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ABSTRACT

In the recent past deep learning approaches have achieved
some remarkable results in the area of fault diagnostics and
anomaly detection. Nevertheless, these algorithms rely on
large amounts of data, which is often not available, and pro-
duce outputs, which are hard to interpret. These deficiencies
make real life applications difficult. Before the broad success
of deep learning machine faults were often classified using
domain expert knowledge based on experience and physical
models. In comparison, these approaches only require small
amounts of data and produce highly interpretable results. On
the downside, however, they struggle to predict unexpected
patterns hidden in data. Merging these two concepts promises
to increase accuracy, robustness and interpretability of mod-
els. In this paper we present a hybrid approach to combine ex-
pert knowledge with deep learning and evaluate it on rolling
element bearing fault detection. First, we create a knowledge
base for fault classification derived from the expected phys-
ical attributes of different faults in the envelope spectrum of
vibration signals. This knowledge is used to derive a simi-
larity function for comparing input signals to expected faulty
signals. Afterwards, the similarity measure is incorporated
into different neural networks using a Logic Tensor Network
(LTN). This enables logical reasoning in the loss function,
in which we aim to mimic the decision process of an ex-
pert analyzing the input data. Further, we extend LTNs by
weight schedules for axiom groups. We show that our ap-
proach outperforms the baseline models on two bearing fault
data sets with different attributes and directly gives a better
understanding of whether or not fault signals are influenced
by other effects or behave as expected.

1. INTRODUCTION

The increased connectivity of machines and whole produc-
tion halls enabled by the Industrial Internet of Things (IIoT)
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has made gathering data and monitoring machines easier. We
can collect condition monitoring data about machines, which
in turn make new maintenance strategies possible. Before,
machines were often run until they failed or maintained on
a regular predefined schedule. Now, predictive maintenance,
where maintenance activities are based on the remaining use-
ful life of a machine, is widely possible. In comparison to
traditional approaches this can reduce machine down times,
prolong machinery lifetime and reduce resource consump-
tion (Selcuk, 2017).

To make this possible we must diagnose and predict faults
correctly based on available data. In the recent past deep
learning (DL) in particular has shown great success in doing
so (Fink et al., 2020; Liu, Yang, Zio, & Chen, 2018; Arinez,
Chang, Gao, Xu, & Zhang, 2020; Zhao et al., 2019). Despite
its broad success DL has a number of known issues. One of
the major drawbacks is the necessity of large amounts of data
for training DL algorithms, without which generalization is
not possible (Fink et al., 2020). Even though IIoT can provide
us with plenty of data, the nature of the required data often
makes collection very costly or even prohibitive. For exam-
ple, to gather fault data, on which diagnostics and prognostics
can be performed, a machine needs to suffer that fault. Espe-
cially for large special machinery this can be very expensive
and interrupt the production flow. Another disadvantage is the
difficulty with which DL output can be explained (Arrieta et
al., 2020). However, this explainability is essential for build-
ing trust in the results, which can only be achieved by under-
standing their occurrence.

According to different authors these shortcoming could be
reduced by combining purely data driven models with do-
main knowledge and symbolic AI techniques to hybrid mod-
els (Fink et al., 2020; Arinez et al., 2020; Garcez & Lamb,
2020; Marcus, 2020). To achieve this multiple approaches
have been studied in the domain of fault diagnostics and prog-
nostics. For instance, the combination has shown to increase
explainability and enable root cause analysis by taking into
account input from human experts (Steenwinckel et al., 2021).
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Moreover, it has shown to make models more robust and de-
crease the amount of “real” data needed through high-quality
simulation of data based on expert knowledge (Wang, Taal,
& Fink, 2021), and increase overall performance by extend-
ing the feature space with physics inspired features (Chao,
Kulkarni, Goebel, & Fink, 2022).

These approaches all have in common that the knowledge
and data based parts can be clearly distinguished from one
another. A different way of creating hybrid models is when
both approaches are completely integrated into one another.
One such idea is neurosymbolic AI, where traditional rule-
based AI is merged with recent developments in DL (Garcez
& Lamb, 2020). Logic Tensor Networks (LTN) (Badreddine,
Garcez, Serafini, & Spranger, 2022), which use a logic lan-
guage to create a loss function for training arbitrary neural
networks, are a realization of this. This approach has shown
to be effective on different tasks like semantic image inter-
pretation (Donadello, Serafini, & Garcez, 2017) or deduc-
tive reasoning (Bianchi & Hitzler, 2019). To the best of our
knowledge, this method has not yet been applied for classify-
ing faults.

Our contribution is to apply the neurosymbolic framework
LTN to the fault diagnostics domain. This is demonstrated
by showing its suitability for incorporating knowledge into
DL in the special case of bearing fault diagnostics with con-
stant shaft speed. For this, we propose a new scoring function
based on physical knowledge for classifying bearing faults.
The scoring function acts as domain expertise for the LTN
loss function, which can thereby be injected into classic DL
models. Additionally, we extend the LTN framework by as-
signing weights to different axiom groups and propose weight
schedules along the training process for doing so. We show
that our approach outperforms the baseline methods in terms
of test accuracy.

In the remainder of this paper we will first lay the foundations
for Logic Tensor Networks in Sec. 2. Next, in Sec. 3 our
approach for combining knowledge with DL based on LTNs
for bearing fault classification is outlined. Finally, we present
our experimental setup in Sec. 4 and evaluate our approach
on two well known bearing fault data sets in Sec. 5.

