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Pan-tumor Canine cutaneous 
Cancer Histology (CatCH) dataset
Frauke Wilm  1 ✉, Marco Fragoso2, Christian Marzahl  1, Jingna Qiu  3, Chloé Puget2, 
Laura Diehl2, Christof a. Bertram  4, Robert Klopfleisch  2, andreas Maier  1, 
Katharina Breininger  3,6 & Marc aubreville  5,6

Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into 
individual subtypes can be challenging. Recently, deep learning-based approaches have proven their 
potential for supporting pathologists in this regard. However, many of these supervised algorithms 
require a large amount of annotated data for robust development. We present a publicly available 
dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 
polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater 
experiments, we show a high consistency of the provided labels, especially for tumor annotations. We 
further validate the dataset by training a deep neural network for the task of tissue segmentation and 
tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 
for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine 
cutaneous tumors possess various histologic homologies to human tumors the added value of this 
dataset is not limited to veterinary pathology but extends to more general fields of application.

Background & Summary
The skin and soft tissue are the most common anatomical sites for canine neoplasms1 and the segmentation 
and classification of canine cutaneous tumors are routine tasks for veterinary pathologists. Especially different 
types of round cell tumors, which can have similar morphologies, are oftentimes hard to distinguish on standard 
histologic stainings2,3. Tumor-specific immunohistochemical (IHC) stainings can support the pathologist in 
this regard but are considerably more expensive, time-consuming, and still might not provide reliable results for 
undifferentiated tumors2. Deep learning-based algorithms can assist the pathologist in segmenting and classi-
fying cutaneous tumors on standard Hematoxylin & Eosin (HE) staining and have successfully been applied in 
various works4–10. These algorithms, however, are often criticized for requiring vast amounts of labeled training 
data11. Therefore, publicly available datasets have become increasingly popular, as they reduce annotation costs 
for recurring pathological research questions and improve the comparability of computer-aided systems devel-
oped on these datasets.

Most existing open access datasets for segmentation in histopathology originated from computer vision chal-
lenges. Table 1 provides a collection of recently published datasets. These datasets not only differ in the anatomi-
cal location of the tumor and thereby the annotation classes, but also in the labeling method used for annotating 
the image data. Datasets consisting of small image patches, with only one tissue class present, are usually labeled 
on image level, whereas datasets with complete whole slide images (WSIs) are typically annotated with polygon 
contours. The CAMELYON12, the BACH (Grand Challenge on BreAst Cancer Histology images)13, and the 
BRACS (BReAst Carcinoma Subtyping)14 dataset addressed lesion detection and classification for breast cancer 
and provide a mixture of image-level and contour annotations. Whereas the CAMELYON challenge focused 
on the detection of metastatic regions as a binary task, the latter two were designed for the classification into 
normal tissue and multiple lesion subtypes. The PAIP (Pathology Artificial Intelligence Platform)15 WSI dataset 
addressed the detection of neoplasms in liver tissue as a binary segmentation task. In contrast to the aforemen-
tioned datasets, which focused on lesion detection and classification in a specific tumor region, the ADP (Atlas 
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of Digital Pathology)16 and the DROID (Diagnostic Reference Oncology Imaging Database)17 include images 
from multiple organs. Furthermore, they significantly exceed comparable datasets in terms of annotation classes. 
Whereas the ADP provides small tissue-specific patches labeled on image level, the DROID provides extensive 
polygon annotations on WSIs.

In this work, we present a dataset of 350 WSIs of seven canine cutaneous tumor subtypes, which we have 
named Canine cuTaneous Cancer Histology (CATCH) dataset. As opposed to human samples, veterinary data-
sets are less affected by data-privacy concerns, which makes them more suited for public access. Furthermore, 
previous work has demonstrated homologies between canine and human cutaneous tumors18–20 which supports 
the relevance of publicly available databases for both species. We provide contour annotations for six tissue 
classes and seven tumor subtypes. With 12,424 annotations and 13 classes, this dataset exceeds most publicly 
available datasets in annotation extent and label diversity. We validated annotation quality by evaluating the 
inter-observer variability of three pathologists on a subset of the presented dataset with high concordance for 
most annotation classes. Furthermore, we present results for two computer vision tasks on the presented dataset. 
We first segmented the WSI into background, tumor, and the four most prominent tissue classes (epidermis, 
dermis, subcutis, and a joint class of inflammation and necrosis). We evaluated the segmentation result using 
the class-wise Jaccard coefficient, resulting in an average score of 0.7047 on our test set. Afterward, we classified 
the predicted tumor regions into one of seven tumor subtypes, achieving a slide-level accuracy of 98.57% on 
the test set. These results, achieved by standard architectures, are the first published results of computer vision 
algorithms trained on the CATCH dataset and can serve as a baseline for the development of more complex 
architectures or training strategies. Furthermore, the successful training of these architectures validates data-
set consistency. The dataset, as well as the annotation database, is publicly available on The Cancer Imaging 
Archive (TCIA)21. Code examples for the methods presented in this work, along with a slide-level overview of 
the train-test split used for model development, can be obtained from our GitHub repository (https://github.
com/DeepPathology/CanineCutaneousTumors).

