data, analysts can develop
meaningful and relevant research that can contribute to decision making. Data owners, who are generally
policymakers, can also benefit from access to cutting-edge models and synthesis methods that can be
directly implemented on the real data.

While synthetic data generation has attracted great interest and proved effective for images Karras
et al. (2020), music Briot et al. (2020) and texts McKeown (1992), synthetic data is often poorly un-
derstood in transportation. Human mobility-related data in transport is relatively unique compared to
popular personal data such as census data, health records or financial data because individual transport
data such as Smart Card data often have operational information such as travel routes and modes, which
are strictly spatially constrained, e.g. train travels occur only to and from train stations. Analysts gen-
erating and working with synthetic transport data must be aware of the confidentiality of this spatial
element while aiming to retain the spatial information in the data.

This paper compares two of the most advanced methods for data modelling and synthetic data gen-
eration: Bayesian Network and Generative Adversarial Network for the generation of the most popular
individual data in transportation: the Smart Card data. Smart Cards have become the de facto standard
for modern public transport systems. The availability of Smart Card data has recently enabled novel re-
search in intelligent transport systems, such as the analysis of travel behaviours (Kieu et al. 2015, 2018),
inference of trip purposes (Lee and Hickman 2014), or intention to transfer (Kieu et al. 2017). However,
the research community has not widely benefited from the ubiquitous availability of Smart Card data to
support decision making while policymakers, who may have access to the raw data, have not yet been
informed by the cutting-edge research on their data. The framework in this paper connects Smart Card
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data owners to a much wider community of researchers through synthetic data modelling and generation.
It enables researchers to work on a synthetic dataset that is reasonably similar to the real data, having
the same distributions and retaining the spatial-temporal activity sequence in the real data, but with data
points not representing real people. On the other hand, this paper provides public transport agencies,
research centres, local councils and other Smart Card data owners with a better alternative for public
data dissemination. The scientific contributions of this paper are three-fold:

• We introduce a new data pipeline to process raw Smart Card data into sequential spatiotemporally
constrained trip data

• We apply a Generative Adversarial Network, a Bayesian Network to model and generate synthetic
smart card data

• We compare and contrast the two methods mentioned above, discussing the advantages and disad-
vantages of each for the data synthesis problem

2 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GANs) are generative models in deep learning that aim to discover
the patterns in input data and then generate new data observations that are very similar to the original
dataset. The core idea of GANs is the use of two sub-models: a generator model that generates new
observations, and a discriminator model that classifies the generated observations as either real or fake
data. The two sub-models are trained subsequently in a zero-sum game (based on game theory), until
the discriminator cannot differentiate the generated from the real observations for half of the time, which
means that the generator is capable of generating valid observations. More details on GAN can be found
in the original paper by Goodfellow et al. (2014).

Among the latest GAN-based algorithms in the literature, we adopt Tabular Conditional GAN (CT-
GAN) for modelling and generating of Smart Card data (Xu et al. 2019). CTGAN excels in modelling
and generating mixed tabular data of continuous and discrete variables, similar to our Smart Card data.
CTGAN has been proven to outperform many other data generative methods in the original paper (Xu
et al. 2019) and several specific applications, such as insurance data (Kuo 2019).

3 Bayesian Networks

A Bayesian Network is a directed acyclic graph with a variable and a conditional probability associated
with each node: the distribution for each variable is conditioned on the variables upstream of it in the
DAG. A joint probability distribution for the variables can then be fitted on the graph and sampled
from, generating a synthetic sample. In this paper, shape learning on the dataset was performed using
the hill-climbing and constraint-based search approaches, with parameter fitting being performed by
expectation-maximisation and forward sampling being used to generate the synthetic datasets.

4 Evaluation of generated data

In this section, we analyse and compares the generated Smart Card data from BN and GAN. We hy-
pothesise that the generated data should have the same probabilistic distributions as the real Smart Card
data.

Figure 1 displays the generated distributions of the tag-on times and tag-off times (in minutes from
midnight) for each of the models discussed above against the real data:

Both BN and GAN broadly fit a mixture of normal distributions similar to the underlying data, it is
clear from the plots that the real dataset’s distribution is best approximated by the BN, which has almost
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(a) Tag on time distributions for the real
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(b) Tag off time distributions for the real
dataset and three models

Figure 1: Tag off time distributions for the real dataset and three models

identical properties. GAN fits a similar structure, though it appears to overestimate and misplaces the
peaks. GAN overemphasise peaks in the data, meaning that a dataset generated from the GAN would
underpredict uncommon events.

We then look at the distribution of origin and destination zones. These variables are categorical, as
the zones vary from 1 to 23. If the algorithms can retain the distributions of origin distribution, they can
reproduce the spatial distribution of trips. Figure 2 shows three Chord diagrams of public transport trips
from the real data (Figure 2(a)), generated data from GAN (Figure 2(b)) and generated data from BN
(Figure 2(c)). The larger the chords, the more trips are there in the data.

(a) Real distribution of Origin-
distribution

(b) Generated distribution of Origin-
distribution from GAN

(c) Generated distribution of Origin-
distribution from BN

Figure 2: Tag off time distributions for the real dataset and three models

Both GAN and BN can replicate the overall spatial travel patterns, where the majority of the trips
are between and within a few zones. Figure 2 show that zone 1, 5 and 6 are popular zones, and there are a
lot fewer trips started or ended in zones 10 to 23. While both GAN and BN can replicate those patterns,
BN seems to more accurately generate the proportion of trips from each zone. In GAN the most popular
zones (zone 1,5 and 6) are slightly less popular, whereas the remaining zones have a larger share than the
real data.

Finally, we look at the distribution of travel time at each travel zone in Figure 3. This is the most
challenging variable for GAN and BN to capture, as we are interested in a temporal by-product (travel
time) that is spatially constrained (travel zones). Figure 3 shows the real and generated distribution of
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Figure 3: Distribution of travel time at each zone

Figure 3 shows that each zone has a unique distribution of travel time. Zone 1 and Zone 2 has
more trips at higher travel time than the rest, while the travel time of trips from Zone 4 to 6 is highly
concentrated at lower values. Both GAN and BN struggle to learn the complex travel time distribution
at different zones, with BN performing slightly better than GAN. The generated travel time is relatively
stable across the zones. We leave the spatial learning of by-product temporal variable (e.g. travel time)
to a future study, where spatial interaction data synthesis models may need to be introduced for this
purpose.

5 Conclusion and future works

This abstract describes the current progress of an ongoing project “Synthetic Big Data of Human Activities
(SynAc)”. The comparison between Bayesian Network (BN) and Generative Adversarial Network (GAN)
shows that both methods can model and generate data that have the same distributions with the real
data, both spatially and temporally. The synthetic data from Smart Card can be used as the synthetic
population for an Agent-Based Models of public transport.

The next step in SynAc is to retain the sequential structure of transportation data, such as individual
travels at a certain time from one area to another. This structure expresses the individuality of each
person in as much as their activities are associated with travelling. The sequential travel activity from
Smart Card data is even more challenging to synthesise as a person’s travel itinerary will be incomplete
if some of the travel is not done on public transport. We are currently exploring BN, GAN and various
other methods in synthetic data modelling and generation for sequential transport data.
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Abstract. This paper proposes an agent-based simulation model of an urban en-
vironment to evaluate alternative transport-oriented development (TOD) designs 
for infrastructure proposals prepared by urban planners. The model is tested by 
the students as model users, and the generated model output on the use of the city 
infrastructure, occupancy of public space and key data around the pedestrian and 
vehicle movements results can be translated to design modifications. A particular 
challenge with this approach is the inclusion of realistic data for the behaviour of 
the transport system users. To this end, an experiment was conducted in which 
data on the individual behaviour and activities was collected, which could be in-
tegrated in the simulation model to capture realistic responses to TOD proposals. 
Illustrative results are shown, demonstrating the model can produce results that 
are meaningful to planners, but also highlights the role of agent-based simulation 
models to steer the data collection process and engage with decision-makers. 

Keywords: TOD, agent-based model, data collection, decision-support tool. 

1 Introduction 

The issue of integrated design of transit stations and affiliated urban areas such as 
transit-oriented development (TOD) have gained increasing attention worldwide [1]. 
The design of a new generation TOD emphasizes improving access to active travel and 
high-quality public spaces to promote human comfort [2]. To appraise whether a plan-
ning scenario achieves such improvements, there is a need for urban design support 
tools for studying the impact of different design scenarios and examining how people 
use the infrastructure and public space under different design alternatives. Agent-based 
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authors would like to thank Dr Yuan Zhu (Southeast University, China) for leading the MSc 
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modelling (ABM) is a suitable modelling methodology to create a heterogeneous pop-
ulation with activity patterns which lead to transport decisions (including mode, route, 
time) for a given environment and infrastructure options. Collectively, the individual 
decisions lead to insights on key indicators that can support planners in evaluating dif-
ferent alternatives and ensure new developments are attractive, efficient for users but 
also meet sustainability and economic targets. One of the challenges for ABM applica-
tions in this domain is how to build data-driven models and explore human behaviour.  

Model development itself can help guide data collection [3] by showing what data 
is required to test a theory. Moreover, models can often be built as generic frameworks 
which are then instantiated for a specific case study by providing relevant case-specific 
input data. The ODD protocol specifically refers to this as “initialisation” and “input 
data” to describe part of the model [9]. However, there remains several methodological 
challenges, for example, in collecting data that matches the specification of the model, 
linking data sets together, analysing the data to extract significant drivers and behav-
iours [4], deriving agent-rules from data, and integrating human-environment models 
[5]. Kagho et al. highlighted that “the data collection process is one way error can be 
introduced into the model” and data bias (e.g. introduced by preference surveys) could 
cause bias in models [6]. 

This paper therefore aims to: 1) build a data-driven ABM decision-support tool for 
urban designers, especially in designing and evaluating people-centric TOD plans; and 
2) discuss the role of data in the development of the urban simulation model, and the 
use of output data to help influence decision-making in a case study in Nanjing, China. 

2 A prototype ABM 

To meet these aims, we firstly developed a prototype model “Transport, Spaces, and 
Humans-system (TSH-system)” and implemented the model in the GAMA platform 
(documented in https://gama-platform.org/wiki/Projects). Fig.1 shows the model inter-
face. The model was built as a generic framework to support students and practitioners 
in urban planning and design, architectural design, and other fields to analyse urban 
systems and to quantitatively evaluate design schemes [7, 8]. It allows the simulation 
of private car drivers and pedestrians for a given TOD plan to predict the usage of the 
space and relevant activities, as well as automobile travel demands, active travel de-
mands, and transport mode choices. 

Input data includes GIS files (land use, walking routes, and driving road network), 
population statistics (e.g. density), activity patterns, walking and driving speeds, mode 
choice parameters (e.g. weight of money cost in mode choice), personal parameters 
(e.g. shoulder width), and pedestrian parameters (e.g. the repulsive force in social force 
model). The model then outputs hourly data in terms of users over the urban space 
(occupancy/dwelling time), automobile traffic volumes and pedestrian population on 
each road segment. 
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3 Case study 

The model was tested in a regular MSc course at the School of Architecture in Southeast 
University, China, which attempts to explore the future development model of the sur-
rounding plots of transit stations [8]. This year, a case study was conducted in Shanghai, 
China (see Fig.2). Research site is located at plots X101-01 and X102-02 of Shanghai 
West Railway Station. It is not only the location of the Shanghai West Railway Station, 
but also a transfer station of Metro Lines 11, 15 and 20; thus, it is an important hub for 
the local and wider area. 

Students conceived their designs based on a primary aim, for instance, to improve 
spatial orientation and wayfinding, to combine two grid road systems, and to create a 
high-quality microclimate. To test the effectiveness of their plans, they changed the 
GIS input files in terms of the land uses, activities, road network and pavement network, 
and ran the simulation model for their scenario. The model then presents hourly number 
of users in urban spaces, traffic volume over the road network, and walking demands 
across the pavement network which provided the designers with relevant metrics to 
help them revise their plans iteratively. 

4 Data collection and initial results 

The GIS data was based on a baseline of the built environment, with the modifications 
and designs prepared by the user as part of their proposed intervention. In addition to 
the spatial data, agent-behaviour data was required to enable a user to simulate the use 
of the urban system. To collect relevant behavioural data, an experiment was set up for 
which 30 participants (10 are students from the MSc course and 20 are volunteers) were 
recruited. It was conducted in Nanjing city in China. The experiment aims to explore 
the pedestrians’ walking behaviour in affiliated areas of rail transit stations as well as 
the impact of the design of such areas (underground/semi-underground/open outdoor 

 
Fig. 1. Interface of the TSH-system model 
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space) on their behaviour, cognition, and comfort. Each participant visited the different 
spaces of three subway stations and one railway station freely for 10 minutes while 
being monitored.  

The ErgoLAB human-machine environment platform and a series of wearable phys-
iological recording modules were used to collect and analyse multi-dimensional human 
factors data synchronously. The factors of time-space trajectories, electroencephalog-
raphy, eye movement, electrodermal activity were investigated. Activity pattern data 
was collected by a survey. For the first step of building data-driven ABM, we will ex-
tract features of pedestrians’ walking behaviour from the time-space trajectories includ-
ing for example the movement direction angle. 