2. FOUNDATIONS

A Logic Tensor Network (LTN) is a neurosymbolic frame-
work, which uses a fully differentiable first-order logic lan-
guage called Real Logic in the loss function for training a
neural network (NN). Here we give an overview of Real Logic
and how LTNs learn. For an in depth treatment of these topics
we refer to the original work (Badreddine et al., 2022).

Real Logic is defined on a first-order logic language L =
(C,P,F ,X ), where C is a set of constant symbols, P a set of
relational symbols (predicates), F a set of functional symbols

and X a set of variable symbols. L allows for defining logical
formulas, e.g., ∀x((x > thr) → isFault(x, c)), which states
that all x, that are greater than thr, yield the fault c.

Due to the desired applicability to real world problems fuzzy
semantics is used, meaning that the truth value of a logical
formula is between 0 and 1 in comparison to just being true
or false. One of the main benefits of Real Logic is its differen-
tiability, which is achieved by grounding onto the real plane,
i.e., all logical expressions are mapped onto R. For this to
work all elements of L are typed and attributed to a domain,
e.g. the constant Ingolstadt is of the domain City.

The functions D, Din and Dout return the domains of the
elements of L and are defined as

D : X ∪ C 7→ D,
Din : F ∪ P 7→ D∗,
Dout : F 7→ D,

where D is a non-empty set of symbols called domain sym-
bols and D∗ is the Kleene Star of D, which is defined as the
set of all finite sequences of symbols in D. Thus, D outputs
the domain of a constant or variable, Din gives us the domain
of the input for a function or predicate and Dout returns the
output domain for functions.

Grounding means that domains are interpreted concretely as
tensors in the real field, constants and variables as tensors of
real values, functions as real functions or tensor operations
and predicates as functions or tensor mappings to a value in
the interval [0, 1]. Formally, a grounding G satisfies the con-
ditions

∀x ∈ X ∪ C : G(x) ∈
k∏

i=1

G(D(x)),

∀f ∈ F : G(f) ∈ G(Din(f)) 7→ G(Dout(f)),

∀p ∈ P : G(p) ∈ G(Din(p)) 7→ [0, 1],

with k being the number of instances of x. A grounding
depending on a set of parameters θ is depicted as G(·|θ).
This definition can be expanded to also include all first-order
terms and atomic formulas by consecutive application of the
grounding function. See (Badreddine et al., 2022) for details.

To ground a complete atomic formula connectives and quanti-
fiers are necessary. We define these in accordance to Product
Real Logic as proposed by (Badreddine et al., 2022). Hence,
connectives, i.e., conjunction (∧), disjunction (∨), implica-
tion (→) and negation (¬), are defined on first-order fuzzy
logic semantics (Hájek, 2013) and are associated with a t-
norm (T ), t-conorm (S), fuzzy implication (I) or fuzzy nega-
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tion (N ) respectively. These are defined as

T (a, b) = ab,

S(a, b) = a+ b− ab,
I(a, b) = 1− a+ ab,

N(a) = 1− a,

with fuzzy logic values a, b ∈ [0, 1]. Additionally, quantifiers
are defined via an aggregation operator A :

⋃
n∈N[0, 1]n 7→

[0, 1]. The for-all (∀) quantifier is defined as the p-mean error

ApME(a1, ..., an) = 1−
(

1

n

n∑

i=1

(1− ai)p
)1/p

, (1)

and exists (∃) as the p-mean

ApM(a1, ..., an) =

(
1

n

n∑

i=1

api

)1/p

,

given the fuzzy truth values a1, ..., an and p ≥ 1.

Using these definitions we can now ground an exemplary
atomic formula φ = ∀x((x > thr) → isFault(x, c)) with
variable x, constants thr, c and predicate isFault(x, c), which
depends on parameters θ, and (x > thr). The respective do-
mains are given by D(·) and Din(·). Therefore, the formula
is grounded through

G(φ|θ) = ApME(I(G((x > thr)),G(isFault(x, c)|θ)).

Real logic can be used to create a knowledge base, which is
defined by the triple T = 〈K,G(·|θ),Θ〉. Here K is a set of
closed first-order logic formulas (axioms) defined on the set
of symbols S = C ∪ P ∪F ∪X ∪D and Θ is the hypothesis
space for the parameters θ. The goal is to learn some set of
parameters that maximizes the satisfiability of the knowledge
base

θ∗ = argmax
θ∈Θ

SatAgg
φ∈K

G(φ|θ), (2)

where SatAgg is some aggregation operator. In the following
we will use the p-mean error defined in Eq. (1). This formu-
lation can then be used as the loss function of a NN, which
searches for an optimal set of parameters that maximizes the
satisfiability. A NN with a loss function based on Real Logic
is called a LTN.

Due to the differentiability of Real Logic and therefore of
the optimization problem in Eq. (2), the loss function can be
applied like any other loss function to a NN and all estab-
lished optimization techniques and network architectures can
be used.