Methods
Sample selection and preparation. In total, 350 cutaneous tissue samples from 282 canine patients were 
selected retrospectively from the biopsy archive of the Institute for Veterinary Pathology of the Freie Universität 
Berlin. Use of these samples was approved by the local governmental authorities (State Office of Health and Social 
Affairs of Berlin, approval ID: StN 011/20). All specimens were submitted by veterinary clinics or surgeries for 
routine diagnostic examination of neoplastic disease. As to local regulations, no ethical vote is required for these 
samples. No additional harm or pain was induced in the course of this study. Samples were chosen uniformly 
from seven of the most common canine cutaneous tumors, according to pathology reports. The case selection was 
guided by sufficient tissue preservation and the presence of characteristic histologic features for the correspond-
ing tumor subtypes. Samples from the same canine patient were obtained from spatially separated sections of the 
same tumor or different neoplasms of the same subtype. All samples were routinely fixed in formalin, embedded 
in paraffin, and tissue sections were stained with H&E. 303 of the sections were digitized with the Leica ScanScope 
CS2 linear scanning system at a resolution of 0.2533 (40X objective lens). Due to practical feasibility, 47 slides 
were digitized with a different, but very similar scanning system (Leica AT2) at the same magnification and a 
resolution of . μ0 2524 m

px
 (40X objective lens).

annotation workflow. All WSIs were annotated using the open source software SlideRunner22. The WSIs 
were predominantly (82%) annotated by the same pathologist (M.F.). The remaining annotations were gathered 
by three medical students in their 8th semester who were supervised by the leading pathologist (M.F.). M.F. 
later reviewed these annotations for correctness and completeness. Overall, annotations were gathered for seven 

Dataset Year Organ Images Image Type Classes Class Details Annotation Type

CAMELYON1612 2016 breast 399 whole slide images 2 tumor types contours

CAMELYON1712 2017 breast 1000 whole slide images
5 tumor stagings image-level (all images)

3 tumor types contours (50 images)

BACH13 2018 breast
500 patches 4 tumor types image-level

40 whole slide images 4 tumor types contours (10 images)

PAIP15 2019 liver 100 whole slide images 2 whole tumor + viable 
tumor contours

ADP16 2019 multi-organ 17668 patches 57 benign tissues image-level

BRACS14 2021
breast 4537 patches 7 tumor types image-level

breast 574 whole slide images 7 tumor types image-level

DROID17 2021

ovarian 193 whole slide images 11 ovarian tissue + tumor 
types contours

breast 361 whole slide images 4 tumor types contours

skin 99 whole slide images 32 benign + abnormal tissues contours

colon 101 whole slide images 38 benign + abnormal tissues contours

CATCH (ours) 2022 skin 350 whole slide images 13 skin tissue + tumor types contours

Table 1. Publicly available datasets for segmentation tasks on histological specimens.
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canine cutaneous tumor subtypes as well as six additional tissue classes: epidermis, dermis, subcutis, bone, car-
tilage, and a joint class of inflammation and necrosis. The open source online platform EXACT23 was used to 
monitor slide and annotation completeness.

Data Records
We provide public access to the full-resolution dataset on TCIA21. In total, the dataset consists of 350 WSIs – 50 
each for seven cutaneous tumor subtypes: melanoma, mast cell tumor (MCT), squamous cell carcinoma (SCC), 
peripheral nerve sheath tumor (PNST), trichoblastoma, and histiocytoma. The WSIs are stored in the pyramidal 
Aperio file format (.svs), allowing direct access to three resolution levels ( . μ0 25 m

px
; 1 m

px
μ ; 4 m

px
μ ).

In total, the 350 WSIs are accompanied by 12,424 polygon area annotations. Table 2 provides an overview of 
the annotated polygons and the overall annotated area per tissue class. The annotated polygons are provided in 
the annotation format of the Microsoft Common Objects in Context (MS COCO) dataset24 as well as an SQLite3 
database. For the MS COCO format, we have sorted the polygons in increasing order of their hierarchy level, i.e. 
polygons enclosed by another will be read out after their enclosing polygon. This ordering of polygons can be 
useful when, for instance, creating annotation masks from the annotation file. These annotation files can also be 
downloaded from TCIA21.

Dataset visualization. For visualization of annotations as overlays on top of the original WSIs, we encour-
age researchers to use one of the following two alternatives:

SlideRunner. SlideRunner can be used to visualize the annotations collected in the SQLite3 database. 
Furthermore, the software allows to set up an additional annotator and extend the database with custom classes 
and polygon annotations. In our GitHub repository, we provide two code examples to convert SlideRunner 
annotations into the MS COCO format and vice versa. Figure 1a illustrates an exemplary WSI with pathologist 
annotations in the SlideRunner user interface.