By using the TSH-system agent-based model, Fig.3 shows the initial results of sim-
ulating the number of users of each urban space (darker blue plots means a higher 
amount of people) and walking behaviour (darker green lines means heavier traffic) for 
the baseline scenario, simulating how users would interact with the current TOD layout. 

  
Fig. 2. Location of the case study site in 
Shanghai city, China. 

Fig. 3. Baseline scenario simulation of 
walking behaviour: the blue plots show 
the number of users per hour in a work-
day; the green lines show the traffic vol-
ume over the walking network. 

5 Discussions and conclusion 

These initial results illustrate the potential of enriching the prototype TSH-system 
model with the data from the experiment to generate more reliable output for evaluating 
a given design. This enables designers to compare alternatives for the physical design 
of TOD projects for a given population. Besides, the time-space trajectories, physio-
logical, and psychological data we got matches the specification of the model, that is, 
simulating human behaviour in the public spaces around transit stations. Also, the way 
of collection was designed to avoid data bias by not only delivering surveys but also 
recording individual behavioural data using wearable physiological recording devices. 

To incorporate the collected data into the model, we are analysing the data to extract 
significant drivers of individual behaviour in the TSH system and derive agent-rules. 
As always with such complex systems, there is uncertainty around key input parameters 
especially when these are based on an analysis of human behaviour. In the next stage 
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of this project, using sensitivity analysis, we can test the impact of these parameters on 
the final result and use that to guide design updated data collection strategies and ex-
perimental setup. For TOD this specifically refers to mode choice and journey purpose, 
but also the agent’s views on the quality and attractiveness of the space. 

There are, however, some challenges in developing data-driven ABM. For example, 
it is time-consuming to prepare and cleaning the GIS files before integration with agent-
based models. Standardisation of data formats, quality checks, and scaling up data to 
population level are also challenging issues. To this end, we aim to integrate this work 
with a geospatial data platform to take advantage of other relevant datasets (e.g. on the 
environment), linking this with the simulation model, and to presenting simulated data 
in the platform, providing a coherent picture to key decision-makers. 
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Abstract. Agent-Based Modelling (ABM) is applied successfully in var-
ious use cases, including but not limited to economic modelling, socio-
behavioural modelling, ecological modelling, public health, and urban
design. We draw attention to the emerging ABM platform Agents.jl,
written in Julia — an accessible, high-level programming language. We
identify Agents.jl as a promising package for interfacing, customising
and extending for specialised uses. We present the key design ideas for
a proposed extension and interface to the Agents.jl framework for ABM
for urban and social systems simulation — AgentsX.jl — that provides
greater flexibility of agent definitions for urban and social researchers.
Our primary motivation is to formalise ABM design through a “Code as
the Model” approach, reducing barriers to documentation and increasing
reproducibility. Our proposed design entails a structured means of defin-
ing an ABM based on layers modelled after spheres of influence, clearer
constructs to coding an ABM as interfaces to Agents.jl, and an insightful
visualisation toolkit that uses dimension reduction techniques.

Keywords: Agent-Based Modelling · Urban Simulation · Social Simu-
lation · Julia · Agents.jl

1 Introduction

Agent-Based Models (ABMs) are useful tools for modelling urban and social
systems. ABMs are often used in an interdisciplinary manner to inform large-
scale policy decisions, to understand complex behaviours, and to aid in plan-
ning and designing within socio-technical systems. ABMs at their core involve
the creation of an artificial society containing ‘agents’, which can represent any
decision-making entity that acts along with a set of ‘rules’ or ‘behaviours’ de-
fined by the modeller and reveals emergent phenomena [1]. ABMs are useful for
understanding urban systems as they allow the ‘agents’ or the entities within
the model to have a unique set of characteristics which leads them to be located

⋆ Supported by The University of New England and The University of Melbourne



2 R. Vidanaarachchi et al.

in a simulated ‘neighbourhood’. Each neighbourhood can have its own charac-
teristics which influence the agents’ interactions with their environment, with
emergent consequences on factors such as the health and financial status of the
agent [2]. There are extensive examples of applications of ABMs in the con-
text of urban systems, including transport, residential choice, urban growth and
expansion, urban food access, urban planning and health, and urban systems
generally [3–8].

1.1 Background

There are a host of Agent-Based Modelling platforms available, including Netl-
ogo [9], Swarm [10], MASON [11], Repast [12], Mesa [13], and the newly minted
Agents.jl [14]. Among these, we identify Agents.jl as a platform with much po-
tential (for review, see [15]). It has a simple back-end, is fast, and the underlying
language — Julia — is a well-supported general programming language.

As ABMs are often used interdisciplinarily, it is crucial that a human-readable
definition accompanies them. A proper definition of an ABM has two roles.
Firstly, it allows for a better understanding of the model by users. Secondly,
it increases reproducibility. We identify two noteworthy approaches to these
issues. First is the ODD (Overview, Design Concepts, Details) by [16], which
is the formal documentation method in the ABM field. Second is the “Code as
the Model” approach argued for in [17]. Both have documented strengths and
weaknesses [18]. The latter of which may be overcome using this extension.

Formal methods are often employed where computational methods are ap-
plied in critical systems. When ABMs are used in urban and social simulations
that affect policy decisions, it is not unreasonable to expect a certain degree of
formalisation. [19–21] present attempts to formalise ABMs.

1.2 Motivation and Contributions

In this paper, we introduce AgentsX.jl, which is an extension to an ABM frame-
work based on the Agents.jl platform. The framework’s design reflects an effort
to formalise ABMs and improve the ease of human readability. We achieve these
goals through the extension and interfacing of the Agents.jl platform and present
a framework specifically suitable for urban and social simulation.

We are influenced by the arguments presented in [17] that code is the ultimate
definition of a computational model. However, we believe that code needs to
be structured in a manner that serves as a robust, readable definition. Hence,
we provide infrastructure to generate ABMs that would represent unambiguous
models. We also recognise the importance of visual documentation as mentioned
in ODD [16]. We, therefore, also provide infrastructure for model developers to
generate simple automated visual representations of ABMs, reducing barriers to
visual documentation.

A complementary contribution that stems from the layered structure we
introduce is the visualisation of Agent movement and behaviour beyond the
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traditional spatial domain, which allows analysis and actuation in spatial and
alternate (e.g., social) domains, as visualised in Fig. 2.

2 Methods

This paper discusses the design and the initial development of work-in-progress
that is available at github.com/rajithv/AgentsX.jl. This work is an actualisation
of a conceptual framework that seeks to formalise ABMs. The Julia language
implementation of the framework eases barriers into coding a robust Agent-
Based Model through facilitating formalisation through code generators.

We present AgentsX.jl as an extension and an interface to the Agents.jl
platform that would cater specifically to urban and social simulation paradigms.
Primary reasons to keep the work distinct from the base Agents.jl package is due
to the specialisation into social simulation support that would be unnecessarily
complicated for simulations solely dedicated to the spatial domain that is already
well supported through Agents.jl.

Fig. 1. A layered agent

Fig. 2. Multiple agent types provide instances to the ABM that inhere independently
in different dimensions
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As part of our extension, we propose a structure that separates the agent
definition in attributes and actions through clearly defined source code files. To
formalise the definition of attributes, we introduce a new abstract agent type
— LayeredAgent — that recognises the heterogeneity of agent attributes. A
standard example is an agent with Spatial, Cognitive, Physiological and Socio-
Economic attributes as seen in Fig. 1. Each layer is modelled as a parametric
layer, enabling agents to be visualised through any subset of layers, not just in
the spatial domain, as is the case with traditional visualisations. We formalise the
actions by separation of responsibilities in the source code from the attributive
definition of the agent and by defining the scope of the actions as intra- or
inter-layer actions taking place between agents and the environment.

We facilitate this formalised structure through a code generator similar to
that of PkgTemplates.jl package generator and use Mustache.jl based templates
in its implementation.

create_agent_template(;agent_class, num_agents, space,

random_seed = 250, layers = Nothing, actions = Nothing)

We provide two main interfaces to the existing Agents.jl architecture. Firstly,
we provide a generalised step function and defer the definition of an agent’s ‘step’
to the definition of the agent itself through an ordered list of actions or a function
that describes a sequence of actions. Secondly, we provide a simpler construct
to adopt multi-agent models by overriding the AgentBasedModel() function.

ABM(agents::Array{<:AbstractAgent}, args...; kwargs...)

We propose the following rules for layers and actions — and enforce the same
in AgentsX.jl — to ensure a robust ecosystem for ABMs.

Layers

1. All agents share a single environment.
2. Agents in a model can be of different types.
3. Agents have layers describing different internal domains.
4. Different agent types have different subsets of layers.
5. The environment has a set of corresponding layers that is equivalent to the

superset of the union of layers of each agent type.
6. Layers are described through parameters.

Actions

1. The environment is omniscient.
2. Interactions could be within the agent (self-interactions), between multiple

agents, or between the agent and the environment.
3. Agent-agent interactions must be facilitated through the environment.
4. Interactions could be inter- or intra-layer interactions.
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3 Conclusion

The design of the AgentsX.jl framework allows the formalisation of Agent-Based
Models in a programming language that is fast, easy to use and future-proof.
Together with the code generator, the proposed structure would allow the repro-
duction of ABMs with minimal ambiguity. Moreover, the layered agent design
would improve the overall design of agents with respect to clarity of agent be-
haviour, data collection, isolation of agent domains, experimentation, and anal-
ysis. These properties would ensure a high level of trust in the model, allowing
translation into high-impact real-world results.

We suggest that the proposed interfaces to Agents.jl would facilitate coding
practices that contribute to the “Code as the Model” approach and enhance
clarity, communication, and reproducibility for users. The layer-based reduced
dimension visualisations would allow modellers to look beyond the spatial ar-
rangement of agents in single domains, allowing more sophisticated agent inter-
actions in other (any) parameterised agent domains.

3.1 Future Work

The current design of the Agents.jl and AgentsX.jl, as well as the design princi-
ples of the Julia language, allows modular improvements resulting in ambitious
possibilities for development and future work. These may include a centralised
representation of agents that can be converted to human readable documenta-
tion as well as computer-readable code with minimal effort. Another direction
relates to perception and actuation interfaces for interactions. This is based on
the idea that the actual environmental conditions are perceived by the agents
with an individual bias, resulting in variations of perception. Similarly, actions
taken by the agents will have an intention-actuation gap, resulting in variations
of actuation.

We note that in the most recent Agents.jl publication [15] it is suggested
that the multi-agent simulation architecture may be upheaved in the future.
We believe the work presented and the proposed future works can positively
influence the modelling of complex social behaviours within urban and social
systems.
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1 Introduction

Emergency evacuations are increasingly becoming problematic and complex in cities (Batty 2008; Borja
2007). It is because the population of the cities and coastal states is steadily growing (Chang & Lo 2016)
while transportation infrastructures fail to keep pace with this growth (Dow & Cutter 2002). Under severe
emergencies, evacuation is the most important and effective method to save human lives within limited
time and space (Lämmel 2011). Mass evacuations often rely on automobiles which usually presents a
complex process, sometimes leading to undesirable and chaotic outcomes (Lämmel 2011) where injuries
or deaths are caused by crowding, crushing and congestion during emergencies (K. Wang, Shi, Goh,
& Qian 2019). The unique characteristics of evacuation traffic; large number of agents, their panic or
herding behaviour (Lämmel 2011), and traffic flow including accidents, damaged, and emergency vehicles
(Bani Younes, Boukerche, & Zhou 2016) need to be incorporated into the design of generic traffic simula-
tion (Yin, Wang, & Ouyang 2020). This highlights the necessity and significance of a better understanding
of traffic flow dynamics, which can be used to facilitate human safety and evacuation management and
planning.

Various techniques have been proposed in the existing literature to model and understand the emer-
gency evacuation process (Chiu, Zheng, Villalobos, Peacock, & Henk 2008). Computer simulation has
been an effective experimental means for evacuation planning and management due to its low cost and
high speed to improve the evacuation process (Zhang, Chan, & Ukkusuri 2014). Among the computer
simulation methods, Agent-Based Modelling (ABM) is particularly suitable for simulating individual be-
haviours and exploring emergent collective phenomena in evacuation. To capture the phenomena and
complexities during evacuations, modellers often have to craft the rules of individual behaviours in ABMs
from limited post-disaster surveys (Zhao, Lovreglio, & Nilsson 2020) and modellers’ knowledge (Zhao et al.
2020). Although the machine-learning-based solutions reduce such a bias and provide better performance
in terms of prediction accuracy (K. Wang et al. 2019), these methods fail to provide mechanistic expla-
nations of human evacuation behaviour (Rand 2019), and only a few studies have used machine-learning
techniques to investigate evacuation behaviour (Zhao et al. 2020; Şahin, Rokne, & Alhajj 2019). We argue
that the existing theoretical understanding of human behaviours during evacuation is insufficient for us
to effectively simulate, because of two unsolved challenges:

– Existing data about evacuation behaviours are often scarce and unreliable
– Classical models of complex systems can be highly predictive at the overall system level (i.e. black

box) but fail to offer a theoretical explanation of the stochastic human behaviours

This paper presents a work-in-progress research in development of Inverse Generative Social Science
(IGSS) (Gunaratne & Garibay 2017; Vu, Davies, Buckley, Brennan, & Purshouse 2021; Vu et al. 2020,
2019) for simulating human behaviours during an emergency. It first reviews the literature on agent-
based modelling in simulating human evacuation behaviours and highlights the possibility of credible
and falsifiable knowledge discovery frameworks to offer a theoretical explanation and modelling of human
behaviours during an emergency evacuation. Instead of crafting the exact equations or rules governing
human behaviours (like in classical ABMs), we hypothesise that if we can systematically generate an
ensemble of potential human behaviours from the limited observed data that we have, then we can
evaluate these propositions to understand how people will behave. We believe that there are still two
major scientific challenges that we will address in this research:



– While other IGSS-based frameworks rely on a large volume of aggregated data, where various methods
can be used to explore the behavioural space (e.g. genetic algorithms (Smith 2008), conventional
genetic programming (Vu et al. 2020, 2019) or regression (Gunaratne & Garibay 2017)), we often
have limited data for evacuation scenarios.