An implementation of LTNs in Python based on Tensorflow

is available.1

3. APPROACH

3.1. Scoring Function for Bearing Faults

For identifying bearing faults we propose to create a heuris-
tic scoring function, that acts similar to the way an expert
would analyze a bearing vibration signal. The function is in-
spired by the analysis done on the CWRU bearing data set
by (Smith & Randall, 2015) and how the authors achieved
their assessment by relying on the expected frequencies for
specific faults. Depending on the location of the fault these
are called ball pass frequency, outer race (BPFO), ball pass
frequency, inner race (BPFI) and ball (roller) spin frequency
(BSF) and are described by

BPFO =
nr
2

(1− dr
dp

cosψ), (3)

BPFI =
nr
2

(1 +
dr
dp

cosψ), (4)

BSF =
dp
2dr

(1− (
dr
dp

cosψ)2), (5)

where nr denotes the number of rolling elements, dr the roller
diameter, dp the pitch diameter and ψ the contact angle of the
bearing. These frequencies are multiplied by multiples of the
shaft speed vr to obtain the expected fault frequencies over
the complete spectrum.

These frequencies are more easily identified when inspecting
the envelope spectrum of the vibration signal in comparison
to the spectrum of the raw signal. Therefore, we first trans-
form the raw signal into the envelope signal using the Hilbert
transform (Bonnardot, Randall, Antoni, & Guillet, 2004). Af-
terwards, the envelope signal is transferred to the correspond-
ing envelope spectrum. Here the different fault types outer
race fault (OR), inner race fault (IR) and ball fault (B) can
be recognized by the peaks at the respective fault frequen-
cies BPFO, BPFI and BSF (Smith & Randall, 2015). The
fault frequencies are especially visible in lower frequency ar-
eas (Randall & Antoni, 2011). Therefore, we only analyze
frequencies of up to 500 Hz. To ensure, that the remnants
of a fractional pass of a faulty bearing does not disturb our
score calculation, we additionally limit ourselves to frequen-
cies higher than one and a half times the shaft speed. We
write the operation of transforming a signal x into its en-
velope spectrum consisting of frequencies h = (h1, ...hn)
and corresponding amplitude values d = (d1, ..., dn), with
hn ≤ 500 and h1 ≥ 1.5vr, as EnvSpec(x).

In the envelope spectrum we can identify peaks by taking
the moving average along a predefined window to see which
points (hi, di) vary strongly from the norm. We use the well-

1https://github.com/logictensornetworks/logictensornetworks
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known definition of the moving average

MA(w)(d) =
1

w

w−1∑

i=0

dt−i,

over a window of w values. We set this window to the shaft
speed vr and omit the superscript.

Let 1{A} be the indicator function, which is one if A is true
and zero otherwise. Then, if a frequency value hi has a cor-
responding amplitude di of 2.5 times the moving average, we
can mark these as peaks and count them with

NP(d) =

n∑

i=1

1{di≥2.5MA(d,i)}.

The identified peaks are then classified into whether or not
they are expected, i.e., they are at the expected fault frequen-
cies derived from Eqs. (3), (4) and (5). The expected fault
frequencies are given by F (l) = (F

(l)
1 , ..., F

(l)
m ) for each fault

type l ∈ {IR, OR, B}. In the following we will omit the su-
perscript l and remark that the rest of the score calculation
procedure is applied for all l independently.

Due to the imperfections of the real world we relax the con-
dition of a peak being exactly at the expected fault frequency
by the value δ = vr/2 and get the number of expected peaks

N
(j)
EP(h, d) =

n∑

i=1

1{di≥2.5MA(d,i)}1{Fj−δ≤hi≤Fj+δ}.

If multiple peaks fall into the sameFj±δ section the weighted
average is taken by calculating the value

V
(j)
EP (h, d) =

n∑

i=1

1{di≥2.5MA(d,i)}1{Fj−δ≤hi≤Fj+δ}hi,

and dividing it through the amount of peaks. Combining this
for all expected frequencies F1, ..., Fm this gives us

V̄EP (h, d) =

m∑

j=1

V
(j)
EP (h, d)/N

(j)
EP(h, d).

The value of all peaks, which do not fall in the expected cat-
egory, is calculated by

V
(j)
PNE(h, d) =

n∑

i=1

1{Fj−1+δ≤hi≤Fj−1−δ}di,

with F0 = −δ and Fm+1 = inf . By combining the previous
equations we obtain the score function

fl(h, d) =
V̄EP (h, d)

V̄EP (h, d) +
∑m+1
j=1 V

(j)
PNE(h, d)

(6)

for each fault type l, which returns a value between 0 and 1.

An exemplary visualization for how the score is calculated is
given in Fig 1.

The value can be interpreted as the share of peaks, which were
as expected for a specific fault. Therefore, we set the thresh-
old thrscore = 0.49 for determining whether one is confident
in the occurrence of the respective fault. Hence, we obtain
the logical formula

∀x ((fl(EnvSpec(x)) > thrscore)→ P (x, cl)), (7)

with the respective fault label l and predicate P for fault clas-
sification. With this formula we aim to mimic the way an
expert would analyze a vibration signal and identify a certain
kind of fault. It will serve as an input to our knowledge base
defined in the next section. To unclutter notation we will omit
EnvSpec(x) and directly write fl(x) for the rest of the paper.

Notice, that even though we describe a specific function for
bearing fault diagnostics on vibration data, any function f can
be used to create the axiom in Eq. (7). Therefore, arbitrary
knowledge can be induced and the axiom works for different
classification settings.

