
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 72 (2018) 1264–1269

2212-8271 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.
10.1016/j.procir.2018.03.212

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

Available online at www.sciencedirect.com

Procedia CIRP 00 (2018) 000–000 www.elsevier.com/locate/procedia

51st CIRP Conference on Manufacturing Systems

Optimization of global production scheduling with deep reinforcement
learning

Bernd Waschnecka,b,*, André Reichstallerc, Lenz Belzner, Thomas Altenmüllerb,
Thomas Bauernhansld, Alexander Knappc, Andreas Kyekb

aGraduate School advanced Manufacturing Engineering (GSaME) - Universität Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany
bInfineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany

cInstitute for Software & Systems Engineering, University of Augsburg, Germany
dFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstr. 12, 70569 Stuttgart

∗ Corresponding author. Tel.: +49-160-96791228. E-mail address: bernd.waschneck@gsame.uni-stuttgart.com

Abstract

Industrie 4.0 introduces decentralized, self-organizing and self-learning systems for production control. At the same time, new machine
learning algorithms are getting increasingly powerful and solve real world problems. We apply Google DeepMind’s Deep Q Network (DQN)
agent algorithm for Reinforcement Learning (RL) to production scheduling to achieve the Industrie 4.0 vision for production control. In an RL
environment cooperative DQN agents, which utilize deep neural networks, are trained with user-defined objectives to optimize scheduling. We
validate our system with a small factory simulation, which is modeling an abstracted frontend-of-line semiconductor production facility.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

Keywords: Production Scheduling, Reinforcement Learning, Machine Learning in Manufacturing

1. Introduction

Deep Learning has made tremendous progress in the last
years and produced success stories by identifying cat videos
[1], dreaming “deep” [2] and solving computer as well as board
games [3,4]. Still, there are hardly any serious applications in
the manufacturing industry. In this paper we apply deep Rein-
forcement Learning (RL) to production scheduling in complex
job shops such as semiconductor manufacturing.

Semiconductor manufacturers traditionally had a small
product portfolio which was dominated mostly by logic and
memory chips. The Internet of Things requires a broader range
of customized chips like sensors in smaller production quanti-
ties. Most sensors and actuators do not benefit from Moore’s
law. Furthermore, the three traditional efficiency improvement
methods in manufacturing, miniaturization, yield improvement
and larger wafer sizes, are close to be fully exploited. This, as
well as the new portfolio requirements, lead to a strong focus
on operational excellence in the semiconductor industry.

For small problem sizes production scheduling in flexible
job shops, such as segments of semiconductor frontend fa-
cilities, can be solved optimally with mathematical optimiza-
tion. For larger, dynamic environments the model complexity
and run-time limit the application of mathematical optimiza-
tion to the Job-Shop Scheduling Problem (JSP), which is Non-
deterministic Polynomial-time (NP) hard. As a result optimiza-
tion is used locally and separated at workcenters. In a complex

job shop, this local optimization of production scheduling can
lead to non-optimal global solutions for the production.

In this paper cooperative Deep Q Network (DQN) agents [3]
are used for production scheduling. The DQN agents, which
utilize deep neural networks, are trained in an RL environ-
ment with flexible user-defined objectives to optimize produc-
tion scheduling. Each DQN agent optimizes the rules at one
workcenter while monitoring the actions of other agents and op-
timizing a global reward. The rules are directly tested and im-
proved in the simulation. The system can be trained with data
from legacy systems such as heuristics to capture their strate-
gies in neural networks and import them into the simulation
for further improvement. It is also possible to train completely
new solutions in the simulation environment. With this applica-
tion of deep RL, we achieve the Industrie 4.0 vision for produc-
tion control of a decentralized, self-learning and self-optimizing
system. The approach has several advantages:

• Flexibility: Agents can be retrained within hours e.g. for
different portfolios or changes in the optimization objec-
tives (e.g. time-to-market vs. utilization).
• Global transparency: The composition of different hier-

archical dispatching heuristics at different workcenters is
based on human experience. Heuristics (and production
goals) are arranged in a hierarchy. The neural networks
are not bound by these constraints and have more ways to
model the right balance of objectives.