– Evacuation scenarios often involve a large number of agents, with a high diversity of behaviours, which
lead to computational problems from evaluating many generated behavioural propositions, and from
performing expensive bi-level optimisation of both model structure and model parameters.

2 Literature Review

There is a considerable amount of research that has proposed solutions to model pre-evacuation decision-
making during an emergency (Zhao et al. 2020). Of them, several Agent-Based Models (ABMs) have been
developed to investigate emergent evacuation scenarios (Dawson, Peppe, & Wang 2011; Lovreglio, Ronchi,
& Nilsson 2016; Wood & Schmidtlein 2013; Zhang, Chan, & Ukkusuri 2009). Although existing ABMs
can capture the dynamics during an evacuation process and offer a detailed analysis of agent interactions,
each agent’s evacuation decisions are based on a set of rules (Dawson et al. 2011; Zhang et al. 2014).
However, the possible linear or nonlinear trends of each factor of the model outcomes need to be specified
by the modellers (modeller’s bias), and this may reduce the possibility to investigate the actual trends
(Zhao et al. 2020). Under evacuation circumstances, drivers and pedestrians act in an unexpected panic
situation and the traditional driver behaviour models such as car-following and lane-changing behaviour
might fail to capture the conditions in emergency Li and Wang (2020). Apart from that, ABMs are not
designed to produce behaviours that the designer can interpret and require intensive computational power
with the complexity of the simulation (Cummings n.d.).

A very small literature exists on the “model discovery” (Gunaratne & Garibay 2017), and “inverse
generative social science” (Vu et al. 2019)) of mechanism-based models. Both approaches use evolutionary
computing (EC) methods to steer the search for good model structures. In a handful of studies on IGSS,
evolutionary computing has also been used to search for ABM structures recently – the agents’ internal
rules and structuring computational architectures. In an early study, Smith used a genetic algorithm
to evolve the rules in a classifier to reproduce the observed social assortativity of birds (Smith 2008).
More recently, Zhong and colleagues used gene expression programming to optimise the structure of
a reward function used by agents to evaluate behavioural choices, such that the ABM could better
reproduce empirically observed crowd behaviours (Zhong, Luo, Cai, & Lees n.d.). Later, Gunaratne and
Garibay used genetic programming to evolve agents’ farm selection rules to identify new model structures
for a NetLogo implementation of the seminal Artificial Anasazi ABM to reproduce the archaeological
population demography of Long House Valley, Arizona (Gunaratne & Garibay 2017). Vu et al. (2019)
develop an IGSS approach using genetic programming, decision trees, causal state modelling, and machine
learning and artificial intelligence. It used multi-objective genetic programming to identify alternative
situational mechanisms for a social norms model of alcohol use, aimed at both improved representation
of observed drinking patterns in the US over 15 years and theoretical interpretability. The application of
multi-objective genetic programming represents a starting point for building the tools needed to perform
the model discovery process of IGSS. Further, IGSS is a new approach, its applicability in traffic simulation
to model complex human behaviour has not yet been tested and is the most difficult aspect of the
evacuation process and hard to model in mathematical equations (Mas, Imamura, & Koshimura 2011).
IGSS is situated to offer meaningful insights into the mechanisms and evolve the rules to best fit the
decision-making processes under pressure and panic.

Given this background, this study mainly focuses on dynamic traffic conditions among the agents
during the evacuation process. The objective of this study is to build the preliminary evacuation simulation
model to prove the applicability of the IGSS concept in capturing and discovering the rules of agents’
evacuation behaviours and interactions between them under data scarcity. This toy simulation model will
be the base to develop a complex IGSS model that tests and analyses different case study scenarios and
grasp the characteristics and effects of human traffic behaviours during the evacuation.



3 Methodology

Preliminary analysis of the study are made to simulate traffic evacuation with limited empirical data by
establishing the form of the basic algorithm and determining the range of the various system parameters.
The evacuation toy model uses a NetLogo modelling environment (Tisue & Wilensky 2004). We adapt the
agent-based tsunami evacuation model developed by H. Wang, Mostafizi, Cramer, Cox, and Park (2016)
for a case study in Auckland, New Zealand. Figure 1 shows a snapshot of the developed toy model.

Fig. 1: Toy Model on Tsunami Evacuation

The above tsunami evacuation model platform includes five components: the transportation network,
the population distribution, the evacuation shelters, the tsunami inundation, and casualty model. The
simulations are capable to capture evacuees’ socio-demographic characteristics which are related to the
evacuees’ decisions, such as choice of evacuation mode, milling time which marks the start time of their
evacuation, and walking speed which represents the physical ability of the evacuee. The platform is
capable of simulating a tsunami evacuation scenario with variable tsunami and behavioral characteristics.
In addition, the city of Auckland has been used as a case study because of its high risk of experiencing a
tsunami in the foreseeable future.

Figure 1 depicts the agents behaviour after several minutes of simulation process. At the beginning of
the simulation, at time (t) = 0, it shows the distribution of initial population in brown. The ocean is on
the top, and the evacuation shelters (yellow) are placed outside the inundation zone on the bottom and
left. There are fictitious six horizontal evacuation areas located outside of the tsunami inundation zone
and three fictitious vertical evacuation structures within the inundation zone where they are optional
for the user to add. After the earthquake, depending on the milling time, people evacuate either by car



(blue) or on foot (orange), and the tsunami inundates the city causing casualties (red). We focus on the
consequences of the tsunami hazard on the road infrastructure, by providing options to break the road
link during tsunami, and not on the building infrastructures.

The model can simulate several options related to human decisions and mobility characteristics. For
instance, evacuation mode choice (foot, car) is one of the critical decisions, independently made by each
agent, which have major impacts on the overall evacuation life safety. Equally important, and especially
for near-field tsunami evacuations with less preparation time, milling time is another critical variable
that is associated with evacuees’ decision-making process. To capture the evacuation preparation time, as
suggested by Mas et al. (2011), departure times in this work follow a Rayleigh distribution where values of
t and s respectively represent the minimum milling time and the spread of the departure times. The larger
is s, the larger the tail of the distribution towards later departure times will be. Further, the model provides
option for the user to select immediate evacuation in which evacuees start the evacuation immediately
after the tsunami alarm. Two other mobility characteristics affecting the efficiency of evacuation and the
mortality rate of the scenario are the walking speed of the pedestrians and details of vehicular movement
such as the maximum driving speed and other traffic flow variables (Wood & Schmidtlein 2012). In this
work, the movement of vehicles is governed by a classic car-following model, the General Motors model,
the details of which are documented by Mostafizi, Wang, Cox, Cramer, and Dong (2017). In addition, it
is assumed that walking speeds follow a normal distribution with varying mean.

3.1 Study Site

The Auckland city is chosen as the study site for this work, mostly because of its special geographical
and topographical characteristics and higher population of Seaside which is estimated to be 205,608
(Population of North Shore in 2021 2022 - statistics n.d.). The close proximity of the Auckland, within
the next 10 years, there is a 10 percent to 60 percent chance (best estimate is 30 percent) of a magnitude
7 or higher earthquake occurring in the area(GeoNet Earthquake forecasts 2017), which makes this city
prone to tsunami evacuation in the foreseeable future.On top of these, the flat topography of the city
would allow the tsunami inundation to reach a long distance inland in a relatively short time.

3.2 Data for the simulation

The model uses GIS data as input for transportation network, population distribution and evacuation
shelters in the shape-file format.

4 Future Plan and Conclusion

This toy model is developed to investigate the feasibility of using IGSS to simulate individual’s be-
haviours in an emergency, where we would need to overcome data scarcity and modeller bias. We will use
the toy model to provide the pseudo-truth data for an machine-learning-based IGSS model to learn the
action rules used in the toy model. If the model can systematically generate the hypothesised evacuation
behaviour in the developed agent-based model using IGSS concepts, then these preliminary model propo-
sitions can be evaluated to understand how people will behave in an emergency, while addressing major
scientific challenges of using existing IGSS-based frameworks with limited data for evacuation scenarios
and computational problems with a high diversity of behaviours.

With its success, a complex IGSS model will be developed in the future to continue this research. It
will execute several simulations on different scenarios and test the influence of the evacuation behaviour of
agents. Hence, this toy model will be the base to consider more realistic evacuation actions in the future.
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Abstract. The Dutch housing market comprises three sectors: social-
rented, private-rented and owner-occupied. The contemporary market
is marked by a shortage of supply and a large subsidised social sector.
Waiting lists for social housing are growing, whereas households with
income above the intended limit do not or can not leave the social sector.
Government policy and market regulations change frequently, not least for
political reasons. We examine the effects of government policy by means
of an exploratory agent-based simulation. Results provide perspectives
on how internal demand is impacted by regulations in a housing market
suffering from a shortage, and weigh the pros and cons of policy measures.

1 Introduction and Background

The Dutch residential market is experiencing a housing shortage at the time
of writing – an imbalance which is expected to grow in the medium term. The
market comprises three sectors: social-rented (managed directly or indirectly by
municipal governments), private-rented (regulated by a combination of municipal
and national government), and owner-occupied (affected by the mortgage market).

Regulations for the social housing sector and for mortgages have resulted in
a situation where first-time home buyers (‘starters’) with a middle-income in the
market are both ineligible for social housing and unable to purchase a property
[8]. Combined with the limited supply in private renting, this situation leaves a
starter with very few options.

Starters who are eligible for social housing experience that the social-rented
market has growing waiting lists in every major urban area [4]. We term ‘external
demand’ those wishing to enter the housing market, notably starters. Occupying
social housing are families with children living in one-bedroom houses, some
waiting for their turn for a larger houses; others who got their turn but are now
ineligible for larger social housing because they earn above the maximum income
to qualify, but who are also unable to afford to rent privately or to purchase a
property [6]. We term ‘internal demand’ those having a home currently but are
dissatisfied with it. At the same time, however, there are ‘empty nesters’, parents
whose children have moved out, who keep living in social houses that are big
enough to support a family with children.
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The shortage of supply causes imbalance: some households will not have a
home to own or will pay more for the few available dwellings than they would
otherwise; some households under-pay and others over-pay; some households lack
space while others have space to spare.

The question we investigate is: how is internal demand impacted by regula-
tions in a housing market suffering from a shortage? We address this question
by developing an agent-based model (ABM) of the Dutch housing market, in
particular the city of Amsterdam. This simulation model intends to achieve four
purposes: 1. Contrast with economical models through the use of a different
modelling technique. 2. Investigate the effects of regulations on specific household
groups. 3. Provide a flexible approach in which policy changes and new policy
can be easily studied.

2 Methodology and Related Work

We adopt agent-based modelling as it allows a focus on the choices of and effect on
individual households within the regulations – renters, buyers and sellers – and the
emergent city-level effects. The choice of ABM as a methodology is recommended
by Boelhouwer and Hoekstra [2] who highlight the influence of regulations in both
the rental and home-ownership sector on tenure choice. Additionally, the use of an
ABM allows unexpected interactions between regulations to emerge. Boelhouwer
[1] reviews the government policy in the Dutch housing market and concludes
that the current policy creates social inequality. Further, he concludes: “Many
citizens, and more specifically low-middle income groups and young households,
do not understand the current policy choices which leads to an increasing distrust
in government and to instability in society.”

The majority of research on the housing market is either social–anthropological
or economic in nature, and done at a macro level. The econometric models analyse
the relationships between housing prices and market fundamentals. These models
can analyse specific policies, as long as those policies can be described in terms
of the economic variables; however, econometric models cannot accommodate
individual-level behaviour and results. Because of this, these models are unable
to predict emergent patterns caused by policy.

An important precedent for ABM is the work of Gilbert et al. [3]: an ABM of
the English home-ownership sector. The authors show that a simplified model
of the housing market can replicate key behaviours observed in the real market.
Their model provides effective ways to model income and home-owner behaviour
when income changes. However, from a spatial perspective, Gilbert et al. assume
that buyers that cannot buy a home leave the local market to some alternative
municipality. But if this alternative does not exist, such as in a scarce market,
these buyers would not leave the market and keep providing pressure on the
market. The second reason that the model of Gilbert et al. cannot be used for
our research question is that it does not consider the rental sector.

A number of other works model aspects of the housing market or urban
housing development using ABM. To our knowledge, none address the case of
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Fig. 1. Mean mortgage payment and monthly rent paid in the private sector.

a Dutch municipality setting with all three of social-rented, private-rented and
owner-occupied dwellings. The closest are Ziengs and Yorke-Smith [10], who
look at negotiation in Dutch property purchases using ABM, and Overwater
and Yorke-Smith [7], who look at the peer-to-peer rental market in Amsterdam,
again using ABM; Ligtenberg et al. [5] use ABM to study land planning but not
residents’ decisions.