0 100 200 300 400 500

Frequency [Hz]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Envelope Spectrum

Moving Average

2.5 Moving Average

BPFI

±vr/2

Peak

Figure 1. Visualization of the components of the fIR score
function for an exemplary signal with an inner race fault (IR).
The fault scores of this signal are fOR = 0.30, fIR = 0.83
and fB = 0.16. It would therefore be classified as IR by
axiom Eq. (7).

3.2. Identifying Normal Bearings

Healthy bearings can be identified more easily. In compari-
son to the impulsive signal of a faulty bearing the signal of
a normal bearing is rather smooth, see Fig. 2. This differ-
ence can be measured by the kurtosis, which is defined as the
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fourth standardized moment

Kurt(x) =
1

n

n∑

i=1

(
xi − x̄
s

)4

, (8)

with mean x̄ and standard deviation s of the signal x (Randall
& Antoni, 2011). We use this knowledge as a further input to
our knowledge base and write the corresponding formula as

∀x ((Kurt(x) > thrkurt)→ P (x, cN)), (9)

where we set the threshold thrkurt = 0.1.

−1

0

1 Healthy Bearing

0.00 0.02 0.04 0.06 0.08 0.10

Time [s]

−1

0

1 Faulty Bearing

Figure 2. Vibration signal of a healthy and a faulty bearing
with a kurtosis of −0.19 and 2.20 respectively.

3.3. Knowledge Base for the LTN

Using these means of diagnosing bearing signals we create a
knowledge base as per the definitions for LTNs in Sec. 2.

Domains D:

data, labels

Variables X :

x, xN, xOR, xIR, xB

D(x) = D(xN) = D(xOR) = D(xIR) = D(xB) = data

Constants C:

cN, cOR, cIR, cB

D(cN) = D(cOR) = D(cIR) = D(cB) = labels

Predicates P:

P (x, c)

Din(P ) = data, labels

Axioms K:
Data axioms KD:

∀xN P (xN, cN)

∀xOR P (xOR, cOR)

∀xIR P (xIR, cIR)

∀xB P (xB, cB)

Knowledge axioms KK:

∀x ((Kurt(x) > thrkurt)→ P (x, cN))

∀x ((fOR(x) > thrscore)→ P (x, cOR))

∀x ((fIR(x) > thrscore)→ P (x, cIR))

∀x ((fB(x) > thrscore)→ P (x, cB))

(10)

Groundings G:

G(data) = Rn, G(labels) = N4

G(xN) ∈ RmN×n, G(xOR) ∈ RmOR×n

G(xIR) ∈ RmIR×n, G(xB) ∈ RmB×n

G(x) ∈ R(mN+mOR+mIR+mB)×n

G(cN) = [1, 0, 0, 0], G(cOR) = [0, 1, 0, 0]

G(cIR) = [0, 0, 1, 0], G(cB) = [0, 0, 0, 1]

G(P |θ) : x, c 7→ cT · softmax(CLFθ(x))

thrscore = 0.49, thrkurt = 0.1

Kurt(G(x)) ∈ R
∀l ∈ {OR, IR,B} : fl(G(x)) ∈ [0, 1]

The subscripts of the variables in X indicate, that only the
fraction, where data has the same label as the subscript, is
used. If there is no subscript, then all data is used. This also
explains grounding of the different variables onto different
dimensional real spaces.

Notice the grounding of predicate P in some classifier CLF,
which in turn relies on the parameter configuration θ. The
softmax function ensures that a truth value between 0 and 1
is returned by this grounding. As mentioned in Sec. 2 this
classifier can be any kind of NN and the parameters of the
NN are optimized so that the satisfiability of the axioms K is
maximized.

The knowledge base is specific to our case study of bearing
fault diagnosis. But, the general formulation of the whole
knowledge base and specifically the knowledge axioms KK

make it possible to apply this approach to any other problem
setting in the fault diagnosis domain.
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3.4. Weights for Axiom Groups

Of course, our end goal is not to satisfy the knowledge base
developed in Sec. 3.3, but to achieve the highest accuracy on
some test set. To improve the performance of the underly-
ing classifier CLF we optimize the satisfiability of the knowl-
edge base, which consists of two kinds of axioms, namely
data axioms KD and knowledge axioms KK. Data axioms
rely only on the provided labeled data and are always true in
terms of classification accuracy. In contrast the knowledge
axioms consist of the heuristics formulated in Sec. 3.1 and
3.2, which are not always true but are based on physical cer-
tainties.

If we contemplate on how we as humans learn new things, it
mainly starts off with somebody explaining to us how some-
thing should work in theory. After understanding this, we go
out into the world to apply this knowledge and quickly realize
that the theory is based on assumptions, which don’t always
hold in reality. Therefore we update our beliefs based on new
experiences and observations. According to (Fitts & Posner,
1967) this is reflected in the learning phases “cognitive”, “as-
sociative” and “autonomous”. We want to apply this way of
learning to LTNs.

By weighting the importance of the satisfiability for certain
axiom groups differently during the course of training, we
can mimic exactly this process. To incorporate this idea we
introduce the idea of weighted axiom groups. For this we
need to rewrite the satisfiability optimization problem from
Eq. (2) to

θ∗ = argmax
θ∈Θ

K∑

k=1

w
(e)
k SatAgg

φ∈Kk

G(φ|θ), (11)

withK weightsw(e)
k and

∑K
k w

(e)
k = 1, which are dependent

on the current training epoch e and a set of K axiom groups
Kk. For our purposes we group axioms into knowledge and
data axioms, but other more granular groupings are also pos-
sible. We call a weight schedule the setting of weights wk per
axiom group Kk as a function of epochs e and propose the
two weight schedules first knowledge then data (FKTD) and
up and down (UAD). The corresponding weight schedules are
given in Table 1.