EXACT. EXACT enables the collaborative analysis of the dataset with integrated annotation versioning. 
Furthermore, the REST-API of EXACT allows offline usage and direct interaction with custom machine learn-
ing frameworks. The presented dataset can be integrated as a demo dataset into EXACT which enables a direct 
download of the polygon annotations. Further details can be found in the documentation of EXACT. To make 
use of additional annotations made by the user, our GitHub repository provides a code example to convert 
EXACT annotations into the MS COCO format. Figure 1b shows an overview of the demo dataset in EXACT.

technical Validation
Validation of annotations. After database collection, we ensured database consistency by using EXACT to 
check for and remove annotation duplicates, which occurred in rare cases due to different annotation versions. 
Previous work on inter-rater variability for contour delineation has demonstrated multiple influence factors on 
annotator disagreement for this task, such as the complexity of the medical pathology itself but also the hand-eye 
coordination skills of the raters25. Furthermore, a high level of inter-observer variability can significantly impact 
the performance of deep learning-based algorithms26. Therefore, we evaluated the inter-observer variability 
for the presented dataset with the help of annotations by two additional veterinary pathologists. Even though 
the comparison of three annotators might only provide an estimate of the full range of inter-observer variabil-
ity25, it shows the strengths and weaknesses of the provided dataset and highlights annotation classes where 
computer-aided systems might be of great use to pathologists. Due to the extensiveness of our dataset, we have 
limited the additional annotations to a 2048 μm × 2048 μm-sized region of interest (ROI) on each of the 70 test 
WSIs. The size of 2048 μm × 2048 μm corresponds to the patch size used for training the segmentation algorithm 

Class Annotation Polygons Annotation Area2

epidermis 3188 2244.57

dermis 3423 16561.82

subcutis 2850 7367.62

bone 51 216.86

cartilage 16 32.15

inflammation & necrosis 719 2048.54

melanoma 379 6836.61

histiocytoma 369 2941.12

plasmacytoma 377 4750.31

trichoblastoma 423 9072.10

mast cell tumor 161 9329.85

squamous cell carcinoma 337 3513.56

peripheral nerve sheath tumor 131 11108.78

total 12424 76023.89

Table 2. Annotated polygons and area per tissue class.
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elaborated in the subsequent section. For the selection of these ROIs, we used a uniform sampling across anno-
tation classes to counteract the class imbalance within our dataset. We then positioned the ROIs on a randomly 
selected vertex of a polygon of the chosen class to explicitly choose tissue boundaries where inter-annotator 
variability becomes most apparent. Figure 2 visualizes four exemplary patches with a high inter-rater agreement 
for the first two examples and a low inter-rater agreement for the second two. For quantitative evaluation of the 
inter-annotator variability, we computed CIpair

27 as the average pair-wise Jaccard similarity coefficient for each 
unique pair of raters i, j and the generalized conformity index CIgen

27 defined as:
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where Ac are the pixels annotated as class c ∈ C. These two measures have similar values with the same mutual 
variability between raters, but highly differ when the delineations of one rater are considerably different from the 
other raters27. Table 3 summarizes the pair-wise Jaccard coefficients for each unique pair of raters together with 
CIpair and CIgen for all annotated tissue classes. The small differences between CIpair and CIgen show that deviations 
of rater 1, who provided the annotations for the complete dataset, fall within the mutual variability of all raters.

Tumor delineation is a routine task for all pathologists and their extensive experience in this task might be 
the reason for the comparably high agreement on the tumor annotations with a CIgen, tumor of 0.8514. The epider-
mis is the uppermost layer of the skin and therefore always located at the tissue rim. Furthermore, it is visually 
distinctly demarcated from the subsequent dermis tissue. These unique characteristics of the epidermis ease the 
annotation task and might be responsible for the comparably high inter-observer concordance indicated by a 
CIgen, epidermis of 0.7512. The annotators showed a higher inter-rater variability for the two subsequent layers of the 
healthy skin – the dermis and subcutis. A closer evaluation of the class-wise confusions showed that these lower 
scores mostly resulted from mix-ups between these two classes. Such an example is also illustrated in the third 
example in Fig. 2. When combining these two annotation classes into one, the generalized conformity index 
increased from 0.7169 for dermis and 0.5836 for subcutis to 0.8176 for the combined class. Whereas tumor 
segmentation is of high relevance for most diagnostic purposes and therefore requires precise definition criteria, 
we do not see the same relevance for the separation of dermis and subcutis. Thus, we argue that a high inter-rater 
variability for these tissue classes does not lower the diagnostic interpretability of a segmentation algorithm 
trained with annotations biased by how these two classes were defined.

