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Abstract: The prediction of the motion of traffic participants is a crucial aspect for the research and
development of Automated Driving Systems (ADSs). Recent approaches are based on multi-modal
motion prediction, which requires the assignment of a probability score to each of the multiple
predicted motion hypotheses. However, there is a lack of ground truth for this probability score in
the existing datasets. This implies that current Machine Learning (ML) models evaluate the multiple
predictions by comparing them with the single real trajectory labeled in the dataset. In this work, a
novel data-based method named Probabilistic Traffic Motion Labeling (PROMOTING) is introduced
in order to (a) generate probable future routes and (b) estimate their probabilities. PROMOTING is
presented with the focus on urban intersections. The generation of probable future routes is (a) based
on a real traffic dataset and consists of two steps: first, a clustering of intersections with similar road
topology, and second, a clustering of similar routes that are driven in each cluster from the first step.
The estimation of the route probabilities is (b) based on a frequentist approach that considers how
traffic participants will move in the future given their motion history. PROMOTING is evaluated with
the publicly available Lyft database. The results show that PROMOTING is an appropriate approach
to estimate the probabilities of the future motion of traffic participants in urban intersections. In this
regard, PROMOTING can be used as a labeling approach for the generation of a labeled dataset that
provides a probability score for probable future routes. Such a labeled dataset currently does not exist
and would be highly valuable for ML approaches with the task of multi-modal motion prediction.
The code is made open source.

Keywords: PROMOTING; automated driving systems; autonomous vehicles; multi-modal; motion
prediction; route prediction; machine learning; real traffic data

1. Introduction

Urban mobility and transportation are cornerstones of society. Due to the high socio-
economic impact of road accidents, there is a motivation to continuously make improve-
ments with regard to automotive safety. This motivation has derived from the development
of the modern road infrastructure, which has brought major advances in terms of road
safety and traffic-flow efficiency. Recent European Union (EU) road safety statistics [1]
show, however, that these improvements stagnated in 2019. Specifically, they quantify a de-
crease in fatal accidents of 23% when compared to 2010 and of 2% when compared to 2018.
For this reason, the EU has launched an ambitious initiative called “Vision Zero” [2], in
which it establishes the goal of reducing fatalities caused by traffic accidents to near zero by
2050 and sets the target of halving the number of severe accidents by 2030. To this end, the
EU initiative highlights the role that vehicle automation and connectivity play in increasing
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safety. Given that the majority of accidents (94%) are caused by human error [3], the ADSs
under development are mainly focused on improving safety by assisting drivers with the
early recognition and avoidance of dangerous situations, while also considering other
aspects such as emissions reduction, driving efficiency, and improved passenger comfort.
The deployment of automated driving functions in traffic scenarios in open environments
is being carried out progressively. The Society of Automotive Engineers defines six levels
of automation from levels 0 to 5 [4], where level 5 corresponds to full and unsupervized
autonomy. A level 5 automated vehicle demands a very high technological complexity, and,
to date, the driving functions required for this level of automation do not have the necessary
robustness for deployment in traffic scenarios in open environments. According to [5], the
main aspects and systems related to ADSs can be summarized using ten categories: (1)
connected systems, (2) end-to-end driving, (3) localisation, (4) perception, (5) assessment
and motion prediction, (6) planning, (7) control and dynamic, (8) human machine interface,
(9) dataset and software, and (10) implementation. In this work, multidisciplinary research
is performed, covering mainly aspects from categories 5 and 9.

A recent line of research [6–12] focuses on multi-modal motion prediction. This is
based on the consideration that traffic motion is multi-modal in nature, meaning that each
traffic participant is not bound to follow a single trajectory in the future, but it can instead
choose from a wide variety of possible trajectories. In this way, not just one, but multiple
probable motion hypotheses are predicted for each traffic participant, allowing researchers
to capture the different options a driver may take, such as turning left, making a U-turn
or continuing straight ahead, among others. In the following, the term mode refers to a
specific estimation of future motion within a finite set of possibilities, and the likelihood
that a given mode will be selected is denoted as mode score or mode probability. One
prominent approach to address multi-modal motion predictions makes use of ML methods
based on the supervised learning paradigm. For this, a labeled dataset is necessary, i.e., the
label associated with each sample is known. In case the dataset is generated from real traffic
data, only a single real trajectory per traffic participant can be labeled, namely the one that
has been driven. This shows the challenge of (a) predicting multiple motion hypothesis for
each traffic participant, out of a single labeled one. In addition, the prediction of multiple
motion hypotheses implies the assignment of a probability score to each one with respect
to the total number of hypotheses. However, labeled datasets with probabilities for routes
are not available, (b) resulting in a lack of ground truth for this probability scores.

These aspects ((a) and (b)) motivate the investigation of a method that addresses the
following research questions: (1) how to extract the route (certain sections of the road) that
represents each possible mode from real traffic datasets, (2) how to estimate the probability
that a vehicle will drive a certain mode, and (3) how to generate an adequate multi-modal
labeled dataset so that a ML model can learn from it the intrinsic multi-modal motion of
traffic scenarios.

In this regard, this work introduces a novel data-based method named PROMOTING
that allows the estimation of multiple routes for each traffic participant and provides a
probability score for each of the possible future routes. In this way, PROMOTING can be
used as a labeling approach for the generation of a labeled dataset that contains not only
single trajectories as its ground truth, but also the multiple estimated routes. Given the fact
that the early introduction of smart intersections will be of mixed traffic, i.e., automated
and non-automated driving together, the modeling of the traffic flow at such scenarios will
be significant. The smart intersection is a concept aimed at improving the safety and traffic
flow of intersections. It is based on the use of sensors and communication systems that allow
researchers to capture and analyze traffic to support ADSs functions. Thus, PROMOTING
focuses on urban traffic scenarios, paying special attention to urban intersections.

Therefore, this work makes a contribution to the improvement of multi-modal motion
predictions by introducing the PROMOTING method, highlighting the following. First, the
method is able to extract multiple motion hypotheses for each traffic participant. Second,
the method is able to estimate the probability that a vehicle will drive following a specific
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motion hypothesis. Third, the method may be used for the generation of a labeled dataset
that provides extra information that is useful for a multi-modal prediction task. Fourth, the
method is evaluated using real-world traffic scenarios from a database, which allows us to
obtain a realistic representation of the traffic’s behavior in urban traffic scenarios.

The rest of the paper is structured as follows: in Section 2, related works are presented.
In Section 3, the methodology of PROMOTING is detailed. In Section 4, the evaluation of
PROMOTING is presented, and the associated results are shown and described. In Section 5,
the main findings of the work are discussed. The paper is summarized in Section 6.

2. Related Works

According to [6], the motion prediction of traffic participants can be grouped into the
following categories:

(1) an engineering approach or physics-based methods,
(2) planning-based methods, and
(3) pattern-based methods.