2212-8271 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

Available online at www.sciencedirect.com

Procedia CIRP 00 (2018) 000–000 www.elsevier.com/locate/procedia

51st CIRP Conference on Manufacturing Systems

Optimization of global production scheduling with deep reinforcement
learning

Bernd Waschnecka,b,*, André Reichstallerc, Lenz Belzner, Thomas Altenmüllerb,
Thomas Bauernhansld, Alexander Knappc, Andreas Kyekb

aGraduate School advanced Manufacturing Engineering (GSaME) - Universität Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany
bInfineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany

cInstitute for Software & Systems Engineering, University of Augsburg, Germany
dFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstr. 12, 70569 Stuttgart

∗ Corresponding author. Tel.: +49-160-96791228. E-mail address: bernd.waschneck@gsame.uni-stuttgart.com

Abstract

Industrie 4.0 introduces decentralized, self-organizing and self-learning systems for production control. At the same time, new machine
learning algorithms are getting increasingly powerful and solve real world problems. We apply Google DeepMind’s Deep Q Network (DQN)
agent algorithm for Reinforcement Learning (RL) to production scheduling to achieve the Industrie 4.0 vision for production control. In an RL
environment cooperative DQN agents, which utilize deep neural networks, are trained with user-defined objectives to optimize scheduling. We
validate our system with a small factory simulation, which is modeling an abstracted frontend-of-line semiconductor production facility.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

Keywords: Production Scheduling, Reinforcement Learning, Machine Learning in Manufacturing

1. Introduction

Deep Learning has made tremendous progress in the last
years and produced success stories by identifying cat videos
[1], dreaming “deep” [2] and solving computer as well as board
games [3,4]. Still, there are hardly any serious applications in
the manufacturing industry. In this paper we apply deep Rein-
forcement Learning (RL) to production scheduling in complex
job shops such as semiconductor manufacturing.

Semiconductor manufacturers traditionally had a small
product portfolio which was dominated mostly by logic and
memory chips. The Internet of Things requires a broader range
of customized chips like sensors in smaller production quanti-
ties. Most sensors and actuators do not benefit from Moore’s
law. Furthermore, the three traditional efficiency improvement
methods in manufacturing, miniaturization, yield improvement
and larger wafer sizes, are close to be fully exploited. This, as
well as the new portfolio requirements, lead to a strong focus
on operational excellence in the semiconductor industry.

For small problem sizes production scheduling in flexible
job shops, such as segments of semiconductor frontend fa-
cilities, can be solved optimally with mathematical optimiza-
tion. For larger, dynamic environments the model complexity
and run-time limit the application of mathematical optimiza-
tion to the Job-Shop Scheduling Problem (JSP), which is Non-
deterministic Polynomial-time (NP) hard. As a result optimiza-
tion is used locally and separated at workcenters. In a complex

job shop, this local optimization of production scheduling can
lead to non-optimal global solutions for the production.

In this paper cooperative Deep Q Network (DQN) agents [3]
are used for production scheduling. The DQN agents, which
utilize deep neural networks, are trained in an RL environ-
ment with flexible user-defined objectives to optimize produc-
tion scheduling. Each DQN agent optimizes the rules at one
workcenter while monitoring the actions of other agents and op-
timizing a global reward. The rules are directly tested and im-
proved in the simulation. The system can be trained with data
from legacy systems such as heuristics to capture their strate-
gies in neural networks and import them into the simulation
for further improvement. It is also possible to train completely
new solutions in the simulation environment. With this applica-
tion of deep RL, we achieve the Industrie 4.0 vision for produc-
tion control of a decentralized, self-learning and self-optimizing
system. The approach has several advantages:

• Flexibility: Agents can be retrained within hours e.g. for
different portfolios or changes in the optimization objec-
tives (e.g. time-to-market vs. utilization).
• Global transparency: The composition of different hier-

archical dispatching heuristics at different workcenters is
based on human experience. Heuristics (and production
goals) are arranged in a hierarchy. The neural networks
are not bound by these constraints and have more ways to
model the right balance of objectives.