With a generalized conformity index of 0.3302, the concordance for inflammation and necrosis was particu-
larly low. These results, however, were not surprising as these structures are typically far less distinctly demar-
cated from surrounding tumor tissue due to two biological concepts that have to be considered: Firstly, necrotic 
areas can frequently be found within tumors where angiogenesis could not keep up with the aggressive growth 
of the tumor. Furthermore, secondary inflammations can be observed within tumors or at the tumor margin 
due to the immune system reacting to the neoplasm. Both of these biological mechanisms can result in areas that 
exhibit neoplastic as well as necrotic or inflammatory characteristics, which makes a precise separation from 
tumor tissue difficult. Such an example is shown in the last row of Fig. 2. Here, all pathologists have annotated 
an inflamed region located next to the outermost epidermis. Whereas pathologist 1 has annotated the adjacent 
region as tumor, pathologists 2 and 3 have extended the inflamed region to the rim of the tumor region in the 

Fig. 1 User interfaces of recommended open source software tools for dataset visualization. (a) SlideRunner. 
(b) EXACT.
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Fig. 2 Inter-rater variability for four exemplary test patches. (a) Original patch. (b–d) Annotations of 
pathologists. The first two rows show examples with a high inter-rater concordance and the second two rows 
examples with a low inter-rater concordance. The third example shows different definitions for dermis (blue) 
and subcutis (red) whilst the fourth example shows a high variation for inflammation & necrosis (pink).

Class CIr1,r2 CIr1,r3 CIr2,r3 CIpairs CIgen

background 0.9130 0.9239 0.9319 0.9229 0.9229

tumor 0.8501 0.8506 0.8535 0.8514 0.8514

epidermis 0.8025 0.7228 0.7270 0.7508 0.7512

dermis 0.6875 0.7015 0.7659 0.7183 0.7169

subcutis 0.5254 0.5872 0.6421 0.5849 0.5836

inflammation & necrosis 0.2823 0.3040 0.3895 0.3253 0.3302

Table 3. Class-wise conformity index computed for all unique pairs of annotators. CIpairs averages the pair-wise 
conformity indices whereas CIgen is a generalized version of the Jaccard coefficient. 
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left part of the patch. This tumor region has been delineated similarly by pathologists 1 and 3, whereas pathol-
ogist 2 has annotated this region much slimmer. The comparably low conformity index for this class shows the 
difficulty of clearly separating tissue areas that show a transition between two classes. This limitation of the 
provided annotations should be considered when evaluating the segmentation results of algorithms trained on 
the presented dataset.

Overall, the experiments show a high inter-observer agreement for tumor vs. non-tumor, which is highly 
relevant for most tasks in histopathology. However, they also highlight the difficulty of accurately demarcating 
necrotic or inflammatory reactions from the surrounding tumor cells. At the same time, it has to be considered 
that the selected regions for the inter-observer experiments were deliberately placed at tissue transitions and 
thereby rather over- than underestimate the inter-observer variability. Taking into account that the provided 
annotations mainly consisted of large connected tissue areas with little tissue interaction, we expect a consider-
ably higher agreement for the complete dataset.

Dataset validation through algorithm development. For further validation of the dataset, we evalu-
ated two convolutional neural network (CNN) architectures for the task of tissue segmentation and tumor sub-
type classification. For both tasks, we used the same dataset split: For each of the seven tumor subtypes, we 
randomly selected 35 WSIs for training, five for validation, and ten for testing. Thereby, we ensured equal distri-
bution of tumor subtypes in each split. Even though WSIs from the same canine patient showed different tissue 
sections, we maintained a dataset split at patient level to avoid data leakage. Figure 3 visualizes the distribution of 
annotated area per class across the WSIs of the train, validation, and test split. For simplicity, we have combined 
all tumor subtypes into one class for tumor segmentation, and consider the tumor subtypes separately only during 
tumor classification. The visualization shows similar distributions for all splits, which ensures that our test set 
evaluations are representative for the complete data distribution. However, the distributions also highlight the 
high class imbalance within the dataset which has to be considered during the development of algorithms for 
computer-aided tasks. A detailed overview of the slide-level split can be obtained from the GitHub repository in 
form of a comma-separated value (.csv) table together with code for implementing the CNN architectures pre-
sented in the subsequent sections.

Tissue segmentation. For the task of tissue segmentation, we trained a UNet28 to distinguish between four 
non-neoplastic tissue classes (epidermis, dermis, subcutis, and inflammation combined with necrosis) and all 
tumor subtypes combined into one tumor label. These five classes were accompanied by a sixth background 
class. For this background class, we used Otsu’s adaptive thresholding29 to compute a white threshold for each 
slide and assigned the background label to all non-annotated pixels that exceeded this white value. Overall, this 
resulted in six classes used for training the segmentation network. Figure 4 visualizes the annotation taxonomy 
and highlights the classes used for segmentation in green. Due to the low diagnostic significance and limited 
availability of bone and cartilage annotations, we excluded these classes from training and evaluating the pro-
posed methods. Non-annotated tissue areas were also excluded from training and evaluation.