Table 1. Definition of the weight schedules UAD and FKTD
for data axioms (D) and knowledge axioms (K) along the
training process of N epochs.

Epochs (e) UAD FKTD
e ≤ 1

4
N wD = 0, wK = 1 wD = 0, wK = 1

1
4
N < e ≤ 1

2
N wD = 1

4
, wK = 3

4
wD = 0, wK = 1

1
2
N < e ≤ 3

4
N wD = 3

4
, wK = 1

4
wD = 1, wK = 0

e > 3
4
N wD = 1, wK = 0 wD = 1, wK = 0

3.5. Extending the Feature Space

We can also incorporate our knowledge without using the
Real Logic machinery of LTNs by extending the feature space
with inputs describing this knowledge (Chao et al., 2022).
Hereby we include the score functions (fOR, fIR, fB) and the
Kurtosis of the signals as additional features in the data and
train the network based on this enhanced data set. In the fol-
lowing we will use this approach in combination with LTNs
and independently as a further baseline on top of networks
without any induced knowledge.

4. EXPERIMENTAL SETUP

4.1. Data

We used two bearing fault data sets with different attributes
and constant shaft speed for evaluating the proposed approach.

4.1.1. CWRU Data Set

The Case Western University (CWRU) bearing data set2 is
a widely used benchmark data set for bearing fault classi-
fication (Neupane & Seok, 2020). A thorough analysis of
the data is given by (Smith & Randall, 2015). The data set
consists of vibration signal measurements of the four differ-
ent classes healthy/normal (N), inner race fault (IR), outer
race fault (OR) and rolling (ball) element fault (B). The faults
have the different sizes 0.07 in, 0.14 in, 0.21 in or 0.28 in and
are measured at different positions. The machine was run on
constant shaft speeds of 1730, 1750, 1772 and 1792 rotations
per minute (RPM) for different motor loads. For our experi-
ments we will use the drive end data sampled at a frequency
of 12 kHz and the baseline data with a frequency of 48 kHz.
For the drive end data a SKF 6205-2RS JEM deep groove
ball bearing was used, which has the ball pass frequencies
BPFI = 5.415, BPFO = 3.585 and BSF = 2.357, that
we use to create the score from Sec. 3.1. We will exclude
the 0.28 in fault data, because a different bearing is used for
which neither ball pass frequencies nor measurements for cal-
culating these are available.

4.1.2. MFPT Data Set

As a second data set we used the data provided by the Soci-
ety for Machinery Failure Prevention Technology3 (MFPT).
MFPT provides us with data for healthy bearings and outer
race fault conditions with 98 kHz sample frequency and a
constant shaft speed of 1560 RPM. Additionally, the data in-
cludes inner and outer race fault conditions with 48 kHz sam-
ple frequency with the same shaft speed. The test rig used for
data generation is equipped with a NICE bearing with the ball
pass frequencies BPFI = 4.755 and BPFO = 3.245.

2https://engineering.case.edu/bearingdatacenter, accessed 02/04/2022
3https://www.mfpt.org/fault-data-sets/, accessed: 02/04/2022
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4.2. Data Preprocessing

For the CWRU data set we excluded all faults with size 0.28 in
because no information about the used bearing is available.
From the signal data we extracted time series of length 1200.
For the faults, which were sampled at a frequency of 12 kHz,
this amounts to an observation time of 0.1 seconds. The base-
line data of non faulty bearings was sampled at 48 kHz, there-
fore we downsampled the data to 12 kHz, so that we have the
same time interpretation.

The MFPT data is sampled at different frequencies. The small-
est fault frequency is 48 kHz, therefore we downsampled all
other signals to this sample rate. Afterwards we extracted
time series of length 4800 to also have an observation time of
0.1 seconds.

After the extraction of the time series the scores for different
classes and the kurtosis were calculated based on these seg-
ments. Since the MFPT data set does not include any ball
faults, we excluded the score calculation and the respective
axiom from the knowledge base. Depending on whether or
not we used feature space extension, we included or excluded
the scores and kurtosis from the data used for training and
testing of the networks.

4.3. Model Configurations

We used two different kinds of NNs as inputs to the LTN
and as baselines for comparison: A Multi Layer Perceptron
(MLP) with three fully connected hidden layers, which con-
sist of 32, 32 and 16 nodes, and a CNN consisting of one con-
volutional layer with kernel size 9 and a fully connected hid-
den layer with 64 nodes. Both use the exponential linear unit
(elu) activation function (Clevert, Unterthiner, & Hochreiter,
2016) with α = 1, the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001 and are trained with batches of
32 for 100 epochs. The baseline NNs use the categorical cross
entropy loss function. Combining these two NNs with the dif-
ferent means of inducing knowledge and weight schedules,
we obtain 16 different models listed in Table 2.