3 Results and Outlook

In the context of the Dutch housing market, we argue that the interaction between
choices of households and regulations in the social-rented, private-rented and
owner-occupied sectors shapes the choices of households. The agents in the model
are: households (as home-owners, sellers, renters), housing corporations (the
non-profit organisations who manage social housing), and private landlords. The
processes in the model are the households’ search for a new place to live, the
allocation of social housing, and the transactions in the private housing market.
The processes are subject to current municipal and national regulations. ABM
provides a convenient way to explore effects of what-if changes to regulations at
both levels. A challenge is to traverse the temporal scales between the frequency
of decisions of different types of agents – buying a property is not a weekly
occurrence for most households! – the pace of regulatory changes, and the market
effects to be observed beyond the short-term.

A full description of the model and results are found in Wiegel [9]. Figure 1,
for example, examines ownership and rental costs in the private sector, between
various sectoral compositions. The results find that in the social sector, selection
may be preferable to lottery due to its bias towards households that already
own a home. The metric of ‘secondary waiting time’ can be effective in helping
split households find a home, but has unclear effects on other households. Third,
increasing the income limit for the social sector is found to favour older households.
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Last, market policies that encourage a change to behaviours – designed to increase
housing stock utilization – can instead spur demand.

This work engages ABMUS participants by, first, providing a case study of
urban agent-based micro-modelling and its interface with public policy. An open
discussion is how (Dutch) policy makers can be informed by such modelling,
during a period where the over-demand in the housing market is a current
political topic. Second, discussing how construction of such ABMs strongly draws
on public data portals e.g., data.amsterdam.nl, which are sometimes incompatible.
Third, by furthering discussion of spatial and temporal ABM design for housing
market micro-simulation [3]. Fourth, by continuing the discourse from previous
ABMUS editions [10].
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Abstract. Public parks are important urban spaces to promote physi-
cal and mental health, in addition to inducing social interaction between
visitors. Within the context of geo-design and sustainability issues, urban
designers are interested in designing parks for visitor’s use as well as easy
management – a bottom-up approach often resulting in public participa-
tion processes. As an alternative, people’s behaviour may be simulated
during the design process thereby testing different design alternatives.
This course of action is also feasible when renovating or redecorating
parks. However, validated models simulating people’s behaviour in pub-
lic parks at a very local level are very scarce. In this project, we use
geodata on people’s activities collected in three public parks in a Euro-
pean city to derive a model of behaviour for an agent-based simulation.
We discuss this process as well as the problem of modelling human be-
haviour at the local scale.

Keywords: urban public parks, behaviour, activities, geodesign

1 Modelling behaviour in public parks – the challenge

Urban green spaces play an important role in the discussion on sustainable and
resilient urban systems. Especially public neighbourhood parks are said to pro-
mote physical and mental health when visited regularly. In addition, public parks
may induce social interaction between visitors. Analytical approaches (in the
form of surveys and interviews, see e.g. [5]) show these benefits of urban public
parks for existing parks. Public participation planning processes allow potential
park users to express their preferences for the design of planned parks. How-
ever, these processes are time- and resource-consuming for an urban planning
department.

Within the context of geodesign and urban sustainability, urban designers
and city officials are interested in designing parks for visitor’s use as well as easy
management. As an alternative to public participation processes, we propose to
simulate people’s behaviour during the design process thereby testing different
design alternatives. This course of action is also feasible when renovating or
redecorating parks. However, validated models simulating people’s behaviour in
public parks, i.e., at a very local level, are very scarce. Existing models often focus
on specific behaviours, such as walking [3], place selection [6], space appropriation
[4], or others.
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The challenge for modelling behaviour at a local level is that generic mod-
els for typical park activities, such as strolling, supervising children or playing
catch, as well as more structured activities such as climbing, badminton or soc-
cer (passing the ball), are missing. Furthermore, some of these activities may
be carried out anyplace within a public park and the selection process for these
places is not well understood. While we believe that theories from environmen-
tal psychology and anthropology may be helpful in this regard, we still have to
contend with the problem that these theories are not (yet) implemented.

In our research, we use geodata on observed people’s behaviour that was
collected in three public parks in a European city. Within the project the ob-
served behaviour was classified into activities [1]; from these we derive initial
models of activities for an agent-based simulation in section 2. It is important
to note that these models are based partly on the observations, partly on some
knowledge about human-environment interactions as well as common knowledge
about these activities. In section 3, we sketch the current implementation of the
activities in an agent-based model. In the final section 4, we discuss the process
of deriving models of activities from observation data as well as the problem of
modelling human behaviour at the local scale.

2 People’s activities in public parks derived from case
studies

The case studies were undertaken from 2005 to 2007 in close collaboration with
the administrative department responsible for the design and maintenance of
public parks, i.e., GrünStadtZürich, as part of a larger research project. The
three parks were selected on the basis of four criteria: their function in the city
context as neighbourhood parks, their age (established vs. new), their style of
design, and their suitability for observations (size, visibility). Figure 1 shows the
model of the Bäckeranlage as an example of one of the oldest parks in Zurich,
located in a densely built neighbourhood with a potentially precarious social
constellation of low income and ethnically diverse population.

The observations were realised over a period of three years, including a pilot
study. Each of the three parks was observed on 7-14 days for 2-4 hours. As two
parks were observed in consecutive years, this amounts to almost 150 hours of
observations with over 8000 park visitors recorded. The results of the extensive
analysis may be found in [1].

The observations recorded individual visitors, their age, gender, time, loca-
tion, type of activity, and group affiliation (groups of park visitors that know
each other and spend their stay together). Age was classified into the broad
groups of children, teenagers, adults and elderly (retired). The 26 observed ac-
tivities were grouped into Static Solitary (e.g. reading, sleeping), Static Inter-
active (communicating), Eat/Drink, Dynamic Irregular (e.g. running around),
Dynamic Regular (some kind of playing field, e.g. football), Playgrounds and
Water after a pilot study. All observers had to undergo special training in order
to be able to conduct the surveys according to the specifications.
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3 Implementing the activities in an agent-based model

The agent-based model shows the activities of people in three different parks in
Zurich (Switzerland) that were derived based on the data described above. It
visualises how spaces are used in parks and how agents (spatially) interact with
each other and with features in the park. The model was created with NetLogo
6.2.1 and its GIS-extension. Please note that the model itself is not attached to
a GIS (there is no need for a coupling) - the data we use is derived from a GIS.
At the beginning of the simulation the park is set up with all its observable
features according to Shapefiles that were created using satellite images of the
respective parks. Figure 1 shows an annotated screenshot of the model of the
Bäckeranlage. This geodata forms the input for the setup of the agent-based
model.

Fig. 1. Annotated screenshot of agent-based model of Bäckeranlage, Zurich

The park is populated with agents carrying out different individual and group
activities - this setup is based on the collected geodata. The initial location of
agents corresponds with the first recorded observation; subsequent observations
of the same agent are currently disregarded.
There are 26 different activities. For stationary activities, the individual or group
stays at their original location without movement (e.g., sleeping, picnicking)
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or they move inside a circumscribed area represented as a polygonal feature
(e.g., playgrounds) or area defined by the agent’s locations (e.g., romping, foot-
ball). For dynamic activities, individuals or whole groups move freely (randomly)
through the park without (currently) being restricted to certain features or group
areas (e.g. running around, chasing around) or follow a path until they reach an
exit point (biking). They adapt their direction if they encounter an obstacle.

4 Discussion and Conclusions

In this project we endeavour to model activities of agents at a local level within
a public neighbourhood park. Our approach is data-driven in that we use obser-
vations of real people’s activities and locations in three parks in Zurich, Switzer-
land. We identified different types of activities and recreate their spatio-temporal
footprints using a combination of theory and empiricism. However, the current
initial implementation is lacking especially in the rich type of interaction between
agent and environment that expresses a diversified understanding (or ontology)
of the environment. We distinguish between obstacles, other agents, and free
space. This minimalist interpretation already provides verisimilitude to some
agent’s movements, but we still needed to add specific concepts (such as bound-
ary and exit). To make things potentially more complicated, each activity may
require a different interpretation of obstacle, boundary, and free space, thus en-
forcing a ”functional perception” on our agents.

The distinction between stationary and location-changing activities allows us
to ignore all stationary activities, where the most important part, i.e. selecting
a suitable location, is not modelled due to initialising all agents at the observed
locations. The location selection process is mostly cognitive and may be modelled
using the notion of affordances [2, 6].

The models for the location-changing activities currently use random move-
ment, which needs to be substituted by rules for suitable moves (for that specific
activity). This kind of ”suitability assessment” will take much more processing
time in addition to (again) changing the ontology.

A point to discuss is the need to adhere to/be informed by the data for
validation purposes while at the same time freeing ourselves from the data in
order to arrive at generic rules for modelling people’s behaviour. How much
difference between modelled and observed behaviour is still acceptable?

In conclusion, we have to admit that we are still rather far from using our
agent-based model for geodesign simulations. It is however encouraging that the
initial implementation shows expected and verisimilar movement patterns. We
will therefore continue to work on implementing rules for the different activities
with the goal to transfer these implementations to other case studies and serve
as basis for geodesigning public parks.
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gleich. Books on demand, Hannover (2002)
6. Timpf, S.: Simulating place selection in urban public parks. In: International Work-

shop on Social Space and Geographic Space, SGS 2007, Melbourne, Australia. (2007)



2.3 An agent-based model of greening a city for reducing pluvial flooding at
a cultural heritage site
Emily West, Rembrandt Koppelaar, Aitziber Egusquiza Ortega, Angela
Santangelo and Eleonora Melandri.

42



An agent-based model of greening a city for reducing 

pluvial flooding at a cultural heritage site 

Emily West1 [0000-0002-1393-5986] , Rembrandt Koppelaar1 [0000-0002-0463-8971] , Aitziber 

Egusquiza Ortega2 [0000-0003-1051-6580], Angela Santangelo3, 4 [0000-0002-6488-3872] and Eleo-

nora Melandri4 [0000-0003-4041-311X]  

1 EcoWise Ekodenge Ltd., London, UK.  
2 TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecno-

lógico de Bizkaia, Astondo Bidea, Edificio 700, E-48160 Derio, Spain. 
3 CIRI Building and Construction, Alma Mater Studiorum - University of Bologna, Italy. 

4 Department of Architecture, Alma Mater Studiorum - University of Bologna, Italy. 

Abstract. We present an agent-based model which explores the impact of green-

ing a city for pluvial flood risk reduction, to inform planning decisions in cities. 

In particular we focus on the location of an archaeological site lying 2 meters 

below ground level in the city centre of Ravenna, Italy, which is subject to pluvial 

flooding. A map of Ravenna was divided into cells which could be eligible for 

modelled greening if they contained a car park, a street or a pedestrianised area. 

The number and location of cells greened varied with each run of the model. This 

was combined with precipitation and temperature data from Ravenna, and subse-

quently estimated scores for evapotranspiration and permeability. In general, the 

greater number of greening measures introduced corresponded to a reduced vol-

ume of excess rainwater. There was a particular effectiveness of greened streets 

at reducing excess runoff compared to car parks and pedestrian areas. Our results 

demonstrate the usefulness of ABM in the field of disaster risk management. 

Keywords: Agent-based, Pluvial, Cultural Heritage. 

1 Background 

Sites of cultural and natural heritage represent important records of the past [1]. Despite 

having historically survived numerous hazardous natural events, anthropogenic climate 

change is placing increasing stress on cultural heritage sites and their users. Agent-

based modelling, or ABM, is useful in this context by enabling a structured exploration 

of disaster and post-disaster scenarios and different impact prevention measures, to 

quantify their benefits before resources are committed to their implementation [2].  

The impact of pluvial flooding from precipitation is especially severe in urban areas 

of heritage due to impermeable ground surfaces causing high runoff [3]. The Santa 

Croce Church and archaeological site of Ravenna, Italy, is one such cultural heritage 

area at which pluvial flooding has become a problem [4],[5]. Since the 1990s the whole 

city of Ravenna and its surroundings have been subjected to the subsidence phenome-

non. Moreover, due to being situated below both street and sea level, ground water 
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levels are particularly high, meaning that water drains into these important areas from 

the above-ground street following heavy rainfall. Greening impermeable parts of the 

city can improve water infiltration and thus reduce surface runoff and flooding risk. 

 By simulating areas of the ground surface as agents with surface type as a charac-

teristic, our agent-based model aims to be an explorative device to examine the useful-

ness of ABM as a tool for urban planners. Important to note is that this model is explor-

ative since it is without empirical validation. The interpretation of which measures are 

most effective is based on deduction since the developed impacts in the models are 

based on expert logic and literature where available. 