For segmentation, we used the fastai30 UNet implementation with a ResNet1831 backbone pre-trained on 
ImageNet32. Image patches of 512 × 512 pixels at a resolution of μ4 m

px
 (2.5X), which corresponds to a tissue size of 

2048 × 2048 μm2, were used as input. We decided to use this 16-fold down-sampled resolution because input 
patches then covered more context, which has shown to be more beneficial for segmentation results in previous 
work33 and was confirmed by initial experiments on the validation dataset. To limit the number of 
non-informative white background patches and overcome class imbalances with random sampling, we propose 
an adaptive patch-sampling strategy: For each slide, we initialized the class probabilities as a uniform distribu-
tion over all annotation classes used on the respective slide. For a fixed number of training patches, we first 
sampled a class according to the class probabilities and then randomly selected a position within one of the 
polygons of this class. The final training patch was centered at this pixel location. We refer to this guided selec-
tion of a fixed number of patches as pseudo-epoch34. After each pseudo-epoch, the model performance was 

Fig. 3 Distribution of annotation area per class across dataset splits. The train split consisted of 245 whole slide 
images, the validation set of 35 whole slide images and the test set of 70 whole slide images.

https://doi.org/10.1038/s41597-022-01692-w
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evaluated on a fixed number of validation patches sampled in a similar fashion. The model performance was 
assessed using the class-wise Jaccard similarity coefficient Jc. Prior to the next pseudo-epoch, we updated the 
class-wise probabilities pc of each slide according to the complement of the corresponding class-wise Jaccard 
coefficient Jc:

∑= − = −
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This adaptive sampling strategy aimed for a faster convergence by over-sampling classes where the model 
faced difficulties. For each pseudo-epoch, we sampled ten patches per slide, resulting in 2450 training patches 
and 350 validation patches per pseudo-epoch. All patches were normalized using the RGB statistics of the train-
ing set, i.e. subtract the mean and divide by the standard deviation of all tissue-containing areas of the train-
ing WSIs. We trained the model for up to 100 pseudo-epochs and selected the configuration with the highest 
class-averaged Jaccard coefficient on the validation patches. We trained with a maximal learning rate of 10−4, a 
batch size of four, and used discriminative fine-tuning35 provided by the fastai package. During training, online 
data augmentation was used, composed of random flipping, affine transformations, and random lightning and 
contrast change. To meet the class imbalance within the data, the model was trained with a combination of the 
generalized Dice loss36 and the categorical focal loss37.

After model training, we computed a slide segmentation output using a moving-window patch-wise infer-
ence with an overlap of half the patch size, i.e. 256 pixels. In the overlap area, we averaged the class probabilities 
computed as softmax-output of the model predictions. This inference resulted in a three-dimensional output 
tensor with the slide dimensions in x- and y-direction and the number of segmentation classes in z-direction. 
The per-pixel labels were then computed as the class with the maximum entry in z-direction. Figure 5 visualizes 
an exemplary segmentation result with the original slide and annotated regions on the left and the predicted 
segmentation output on the right. For quantitative performance evaluation, we accumulated the pixel-based 
confusion matrices of all WSIs of the test set and then computed the class-wise Jaccard similarity coefficient. 
Figure 6 visualizes the row-normalized accumulated confusion matrix for a resolution of μ4 m

px
. The color-coding 

visualizes the row-wise normalization. The first column of Table 4 summarizes the class-wise Jaccard coefficients 
computed from the confusion matrix. Overall, the network scored a class-averaged Jaccard coefficient of 0.7047. 
Due to the high class imbalance, we also computed a frequency-weighted Jaccard coefficient by multiplying the 

Fig. 4 Taxonomy of tissue classes. Classes highlighted in green were used for training the segmentation 
network and classes highlighted in orange were used to train the tumor subtype classification network. MCT: 
mast cell tumor, SCC:squamous cell carcinoma, PNST: peripheral nerve sheath tumor.
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class-wise coefficients with the class-wise ratio of the respective pixels in the ground truth and summing up over 
all values. This yielded a frequency-weighted coefficient of 0.9001. The results show that especially for the back-
ground and tumor class, the network scored high Jaccard coefficients of 0.9757 and 0.9044 respectively. This 
could mainly be attributed to a high sensitivity, i.e. few areas were overlooked. However, the algorithm misclas-
sified a relatively large amount of non-neoplastic pixels as cancerous, especially inflamed and necrotic regions, 
yielding a comparably low Jaccard coefficient of 0.3023 for this combined class. Yet, this behavior meets clinical 
demands, as the costs of falsely classifying healthy tissue as tumor are far lower than overlooking neoplastic 
regions which could at worst lead to a false diagnosis. The high amount of neoplastic and inflammatory regions 
misclassified as tumor can again be ascribed to the necrotic and inflamed regions often interspersed between 
tumor cells, which makes a clear distinction difficult. The results of our inter-observer experiments have shown 
that a precise definition of these classes can be difficult even for trained pathologists. Therefore, algorithmic 
confusions between these classes should always be evaluated with the above-mentioned challenge in mind.