2212-8271 c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.

 Bernd Waschneck et al. / Procedia CIRP 72 (2018) 1264–1269 1265
2 B. Waschneck et al. / Procedia CIRP 00 (2018) 000–000

• Global optimization: Breaking down and balancing
global goals to local (Key) Performance Indicators
((K)PIs) is challenging in complex job shop environments.
The DQN agent system automatically optimizes globally
instead of locally. It is not necessary to break down pro-
duction objectives manually.
• Automation: Dispatching rules do not have to be imple-

mented by human experts.
• Continuity: The DQN agents can be pre-trained from ex-

isting disptaching systems. Errors in existing dispatching
systems are revealed. Legacy systems and different sys-
tems in production can be modernized and unified easily.

Despite all advantages, there are currently also disadvan-
tages: Training is computationally expensive. And as neural
networks are black box models, it is hard to predict how the
DQN agents act in unknown situations.

In this paper we present the method of DQN agent based dis-
patching. In the validation, we focus on the automation aspect.

In section 1.1 the basics of job shop scheduling are defined
and in section 1.2 related work is presented. Section 2 presents
the deep RL system for production scheduling. In section 3, the
factory environment used for validation is described and char-
acterized. Results, discussion and conclusion follow in sections
4 and 5.

1.1. Problem statement: Complex Job Shop Production and
Scheduling

For the application of machine learning we choose a produc-
tion environment which is considered complex and dynamic. A
job shop is an elementary type of manufacturing, where simi-
lar production devices are grouped in closed units. In a flexible
job shop each processes can be handled by several tools, which
is mostly achieved by identical tools working in parallel. Un-
der certain constraints and conditions the flexible job shop is
characterized as complex job shop:

• Technological Constraints: Sequence-dependent setup
times, different types of processes (e.g. single jobs vs.
batch processing), time coupling, varying process times.
• Logistic Constraints: Re-entrant flows of the jobs, pre-

scribed due dates of the jobs, different lot sizes, varying
availability of tools (e.g. machine breakdowns).
• Production Quantity: In a mass production emergent

phenomena become visible as a result of interactions jobs
(e.g. Work In Progress (WIP) waves).

Different products p in the production portfolio take differ-
ent routes rp, which consist of a number of N ordered Single
Process Steps rp = (SPSp,1, . . . , SPSp,N). Each SPS has to be
handled on a specific resource in a resource pool of M resources
for a certain duration. The dedication matrix d determines the
possible allocation of jobs to machines:

d(p,n),m =

{
1 if machine m can process SPSp,n

0 if machine m can not process SPSp,n.
(1)

Dispatching and scheduling are crucial to control the perfor-
mance of a complex job shop as a manufacturing system con-
cerning logistic and economic KPIs [5]. Scheduling refers to
the static planning process of allocating waiting lots to avail-
able resources [6]. Research has focused on the the static prob-

lem, while real-world environments have continuous ongoing
processes with constantly updated real-time information [5].
Dispatching (or dynamic scheduling) refers to the real-time de-
cision upon the next job at a specific machine in a complex,
dynamic environment [5,6]. Sometimes the dispatching deci-
sion follows a pre-defined schedule. Schedules are determined
mostly by linear optimization or genetic programming; heuris-
tics are the most common method for dispatching.

1.2. Related Work

Cooperative multi-agent learning has been applied success-
fully to several areas such as network management and rout-
ing, electricity distribution management and meeting schedul-
ing in order to exploit the adaptive dynamics of the approach
[7]. One of the first successful applications of RL with a neural
network to a static job shop scheduling was presented by Zhang
and Dietterich [8,9]. Mahadevan et al. use RL to optimize the
maintenance schedule of one machine [10] and later extended
their model to a transfer line [11]. Bradtke and Duff solved the
routing to two heterogeneous servers minimizing queue length
with RL [12]. One agent is trained to adopt the dispatching of
one machine in a three-resource scenario in [13]. Paternina-
Arboleda et al. implement a dynamic scheduling at a single
server on multiple products [14]. Brauer and Weiss use a
multi-agent learning approach for multi-machine schedul-
ing, but without RL[15]. One approach uses neural networks
and RL to optimize a resource center without constraints [16].
In recent work, a multi-agent RL approach was implemented
with multiple machine types and Q-learning [17].