2 Methods 

The model was built with the Python ABM libraries Mesa [6] and Mesa-geo [7]. In our 

model, a map of Ravenna was divided into areas or ‘cells’ of ground surface, deter-

mined by census data classifications, which here acted as the agents. Each one is char-

acterised by its percentage of green land, streets, pedestrian areas and car parks. De-

pending on how many cells the user decides to green in each model run, a selection of 

cells are randomly chosen. Hourly totals of precipitation and means of temperature for 

a 2-month time series was taken in August 2018, when Ravenna saw greater than aver-

age rainfall. Each cell has a permeability score based on its land use, which enables it 

to absorb a given amount of rainfall. Rainfall in excess of this forms pools which remain 

on the ground surface and are slowly reduced by transpiration. If the cell is selected for 

greening, its permeability score changes and so does its absorption capacity. For a cell 

to be eligible for greening, it had to meet two criteria: Less than 70% of the cell had to 

have been already greened, and the cell must also be covered by at least 10% of either 

car park or street, or at least 5% of a pedestrianised zone, to model a justifiable amount 

of greening. In total 294 out of 664 cells were eligible for greening each run, broken 

down into 231 streets, 42 car parks and 21 pedestrian areas (fig 2). Each cell was sim-

ulated as a block of ground with natural processes and the following characteristics: 

Static characteristics: Area (m2), Amount of greened land in each cell (%), Amount 

of cell covered by car parks, by streets and by pedestrian areas (%). 

Dynamic characteristics: Overall amount of greened land in each cell, after greening 

the city (%), Whether cell is flooded or not (yes/no), Permeability (a static coefficient 

which changes depending on the percent of green space in the model). 

Important to note here is that the runoff absorption was estimated based on how much 

of the respective area could realistically be greened. This meant that pedestrian areas 

were modelled as being able to absorb 15% of runoff if greened, for example by in-

stalling vegetation barriers at kerbsides and in the middle of paved areas. It was as-

sumed that car parks could be greened in a similar way but to a greater extent, leading 

to this value being estimated at a 30%. Due to the narrowness of many streets in Ra-

venna, however, it was assumed that these could not be greened in a typical sense and 

instead the more intrusive measure of installing permeable concrete or asphalt was as-

sumed to be the most appropriate. This meant that the entire street area could in theory 
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be ‘greened’ and as such streets were assumed to have an absorption capacity of 80%.  

The model was run as a batch with a series of variables. The consistent parameters 

included weather and temperature, and the variable parameters were as follows:   

• Number of car parks being greened: Tested at values of 0, 10, 20, 30 and 40. 

• Number of pedestrian areas being greened: Tested at values of 0, 5, 10, 15 and 20. 

• Number of streets being greened: Tested at values of 0, 50, 100, 150 and 200. 

These variables were each run for 5 values, with every combination between the three 

variables, 100 times. This resulted in 12,500 runs of the model being carried out. For 

each of these model runs, 10 parameters were recorded. These were the number of cells 

which were greened during a model run, the total volume of excess flooding in the 

model, and the average runoff per cells with differing percentages of areas greened. 

3 Results 

The areas of Ravenna which were modelled as greenable can be seen in figure 2. Firstly, 

the more cells have greening measures applied to them, the less excess runoff occurred. 

This is because as heavy rainfall occurs, urban surfaces are unable to drain this water 

away quickly enough before more occurs. Thus, as surfaces become on average 

greener, more drainage can occur and hence less flooding (fig 1). Secondly, cells which 

have less than 5% of their area greened are more likely to flood with a higher number 

of greening measures applied to other cells. Similarly, cells which are over 10% 

greened benefit from less flooding as more greening measures are introduced. 

The cells categorised as streets had the highest impact on flooding reduction when 

greened. This is partly attributable to the sheer quantity of these cells, and also because 

the streets were modelled as having a higher modelled runoff reduction per greened cell 

compared to pedestrian areas or car parks. 

Finally, there is a greater impact from greening streets than other surfaces. This can 

be largely explained by the sheer quantity of streets compared to the other surfaces. 

 

Fig. 1. Volume of flooding against number of greened cells in place. 
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Fig. 2. Map with proposed cells for applying greening measures 

4 Uncertainties and difficulties encountered 

Several uncertainties must be considered alongside result interpretation. Firstly, rainfall 

parameters used were based on historic events, and thus do not account for climate 

change. Secondly, the role played by sewage systems was not accounted for. This may 

increase the drainage potential of certain parts of the city and worsen it in others due to 

Ravenna’s generally high level of ground water. Neighbourhood interaction between 

cells was also not accounted for, but in reality greener cells are likely to influence the 

drainage of nearby cells. Thirdly, elevation and aspect were not considered. In reality, 

areas which are more sloped will drain into low-lying areas where water accumulation 

will be greater. This could be solved by incorporating digital elevation datasets. The 

greened factor for different types of land, as well as the coefficient of permeability, 

were also estimated. To improve this would require calculating how much of each 

greenable area could realistically be greened in practice. Finally, some cells will either 

be privately-owned or logistically impossible to green. A land survey could be carried 

out to determine which cells it would be feasible to green.  

Despite several areas of proposed further development, our exploratory model 

demonstrates the usefulness of agent-based modelling to local decision-makers as well 

as to the research community for its exploration of city greening. 

5 Conclusions and next steps 

Our model explores the interaction between rainfall, surface type and flooding vol-

ume in Ravenna, Italy. Although several uncertainties limit the direct applicability of 

final results to justify specific planning actions on behalf of the local authority, our 

model is useful as a discussion tool for land use planning from a risk reduction 
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perspective. The model’s key conclusions include the relative effectiveness of greening 

streets compared with other surface types. Similarly, at least 10% of the cell must be 

greened to cause a tangible reduction on runoff. Other urban rainfall models include the 

SCS-CN model which similarly finds that increasing urban green space correlates with 

runoff reduction, and also finds that periods of heavy rainfall result in higher water 

retention by green spaces [8]. Our study did not consider individual rainfall events but 

rather focused on monthly totals, and this is worth considering in future iterations.  

If more detailed information such as elevation can be incorporated into future model 

iterations, then the insights gained could allow an understanding of where and how 

many impervious surfaces should be greened to reduce pluvial flooding at the Santa 

Croce Church and archaeological area. The model can then be used as a discussion tool 

for organisations in Ravenna to incentivise the greening of public and private land.  

The use of agent-based modelling as an explorative tool in disaster risk management 

was demonstrated for pluvial flooding, for the purpose of testing disaster management 

greening interventions. The value of using ABM in this way is the rapid testing of ran-

dom behaviour of using different combinations of cells being greened each model run. 

 

 

This research is part of the SHELTER project and has received funding from the 

European Union’s Horizon 2020 research and innovation programme under grant 

agreement No 821282.  
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1 Issues in Real Traffic Light Systems

Due to the growing urban population [22], the existing infrastructure and traf-
fic control are successively reaching their limits, making an optimization of the
traffic flow by intelligent control of Traffic Lights (TL) increasingly important.
Previous research has already shown the basic suitability of Deep Reinforcement
Learning (DRL) methods for TL control, for both, the optimization of single
intersections [13, 14] and the optimization of traffic networks using Multi Agent
Reinforcement Learning (MARL) [1, 19, 10, 15, 2, 11, 7]. A major gap in research
concerning this area is the training and usage in real-life systems due to several
challenges [18, 20, 23]: (1) Training in real systems is difficult since agents can-
not perform unrestricted arbitrary actions. (2) It cannot always be guaranteed
that the learned policies are sufficiently robust. (3) DRL controllers must ensure
that existing safety and operational constraints are enforced at all times. Thus,
DRL-based TL controllers have been implemented mostly simulation-based [23].
However, these simulation-based approaches can only be transferred to reality
to a limited extent since [6]:

– Multimodality: In most simulations only car traffic was simulated, neglecting
other traffic participants.

– Baselines: DRL methods have rarely been compared with state-of-the-art
traffic-actuated controls that are already used in the real-world.

– State and actions: In reality, data collection is considerably more difficult.
Furthermore, the action space is not correctly aligned with current TL con-
trol units.

– Simulation environments: Most implementations were only done in sym-
metric networks with distribution-based traffic demand, oversimplifying real
traffic situations. Traffic state information was directly taken from simula-
tion, neglecting the lack of this data in real systems. Therefore, training on
simulations and inference in reality can lead to inconsistencies [24, 8].

⋆ This work was funded by the German Federal Ministry of Transport and Digital
Infrastructure (BMVI) as part of the project “KIVI - Artificial Intelligence in the
traffic system of Ingolstadt [Germany]”.
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This work picks up the concept, presented in [16], to combine state-of-the-art
DRL methods with existing traffic engineering methods to overcome the issues
mentioned above and extends it by a description how to specifically close the
gap between simulation and reality.

2 Closing the Simulation to Reality Gap

To enable a system that can be used effectively in real-world traffic systems,
the RL framework to optimize the traffic lights is intended to build upon and
extend established systems and procedures of traditional traffic engineering. In
particular, this concerns the extraction of state and reward data and the actions
definition. For the extraction of the state and reward data it is planed to use a
traffic estimation model named DRIVERS [9]. DRIVERS creates a microscopic
state representations based on raw detector data from real world traffic systems.
Therefore it generates Origin-Destination (OD) matrices from the detector data
which highly correspond to the real traffic on a macroscopic level. Based on the
OD matrices traffic is simulated by a microscopic simulation model. This makes
it possible to obtain microscopic state information which is coherent to the real-
life traffic. Figure 1 shows the planned structure of the system for training and
operation. In the core RL-System DRIVERS serves as the main data source for
the state and reward information. The RL components and DRIVERS are closely
linked, because the state and reward definitions are based on the DRIVERS out-
put and the DRIVERS model is therefore an inherent part of the learned policy.
To achieve a save operation of the system it will be first trained and evaluated
in a simulation-based environment. In this environment a simulation serves as
a surrogate for the real traffic network. This allows to train and optimize the
core RL-System without affecting the real traffic network. To enable a realistic
traffic representation in the simulation, a second DRIVERS instance is used.
This instance is used to generate OD matrices from the sensor data of the real
network, which serve as the demand definition for the simulation.

Fig. 1. Architecture of the proposed framework
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After the configuration of the core RL-System has been optimized and tested
in the simulation framework, it can seamlessly be integrated in the real traffic
environment by switching the sensor data source and the control interface for
the core RL-System from the simulation to the real system.
For both, the simulation based training and real life productive system, micro-
scopic traffic generated by DRIVERS is transferred to the RL-System and refined
through state representation methods known from the literature. Specifically
Discrete Traffic State Encoding (DTSE) [5, 19, 4] and feature-based representa-
tion [12, 6] methods will be critically evaluated, especially for their theoretical
justification and applicability in a real-world setting. For a multimodal optimiza-
tion, all traffic participants are to be represented for this purpose, enabling a
fair distribution of green times for all road users. Another important point for
the applicability of RL systems in reality is the action definition. To achieve a
compatibility with real control systems the action definition will be based on the
widely spread time gap control [17]. This control method is based on frame signal
plans, witch consist of T-times. T-times are lower and upper time limits, in which
the local controller can independently switch the phases. For each phase i from
crossing k there is a minimum Tmin

k
i and maximum Tmax

k
i admissible T-time.

We define the set of actions Ak = {aki,min, a
k
i,max} for a single agent at crossing

k with the following condition: Tmin
k
i ≤ aki,min ≤ aki,max ≤ Tmax

k
i . After aki,min

has been exceeded and no further vehicles are registered for a defined time, or
if aki,max is reached, the traffic controller switches to the next phase i+ 1. As
the actions can only vary in an interval that takes the minimum and maximum
admissible T-times of the phases into account, the safe operation and a minimal
performance of the traffic lights is guaranteed with all possible combinations.
The RL agent’s goal is to find the optimal T-times for the given traffic situation.
Thus, we obtain a continuous action space with two values per phase where all
actions follow the reasonable phases and transitions of the existing systems.
Such an action space comes with several challenges: (1) a (dis-) continuous ac-
tion space; the majority of papers deal with discrete action spaces [3] (2) a
constrained action space (3) actions depend on other actions that are defined
at the same time (4) a high number of actions at the same time; compared to
different approaches.
To ensure that the constrains hold and generic Actor Critic methods can be used
we define the actions as:

aki,min = rnd(sigkouti,min × (Tmax
k
i − Tmin

k
i )) + Tmin

k
i (1)

aki,max = rnd(sigkouti,max × (Tmax
k
i − aki,min)) + aki,min (2)

Where sigout is the respective outcome of the last actors NN-Layer with a sig-
moid activation function for the distinctive element of the agent’s action set.
Based on domain knowledge and theoretical considerations derived from traffic
engineering, this approach aims to achieve the following:

1. The constrained action space can ensure that agents achieve a minimum level
of performance in all situations. Even completely unknown traffic scenarios
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do not lead to a full failure of the system while safety is secured by the
T-times concept.

2. The occurrence of a green wave is simplified by the specification of allowed
T-times.

3. This approach can be ported directly into the real application. Following the
concept stated in Figure 1.

3 Cooperative Optimization

To ensure goal-directed cooperative optimization, an incentive for cooperation
must be created. Usually, common rewards or reward sharing between the neigh-
bors [21] are used. Furthermore, the state space can get enriched with relevant
information of the neighbors [2]. To extend this basic setup, new approaches
for the cooperation of multiple agents will be explored. These apply different
concepts of shared critics, e.g.: (1) The actors and critics outputs are fed into a
shared critic. The actors updates are based on a weighted gradient of own and
shared critic. (2) The actors output are fed into their respective and a shared
critic. Additionally, the shared critic gets superordinate state representations.
The actors updates are based on a weighted gradient of own and shared critic.
Additionally, we will investigate to what extent a benefit is created by providing
information about outflowing edges to overcome deadlocks caused by not suffi-
cient informed policies4. By this, streets or regions shall be jointly optimized as
clusters or common routes. We thereby encourage direct cooperation as a shared
critic directs the gradients for optimization.