To evaluate whether training the algorithm on annotations of a single rater introduced a bias towards this 
rater, we additionally computed ROI Jaccard coefficients for the test patches included in the inter-rater exper-
iments. These are summarized in Table 4. Overall, the results do not show a clear bias towards rater 1 for most 
classes, as the results fall within the range of the inter-annotator conformity indices. For the combined class of 
inflammation and necrosis, the algorithm shows a tendency towards rater 1 but still shows a very poor agree-
ment with a Jaccard score of 0.2816. This again highlights the difficulty of accurately defining this class. When 
comparing the ROI Jaccard coefficients of rater 1 to the WSI Jaccard coefficients, the algorithm shows mostly 
lower performance, which underlines the increased complexity of the ROIs, which were deliberately placed at 
tissue transitions.

To evaluate whether the morphology of certain tumor subtypes within the dataset made a precise differenti-
ation of the tissue classes more difficult, we also computed the class-wise Jaccard coefficients per tumor subtype. 

Fig. 5 Exemplary segmentation result. (a) Annotation. (b) Prediction.

Fig. 6 Segmentation confusion matrix (pixel-based). The numbers on the left summarize the pixel-count per class.

Class WSI ROIr1 ROIr2 ROIr3

background 0.9757 0.9362 0.9355 0.9430

tumor 0.9044 0.8399 0.7911 0.8193

epidermis 0.6661 0.7033 0.6685 0.6167

dermis 0.6753 0.6988 0.6285 0.6740

subcutis 0.7043 0.6232 0.5101 0.6435

inflammation & necrosis 0.3023 0.2816 0.1331 0.1646

Table 4. Class-wise Jaccard similarity score for all WSIs of the test set annotated by rater 1 and the region of 
interests evaluated in the inter-rater experiments annotated by raters 1, 2, and 3.
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These results are summarized in Table 5. The results show that the network performed exceptionally well for 
trichoblastoma with a Jaccard coefficient of 0.9650 but was challenged by SCC samples with a Jaccard coefficient 
of 0.7185. The SCC confusion matrix revealed that 60.62% of the pixels annotated as inflammation or necrosis 
were falsely classified as tumor. SCC, however, is known to cause severe inflammatory reactions38. Infiltration of 
these inflammatory cells in-between the nests or trabecular of neoplastic epidermal cells can make an accurate 
distinction of both classes difficult, which could also be seen when evaluating the inter-annotator variability on 
the presented dataset.

Recent work has shown that deep learning-based models face difficulties when being applied to WSIs digi-
tized by a slide scanning system different from the one used for training the algorithm39,40. Due to practical fea-
sibility, a subset of the presented dataset was digitized with a different slide-scanning system. We compensated 
for this by ensuring a similar distribution of scanner domains in our training and test split and observed similar 
performances on our test data with mean Jaccard coefficients of 0.7026 for the ScanScope CS2 and 0.6986 for 
the AT2. Nevertheless, we are currently creating a multi-scanner dataset of a subset of the data presented in this 
work and future work will evaluate the transferability of trained models to unseen scanner domains and the 
development of domain-invariant algorithms.

Tumor classification. Besides tissue segmentation, we trained an additional CNN for tumor subtype classifica-
tion. For this, an EfficientNet-B041 was trained to distinguish between all seven tumor classes. We combined all 
non-neoplastic tissues used for training the segmentation network into one rejection class, allowing for infer-
ence on patches where no tumor was present. This resulted in eight classes used for training the classification 
network. Due to the high morphological resemblance of round cell tumors, where cell-level information might 
be required to distinguish the individual subtypes, we used the original scanning resolution of . μ0 25 m

px
 (40X) for 

classification. This corresponds to the diagnostic workflow of pathologists, who would first use a lower resolu-
tion to locate the tumor region and then use a higher resolution to classify the tumor. To retain as much context 
as possible, we increased the patch size to 1024 × 1024 pixels. We used the same train-test split as used for tissue 
segmentation and trained the network for 100 pseudo-epochs with ten patches per slide in each epoch. Fixing 
this number of sampled patches per slide ensured that each tumor was represented equally and network training 
was not affected by the very differently sized tumors highlighted by Table 2, where PNST annotations make up 
for almost 15% of the overall annotated area whereas histiocytoma annotations only for about 4%. For each slide, 
we set the probability of sampling a tumor patch seven times higher than the probability of sampling a 
non-neoplastic patch, as these were present in all slides of the seven tumor types, whereas tumor-specific patches 
were only available for the training slides of the respective tumor subtype. For the non-neoplastic patches, we 
ensured an equal sampling of the different tissue classes by first randomly sampling a class and then selecting a 
patch within one of the polygons of this class. We followed an area-based polygon sampling strategy to ensure an 
equal distribution of sampled patches across the annotated polygons of the respective class. Furthermore, a 
patch was only used for training the classification network if at least 90% of the pixels were annotated as the 
sampled class. All patches were normalized using the training set statistics. Similar to the segmentation network, 
we used online data augmentation. The network was trained with a batch size of four and a maximal learning 
rate of 10−3. We used the Adam optimizer and trained the model with cross-entropy loss. We used the mean 
patch-level accuracy to guide the model selection process.