Over the last few years, the research into motion prediction has shifted its focus from
the physics-based generation of trajectories to the use of ML methods for the same purpose.
The authors of [13] proposed the Attention mechanism that marked a shift in the way
typical neuro-linguistic programming, time-series forecasting, and sequence-to-sequence
problems are approached. Along with this Attention mechanism, Transformer Networks
are also finding their way into motion prediction tasks. In [6], Multiple Attention Heads
(MAH) are implemented together with a Long–Short Term Memory Encoder–Decoder
architecture to predict multiple trajectories, thus addressing the multi-modality of the
motion of traffic participants and considering cross-agent interaction modeling. A similar
approach is taken in [14]. The difference between [6] and [14] is that the latter adds map-
related information that is learned by the Attention mechanism, which assists in modeling
the agent–map interaction and improves the system performance. In [15], an architecture
based on an Encoder–Decoder structure is proposed, where both are based exclusively
on MAH. This model achieves a better performance than the one proposed in [14]. Other
recent approaches [9,16,17] build on the work of [13] and use Transformer Networks based
on MAH. In [16], pedestrian trajectory prediction is investigated, where the behavior of the
pedestrians is modeled without taking into account any kind of interaction with neither
traffic participants nor with the map information. This approach is able to closely predict
the motion of pedestrians, highlighting the suitability of using Transformer Networks
for motion planning tasks. A similar method is presented in [17], where the orientation
of the traffic participants is considered to be an additional feature to the input vector
when compared to [16]. Furthermore, whereas in [16] only pedestrians are considered,
in [17] the performance of the ML model is evaluated for different types of traffic scenarios
and different types of road users. A more complex ML-architecture than [16,17] is used
in [9], consisting on three stacked Transformer Networks: vehicle motion, vehicle–map
interaction, and vehicle–vehicle interaction. The networks are trained sequentially for each
epoch, where the vehicle–vehicle interaction network receives the output of the vehicle–
map interaction network, and the vehicle–map interaction network receives the output
of the vehicle motion network. In addition to receiving the output of the previous one,
each network receives additional inputs, which allows each network to specialize in a
particular task.

In order for a ML model to learn something as complex as urban traffic, a large amount
of data captured from real-world driving scenes is necessary. To prevent over-fitting, the
data should have a large variability; in this way, the ML model is able to capture as many
as possible of the variations of relevant features.

In the case of urban intersections, for example, the behavior of the traffic participants
varies depending on the time of day, working/non-working days, and construction sites,
among others. All these situations influence the behavior of the traffic participants, and their
consideration provides extra knowledge that must be taken into account by ADSs. On the
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other hand, capturing real traffic data with these characteristics is a major challenge because
of the required financial, computational, and time resources. One strategy to overcome this
is to constrain the research and development of ADSs to bounded driving environments,
such as smart urban corridors [18]. To this end, it is relevant to use appropriate databases
for the training of the ML models.

Current research works [6–12] that focus on multi-modal motion prediction evaluate
their performance either in terms of the Average Displacement Error (ADE), the Final
Displacement Error (FDE), or the Root Mean Square Error (RMSE). That is, they consider a
single labeled real trajectory and measure the Euclidean distances between the reference
trajectory and each of the predicted ones. The best trajectory is then chosen based one of the
minimum ADE, the minimum FDE, or the minimum RMSE. The main problem with using
these metrics both to reduce training losses and to evaluate the model during the inference
phase is that it forces ML models to generate trajectories close to the reference trajectory.
This may result in a subset of the predicted trajectories not being drivable, not following the
road infrastructure, or colliding with other traffic participants. Furthermore, the prediction
of multiple motion scenarios for each traffic participant entails assigning a probability score
that indicates the likelihood of selecting a hypothesis within the set of multiple hypotheses;
however, the existent datasets containing real traffic data as [19–25] do not provide this
score, as there is only a single real trajectory labeled by each traffic participant.

In [26], the graphs of road topologies are used to identify similar examples through
their isomorphism. This is required to shape the latent space for proper novelty detection.
Moreover, in [27], the isomorphisms are used to identify similar traffic scenarios, also
including the trajectories as paths inside the graphs. As before, this is used for shaping
a latent space. However, in the present work, isomorphisms are used to identify similar
intersections and routes in the intersections in order to identify similar modes.

Relevant work on the representation of motion hypotheses in traffic scenarios is
presented in [28], with the introduction of the Predicted-Occupancy Grids (POGs). These
represent the future traffic scenarios in the form of grid cells, where the confidence about the
motion of dynamic agents is represented. This approach considers a spectrum of expected
occupancy values beyond the simplistic binary approach, i.e., occupied or not occupied.
This type of representation is used for the prediction of complex traffic scenarios in [29,30],
where different types of machine learning based architectures for POGs estimation are
presented. However, there are three notable differences between the work of [28] and the
present work. In [28], the approach is based on expert knowledge (assumes physical models
of vehicles and motion hypothesis), makes use of simulation data, and the method outputs
POGs. In contrast, in the present work, a methodology based on a frequentist approach
is proposed (recorded traffic data is analyzed without making a motion hypothesis), real-
world traffic data is used, and the presented method (PROMOTING) outputs the modes, in
the form of routes, and the mode probabilities.

With regard to all the above, the present research work addresses the shortcomings of
multi-modal motion prediction research by proposing the novel PROMOTING method.
This serves as the methodology for the generation of a labeled dataset that extracts infor-
mation about the modes of traffic participants based on conditional prior information. The
method is able to extract the number and route of the modes, as well as to estimate the
probability that a traffic participant will drive a specific mode. To the best of the authors’
knowledge, this is the first work seeking to estimate the modes with their probabilities in
a probabilistic way from real-world data for the purpose of the labeling of multi-modal
motion hypothesis.

3. Materials and Methods

In order to estimate the modes and the probabilities of each mode, PROMOTING
requires (1) historical traffic data and (2) topological information of the road map. To cover
these requirements, the publicly available Lyft database [25] is selected, so PROMOTING
is evaluated in this work by making use of this database. This database contains traffic
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motion information that is captured by a vehicle equipped with exteroceptive sensors. It
contains a large amount of real-world trajectory data of dynamic participants, including
urban intersections, and detailed map information covering the urban area where the traffic
scenes were recorded. The methodology of PROMOTING is composed of five steps (see
Figure 1), and each step is explained in a subsection of this section.
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3.1. Road Infrastructure Description

The first step of the PROMOTING method, see Figure 2, aims to describe static traffic
information: the road infrastructure. This is described by the road map information
contained in the Lyft database on the basis of the map description (see Section 3.1.1) and
the intersection description (see Section 3.1.2).
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Figure 3. A visual representation of the road infrastructure generated from the Lyft database [25].