4.4. Experiments

All experiments were run and averaged over the same 7 ran-
dom seeds. Each model was trained on 10 %, 30 %, 50 %,
70 % and 90 % of the data and test accuracies were calculated
on an unseen 10 % of the data. The underlying NNs of the
LTNs and for the pure DL approaches were completely iden-
tical and were initialized with the same random seed. Thereby
both methods suffered or profited from equal initial weight
settings likewise. All code was implemented in Python 3 us-
ing the Tensorflow and Logic Tensor Networks packages.

5. RESULTS

The results of all experiments for different model configu-
rations for the CWRU data set and the MFPT data set are
given in Table 3 and Table 4 respectively. We continue by
evaluating the knowledge and the proposed models indepen-
dently. For each section we discuss both the performance on
the CWRU data set and on the one provided by MFPT.

5.1. Pure Knowledge Based Classification

First, we evaluate how the proposed knowledge axioms per-
form independent of DL on both data sets. We do this by
dividing the number of correctly identified labels of a class
through the number of all labels of a class. The labels were
identified by using the knowledge axioms KK (10) from the
proposed knowledge base. The results are shown in Table 5.
We see that the proposed knowledge axioms work very well
on MFPT, with an average value of 0.9 and less so on the
CWRU data with an average value of 0.62. From these val-
ues we can follow that the MFPT data is very well behaved
in terms of characteristic signals for different fault types and
that these are not significantly masked by other influences.
For the CWRU data on the other hand, there appear to be
multiple other influences on the signals, which corresponds
to one of the key findings by (Smith & Randall, 2015). Addi-
tionally, we see that faults of type B are very hard to classify
with only the proposed scoring function.

For MFPT the purely knowledge based approach even outper-
formed all analyzed neural networks regardless of the amount
of data used, which further underlines the validity of the pro-
posed logical axioms for clear unmasked bearing fault data.
On the other hand, when using the CWRU data set the purely
knowledge based classification is outperformed by all anal-
ysed models if 30 % or more of the data was used.

5.2. Real Logic in the Loss Function

Next, we evaluate the performance of LTNs (LtnMlpNoF &
LtnCnnNoF) given the proposed knowledge base from Sec. 3.3
against the pure DL approaches with a MLP or CNN (Nn-
MlpF & NnCnnF) .

On the CWRU data set LTNs outperformed their respective
NN counterparts along all data fractions. The difference is
especially noticeable for the MLP, where the average test ac-
curacy of LTNs was increased by 0.02.

When using the MFPT data set no clear difference in perfor-
mance can be read from the experimental data. Depending on
the data fraction either LTNs or NNs performed better.

5.3. Extending the Feature Space

Now, we extend the feature spaces for both LTNs (LtnMlp-
NoT & LtnCnnNoT) and NNs (NnMlpT & NnCnnT). With
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Table 2. Names and configurations of the models used for experiments.

Name Model Neural Network Weight Schedule Extend Features Space
LtnMlpNoT LTN MLP None (NO) True
LtnMlpNoF LTN MLP None (NO) False
LtnMlpUadT LTN MLP Up And Down (UAD) True
LtnMlpUadF LTN MLP Up And Down (UAD) False
LtnMlpFktdT LTN MLP First Knowledge Then Data (FKTD) True
LtnMlpFktdF LTN MLP First Knowledge Then Data (FKTD) False

LtnCnnNoT LTN CNN None (NO) True
LtnCnnNoF LTN CNN None (NO) False
LtnCnnUadT LTN CNN Up And Down (UAD) True
LtnCnnUadF LTN CNN Up And Down (UAD) False
LtnCnnFktdT LTN CNN First Knowledge Then Data (FKTD) True
LtnCnnFktdF LTN CNN First Knowledge Then Data (FKTD) False

NnMlpT NN MLP - True
NnMlpF NN MLP - False

NnCnnT NN CNN - True
NnCnnF NN CNN - False

Table 3. Test accuracies for different models and data fractions used for training on the CWRU data set. The standard deviation
is given in parenthesis. Bold entries mark the best performing model for the respective data fraction.

Model 10 % of Data 30 % of Data 50 % of Data 70 % of Data 90 % of Data
LtnMlpNoT 0.595 (0.032) 0.731 (0.016) 0.8 (0.021) 0.84 (0.014) 0.874 (0.015)
LtnMlpNoF 0.526 (0.026) 0.678 (0.015) 0.74 (0.015) 0.782 (0.012) 0.799 (0.016)
LtnMlpUadT 0.598 (0.028) 0.748 (0.021) 0.81 (0.014) 0.859 (0.019) 0.891 (0.013)
LtnMlpUadF 0.533 (0.042) 0.675 (0.018) 0.734 (0.019) 0.777 (0.008) 0.807 (0.016)
LtnMlpFktdT 0.597 (0.035) 0.74 (0.016) 0.799 (0.019) 0.845 (0.016) 0.868 (0.02)
LtnMlpFktdF 0.552 (0.022) 0.668 (0.017) 0.727 (0.019) 0.773 (0.016) 0.8 (0.012)

LtnCnnNoT 0.581 (0.018) 0.778 (0.011) 0.855 (0.014) 0.896 (0.011) 0.925 (0.012)
LtnCnnNoF 0.545 (0.027) 0.727 (0.022) 0.818 (0.011) 0.858 (0.017) 0.89 (0.019)
LtnCnnUadT 0.635 (0.027) 0.82 (0.012) 0.89 (0.012) 0.917 (0.01) 0.934 (0.011)
LtnCnnUadF 0.584 (0.029) 0.747 (0.017) 0.814 (0.017) 0.863 (0.009) 0.876 (0.015)
LtnCnnFktdT 0.641 (0.024) 0.826 (0.016) 0.886 (0.018) 0.904 (0.018) 0.915 (0.023)
LtnCnnFktdF 0.591 (0.023) 0.759 (0.02) 0.824 (0.01) 0.856 (0.015) 0.882 (0.012)