To combine the pixel-wise segmentation with the patch-wise tumor subtype classification, we propose the 
following slide inference pipeline, visualized in Fig. 7: First, a WSI is segmented into six tissue classes, using the 
segmentation network described in the previous subsection. The spatial resolution of the pixel-wise segmenta-
tion map corresponds to the WSI at the chosen resolution of 4 m

px
μ , which represents a 16-fold down-sampling in 

each dimension. This segmentation map is up-sampled to the original resolution and only patches that were fully 
segmented as tumor obtain a patch label by the tumor subtype classification network. These patch classifications 
are then combined into a slide label by using majority voting. By training the tumor subtype classification net-
work on an additional rejection class comprised of non-neoplastic tissue, we aimed to compensate for 
false-positive tumor segmentation predictions. If the classification network assigned the rejection label for these 
patches, they were excluded from the subsequent majority voting. Inference time for this pipeline was measured 
using an NVIDIA Quadro RTX 8000 graphics processing unit. WSI segmentation took 15 ± 7 sec (μ ± σ) for an 
average of 405 ± 177 patches (�= 37 msec per patch). In our two-stage inference pipeline, only patches from areas 
segmented as tumor were passed on to the tumor subtype classification network. This significantly reduced the 

Class Tumor WSI Jaccard Score

melanoma 0.8394

histiocytoma 0.8714

plasmacytoma 0.9419

trichoblastoma 0.9650

mast cell tumor 0.8721

squamous cell carcinoma 0.7185

peripheral nerve sheath tumor 0.9166

Table 5. Tumor Jaccard similarity score computed from the confusion matrix accumulated over all ten test 
WSIs of the respective subtype.
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number of patches to be predicted, however, due to the higher resolution of the classification network, we still 
measured inference times of 6 ± 5 min for classification with an average of 2472 ± 1873 patches per slide (=� 155 
msec per patch). The comparatively high variance within these inference times resulted from the high variance 
of tissue and tumor area within the test set. On average, the WSIs were sized 6.47 ± 2.89 × 109 pixels at the orig-
inal resolution.

When applying the slide inference pipeline to all 70 WSIs from the test set, we classified 69 WSIs correctly, 
yielding a slide classification accuracy of 98.57%. The misclassified slide is depicted in the upper example of 
Fig. 8. Here, the model falsely labeled a trichoblastoma slide as melanoma. A closer examination of this slide 
revealed a high number of undifferentiated, pleomorphic cells, i.e. tumor cells of varying shapes and sizes, vis-
ualized in the magnified tumor region on the upper right side of Fig. 8. The region shows characteristics of 
epithelial tumors, the superordinate tumor category of trichoblastomas, but melanomas, too, can be composed 
of epitheloid cells. Melanomas are typically highly pleomorphic, which might have caused the misclassification 
as melanoma. The upper example in Fig. 8 also shows that some misclassified patches are located on the white 
WSI background. A closer look at these areas revealed small parts of detached tissue or dust artifacts, which were 
mistaken as tumor by the segmentation network and then falsely passed on to the classification network. This 
could be circumvented by additionally training the classification network on background patches or applying a 
post-processing step such as morphological closing to the segmentation output.

To evaluate whether some tumor subtypes were more difficult for the classification network than others, i.e. 
the majority voting was affected by many false patch classifications, we evaluated the confusion matrix of the 
tumor subtype patch classification, of which a row-normalized version is shown in Fig. 9 with the color-coding 
again representing the normalization. This confusion matrix only includes patches that were segmented as 
tumor and thereby passed on to the classification network. The first row of the matrix shows that the segmenta-
tion network passed on 16238 false-positive tumor patches to the classification network of which 63.46% were 
recovered by the rejection class. From the remaining rows, we computed tumor-wise recalls and precisions, 
i.e. the ratio of all patches correctly classified as the respective subtype to all patches labeled or respectively 
predicted as the corresponding subtype. These metrics, summarized in Table 6, only consider confusion among 
tumor subtypes and not with the non-neoplastic class. The confusion matrix and the results in Table 6 show that 
SCC generally was the most difficult class for the network to distinguish. Looking at the results in detail, how-
ever, the comparably low F1 score of 0.8773 can mostly be attributed to the low classification precision, meaning 
a lot of tumor patches were falsely classified as SCC. A closer look at the classification outputs showed that these 
misclassifications were mostly located at the tumor boundaries. This observation could be linked to the severe 
inflammatory reactions that are typically caused by SCCs38. During training, inflammatory reactions to tumor 
growth might have been more common for SCC samples than for other subtypes, which might have caused the 
model to mistake the interaction of tumor and inflammatory cells as SCC.