3.1.1. Map Description

The road map information contained in the Lyft database divides the road space into
so called ways, which are road sections of finite length representing an individual lane in a
given direction. In this work, each way is referred to as a vertex. Thus, the set of vertices νi
of the map V is defined as

V = {ν1, ν2, . . . , νi, . . . , νnν}, (1)

where nν indicates the order of G, i.e., the number of vertices contained in the map.
Each vertex νi ∈ V is characterized by a number of features that allow its geometric and
connectivity definition, for example:

• centreLine: (x, y) coordinates in global coordinate frame of each vertex.
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• turnDirection: indicates the type of change of direction of the vertex: “1” for straight,
“2” for left turns, and “3” for right turns.

• intersectionId: unique identifier κi ∈ N of the intersection of which the vertex forms
a part. Value “−1” if the vertex is not part of an intersection.

• predecessors: set Ai,pre that contains the immediate previous vertices with respect to
the driving direction, such that Ai,pre ⊆ V.

• successors: set Ai,suc that contains the immediate following vertices with respect to
the driving direction, such that Ai,suc ⊆ V.

• leftNeighbours: set Ai,left that contains the immediate to the left vertices with respect
to the driving direction, such that Ai,left ⊆ V.

• rightNeighbours: set Ai,right that contains the immediate to the right vertices with
respect to the driving direction, such that Ai,right ⊆ V.

Thus, the set Ai ⊆ V that contains the adjacent vertices of the ith vertex is defined as a
union of sets, so that

Ai := Ai,pre ∪ Ai,suc ∪ Ai,left ∪ Ai,right. (2)

The connection between the different vertices νi ∈ V provides valuable information for
the vehicle motion prediction. In this paper, the connectivity information of the vertices is
used to derive a graph-based model that represents the topology of the urban road network.
The map topology G is then defined as a directed graph, so that

G = (V, E), (3)

where E denotes the set of edges εk of the map, with

E = {ε1, ε2, . . . , εk, . . . , εnε}, (4)

where nε indicates the size of G, i.e., the number of edges contained in the graph.
Each edge εk represents the connection between two adjacent vertices, so that

εk = {(νi, νj)| νi, νj ∈ V ∧ νj ∈ Ai}, i 6= j, ∀i, j ∈ {1, 2, . . . , nν}. (5)

The order of the vertex pair indicates the driving direction on the edge, where the
first element is the “source vertex”, and the second one is the “target vertex”. For example,
εk = (νi, νj) ∈ E indicates that the driving direction on the kth edge is from the ith vertex
to the jth vertex.

3.1.2. Intersection Description

Similarly, the road topology of an intersection contained in the map, denoted as the ιth
intersection, is modeled as the graph Gι = (Vι, Eι) with information from G so that Gι ⊆ G.
That is, Gι is a sub-graph of G. Therefore, Vι ⊆ V and Eι ⊆ E.

To model the graph of each intersection, it is necessary to identify which vertices
belong to the same intersection and how are they connected to each other. In this sense,
three types of vertex are differentiated for each intersection:

1. Incoming vertex: The vertex at the entrance of an intersection. These vertices are
grouped in sets with the sub-index “in”.

2. Crossing vertex: The vertex on an intersection. These vertices are grouped in sets
with the sub-index “x”.

3. Outgoing vertex: The vertex at the exit of an intersection. These vertices are grouped
in sets with the sub-index “out”.

Thus, incoming vertices precede crossing vertices, and crossing vertices precede
outgoing vertices. With this, the graph Gι of the ιth intersection is generated as described
in Algorithm 1 and a graphic depiction is shown in Figure 4.
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Algorithm 1: Intersection graph generation
Input : directed graph G of the map and the unique intersection identifier ι.
Output : directed graph Gι of the ιth intersection formed by the edges set Eι and

the vertex set Vι with the incoming, crossing and outgoing vertices of the
intersection.

1 Vι,x := {νj ∈ V | κj = ι}
2 Vι,in := {νi ∈ V | (νi, νj) ∈ E ∀ νj ∈ Vι,x}
3 Vι,out := {νk ∈ V | (νj, νk) ∈ E ∀ νj ∈ Vι,x}
4 Vι = Vι,in

⋃
Vι,x

⋃
Vι,out

5 Eι := {(νi, νj) ∈ E | νi, νj ∈ Vι ∀ i 6= j}
6 Gι = (Vι, Eι)

Algorithm 1 can be used for as many intersections as required to generate the set of
intersection graphs Sint, so that

Sint = {G1, G2, . . . , Gnint}, (6)

where nint indicates the number of intersection graphs generated from the map.
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Figure 4. The graphical representation of an intersection. On the (left), the vertices are coloured
polygons, where the circles represent the first point of the centreLine feature, and the arrows con-
necting the circles represent the edges. On the (right) are the edge matrix with the edge list and
the corresponding vertices. In this case, Vι,in = {1, 2, 3, 4, 5, 6}, Vι,x = {7, 8, 9, 10, 11, 12, 13}, and
Vι,out = {14, 15, 16, 17, 18, 19}.

3.2. Vehicle Intersection Data Extraction

Once the intersection graphs Sint and the map vertex set V are generated, the next step
is the extraction of the list of the Vehicle Intersection Data (VID) XVID. That is, the route
information (sequence of vertices) of each vehicle that crosses an intersection and the graph
of the crossed intersection. To accomplish this, the motion history of the vehicle is required,
in addition to the intersection graphs and the vertex set obtained in the previous step, see
Figure 5.
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As depicted in Figure 6, the VID extraction starts by iterating over all nscenes traffic
scenes contained in the Lyft database. Each ith scene contains a record of the motion of
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all nobj registered objects. For each ith scene, the motion information of each jth object
with “car” label is extracted. Next, for each jth vehicle, its (x,y) coordinates are read, and,
together with V, the coordinates are associated with vertices so as to generate the vertex
sequence Qi,j, as detailed in Section 3.2.1. Later, Qi,j is used to extract nroutes routes that
cross intersections, as detailed in Section 3.2.2. Then, for each Rk route that crosses an
intersection with graph Gι a new VID, denoted by Xi,j,k, is generated. Hence, the VID, Xi,j,k,
for the kth route of jth vehicle in the ith scene is determined as

Xi,j,k = (Rk, Gι), (7)

where the route Rk is represented by a sequence of vertices and is denoted as follows

Rk = [r1, r2, . . . , rq, . . .], rq ∈ Vι and (8)

the intersection graph Gι is generated as indicated by Algorithm 1.
Thus, the VID list XVID is defined as the list whose elements are the extracted Xi,j,k

and is denoted as follows

XVID = (X1, X2, . . . , XnVID). (9)

3.2.1. Coordinate–Vertex Association

The first step to extract the Rk route is to obtain the vertex sequence Qi,j. For this,
the (x,y) coordinates of the jth vehicle in the ith scene at each time instance are associated
with vertices contained in V. This results in the vertex sequence Qi,j, which represents
the vertices that the vehicle has driven on. One should note that the association is not
unique, meaning that a set of (x,y) coordinates may be associated with multiple vertices,
and a vertex may be associated with multiple sets of (x,y) coordinates, which results
in a multiple vertex associations. This occurs frequently when the (x,y) coordinates are
located at intersections where different crossing vertices overlap. This means that Qi,j must
be processed.