NnMlpT 0.551 (0.025) 0.69 (0.027) 0.762 (0.011) 0.807 (0.016) 0.847 (0.009)
NnMlpF 0.496 (0.031) 0.649 (0.028) 0.721 (0.022) 0.762 (0.01) 0.787 (0.011)

NnCnnT 0.535 (0.02) 0.738 (0.02) 0.851 (0.017) 0.902 (0.013) 0.933 (0.012)
NnCnnF 0.477 (0.036) 0.72 (0.021) 0.802 (0.017) 0.854 (0.008) 0.884 (0.011)

feature space extension, we see a similar picture as in Sec. 5.2,
but the differences are more pronounced.

For the CWRU data set LtnMlpNoT outperformed its coun-
terpart NnMlpT by between 0.03 and 0.04 points, where out-
performance is especially high for smaller data fractions and
lower when using more data. When examining LtnCnnNoT
and NNCnnT we see a similar dynamic. The LTN has a
higher accuracy for data fractions 0.1 and 0.3 but the gap is
closed for larger data fractions, where the NN even outper-
formed the LTN slightly.

Again, MFPT data does not show as much of a difference
between the models. We see, that LtnMlpNoT outperformed
NnMlpNoT marginally along all data fractions. For the CNN
based model on the other hand NnCnnT performed better on
less training data. Starting with a data fraction of 0.5 the Lt-
nCnnNoT increased its accuracy in comparison to the NN and

had a 0.04 higher accuracy when all data was used.

In general, just by extending the feature space the perfor-
mance of all models increased significantly. For the CWRU
data the inclusion of our proposed knowledge features into
the benchmark NN increased test accuracy by 0.04 on aver-
age and for the MFPT data by 0.02.

5.4. Weight Schedules for Axioms Groups

Finally, we compare different weight schedules for data and
knowledge axioms in LTNs (LtnMlpUadT, LtnMlpFktdT &
LtnCnnUadT, LtnCnnFktdT).

By using the weight schedule UAD the performance of Ltn-
MlpNoT was further improved by an average of 0.01 on the
CWRU data set. FKTD on the other hand did not seem to
increase performance. The same can be said when the fea-
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Table 4. Test accuracies for different models and data fractions used for training on the MFPT data set. The standard deviation
is given in parenthesis. Bold entries mark the best performing model for the respective data fraction.

Model 10 % of Data 30 % of Data 50 % of Data 70 % of Data 90 % of Data
LtnMlpNoT 0.547 (0.032) 0.63 (0.031) 0.682 (0.029) 0.732 (0.021) 0.772 (0.036)
LtnMlpNoF 0.5 (0.019) 0.596 (0.036) 0.636 (0.033) 0.698 (0.032) 0.741 (0.022)
LtnMlpUadT 0.548 (0.03) 0.63 (0.03) 0.679 (0.031) 0.719 (0.032) 0.777 (0.027)
LtnMlpUadF 0.521 (0.042) 0.58 (0.028) 0.653 (0.029) 0.698 (0.017) 0.733 (0.029)
LtnMlpFktdT 0.552 (0.045) 0.649 (0.032) 0.688 (0.031) 0.723 (0.023) 0.781 (0.047)
LtnMlpFktdF 0.494 (0.019) 0.583 (0.024) 0.645 (0.03) 0.697 (0.018) 0.74 (0.029)

LtnCnnNoT 0.475 (0.054) 0.613 (0.056) 0.692 (0.02) 0.751 (0.025) 0.802 (0.033)
LtnCnnNoF 0.461 (0.071) 0.551 (0.043) 0.668 (0.034) 0.725 (0.036) 0.778 (0.056)
LtnCnnUadT 0.491 (0.07) 0.537 (0.063) 0.631 (0.029) 0.634 (0.109) 0.64 (0.179)
LtnCnnUadF 0.469 (0.06) 0.531 (0.048) 0.534 (0.056) 0.569 (0.099) 0.601 (0.116)
LtnCnnFktdT 0.479 (0.047) 0.56 (0.039) 0.616 (0.046) 0.648 (0.081) 0.664 (0.139)
LtnCnnFktdF 0.49 (0.028) 0.477 (0.056) 0.519 (0.083) 0.534 (0.054) 0.571 (0.089)

NnMlpT 0.542 (0.041) 0.618 (0.024) 0.677 (0.027) 0.706 (0.028) 0.756 (0.036)
NnMlpF 0.512 (0.03) 0.58 (0.028) 0.643 (0.023) 0.689 (0.034) 0.739 (0.033)

NnCnnT 0.502 (0.059) 0.615 (0.032) 0.684 (0.019) 0.72 (0.027) 0.757 (0.036)
NnCnnF 0.503 (0.055) 0.604 (0.029) 0.657 (0.025) 0.692 (0.021) 0.752 (0.031)

Table 5. Fraction of correctly classified data when adhering
to the underlying axioms of the proposed knowledge base per
class and data set.