4 Outlook

In this paper, we outlined a concept to bring RL from simulative applications
to real use in the field. To solve the stated problems we propose a detailed con-
sideration of individual intersections, multimodality, and specific configurations
of MARL for practical implementation. Through the consideration and combi-
nation with current techniques for traffic control we increase the applicability of
our concept for real-world traffic networks. To ensure compatibility we train in
simulations on real data derived by online traffic estimations as well as random
generated traffic. We use DRIVERS in the simulation to estimate the traffic
behavior even though the actual traffic is available in the simulation and fur-
ther add a simulation of the actual traffic controller. By this, we strongly adapt
to the later in-field implementation even while training and try to overcome the
simulation to reality gap in this field. Finally, the real deployment in Ingolstadt’s
road network is planned, where we after all want to prove the applicability of
RL for real-world traffic optimization.

4 A more detailed overview and presentation of the concepts will be provided in the
full version of this work.
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Abstract. Research on the use of electric vehicles (EVs) typically fo-
cuses on urban areas only with a lack of case studies in areas that are
not highly populated. This paper presents an agent-based model of EV
users in Alaska, USA, combining a city with more remote areas and
characteristics which lack representation in the literature. The devel-
oped agent-based model, supported by interviews and questionnaires,
produces specific, relevant recommendations for local regulators and pol-
icymakers, showing that adding fast-charging stations in remote areas
can support leisure use, and workplace charging can reduce peak de-
mand. The methodology proposed in this work can serve as a baseline
for other communities looking to make impactful policy and regulatory
decisions regarding their EV transition.

1 Introduction

With the push to decarbonise energy generation, transport has become the
highest-emitting sector globally, now accounting for almost a quarter of carbon
dioxide emissions and contributing significantly to air pollution [2]. As a result,
more focus is now being placed on the decarbonisation of the transport sector,
and hence the electric vehicle (EV) market has grown substantially in the last
decade [3]. However, there are still many barriers to widespread electric vehicle
adoption [7, 4]; even in the presence of available charging infrastructure, it has
been shown that EV uptake was lower than expected from a lack of consumer
willingness to accept disruptions in their daily routines for charging purposes [1].

Fast-charging, while a ubiquitous solution to improve usability of EVs, has
a limited business case arising from high capital and operational costs. Addi-
tionally, uncertainty regarding negative grid impacts have stifled widespread
expansion of such infrastructure. An important issue for many communities at-
tempting to transition to electric mobility is the lack of case studies focused on
areas that are not highly-populated and urbanised. Such a limited scope is rea-
sonable when considering the priority to decarbonise high-density communities
producing significant carbon emissions; nevertheless, an understanding of the

⋆ Supported by Imperial College London and the Alaska Center for Energy and Power
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impacts of unique lifestyles in atypical environments and climates is crucial to
promoting an equitable transition to electrification.

In response, this study aims to understand the systemic challenges with trans-
port electrification and expansion of public fast-charging infrastructure as per-
ceived by the stakeholders within a unique EV system. Furthermore, it offers
specific, relevant guidelines and recommendations through the implementation
of an agent-based model that focuses on individual driving and charging be-
haviours of residents for a variety of activity types. The model focuses on a case
study of the Municipality of Anchorage (MoA) in Alaska. Anchorage is Alaska’s
largest city with a population of nearly 300k and it is currently rapidly gaining
interest in transport electrification, but has many barriers to overcome for EVs
to become mainstream. The remote setting as well as the local climate make this
an interesting case study.

2 Methodology

To understand the barriers to charging infrastructure expansion in Alaska, a
three-pronged approach was chosen which seeks to understand the problem from
multiple perspectives and viewpoints. The methodology consists of stakeholder
interviews, a survey of drivers in MoA, and an agent-based model to evaluate
different interventions.

Firstly, stakeholder interviews were conducted to identify commonalities and
differences in opinion between the major players in the Alaskan EV infrastruc-
ture landscape regarding public charging infrastructure and the promotion of
electric mobility. Interviews were procured with a private charging station in-
staller, a utility representative, a state energy agency representative, an elected
state representative, and three local researchers. The viewpoints presented in
the interviews influenced scenarios modelled.

Secondly, a survey of MoA drivers, in the form of an online questionnaire, was
developed (based on [6]) with the main goals of understanding driving behaviour
and charging preferences, to potentially use as input into the agent-based model
and as a reference for future policy-making decisions.

Finally, an agent-based model (Fig. 1) of the Municipality of Anchorage and
its drivers (based on the driver survey) was developed in NetLogo building on a
previous application in Swindon, UK [5] adding fast charging, impact of external
temperatures, and behaviour linked to EV use in remote locations. The goal of
the model is to determine the EV load of drivers in the MoA and the utilisation
of the public charging network based on the travel behaviour of electric vehicle
drivers for a typical weekday and weekend using the current and potential future
EV fleet, following the scenarios from the stakeholder interviews.

3 Results and Discussion

The model was ran for the year 2021 and 2025. The results of the model indicate
that weekday travel needs in the MoA are met primarily without the aid of public
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Fig. 1. Overview of the agent-based model of EV drivers.

Fig. 2. Improvements to charging network lead to queue reduction.

charging infrastructure, with 86% of charging occurring at home during the
weekday in 2021. On the other hand, the existing public infrastructure is limited
in its capacity to handle weekend recreational travel, with clear limitations on the
charging options available to drivers. The limited infrastructure located south of
the MoA produced long queues for charging, which left some agents who travelled
away from the city unable to make it home by the end of the simulation (Fig. 2).

Improvements in this area of the network were proposed through an addi-
tional fast-charging station and a supplementary charging port at the most con-
gested station (Alyeska Resort, 40 miles out of Anchorage), which significantly
reduced queuing and improved the feasibility of recreational EV use. These im-
provements even had success with higher penetration of EVs, seeing less queuing
with the 2025 EV fleet than what was observed with the unimproved 2021 base-
line infrastructure. Additionally, it was shown that the addition of workplace
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Fig. 3. Reduction in peak load and peak kWh consumed.

charging infrastructure has the potential to reduce negative grid impacts of in-
creased EV penetration in 2025 (Fig. 3). With a 25% penetration of workplace
charging, summertime peak demand and peak energy consumption were reduced
by 35% and 29% compared to the baseline, respectively. On the other hand, in-
creasing workplace charging past 5% did not produce consistent improvements in
the winter, with reductions to peak demand and total peak energy consumption
stagnating at approximately 14% and 20% from the baseline, respectively.

4 Conclusion

From the results of the case study we can conclude that existing infrastructure
does not support weekend recreational travel, but simple improvements to the
public charging network can significantly improve its feasibility within MoA.
Moreover, environmental conditions are an important consideration for driver
behaviour and charging network utilisation. Simple mitigation strategies for EV
grid impacts are less effective in the winter and alternative methods must be
considered to reduce peak demand with higher EV penetration.

The methodology proposed in this study can be applied broadly to case
studies concerning EV impacts and utilisation of public charging infrastructure.
Through the three-phase approach, the analysis produced can serve as a baseline
to make specific, impactful policy and regulatory change through an understand-
ing of local stakeholder needs and a foundation of end user requirements and
preferences. The use of qualitative results from stakeholder interviews and the
model initialisation based on driver surveys meant that the model could be used
to explore relevant scenarios and provide input in the decision-making process,
while also gaining trust in the model output from their involvement.

Future work on this agent-based model can more accurately assess EV im-
pacts on the grid system by integrating network data into the model, such as
feeder limits and substation capacity. Moreover, A simulation which considers all
major travel destinations will have a better view of the limitations of the planned
charging network, with important implications for charger roll-out. Finally, the
model can be applied to other geographies to compare recommendations for
less-densely populated areas in cold climates.
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Abstract. In most modern cities, traffic congestion is one of the most salient
societal challenges. Past research has shown that inserting a limited number of
autonomous vehicles (AVs) within the traffic flow, with driving policies learned
specifically for the purpose of reducing congestion, can significantly improve
traffic conditions. However, to date these AV policies have generally been eval-
uated under the same limited conditions under which they were trained. On the
other hand, to be considered for practical deployment, they must be robust to a
wide variety of traffic conditions. This paper establishes for the first time that a
multiagent driving policy can be trained in such a way that it generalizes to dif-
ferent traffic flows, AV penetration, and road geometries, including on multi-lane
roads.

Keywords: Autonomous Vehicles · Traffic Optimization · Deep Reinforcement
Learning· Multiagent Systems

1 Introduction
According to Texas A&M’s 2021 Urban Mobility Report, traffic congestion in 2020 in
the U.S. was responsible for excess fuel consumption of about 1.7 billion gallons, an
annual delay of 4.3 billion hours, and a total cost of $100B [3]. A common form of
traffic congestion on highways is stop-and-go waves, which have been shown in field
experiments to emerge when vehicle density exceeds a critical value [6]. Past research
has shown that in human-driven traffic, a small fraction of automated or autonomous
vehicles (AVs) executing a controlled multiagent driving policy can mitigate stop-and-
go waves in simulated and real-world scenarios, roughly double the traffic speed, and
increase throughput by about 16% [5]. Frequently, the highest-performing policies are
those learned by deep reinforcement learning (DRL) algorithms, rather than hand-coded
or model-based driving policies.

Any congestion reduction policy executed in the real world will need to perform
robustly under a wide variety of traffic conditions such as traffic flow, AV penetration
(percentage of AVs in traffic, referred to here as “AVP”), AV placement in traffic, and
road geometry. However, existing driving policies have generally been tested in the
same conditions they were trained on, and have not been thoroughly tested for robust-
ness to different traffic conditions. Therefore, it remains unclear how to create a robust
DRL congestion-reduction driving policy that is practical for real-world deployment.
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Fig. 1: a single-lane merge road.
In this extended abstract (of full paper[7]), we establish for the first time the exis-

tence of a robust DRL congestion-reduction driving policy that performs well across a
wide variety of traffic flows, AVP, AV placement in traffic, and several road geometries.
Moreover, we investigate the question of how to come up with such a policy and what
degree of robustness it can achieve. We create a benchmark with a diverse, pre-defined
collection of test traffic conditions of real-world interest including the single-lane merge
scenario shown in Figure 1. Such merge scenarios are a common source of stop-and-go
waves on highways [4]. While there are different approaches to training robust DRL
policies in other domains with different levels of success, our approach is to systemati-
cally search for a robust policy by varying the training conditions, evaluating the learned
policy on our proposed test set in a single-lane merge scenario, and selecting the highest
performing one. The highest performing policy outperforms the human-only baseline
with as few as 1% AVs across different traffic conditions in the single-lane merge sce-
nario. We further investigate the policy’s generalization to more complex roads it has
not seen during training, specifically with two merging ramps at a variety of distances,
or on a double-lane main road with cars able to change lanes. Notwithstanding negative
prior results showing that a policy developed in a single-lane ring road fails to mitigate
the congestion on a double-lane ring road [2], the learned policy outperforms human-
only traffic and effectively mitigates congestion in all of these scenarios defined by our
benchmark. Taken together, this paper’s contributions and insights take us a step closer
towards making the exciting concept of traffic congestion reduction through AV control
a practical reality.

2 Robustness evaluation conditions and metrics in merge road
Similarly to past work [1], our baseline setup consists of simulated human-driven ve-
hicles only. In contrast to past work, which typically showed improvement over this
baseline in a single combination of traffic conditions, our goal is to develop a robust
AV driving policy that improves over this baseline across a range of realistic traffic
conditions in the merge road shown in Figure 1, characterized by:

– Main Inflow Rate: the amount of incoming traffic on the main artery (veh/hour),
– Merge Inflow Rate: the amount of incoming traffic on the merge road (veh/hour),
– AV Placement: the place where the AVs appear in the traffic flow; the AVs can either

be distributed evenly or randomly among the simulated human-driven vehicles.
– AV Penetration: the percentage of vehicles that are controlled autonomously,
– Merge road geometry: the distance between two merge junctions (in relevant sce-

narios), and the number of lanes.

In this paper, we fix the merge inflow rate to be 200 veh/hour (small enough to cause
traffic congestion on the main road) and set the range of the main inflow to be [1600,
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2000] veh/hour (resulting in minimal to maximal congestion in our simulations), AV
penetration (AVP) to be within [0, 40] percent (for a realistic amount of controllable
AVs in the coming years). The placement of the AVs can either be random or even. For
even placement, AV are placed every N human-driven vehicles in a lane. For random
placement, AVs are placed randomly among simulated human-driven vehicles. Merge
road geometries include one or two merges at distances that vary between [200, 800]
meters, and the main road can have one or two lanes.

3 Learning a robust policy in the single-lane merge scenario
While real-world congestion-reducing driving policies need to operate effectively in a
wide variety of traffic conditions, most past research has tested learned policies under
the same conditions on which they were trained. Since in the real world it is impractical
to deploy a separate policy for each combination of conditions, our primary goal is to
understand whether it is feasible to learn a single driving policy that is robust to real-
world variations in traffic conditions.