First, the invalid (empty) vertex associations are removed from the sequence. An
invalid association can happen, for example, when the vehicle moves on “non-drivable”
sections of the map. Second, duplicated vertex associations are unified. A duplicated
association occurs when a vertex appears in Qi,j in two or more consecutive time instances.
By unifying the duplicated vertex associations, only unique ones remain. Finally, Qi,j is
filtered according to the intersection topology. This handles multiple vertex associations
that can occur when various vertices overlap, see vertices 7, 8, and 9 in Figure 7. Filtering
according to the intersection means that only the vertices included and connected in the
intersection are kept.

3.2.2. Extraction of Intersection Routes

Once the vertex sequence Qi,j of the jth vehicle in the ith scene is extracted and
processed, the next step is to extract the routes that cross intersections. It is possible for a
single vehicle to contain more than one intersection route. An intersection route should
fulfill the following two characteristics:

1. The route must contain at least one crossing vertex.
2. The route must contain either at least one incoming vertex or at least one outgoing vertex.

This approach allows us to differentiate four categories of intersection routes:

1. Complete: The route contains a full description of how the vehicle approaches, crosses,
and leaves the intersection. The route starts with incoming vertices, follows crossing
vertices, and ends with outgoing vertices. An example of a complete route is the
vertex sequence [2, 9, 15], see Figure 4.



Sensors 2022, 22, 4498 10 of 24

2. Entering: The route contains a description of how the vehicle approaches and crosses
the intersection. The route starts with incoming vertices and ends with crossing
vertices. An example of an entering is the vertex sequence [2, 9], see Figure 4.

3. Leaving: The route contains a description of how the vehicle crosses and leaves the
intersection. The route starts with crossing vertices and ends with outgoing vertices.
An example of a leaving route is the vertex sequence [9, 15], see Figure 4.

4. Other: Routes that do not belong to any of these three categories. One such route
would be that of a vehicle that is standing still during the complete scene, thus
remaining at a single vertex. These are omitted, as they do not provide information
on how the vehicle approaches or leaves the intersection.

An example of this process is shown in Figure 7. There, the vertex sequence Qi,j of the
jth vehicle in the ith scene is given by

Qi,j = [4, 11, 17, 22, 25, 30]. (10)

From Qi,j, 11 and 22 are crossing vertices. Intersection IDs κ are taken from these
vertices. So, let κ11 = 8 indicate that vertex 11 belongs to the 8th intersection and κ22 = 9
indicate that vertex 22 belongs to the 9th intersection. Then, the rest of the vertices of
the Qi,j vertex sequence that belong to these given intersections are extracted. In this
example, the 30th vertex is neglected, as it does not belong to any intersection of this vertex
sequence. The remaining vertices are split in as many routes as unique intersection IDs.
In this example, two routes are created: one for the 8th intersection and one for the 9th
intersection. The elements of the vertex sequence are assigned to a route according to the
intersection they belong to. In this example, as the 17th vertex belongs to both the 8th and
the 9th intersection, it is assigned to both routes. Next, the type of each vertex of each route
is assigned according to the intersection topology. This is the reason why the 17th vertex
is assigned as being “outgoing” for the route that corresponds to the 8th intersection and
“incoming” for the route that corresponds to the 9th intersection.
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Figure 7. Graphical depiction of the method used to extract intersection routes. Crossing vertices are
marked in blue, incoming vertices in green, and outgoing vertices in red.
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3.3. Vehicle Intersection Data Clustering

Once the set of intersection graphs Sint and the map vertex set V are generated (per
Section 3.1) and the VID list XVID is obtained (as per Section 3.2), the next step is the VID
clustering. This step aims to cluster the elements of the list of VIDs XVID with respect to
their graphs. Specifically, the graph isomorphism represents the similarity criterion. Then,
the output of this step is nclusters, where each cluster c is denoted by Xc,VID. A graphical
depiction of this process is shown in Figure 8. This process consists of two steps: a pre-
clustering of graphs (see Section 3.3.1) and an isomorphic clustering (see Section 3.3.2).
These steps are detailed in what follows.
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The list XVID contains nVID routes of vehicles crossing the intersections; these are
classified as they are defined in Section 3.2.2. It should be noted that only complete routes
have been selected, because they are the only type of routes that contain a full description
of the intersection crossing from the entrance to the exit.

3.3.1. Pre-Clustering

The process of clustering based on isomorphism is computationally expensive. This
is specially relevant for large databases, where graph-wise and vertex-wise associations
are verified. A brute-force search for the nν! possible bijective functions that satisfy the
definition of isomorphism between all extracted graphs is not practical.

For this reason, pre-clustering the graphs prior to the isomorphic clustering (Section 3.3.2)
is proposed. This is performed by examining a series of preconditions that two graphs
must possess in order to be isomorphic. The preconditions are evaluated in a hierarchical
manner, allowing us to structure the database in the form of a tree. This database tree
allows further analysis of the distribution of the data in terms of graph properties. Then,
the first four hierarchical levels of the database tree are detailed in what follows. Alongside
this, an example slice of such a database tree is shown in Figure 9.

• Level 0: The root node of the database tree is located at this level and is the highest
hierarchical level from which all branches emerge. All VIDs are inside the root node.

• Level 1: The graphs are grouped by their order, i.e., the number of vertices contained
in the graph. Hence, only VIDs with the same graph order are part of the same node.
In Figure 9, A and B are two example nodes at that level, with graph orders 20 and
21, respectively.

• Level 2: The graphs are grouped by their size, i.e., the number of edges contained in
the graph. VIDs with the same graph orders and sizes are part of the same node. In
Figure 9, the node C group VIDs with graph order equal to 20 and graph size equal
to 24.

• Level 3: The graphs are grouped by their matrix degree:

Θseq =

[
n0,in n1,in n2,in . . . nnε,in
n0,out n1,out n2,out . . . nnε,out

]
, (11)

where the first row refers to the in-degree of the graph, and the second row refers to
the out-degree of the graph, i.e., the number of incoming and outgoing edges to/from
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the vertices, respectively. With this, n2,in indicates the number of vertices in the graph
whose in-degree is equal to 2, and n2,out indicates the number of vertices in the graph
whose out-degree is equal to 2. Therefore, at this level, only VIDs with the same graph
order, the same graph size, and the same matrix degree are grouped. In Figure 9, the
node E group VIDs with graph orders equal to 20, graph sizes equal to 24, and matrix
degree Θ1.

The levels 0–3 describe the pre-clustering, which creates smaller groups according
to their graph properties, such that computationally expensive isomorphism needs to be
examined only with the nodes of level 3.
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Figure 9. Slice of a database tree for the clustering of the VID based on isomorphic graphs. Each leaf
node at level 4 groups the routes of vehicles crossing intersections whose graphs are isomorphic.