Underlying Axiom CWRU MFPT
∀x ((Kurt(x) > thrKurt)→ P (x, cN)) 0.91 0.88
∀x ((fOR(x) > thrscore)→ P (x, cOR)) 0.49 1.00
∀x ((fIR(x) > thrscore)→ P (x, cIR)) 0.76 0.83
∀x ((fB(x) > thrscore)→ P (x, cB)) 0.32 -

ture space was not extended. Without feature extension we
only see an increase in the standard deviation of results, espe-
cially for the weight schedule FKTD. For LTNs based on the
CNN the addition of weighted axioms shows stronger impact
on accuracy. Especially the lower data fractions profited from
the weights, but this improvement gradually levels out when
using more training data. This is true for both extended and
not extended feature spaces. Again, the UAD weight sched-
ule performed best and increased the performance by up to
0.05.

The MFPT data gives us a rather different picture. For MLPs
there are close to no performance gains for both extended
and not extended features spaces when weighted axioms were
used. CNNs even show a drastic deterioration of model per-
formance when weights were included. This observation is
paired with a sharp increase of the standard deviation to a
value of up to 0.18 over the seven analyzed runs, which shows
that the performance was highly dependent on the random
seed and data composition. Fig. 3 shows that the LTN seems
to have gotten stuck in a local optimum when trained on one
of the low performing seeds. A similar training progress was
observed for all other low performing seeds. It seems, that
the concentration on the knowledge axioms at the beginning
of the training found a local optimum, which is hard to es-
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Figure 3. Training of LtnCnnUadT for 100 epochs on 90 %
of the MFPT data set for a bad performing random seed. The
train satisfiability seems to be stuck in a local optimum.

cape.

5.5. Discussion

Although the improvement of each single aspect (real logic
in the loss function, extending the feature space and weight
schedules) of LTNs in comparison to the pure DL approaches
does not seem large, the combination of these show a sig-
nificant increase in accuracy for LTNs. We identify the op-
timal models LtnMlpUadT and LtnCnnUadT on the CWRU
data set with an increase in accuracy of up to 0.10 for small
amounts of training data in comparison to the feature ex-
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tended NNs. On the MFPT data set the best performing mod-
els where LtnMlpNoT and LtnCnnNoT with a maximum per-
formance increase of 0.04. Note that compared to the net-
works without the use of our proposed knowledge features
the performance increased by up to 0.15.

Especially on the CWRU data we see, that the gain decreases
with the amount of data used. This aligns with one of the
main motivations for hybrid models, namely the reduction of
necessary labeled data and further underlines the strength of
purely data driven DL, when enough data is available. Weight
schedules, which we motivated by the way humans learn, also
increased the test accuracy. Notably, the strongest improve-
ment could be observed when focusing on knowledge first
and putting more and more weight on the contribution given
by the data.

We also observe a surprising difference between the perfor-
mance increase of the analyzed data sets. Even though the
induced knowledge was better in terms of per class accuracy
for the MFPT then for the CWRU data set, the gains in test
accuracy were mainly seen for the CWRU data. An explana-
tion for this can maybe be found in the very bad performance
of weighted schedules on the MFPT data set. It seems like the
focus on the knowledge brought the LTN to a local optimum,
which is hard to get out of. Maybe the nearly perfect knowl-
edge limits the search space for optimal parameter configu-
rations to a degree, that it can’t be optimized through more
data. Or the underlying models where not appropriate for the
data set and the weight schedules.

6. CONCLUSION

We proposed an application of LTNs for fault diagnostics in
the special case of bearing faults with constant shaft speed. To
this end, we introduced a scoring function based on physical
attributes of the bearings as a representation of expert knowl-
edge and extended the LTN framework by weight schedules.
Because of the general formalization of the LTN knowledge
base the method can readily be applied to various other di-
agnostic tasks with domain-specific adjustments of the scor-
ing function. Our proposed approach was evaluated on two
different data sets and showed an increase in test accuracy
in comparison to the benchmark NNs, which were, in some
experiments, also enhanced with the created knowledge fea-
tures. We demonstrated that inducing knowledge increased
performance, particularly when less data was available and
can also be used to gain a better understanding of the data set,
e.g., getting an indication on whether fault signals are masked
by other influences. However, we also showed that the per-
formance gains of LTNs are not completely intuitive and that
LTNs with weight schedules can get stuck in local minima
during training for certain data compositions.

The findings from this work confirm the hypothesis that a
combination of DL with expert knowledge in the domain of

fault diagnosis is a promising direction, and motivate fur-
ther studies and future research. Most notably, the proposed
weight schedules need to be analyzed in more detail, since
they have a positive impact on the training performance in
most situations, but cause a stagnation of the learning curve
in other situations. In this context, the interplay between dif-
ferent NN architectures, weight schedules, axioms and data
sets needs to be studied further to leverage the full poten-
tial of LTNs. Also a factor that could further strengthen the
performance is the utilization of more complex logical for-
mulas and logical reasoning in the loss function, which is a
feature of logic-based knowledge representation but has not
yet been exploited in this research. Currently the scoring
function represents physical knowledge from the domain of
bearing fault diagnosis, but it can be reconfigured to incar-
nate physical knowledge from other domains as well. A more
abstract representation with clear pathways to instantiate the
scoring function in different domains would also be part of
future research.
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