The performance of an RL-based driving policy depends on the traffic conditions
under which it is trained. We hypothesize that the policy trained under high inflow,
medium AV penetration, and random vehicle placement is robust in a range of traffic
conditions defined in Section 2 for a single-lane merge scenario. To verify our hypothe-
sis, we discretize the training traffic conditions along their defining dimensions to a total
of 30 representative combinations of conditions, as follows. We consider main inflows
of 1650, 1850, and 2000 veh/hour which result in low, medium, and high congestion.
We discretize AV placement in traffic to be random or even-spaced. Finally, we dis-
cretize the training AV penetration into 5 levels: 10%, 30%, 50%, 80%, 100%. Based
on this 3× 2× 5 discretization, we train 30 policies, one for each combination.

By comparing 30 policies, we verfied our hypothesis and identified a policy that
generalizes well across training conditions (which will be termed as identified robust
policy). Next, we evaluate the identified robust policy on road geometries different from
its training scenario.

4 Deployment to roads with two merging ramps
We first deploy the selected policy on more complex merge roads (with 1500 meters’
main road and 250 meters’ merge road), which have two merging roads at varying
distances (200, 400, 600, or 800 meters), and evaluate the performance of the learned
policy with respect to the distance between these two ramps. An example road with
two merging on-ramps is shown in Figure 2. We tested the identified robust policy with
random AV placement, main inflow of 1800 veh/hour, merge inflow 200 veh/hour,
across a range of AV penetrations and the above gaps between the two merging roads.
The identified robust policy is better than the human baseline even when the merging
ramps are just 200 meters away.

Fig. 2: A more complex road with two merging on-ramps.
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5 Deployment to double-lane merge roads
Next, we deploy our identified robust policy on a double-lane merge road by adding
a second lane in the main road. Similar to that of the single-lane merge scenario, the
vehicles in the right lane must yield to the vehicles from the merging lane and may cause
potential congestion in the right lane, while the vehicles in the left lane have the right
of way when passing the junction. As a consequence, the vehicles in the left lane tend
to move at a faster speed, and there will be more vehicles changing from right to left for
speed gain than the number of vehicles changing from left to right. Those lane-changing
vehicles cause additional stop-and-go waves in the left lane. To test the robustness of
the selected policy in this new road structure, we deploy the learned policy to control
the AVs on the right lane. During evaluation, there are only human-driven vehicles in
the left lane with inflow 1600 veh/hour, and 10% of the vehicles in the right lane are
AVs, each of which is controlled by our learned policy. The experimental results shows
that the performance of the deployed policy is always significantly better than that of
the human-only traffic, regardless of the right main inflow. Hence, the policy trained on
the single-lane merge road generalizes well in the double-lane merge scenario.

6 Conclusion
We presented an approach for learning a congestion reduction driving policy that per-
forms robustly in road merge scenarios over a variety of traffic conditions of practi-
cal interest. Specifically, the resulting policy reduces congestion in AV penetrations of
1%–40%, traffic inflows ranging from no congestion to heavy congestion, random AV
placement in traffic, single-lane single-merge road, single-lane road with two merges at
varying distances, and double-lane single-merge road with lane changes. The process
of finding this policy involved identifying a single combination of training conditions
that yields a robust policy across different evaluating conditions in a single-lane merge
scenario. We find, for the first time, that the resulting policy generalizes beyond the
training conditions and road geometry it was trained on.

References
1. Cui, J., Macke, W., Yedidsion, H., Goyal, A., Urieli, D., Stone, P.: Scalable multiagent driving

policies for reducing traffic congestion. AAMAS (2021)
2. Cummins, L., Sun, Y., Reynolds, M.: Simulating the effectiveness of wave dissipation by fol-

lowerstopper autonomous vehicles. Transportation Research Part C: Emerging Technologies
123, 102954 (2021)

3. Lomax, T., Schrank, D., Eisele, B.: 2021 urban mobility report.
https://mobility.tamu.edu/umr/, accessed: 2021-10-07

4. Mitarai, N., Nakanishi, H.: Convective instability and structure formation in traffic flow. Jour-
nal of the Physical Society of Japan 69(11), 3752–3761 (2000)

5. Stern, R.E., Cui, S., Delle Monache, M.L., Bhadani, R., Bunting, M., Churchill, M., Hamil-
ton, N., Pohlmann, H., Wu, F., Piccoli, B., et al.: Dissipation of stop-and-go waves via control
of autonomous vehicles: Field experiments. Transportation Research Part C: Emerging Tech-
nologies 89, 205–221 (2018)

6. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki,
S., Yukawa, S.: Traffic jams without bottlenecks—experimental evidence for the physical
mechanism of the formation of a jam. New Journal of Physics 10(3), 033001 (2008)

7. Zhang, Y., Macke, W., Cui, J., Urieli, D., Stone, P.: Learning a robust multiagent driving policy
for traffic congestion reduction. arXiv preprint arXiv:2112.03759 (2021)



3.3 Preference-Aware Dynamic Ridesharing
Yi Cheng Ong, Nicos Protopapas, Vahid Yazdanpanah, Enrico H. Gerd-
ing and Sebastian Stein

66



Preference-Aware Dynamic Ridesharing

Yi Cheng Ong, Nicos Protopapas⋆, Vahid Yazdanpanah,
Enrico H. Gerding, and Sebastian Stein

University of Southampton, Southampton, United Kingdom
{yco1g18,np1r22,v.yazdanpanah}@soton.ac.uk,{eg,ss2}@ecs.soton.ac.uk

Abstract. Smart mobility and, in particular, automated ridesharing platforms,
promise efficient, safe and sustainable modes of transportation in urban settings.
To make such platforms acceptable by the end-users, it is key to capture their
preferences not in a static manner (by determining a fixed route and schedule
for the vehicle) but in a dynamic manner by giving the riders the chance to get
involved in the routing process throughout a journey. To that end, this work pro-
vides a toolbox, enabling riders to interact with the ridesharing service and have
a say in the routing process.

Keywords: Dynamic Ridesharing · Preference Elicitation · Agent-Oriented Smart
Mobility

1 Introduction

Ridesharing is a promising means towards reducing carbon emissions and mitigating
climate change [5]. Integrating preference-awareness into ridesharing systems enhances
the satisfaction of the end-users and, in turn, enables the efficient use of spare capacity
in urban transportation services [14]. However, although the potential gains are known,
some traditional urban transportation systems—such as bus services—are not benefiting
from preference-aware ridesharing technologies. Our buses are still operating based on
fixed schedules and, in the best cases, use historical data on the behaviour of riders to
improve their routes. However, determining routes based on data about past users does
not necessarily fit how present riders want to use the service. For example, arguably, bus
schedules generated based on travellers’ behaviour in 2019 (i.e., before the COVID-19
pandemic) do not satisfy what we want for riders in 2022. While gathering data more
frequently and then fixing a static schedule is an option, in this work, we go a step
further and suggest dynamic schedules that are determined based on the preferences of
the current users/riders. Doing this will allow buses to provide customised services to
riders, avoid wasting resources by visiting unnecessary stations, and find compromises
for pickup and drop-off locations that users see preferable.

Ridesharing can be considered a vehicle routing problem that is typically solved
by optimising a given global objective function. Most studies focused on optimising
operational-based objective functions [11] which usually benefit the ridesharing ser-
vice provider rather than the passengers. Optimising based on the provider’s incentives

⋆ Corresponding Author: np1r22@soton.ac.uk
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would not lead to widespread adoption of this service, as passengers’ preferences are
not taken into consideration. Thus, recently, there have been studies regarding incorpo-
rating passengers’ preferences or incentives into the ridesharing problem. These studies
specified constraints such as passengers’ maximum travel distance and maximum wait-
ing time to ensure some level of quality of service, as well as incorporating new terms
in the objective function, encapsulating the overall satisfaction of passengers [11]. This
method, however, does not guarantee fairness among the passengers. For example, a
ridesharing system might choose route A because it minimises the total waiting time and
travelling time of all passengers. However, route A might lead to a longer travel time
for a subset of passengers; for the sake of minimising the overall objective function,
their preferences have been neglected, such that route A results in more inconvenience
to them. In principle, assuming that the ideal route needs to be optimal merely based on
the characteristics of the city in an objective sense (e.g., in terms of distances), ignores
how satisfied riders are in a subjective sense. In such a view, ridesharing is approached
and accordingly solved as a merely technical problem with no intention to take into ac-
count the social and preferential dimensions. In view of human-centred AI techniques
and the need for developing trustworthy human-AI partnerships [13], we see rideshar-
ing as an inherently sociotechnical problem and argue that its acceptance by society
depends on the ability to capture riders’ preferences throughout the journey.

Against this background, this is the first contribution that develops algorithms for
determining ridesharing routes in participation with riders, allows dynamic routing
through the journey by integrating voting mechanisms, and relaxes the expectation that
riders need to compromise their privacy by sharing information with other riders. The
current work focuses on riders with temporal preferences; however, all presented algo-
rithms can handle complex utility functions, a capability we intend to employ in future
work.

2 Main Approach

We consider the case of generating a route for a single bus that is part of a 24-hour
ridesharing service. The route generated is a sequence of visited stations, taking into
account the temporal preferences of the current riders. The map is defined as a graph
that links bus stations. The riders are fully satisfied when their most preferred depar-
ture and arrival time is met, and suffer a disutility when the schedule deviates from
that. Additionally, the riders have different senses of urgency and patience. We present
3 different algorithms, capturing various aspects of this problem. The algorithms are
evaluated using simulation-based experiments.

The main building block of our schedules is the notion of TourNode as a list. The
i-th TourNode defines the location of the i-th station in the schedule, as well as arrival
and waiting times and the sets of riders for pick-up and drop-off. The list of TourNodes
should meet certain constraints; the locations of two adjacent TourNodes should be
different, as well as the arrival time at the i-th TourNode should be no smaller than the
departure time of the (i− 1)-th TourNode.

Our first approach, the Randomized Greedy Algorithm examines the riders accord-
ing to a random ordering, and builds a list of TourNodes, as the bus schedule. More
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specifically, consider the case where the i-th rider is examined. A provisional schedule
of TourNodes has been constructed when the previous riders were examined. At this
point, the algorithm first creates a temporary set of valid TourNodes (these could be
new or already exists in the provisional schedule) for the departure and the arrival of
the rider. Then, the algorithm finds two valid TourNodes, one for the departure and one
for the arrival, which maximize the utility for rider i and assigns rider i to them. If any
of these two TourNodes does not exist in the provisional schedule, it is then added by
the algorithm. The final route of the bus is the sequence of TourNodes created this way.

While this algorithm takes preferences into account, it does not consider any fairness
aspects. The riders assigned first benefit the most from the scheduling, since the sched-
ule for the first riders is not dense, and there is a higher chance of allocating a departure
and arrival TourNodes to maximize the early scheduled riders’ utility. To mitigate this
impact, we firstly propose the Randomized Greedy ++ Algorithm. This algorithm works
similarly to the Randomized Greedy Algorithm, with a slight modification: it firstly as-
signs TourNodes for the departure of the riders according to a random ordering, and
then allocates TourNodes for the arrival, according to the reverse order. This form of
allocation is also known as picking sequences [3]. This way, a rider whose departure
was scheduled late, gets more flexibility in the scheduling of her most preferred arrival
time.

A second algorithm designed to enhance fairness is the Iterative Voting algorithm.
This algorithm follows a voting procedure that is repeated until all riders are allocated in
a departure and an arrival TourNode. At each iteration, and given a provisional schedule
of TourNodes, all unallocated riders propose the TourNode that suits them the best,
first for their departure and then for their arrival, in a pool of candidate TourNodes.
Observe that the proposed TourNodes should respect any constraints imposed by the
previously scheduled TourNodes. After the pool of candidate TourNodes is built, the
riders vote to select one of them to be added to the schedule. The voting is done either
using the Borda method or plurality voting [3]. When all riders are allocated (i.e. they
are allocated in a TourNode for departure and a TourNode for arrival time) the final
sequence of TourNodes is returned, as the bus route.

3 Evaluating Fairness and Efficiency

We evaluate the performance of the algorithms experimentally. As a measure of effi-
ciency, we focus on the sum of utilities [10]. To measure fairness we follow [8] and
use the Gini Index [6, 10], a popular measure of equity in the transportation litera-
ture [16]. We use the locations of 66 bus stations in Westminster, London from the
Naptan dataset [4] to create a fully connected graph. Finally, we generate riders with
different patience levels and various departure and arrival times, simulating peak and
off-peak demand.

Our preliminary observations on fairness and efficiency are presented in Figure 1.
The Randomized Greedy algorithm worked the best with respect to efficiency, while all
fairness-aware algorithms performed the best with respect to the Gini index, with small
differences between them.
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(a) Sum of Utilities (b) Gini Index

Fig. 1: Sum of Utilities and Gini index vs Number of Riders.

4 Future Directions

In this work, we presented preliminary algorithms and results from an ongoing project
on preference-aware dynamic ridesharing, aiming to promote rider participation. Such
algorithms can be implemented in ridesharing services to improve riders’ satisfaction
and, in turn, foster the financial and environmental benefits of smart mobility. Future
work can build on these algorithms to explore more realistic preference models.