3.3.2. Isomorphic Clustering

Given the database tree from the pre-clustering, the aim is to identify VIDs with similar
graphs. Only level 3 need to be taken into consideration, since isomorphism between the
graphs is only possible within nodes of level 3.

Two graphs G1 and G2 are said to be isomorphic if

G1
∼= G2, (12)

where Equation (12) holds true if a bijective function f : VG1 → VG2 exists, such that

∀vi, vj ∈ VG1 ; (vi, vj) ∈ EG1⇔( f (vi), f (vj)) ∈ EG2 . (13)

This means that every vertex and edge of G1 has a unique mapping to a vertex and
edge of G2. All isomorphic graphs are then clustered in level 4 nodes. Nodes H, I, J, and K
of Figure 9 are level 4 nodes.

3.4. Route-Type Counting

Once the set of intersection graphs Sint and the map vertex set V are generated
(as per Section 3.1), the VID list XVID is obtained (see Section 3.2), and the VIDs are
clustered (see Section 3.3), the next step is the counting of route types. For this, each cth
cluster of XVID is analyzed in order to extract (1) the set of route types R̂c and (2) the
counting list ρR̂c

, whose elements indicate how often each route type appears in the cluster.
A graphical depiction of this process is shown in Figure 10.
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If one considers that the names of the vertices are unique, two intersections cannot
be compared by the vertex name alone. Therefore, a common vertex representation per
cluster is needed. This common representation is achieved in the form of a template graph
that is created for each cluster. The graph of the first XVID of each cluster is taken as the
template of that node. Then, the bijective function (Equations (12) and (13)) is used to map
the rest of the vertices of the routes within the cluster. A graphical depiction of this process
is shown in Figure 11. There, the graph G∗ is the template graph. The route RG1 is mapped
to RG∗ using the bijective function f : VG1 → VG∗ .
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Figure 11. Shown is a graphical depiction of the route mapping. With purple, the graph G1. With red,
the graph G∗.

Once the vertices of the routes within the cluster are mapped to those of the template
graph, the route types are extracted. Each route type is a specific vertex sequence in the
cluster. Then, the set of route types R̂c is generated for each c-th cluster as follows

R̂c =
{

R̂c,1, R̂c,2, . . . , R̂c,n, . . .
}

, (14)

where the first subindex of the elements of R̂c indicates the cluster to which the route type 373

belongs, and the second subindex is an identifier for the type of route within the cluster. 374
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Figure 11. Graphical depiction of the route mapping. The graph G1 is shown in purple. The graph
G∗ is shown in red.

Once the vertices of the routes within the cluster are mapped to those of the template
graph, the route types are extracted. Each route type is a specific vertex sequence in the
cluster. Then, the set of route types R̂c is generated for each cth cluster as follows:

R̂c =
{

R̂c,1, R̂c,2, . . . , R̂c,n, . . .
}

, (14)

where the first sub-index of the elements of R̂c indicates the cluster to which the route type
belongs, and the second sub-index is an identifier for the type of route within the cluster.

For each route type R̂c,n identified, the frequency ρR̂c,n
is computed. This frequency

represents how often the route type R̂c,n appears in the cluster based on the dataset. This
information is relevant for the estimation of the probability that a traffic participant will
drive a given route. Then, the counting list of the route types ρR̂c

is generated for each cth
cluster as follows

ρR̂c
= (ρR̂c,1

, ρR̂c,2
, . . . , ρR̂c,n

, . . .). (15)

3.5. Mode Estimation

Once the set of intersection graphs Sint and the map vertex set V are generated (as
per Section 3.1), the VID list XVID is obtained (see Section 3.2), the VIDs are clustered (see
Section 3.3), and the set of route types R̂c, and the counting list ρR̂c

are extracted (as per
Section 3.4), the next step is to generate the modes and estimate the mode probability. That
is, to create a set of routes that a traffic participant can drive for a given intersection type
(cluster) and motion history, and to estimate the probability that a given mode will be
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driven. Thus, for each cth cluster, this process extracts the mode data Mc. A graphical
depiction of this process is shown in Figure 12.
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Figure 11. Shown is a graphical depiction of the route mapping. With purple, the graph G1. With red,
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First, a set of sub-routes for each route type is generated in R̂c in the c-cluster. For
example, for the first route type in the c-cluster R̂c,1, the set of sub-routes R̂c,1 is generated,
such that

Sc,1 ⊆ R̂c,1. (16)

Since a route is a vertex sequence, each sub-route s ⊆ Sc,1 is defined as a coherent
sub-sequence of vertices of the corresponding route.

As an example of the creation of the set of sub-routes let the map topology correspond
to Figure 4 and the intersection belong to the cth cluster. Given the set of route types R̂c,

R̂c =
{

R̂c,1, R̂c,2, R̂c,3
}

, (17)

R̂c,1 = [1, 7, 14], (18)

R̂c,2 = [1, 7, 9, 15], (19)

R̂c,3 = [2, 9, 15]; (20)

the corresponding sets of sub-routes Sc,1, Sc,2, and Sc,3 for each route type R̂c,1, R̂c,2, and
R̂c,3 can be generated, so that

Sc,1 = {[1], [7], [14], [1, 7], [7, 14], [1, 7, 14]}, (21)

Sc,2 = {[1], [7], [9], [15], [1, 7], [7, 9], [9, 15], [1, 7, 9], [7, 9, 15], [1, 7, 9, 15]}, (22)

Sc,3 = {[2], [9], [15], [2, 9], [9, 15], [2, 9, 15]}. (23)

Second, the set S∗c that contains all unique sub-routes of the cth cluster is then de-
fined as

S∗c = Sc,1 ∪ Sc,2 ∪ Sc,3. (24)

The mode data Mc of the cth cluster have as many elements, as the sub-routes s are
driven in the cluster. This means that, for each sub-route s ∈ S∗c , an element of Mc is
computed. Each element of Mc contains (1) the set of modes µc,s and (2) the estimated
probabilities P(µm|c,s) of each mode µm|c,s and is computed as follows:

1. The set of modes µc,s used to forecast the possible modes that a vehicle can drive
on (1) given the observation of the sub-route s, (2) where each mode ends with an
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outgoing vertex, and (3) where each mode is part of S∗c . For this, a set Ŝc,s is created,
so that

Ŝc,s = {ŝ1|c,s, ŝ2|c,s, . . . , ŝm|c,s, . . .}, (25)

with

Ŝc,s ⊆ S∗c : s ∈ {ŝ1|c,s, ŝ2|c,s, . . . , ŝm|c,s, . . .} ,
(

ŝm|c,s ∩Vc,out

)
6= ∅, ∀m, (26)

where the set Vc,out contains the outgoing vertices of the template graph of the cth
cluster. Since the observed sub-route is not part of the modes, i.e., of the future
motion, the observed sub-route s is extracted from each of the mth sub-sequences
ŝm|c,s, generating the corresponding mth mode µm|c,s. This allows the definition of the
set of modes µc,s as follows

µc,s = {µ1|c,s, µ2|c,s, . . . , µm|c,s, . . .}, (27)

where each element of µc,s represents a unique mode of completing the crossing of an
intersection with the template graph of the cth cluster according to the recorded data
and the observation s.