The lower example in Fig. 8 shows a melanoma sample where the majority voting yielded the correct classifi-
cation label but was affected by many false patch classifications. A comparison to the ground truth annotations 
depicted on the lower right side of Fig. 8 reveals that this can be rooted back to a false tumor prediction of the 
preceding segmentation network, as only the area correctly classified as melanoma was also annotated as tumor. 
For this example, the rejection class could not fully recover the errors made by the segmentation network. Even 
though the majority voting resulted in the correct slide label for this example, one should always take into 
consideration some measure of confidence for the majority voting, indicating how difficult the final decision 
was. Determining the patch-level entropy, for instance, could highlight slides where the distribution of patch 

Fig. 7 Patch segmentation and classification pipeline. Due to different resolutions and patch sizes between the 
segmentation and the classification task, a single segmentation patch holds multiple classification patches. Only 
patches segmented as tumor are classified into a tumor subtype. MCT: mast cell tumor, SCC: squamous cell 
carcinoma, PNST: peripheral nerve sheath tumor.
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classifications across the tumor subtypes resembled a uniform distribution, i.e. scored a high entropy and the 
decision was made less confidently. This entropy could then be used for weighted voting of the slide label instead 
of a simple majority voting.

Dataset insights from algorithm development. Overall, the algorithm results on the provided database validate 
database quality as a successful training of a segmentation algorithm on the dataset proves the consistency of 
the annotations. When comparing the algorithm to the annotations of rater 1, the Jaccard scores fall within the 

Fig. 8 Exemplary classification results. The upper example shows a trichoblastoma sample misclassified as 
melanoma with the classification output on the left and the magnified tumor region on the right. The tumor 
region shows a high number of pleomorphic tumor cells. The lower example shows a melanoma sample with 
the classification output on the left and the annotated sample on the right. The classification output shows a high 
ratio of misclassified patches caused by a false tumor prediction during segmentation. MCT: mast cell tumor, 
SCC: squamous cell carcinoma, PNST: peripheral nerve sheath tumor.

Fig. 9 Classification confusion matrix (patch-based). The numbers on the left summarize the patch-count per 
tumor class.

Class Precision Recall F1 score

melanoma 0.8555 0.9675 0.9081

histiocytoma 0.9399 0.9679 0.9537

plasmacytoma 0.9684 0.9624 0.9654

trichoblastoma 0.9478 0.9568 0.9522

mast cell tumor 0.9886 0.9584 0.9732

squamous cell carcinoma 0.8251 0.9367 0.8773

peripheral nerve sheath tumor 0.9783 0.9182 0.9473

Table 6. Patch-level tumor precision, recall and F1 score per tumor subtype.
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range of inter-annotator concordance, indicating that the provided annotations did not introduce a bias into 
algorithm development. Furthermore, the experiments highlighted strengths and weaknesses of the provided 
dataset, as for instance SCCs are more affected by inflammatory reactions, which makes them less suited for 
training an algorithm for a clear distinction of tumor and inflammation.

Usage Notes
All code examples are based on OpenSlide42 for WSI processing and fastai30 for network training. To apply the 
fastai modules to WSIs, we provide custom data loaders in our GitHub repository. The annotation and visualiza-
tion tools used for this work–SlideRunner and EXACT–are both open source and can be downloaded from the 
respective GitHub repositories.

Code availability
Code examples for training the segmentation and classification architectures can be found in the form of 
Jupyter notebooks in our GitHub repository (https://github.com/DeepPathology/CanineCutaneousTumors). 
Furthermore, we provide exported fastai learners to reproduce the results stated in this work. The datasets.csv file 
lists the train, validation, and test split on slide level. For network inference, we provide two Jupyter notebooks for 
patch-level results (segmentation_inference.ipynb and classification_inference.ipynb) and one notebook for slide-
level results. This slide_inference.ipynb notebook produces segmentation and classification outputs as compressed 
numpy arrays. After inference, these prediction masks can be visualized as overlays on top of the original images 
using our custom SlideRunner plugins wsi_segmentation.py and wsi_classification.py. To integrate these plugins 
into their local SlideRunner installation, users have to copy the respective plugin from our GitHub repository 
into their SlideRunner plugin directory. Additionally, the slide_inference.ipynb notebook provides methods to 
compute confusion matrices from network predictions and calculate class-wise Jaccard coefficients and the 
tumor classification recall. As mentioned previously, we provide six python modules to convert annotations 
back and forth between MS COCO and EXACT, MS COCO and SQLite, and EXACT and SQLite formats. This 
enables users to extend the annotations by custom classes or polygons in their preferred annotation format. These 
modules can be found in the annotation_conversion directory of our GitHub repository.
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