Our approach is also privacy-conscious as it intentionally neither assumes that riders
have complete knowledge about other riders nor expects them to share such sensitive
information with others. While this perspective respects privacy concerns in general, in
some specific settings (e.g., sharing a ride with others in a social network), sharing infor-
mation may lead to improved performance of the service. As an extension of this work,
we aim to integrate methods for sharing more information with other trusted riders on
the service (e.g., using multiagent negotiation techniques [9]) to achieve meaningful
consent over a shared route [15, 1]. Another extension is to work towards the design
of sustainable preference-aware dynamic ridesharing systems by applying mechanism
design methods [12], (e.g., as in [7]). Under this perspective, the riders are represented
by computational agents [2] which act in real time on their behalf.

Data Access Statement This study was a re-analysis of data that are publicly available
from the national public transport access nodes (NaPTAN) [4].
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1 Introduction

The aim of traffic signal control (TSC) is to optimize vehicle traffic in urban road
networks, via the control of traffic lights at intersections. Efficient traffic signal
control can significantly reduce the detrimental impacts of traffic congestion,
such as environmental pollution, passenger frustration and economic losses due
to wasted time (e.g., surrounding delivery or emergency vehicles). At present,
fixed-time controllers, which use offline data to fix the duration of traffic signal
phases, remain the most widespread. However, urban traffic exhibits complex
spatio-temporal patterns, such as peak congestion during the start and end of a
workday. Fixed-time controllers [8, 10] are unable to account for such dynamic
patterns and as a result, there has been a recent push for adaptive TSC methods.

Reinforcement learning (RL) is one such adaptive and versatile data-driven
method which has shown great promise in general robotics control. Recent works
which applied reinforcement learning to the traffic signal problem have shown
great promise in alleviating congestion in a single traffic intersection [5–7, 9, 11].
A traffic network is composed of multiple such intersections and a network op-
timization problem can be broadly formulated as a centralized (single-agent) or
decentralized (multi-agent) RL problem. In the centralized RL formulation, a
global agent controls the entire traffic network and tries to minimize a global
objective such as average trip time. However, centralized solutions for adaptive
TSC are infeasible in practice due to the exponentially growing joint action and
state space and the high latency associated with information centralization. To
avoid the curse of dimensionality , decentralized approaches frame traffic signal
control as a multi-agent RL (MARL) problem, where each agent controls a single
intersection, based on locally-sensed real-time traffic conditions and communi-
cation with neighboring intersections [1, 14]. In this work, we propose a frame-
work for fully decentralized multi-agent TSC (MATSC) based on distributed
reinforcement learning with parameter sharing [4], for improved scalability and
performance. We design a spatial and temporal neural network, by relying on
an attention mechanism and a recurrent unit, to extract spatial and tempo-
ral features about local traffic conditions at each intersection. We compare our

⋆ Supported by Singapore Technologies Engineering Ltd, under work package 3 of the
“Urban Traffic Flow Smoothening Models” NUS-STE joint laboratory.



2 Y. Zhang, M. Damani, and G. Sartoretti

framework with state-of-the-art MATSC methods in simulation, and show that
our approach results in decreased average queue lengths and trip times, as well
as increased average vehicle speeds and trip completion rates, both overall and
during peak periods.

2 Method

2.1 Problem Formulation

We use a decentralized MARL formulation for MATSC. Each traffic intersection
is controlled by a RL agent which only has access to local traffic conditions i.e.,
the agents have partial observability.

More formally, we consider the multi-agent extension of a MDP, which is
characterized by a set of states, S, action sets for each of N agents, A1, ..., AN

, a state transition function, P : S × A1 × ... × AN → S′, which defines the
probability distribution over possible next states, given the current state and
actions for each agent, and a reward function for each agent that also depends
on the global state and actions of all agents, Ri : S ×A1 × ...×AN → R.

We consider a partially observable variant in which an agent, i, can observe
part of the system state si ∈ S as its observation oi ∈O. The state of junction i at
time step t comprises two vectors: The first one is a one-hot vector representing
the current traffic phase, and the second indicates the number of vehicles on
each incoming lane. In line with recent works [2], the observation space of each
agent is composed of the state of its assigned junction, as well as the state of all
directly connected neighboring intersections.

The action space A is defined as a set of non-conflicting phases . Specifically,
at time step t, agent i will choose an action ati from its own action space Ai as a
decision for the next ∆t period of time i.e., the intersection will be in the chosen
phase from time step t to time step t +∆t. After the fixed duration of a given
phase has elapsed, the agent may choose to continue with the same phase or
choose a different phase and incur a 3 second transitional yellow phase penalty.

Following [2], we define the reward structure as a short term metric which is
calculated as the sum of the number of halting vehicles on the lane-area detectors.

2.2 Spatial and Temporal Perception Network

Given the dynamics of a traffic network, an agent (junction) needs to have both
spatial and temporal awareness to make informed decisions. To enable this, we
propose a network that comprises two units, a message aggregation unit for spa-
tial feature extraction, and a RNN-based memory unit for temporal awareness.
The detailed network structure is shown in 1. The attention-based message ag-
gregation unit [13] allows the agent to learn to assign higher weights to essential
parts of the observations, i.e, concentrate more on the traffic states of neighbor-
ing intersections that might cause significant impacts on itself in future steps,
while the recurrent unit allows it to utilize historical information to inform its
current decision-making.
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Fig. 1. Structure of the spatial-temporal perception neural network used in this work.

Specifically, we first map all the raw observations to a higher dimensional fea-
ture space i.e., mapping from low dimensional oi to high dimensional ei through
multiple fully connected layers. Then, we obtain the query, key, value vectors of
the attention mechanism (with same dimensions), by using three different sets
of learned weights: qi = Wi · ei, ki = Wk · ei, vi = Wv · ei. In our work, the
parameters of the key, query, and value layers are shared among agents.

Next, we calculate the compatibility uij between the query qi and kj based on

scaled dot production mechanism: uij = (qTi · kj)/
√
d, where d is the dimension

of the vectors used for normalization. The attention weights for each query-key
pair can be computed by: αh

ij = softmax (uij).
Finally, we calculate the output vector as the weighted sum of all the value

vectors, using these learned attention weights: hi =
∑

j∈Ni
αij · vj . Second, we

rely on a recurrent neural network (here, a Gated Recurrent Unit, GRU) [3] to
extract temporal features from the agents’ observations. Overall, through the
proposed network structure, we are able to extract features in both the spatial
(using attention) and temporal (using GRU) dimensions.

2.3 Learning Framework

We use the popular PPO algorithm for training the policy [12]. PPO’s update
rule prevents large changes to the policy, which is particularly desirable in our
distributed, parameter-sharing setting where there is significant noise in com-
puted gradients. We use the Adam Optimizer with learning rate 5e−5, an episode
length of 720 and a discount factor(γ) 0.95.

Inspired by some of our previous works [4], we developed a hierarchical dis-
tributed learning framework to make use of parallelization and parameter shar-
ing. Instead of learning a separate policy for each intersection, we use parameter
sharing between intersections to learn a single, universal policy common to all
agents (junctions) in the network. Our distributed framework instantiates mul-
tiple low-level “workers” (meta-agents) and a high-level coordinator called the
driver. Each worker is regarded as a multi-agent system and works in an identical
but independent environment. The goal of the worker is to collect the experience
of all learning agents in an environment. The driver uses the shared experience
of all workers to update a global shared network at the end of each episode.
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In addition to significant gains in wall-clock training time, our distributed
learning framework has two main advantages. First, parameter sharing between
agents reduces the instability of distributed MARL associated with independent
learning by preventing drastic updates to the global network and thus ensuring
that the environment is relatively stable from any single agent’s perspective. In
addition, the (shared) network weights are updated at the end of each episode to
improve the individual rewards of each agents, implicitly leading to a common
policy that aims at optimizing their common decisions, thus encouraging the
formation of cooperative behaviors.

Second, the structure of the distributed framework is modular and can easily
be adapted to run multiple state-of-the-art RL algorithms such as A3C and SAC.

Third, we note that our learning framework aims at off-line (centralized)
training before online (decentralized) execution. That is, our learning agents
will first be trained in simulation. Then, the trained policy can be frozen and
deployed in the real world in a fully decentralized manner, i.e., based on local
sensing and communication among neighboring agents. The advantages of this
offline, centralized training, decentralized execution design choice are:

1. Off-line training is cheap, since we do not need to concern about the potential
threats (e.g., congestion, accidents) caused by unreasonable behaviors that
would result from agents freely exploring their state-action space during
early training.

2. Off-line training can still allow a sim-to-real solution with high portability:
the policy can be trained in simulation by relying on real-world data, if
available; alternatively, the trained policy may be fine-tuned under real-world
traffic conditions after deployment, to truly reach a near-optimal controller.

3 Experiments and Discussion

Fig. 2. Simulated grid traffic scenario with
25 homogeneous intersections, adapted
from the benchmarks used in [2].

We conducted our simulation experi-
ments using the same Manhattan traf-
fic network and similar traffic dis-
tribution as the benchmark method
MA2C [2].

As illustrated in 2, there are a
total of 25 homogeneous signalized
intersections in this grid network,
where each one is formed by two-
laned, horizontal arterial streets with
a speed limit of 20m/s, and one-
laned, vertical avenues with a speed
limit of 11m/s. Each intersection con-
tains five permissible phases: East-
West straight phase, East-West left-
turn phase, and three straight and left-turn phases for East, West, and North-
South, respectively. Besides, the lane-area detectors are install near the stop line
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Fig. 3. Evaluation results for 10 episodes in the considered 5 × 5 Manhattan network.
The solid lines show average values, while the standard deviations are shaded.

of the intersection, with the length of 50 meters, which are shown as the blue
rectangles in 2.

We compare our method (dDRL-Att) with a conventional greedy controller
(one-step optimal controller with respect to the same metric used by our dDRL
approach) and three learning based methods (MA2C, IA2C, and IQL-LR) [2].
We also include a non-attention version of our method (dDRL) for a simple
ablation study on this aspect. The comparison test results are shown in Fig. 3,
where we measure and record the traffic metrics at each simulation step and
then calculate the averages and deviations over a fixed set of 10 test episodes
(i.e., same traffic conditions for all algorithms for fair comparison).

From these evaluation results, we first observe that the queue length and de-
lay time curves of both IQL-LR and IA2C show a monotonically increasing trend.
This trend indicates that as the simulation time increases, the vehicles gradually
start accumulating on the incoming lanes, leading to growing congestion. Com-
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Metrics
(Average)

Temporal Averages Temporal Peaks
dDRL-Att(us) dDRL(us) MA2C IA2C IQL-LR dDRL-Att(us) dDRL(us) MA2C IA2C IQL-LR

Queue length (veh) 1.800 1.974 3.204 4.214 3.762 3.816 3.939 5.944 7.555 6.942
Speed (m/s) 4.468 4.223 2.003 1.571 3.041 13.361 14.176 11.656 11.513 13.978

Intersection delay (sec) 30.984 38.837 34.985 72.959 92.591 70.929 98.612 124.005 216.112 266.912
Trip completion rate (veh/s) 0.990 0.955 0.546 0.366 0.634 2.300 2.300 1.700 1.400 2.100

Trip time (sec) 447.519 460.735 727.387 788.501 462.862 2330.000 2745.000 2938.000 3445.000 2373.000

Table 1. Temporal averages and peaks of all algorithms averaged over 10 episodes in
the considered 5 × 5 Manhattan traffic network (best value on each line in bold).

pared to IQL-LR and IA2C, the queue length and delay time curves for MA2C
rise significantly slower, indicating that MA2C is able to learn an effective pol-
icy. However, it still lacks the ability to reduce congestion in saturated networks,
especially when the traffic gets heavier after 2000s. Finally, our distributed deep
RL methods (dDRL-Att and dDRL) outperform the above-discussed baselines
on handling peak-time traffic as well as recovering from saturated and congested
traffic networks. This is evident from the queue length curve for dDRL-Att and
dDRL, which rapidly trends downwards after 2400s, showing that the policy
learned by our method is more sustainable and stable. In particular, compared
to dDRL, dDRL-Att shows better performance in detecting and handling high-
volume traffic, as evidenced by the fact that our approaches are able to handle
peaks of traffic and return to baseline conditions faster (see Fig. 3, top left). We
also observe that dDRL outperforms MA2C and other methods on completion
rate, highlighting its effectiveness at maximizing throughput while minimizing
congestion. The same conclusion can be obtained from the average speed metric,
with higher values signalling fewer halts and higher overall vehicle flow.

Second, Table 1 summarizes the quantitative results for comparing differ-
ent methods. From the table, we observe that our proposed dDRL-Att method
performs better than all baselines in all the temporal average metrics. Finally,
compared to dDRL, our multi-head-attention-based spatial and temporal net-
work performs better, which showcases its effectiveness at extracting features
that allow for more informed decision making.

4 Conclusion and Future Work

In this work, we introduced a framework for fully decentralized multi-agent TSC
(MATSC) based on distributed reinforcement learning with parameter sharing,
which relies on an attention mechanism and a recurrent unit for the extraction of
spatial and temporal features. Through experimental results, we demonstrated
that our proposed framework results in decreased average queue lengths, and
increased average vehicle speeds and trip completion rates. Future work will
focus on developing and improving techniques such as credit assignment that
allow for increased cooperative behavior between agents in an effort to achieve
better performance on global long-term metrics while staying in the regime of
partial observability and local sensing.
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