2. The conditional probability estimation P(µm|c,s) of the mth mode µm|c,s ∈ µc,s is
estimated. This represents the probability that a traffic participant will drive on the
mth mode given the cth cluster and the sth observed sub-route in this cluster. The
conditional probability is given by

P(µm|c,s) =
ρm|c,s

ρc,s
. (28)

One the one hand, ρm|c,s indicates how often a vehicle is traveling a route type in
the cth cluster with the initial sequence-part defined by the sth observed sub-route,
and the final sequence-part defined by the mth mode µm|c,s. On the other hand, ρc,s
indicates how often a vehicle is traveling the sth observed sub-route in the cth cluster
of the dataset. Then, ρc,s is defined by

ρc,s =
|R̂c |
∑
q=1

ρR̂c,q
· zq, (29)

where

zq =

{
1, s ∈ Sc,q

0, otherwise.
(30)

The frequency ρR̂c,q
was introduced in Section 3.4 and indicates how often a vehicle

is traveling the route type R̂c,q in the cth cluster. The Boolean zq allows us to select
only those route types R̂c,q in which the sub-route s is part of its sequence. Given the
above, the sum of the probabilities of all modes is then given by

|µc,s |
∑

m=1
P(µm|c,s) = 1. (31)

These two steps (Equations (25)–(30)) are applied for each observed sub-route s in the
cth cluster in order to generate each element of the mode data Mc.
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4. Evaluation and Results

In this section, the evaluation procedure and evaluation results are detailed. The
proposed methodology is evaluated with respect to its ability to generate similar modes,
mode probabilities, route types, graphs, and database trees, given similar datasets as inputs.
For this, the Lyft database is used as data source, because it contains map information, as
well as data about the motion of traffic participants. The data from the traffic participants
are randomly divided into two independent datasets (D1 and D2), where D1is the small
training dataset provided Lyft for the Kaggle Challenge https://www.kaggle.com/c/lyft-
motion-prediction-autonomous-vehicles (accessed on 11 October 2021), and D2 is the
validation dataset provided by Lyft, while the map information remains the same for both
datasets. An overview of the evaluation process is shown in Figure 13, and each step of the
PROMOTING method is detailed in what follows.
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Feature Name Value (D1/D2)
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No. of "entering" routes nVID,enter 202 260/199 359
No. of "leaving" routes nVID,leave 207 595/205 122
No. of "other" routes nVID,other 42 435/40 435

No. of intersections crossed by "complete" routes nint,veh 250/250

Figure 13. An overview of the evaluation process of the PROMOTING method.

The first step of the PROMOTING method (as per Section 3.1) describes the static traffic
information (map vertex set V and intersection graphs Sint). Given that this information
does not vary over time and is shared among datasets, the outputs of the first step for each
given dataset are not compared. A summary of the road infrastructure description of the
Lyft database is shown in Table 1.

Table 1. Summary of the road infrastructure description of the Lyft database.

Feature Name Value

Graph order (number of map vertices) nν 8506
Graph size (number of map edges) nε 12,185

Number of intersections contained in the map nint 909

The second step of the PROMOTING method (as per Section 3.2) extracts the VID list
XVID. Given that each XVID is generated from a unique set of traffic scenes, the VIDs from
different datasets are inherently different. In this step, the routes contained in the VIDs
from D1 and D2 cannot be compared, because the vertices that compose each route have
different names and are not yet standardized to a template graph. However, the details of
each VID (number of scenes, objects, vehicles, etc.) can be compared, which allows us to
corroborate that both D1 and D2 are similar in size. This is important, because datasets of
different sizes would imply different numbers of clusters, types of clusters, modes, and
so on. Specifically, a total of ≈1.6 millions routes of vehicles crossing intersections are
extracted from the Lyft database [25]. Approximately 50.5% of the routes belong to D1,
while the remaining ≈49.5% belong to D2. The route distribution according to Section 3.2
is shown in Figure 14, and a summary of the details of the VID of each dataset is shown in
Table 2.

https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles
https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles
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Table 2. Summary of the details of the VIDs generated from D1 and D2.

Feature Name Value (D1/D2)

Number of traffic scenes nscenes 16,265/16,220
Number of traffic participants nobj,total 20,320,381/19,557,084

Number of vehicles nveh,total 4,710,949/4,621,107
Number of routes nVID 801,612/786,919

Number of “complete” routes nVID,compl 349,322/342,003
Number of “entering” routes nVID,enter 202,260/199,359
Number of “leaving” routes nVID,leave 207,595/205,122
Number of “other” routes nVID,other 42,435/40,435

Number of intersections crossed by “complete” routes nint,veh 250/250
Version June 11, 2022 submitted to Sensors 17 of 24
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Figure 14. Shown is the route distribution according to Section 3.2: complete, outgoing, entering, and
other.
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the database trees TD1 and TD2 that are generated when the datasets D1 and D2 are used as
inputs. The node generation of both trees is analysed. That is, how was the database tree
generated for each input dataset. If the trees are similar, it is an indication that the method
is able to cluster similar routes, even when they come from different datasets. The common
tree Tcom is defined as one with such a lineage that is present in both TD1 and TD2 . That is,
each node of Tcom within each level of the tree has a counterpart in both TD1 and TD2 . Tcom
can be expressed as follows

Tcom = TD1 ∩ TD2 . (32)
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route types within each cluster. Given a cluster a from TD1 , its equivalent cluster b from
TD2 is the one with the similar template graph. The comparison metric is computed by

Figure 14. Route distribution according to Section 3.2: complete, outgoing, entering, and other.

As can be inferred from Figure 14 and Table 2, both datasets, D1 and D2, are similar in
size, thus aiding in a fair evaluation of the method. Further, as mentioned in Section 3.2,
only “complete” routes have been selected in the output of the second step of PROMOTING.
The reason for this is that these routes are the only type that contain a full description of
the intersection crossing from the entrance to the exit.

The third step of the PROMOTING method (as per Section 3.3) focuses on the clus-
tering of the VIDs according to their graph isomorphism. The comparison metric is the
structure of the database trees TD1 and TD2 that are generated when the datasets D1 and
D2 are used as inputs. The node generation of both trees is analyzed, that is, how was
the database tree was generated for each input dataset. If the trees are similar, it is an
indication that the method is able to cluster similar routes, even when they come from
different datasets. The common tree Tcom is defined as one with a lineage such as the one
that is present in both TD1 and TD2 , i.e., each node of Tcom within each level of the tree has
a counterpart in both TD1 and TD2 . Tcom can be expressed as follows

Tcom = TD1 ∩ TD2 . (32)

The comparison of the structure of the database tree of both TD1 and TD2 with Tcom is
shown in Table 3.
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Table 3. Comparison of the database trees of both TD1 and TD2 with Tcom.

Database Tree

TD1 TD2Feature
∩Tcom Total ∩Tcom Total

Clusters (nclusters) 168 (97.1%) 173 168 (97.1%) 173
Routes (nVID,compl) 349,313 (99.99%) 349,322 341,997 (99.99%) 342,003

Given that both datasets D1 and D2 are similar in size, from the results shown in
Table 3, it can be inferred that the method is able to comparably cluster the dynamic data
from different datasets.

The fourth step of the PROMOTING method (as per Section 3.4) consists of the
counting of route types within each cluster. Given a cluster a from TD1 , its equivalent
cluster b from TD2 is the one with the similar template graph. The comparison metric is
computed by the number of routes in cluster a that have an equivalence (same route type)
in cluster b, normalized by the overall number of routes in cluster a. For this, let n(D1)

c be
the number of routes of the cth cluster of TD1 and n(D1)

c,e be the number of similar routes,
given the cth cluster of TD1 and its equivalent cluster in TD2 . Then, the comparison metric
is given by

ηc,e =
n(D1)

c,e

n(D1)
c

. (33)

Then, the metric η̃c,e that represents the average of the ratio of equivalent routes
between all common cth clusters from TD1 and TD2 is estimated as follows

η̃c,e =
1

nclusters

nclusters

∑
c=1

ηc,e. (34)

For this comparison, η̃c,e = 95.82% was achieved. This indicates that common cth
clusters from TD1 and TD2 contain mostly the same route types. This indicates that the
method is able to cluster the routes of traffic participants from different datasets in a
similar manner.

The fifth step of the PROMOTING method (as per Section 3.5) performs the mode
estimation. Therefore, the comparison metric is based on the generated modes and their
estimated probabilities. For this, let P(µ(D1)

m|c,s) be the probability that a vehicle will drive the
mth mode given the cth cluster and the sth observed sub-route, considering the dataset D1.
Similarly, let P(µ(D2)

me|ce,se
) be the probability that a vehicle will drive the meth mode given

the ceth cluster and the seth observed sub-route, considering the dataset D2. Here, the
subscript . . .e indicates that the corresponding equivalence is used, i.e., the meth mode is
the equivalence of the mth mode. Therefore, only equivalent modes in equivalent clusters
are considered.

Then, the relative difference ηm|c,s between the probabilities of equivalent modes of

both trees with respect to the probability P(µ(D1)
m|c,s) is given by

ηm|c,s =
|P(µ(D2)

me|ce,se
)− P(µ(D1)

m|c,s)|

P(µ(D1)
m|c,s)

. (35)

Equation (35) is then estimated for all equivalent modes given all equivalent observa-
tions in all equivalent clusters. Then, the metric η̃m|c,s that represents the average of ηm|c,s
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of all equivalent modes for all observations in all common clusters from TD1 and TD2 is
computed as follows:

η̃m|c,s =
1

nm,e

nm,e

∑
m=1

ηm|c,s, (36)

where nm,e indicates the total number of equivalent modes between TD1 and TD2 . For the
used datasets, η̃m|c,s = 0.39%. This shows that the mode probabilities, when estimated from
two different datasets, are similar to each other. This indicates that the mode probability,
when calculated using a large dataset, can estimate mode probabilities for similar datasets
from same distributions. Even when PROMOTING uses different datasets, it is able to
estimate the modes and the probability of each mode in a similar fashion for equivalent
sub-route observations in equivalent intersections.

The main results of the evaluation of steps 4 and 5 of PROMOTING are summarized
in Table 4.

Table 4. Main results of the evaluation of steps 4 and 5 of PROMOTING.

Feature Name Value

Average ratio of equivalent routes η̃c,e 95.82%
Average relative difference between equivalent modes η̃m|c,s 0.39%

A representative graphical example of the extraction of modes and the estimation of
the mode probabilities is shown in Figure 15.
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Figure 15. Shown is an example of the extraction of modes and estimation of the probability of each
mode for four different types of intersections of the Lyft database. In the first column, the intersection
is represented by the vertices that compose its graph. The second, third and fourth columns represent
the most probable modes (from highest to lowest probability), given the observed subroute coloured
in yellow and the history of the motion.
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trajectories is important, but also how should they look like. The PROMOTING method 460

serves as a reference that shows both how the modes in a given intersection look like, and 461

Figure 15. Example of the extraction of modes and estimation of the probability of each mode for four
different types of intersections of the Lyft database. In the first column, the intersection is represented
by the vertices that compose its graph. The second, third, and fourth columns represent the most
probable modes (from highest to lowest probability), given the observed sub-route coloured in yellow
and the history of the motion.
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5. Discussion

A common challenge of multi-modal motion prediction, is to determine the “optimal”
number of modes to predict, that is, how many trajectories per traffic participant should
be predicted in order to comprehensively model a given traffic scene. This question
has to take into consideration the amount of computational resources available, the time
constraints, and the number of traffic participants, among others. Not only the number of
trajectories is important, but also what they should look like. The PROMOTING method
serves as a reference that shows both what the modes in a given intersection look like and
what the probability is that a traffic participant will drive a specific mode. That is, the
proposed method aids in the trajectory-prediction task. The method has the potential to be
highly valuable for both the training and inference phases of ML methods for multi-modal
motion prediction.

Along with the trajectory prediction that each traffic participant performs, the PRO-
MOTING method could also prove to be useful at smart intersections with Vehicle-to-
everything (V2X) capabilities. In that scenario, an automated vehicle could receive the
information of the crossing (graphs, modes, etc.) from the infrastructure, so that the traffic
participant could perform a better prediction of their own motion according to different
parameters, such as efficiency or traffic load. This can be extended to all traffic participants,
where each one knows where all the other traffic participants are and can predict the motion
of the others with the help of the crossing information. This is relevant in the case of mixed
traffic, where automated and human-driven vehicles coexist at the same intersection. Even
when no V2X is present, the PROMOTING method could still be on board the EGO-vehicle,
and, together with the information from exteroceptive sensors, the relationship between
the surrounding traffic participants and their possible routes can be generated.

The PROMOTING method was evaluated in this work using the Lyft database. How-
ever, the method is not dependent on this database; instead, it can be used together with
other map representations, as long as the required map properties are present, that is,
the method is not limited to certain types of intersections but can instead generate the
information from many different sources.

The method can be extended using real-time traffic information, as already provided
by many navigation tools. The constant update of the traffic conditions (flow, weather,
construction works, etc.) can provide an extra benefit for traffic analysis, as well as for the
trajectory planning of traffic participants. This real-time traffic information does not neces-
sarily have to come from navigation tools or infrastructure but could also be transmitted by
other vehicles in the vicinity that have already crossed the intersection.

It should be noted that the mode probability estimation presented in this work does
not take into account the interaction between traffic participants. In this paper, only the
past sub-route, not the state of the other objects, are considered in the condition. This is
a point for future research, with a special focus on the exchange of intentions between
traffic participants via V2X. In addition, the investigation of abnormal behavior of traffic
participants is also envisaged.

6. Conclusions

In this research work, a novel method named PROMOTING is proposed that is able
to generate the modes (probable routes) of traffic participants, as well as estimate the
probability that a traffic participant will drive a specific mode. This is done with the aim of
supporting ADSs in their task of multi-modal motion prediction.

Mode generation is performed by clustering intersections based on the isomorphisms
of their road topology. This allows us to cluster together equivalent intersections and, as a
consequence, the equivalent routes of vehicles that crossed the isomorphic intersections.
The probability of each mode is estimated based on the frequency with which each route is
driven and a given observation (sub-route within the intersection).

The method is evaluated using the Lyft database. The results confirm that the method is
able to cluster equivalent intersections and modes. The estimated probabilities of equivalent
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modes are almost identical, which also corroborates that the method estimates similar
probabilities for similar crossings given similar observations. Therefore, PROMOTING
provides a methodology that makes it possible to generate a labeled dataset that allows
researchers to estimate multiple routes for each traffic participant and provides a probability
score for each of the estimated routes. This labeled dataset has the potential to be highly
valuable for ML models aimed at the task of motion prediction.

The method could be improved with the inclusion of real-time traffic information that
can be sent via V2X communication, including information about the road infrastructure,
cellular networks, or other traffic participants. The method is not limited to the used dataset
but could also be implemented for other map sources.

Interested readers are referred to the repository [31], where the code that implements
the methodology proposed in PROMOTING is made publicly available.
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Abbreviations
The following abbreviations and notation are used in this manuscript :

ADE Average Displacement Error
ADSs Automated Driving Systems
EPRS European Parliamentary Research Service
EU European Union
FDE Final Displacement Error
MAH Multiple Attention Heads
ML Machine Learning
POGs Predicted-Occupancy Grids
PROMOTING Probabilistic Traffic Motion Labeling
RMSE Root Mean Square Error
V2X Vehicle-to-everything
VID Vehicle Intersection Data
Ai Set of the adjacent vertices of the ith vertex with respect to the driving direction
Ai,left Set of the immediate vertices to the left of the ith vertex with respect to the driving

direction
Ai,pre Set of the immediate previous vertices of the ith vertex with respect to the driving

direction
Ai,right Set of the immediate vertices to the right of the ith vertex with respect to the driving

direction
Ai,suc Set of the immediate vertices following the ith vertex with respect to the driving

direction
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D1 Training dataset provided by the Lyft database
D2 Validation dataset provided by the Lyft database
E Set of edges εk of the map
Eι Set of edges of the ιth intersection
G Directed graph of the road topology of the map
G∗ Template graph
Mc Mode data of the cth cluster

P(µ(D1)
m|c,s) Probability that a vehicle will drive the mth mode given the cth cluster and the sth

observed sub-route for the dataset D1

P(µ(D2)
me|ce,se

) Probability that a vehicle will drive the equivalent meth mode given the ceth cluster
and the seth observed sub-route for the dataset D2

Qi,j Sequence of vertices that follows the jth vehicle in the ith traffic scene
R̂c Set of route types in the cth cluster
R̂c,n Sequence of vertices that represents the nth route type in the c-cluster
Rk Sequence of vertices that represents the k-route of a vehicle that cross an intersection
Ŝc,s Set of sequence of vertices that allows to extract the modes given the cth cluster and

the sth observed sub-route
Sc,n Set of sub-routes of the c-cluster generated from R̂c,n
S∗c Set that contains unique sub-routes given all the nth sub-routes sets Sc,n
Sint Set of intersection graphs generated from the map
Tcom Database tree whose lineage is present in both TD1 and TD2

TD1 Database tree that distributes the VIDs extracted from the database D1
TD2 Database tree that distributes the VIDs extracted from the database D2
V Set of vertices νi of the map
Vι Set of vertices of the ιth intersection
Vι,in Set of incoming vertices of the ιth intersection
Vι,out Set of outgoing vertices of the ιth intersection
Vι,x Set of crossing vertices of the ιth intersection
Xi,j,k VID extracted at the ith scene for the jth vehicle that drives the kth route.
XVID List of VIDs extracted from a given dataset
Xc,VID List of VIDs grouped in the cth cluster given the list XVID
n1,in Number of vertices of a graph whose in-degree is equal to 1
n1,out Number of vertices of a graph whose out-degree is equal to 1

n(D1)
c Number of routes in the cth cluster of the tree TD1

n(D1)
c,e Number of similar routes in the cth cluster of the tree TD1 , given the cth cluster of

TD1 and its equivalent cluster in TD2

nε Number of edges contained in the map
nclusters Number of VID clusters given a specific dataset
nint Number of intersection graphs contained in the map
nint,veh Number of intersections crossed by “complete” routes
nobj Number of traffic participants in a specific traffic scene
nobj,total Number of traffic participant in a corresponding dataset
nroutes Number of routes that cross a intersection given a vehicle
nscenes Number of traffic scenes contained in a specific dataset
nveh,total Number of vehicles contained in a specific dataset
nVID Number of extracted routes from a specified dataset
nVID,compl Number of “complete” routes
nVID,enter Number of “entering” routes
nVID,leave Number of “leaving” routes
nVID,other Number of “other” routes
nm,e Number of equivalent modes between TD1 and TD2

nν Number of vertices contained in the map
rq Element of the route Rk which represent a vertex of the map
s Sub-route represented by a vertex or a sequence of vertices
ŝm|c,s Sequence of vertices used to extract the corresponding mode µm|c,s given the cth

cluster and the sth observed sub-route
zq Boolean that indicates if an observation is part of the sub-route set Sc,q or not
εk kth edge of the map
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ηc,e Ratio of equivalent routes between all common cth clusters from TD1 and TD2

η̃c,e Average of the ratio ηc,e of equivalent routes between all common cth clusters from
TD1 and TD2

ηm|c,s Relative difference between the probabilities of equivalent modes of the trees TD1

and TD2 with respect to the probability P(µ(D1)
m|c,s)

η̃m|c,s Average of ηm|c,s of all equivalent modes for all observations in all common clusters
from TD1 and TD2

Θseq Matrix degree of a graph formed by all its in-degrees and out-degrees
κi Unique identifier of the intersection of which the ith vertex is part of
µc,s Set of modes extracted given the cth cluster and the sth observed sub-route
µm|c,s Mode m given the cth cluster and the sth observed sub-route
νi ith vertex of the map
ρc,s Number of times the vehicles are traveling the sth observed sub-route in the cth

cluster of a specific dataset
ρm|c,s Number of times the vehicles are traveling the sth observed sub-route in the cth

cluster of a specific dataset, with the initial sequence-part defined by the sth observed
sub-route and the final sequence-part defined by the mth mode µm|c,s

ρR̂c
List whose elements indicate how often each route type appears in the cth cluster

ρR̂c,n
Number of times that the route type R̂c,n is registered
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