Since these publications, deep learning has seen tremendous
developments increasing the power of the methods immensely
[18]. New RL agents have solved problems where a few years
ago humans seemed distinctly superior, such as the ancient
game of Go [19]. Deep RL for resource management such as
abstract computing or memory resources has shown promising
results [20,21]. In this paper several instances of Google Deep-
Mind’s DQN agent, which offers a much more efficient learning
algorithm able to develope complex strategies, are used to op-
timize production scheduling in a multi-agent setting. It is ap-
plied to a dynamic, complex job shop environment consisting
of workcenters with different constraints, multiple machines of
different types and multiple products.

2. Methods: Application of RL to Production Scheduling

2.1. Production Scheduling as Markov Decision Process

RL requires an environment in which an agent can take ac-
tions and observe the results. The factory simulation environ-
ment runs as Discrete-Event Simulation (DES), where events
occur in an ordered sequence and mark changes in the system.
Two types of events can be distinguished: such events that re-
quire scheduling and such that do not. In the following only
events are considered which require scheduling. These events
introduce a new discretization of scheduling time steps t, which
is coarser than the event sequence in the DES. The state of the
system st ∈ S , where S is the space of all possible states, at time
t is handed over to a dispatching system. This system provides
its decision encoded in an action at ∈ A, where A is the space
of all possible actions available to the system. The two event
types which may require scheduling are ARRIVAL of a new lot
and MOVEOUT of a lot from a machine.

In order to be used in RL states and actions need to fulfill
the criteria of a Markov Decision Process (MDP). For RL, the

1266 Bernd Waschneck et al. / Procedia CIRP 72 (2018) 1264–1269
B. Waschneck et al. / Procedia CIRP 00 (2018) 000–000 3

Factory
simulation

Discrete event
simulation Event handler, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∈ {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑀𝑀𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀}

Job shop
management
Standard dispatching
system

The DQN agent
trains the neural network
during reinforcement
learning by correlating
actions with reward.

The neural network

state 𝑠𝑠𝑡𝑡

state 𝑠𝑠𝑡𝑡,
reward 𝑟𝑟𝑡𝑡

action 𝑎𝑎𝑡𝑡

action 𝑎𝑎𝑡𝑡

state-action pairs (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) for
supervised pre-training

of neural networks

takes 𝑠𝑠𝑡𝑡 as an input
and outputs 𝑎𝑎𝑡𝑡.

Fig. 1. Data exchange between factory simulation as a discrete event simula-
tion, Job Shop Management System with standard dispatching heuristics and
the DQN agent with neural networks.

Markov property is equivalent to the requirement that all rele-
vant information for the decision is encoded in the state vector
st (for complete definition of MDP see [22, p. 57]).

The state space S = S machines × S jobs is a combination of
machine states smachine = 〈s1, . . . , sMw〉 ∈ S machines for Mw ma-
chines at a workcenter w and the state of surrounding jobs
sjobs = 〈s1, . . . , s j〉 ∈ S jobs for j jobs. The machine space is
defined by machine capabilities, availability (breakdowns) and
the setup. Machine capabilities are described by the dedication
matrix d (see Section 1.1). Availability av is in most cases bi-
nary, av ∈ {0, 1}Mw . In this example factory, all machines at
one workcenter are identical and breakdowns are not explicitly
considered. Therefore only the setup needs to be encoded for
the workcenter specific agent: The machine state sx reduces to
a one-hot vector sx ∈ {0, 1}ST for ST Setup Types for each ma-
chine.

The second part of the state space are the properties of the
jobs s j. Firstly, it comprises the product type, which is en-
coded in a one-hot vector {0, 1}p. The locations, which cor-
respond to the workcenters, are also encoded as one-hot vector
{0, 1}locations. Then the processing percentage of the product is
included, which is a relative measure for the number of pro-
cessing steps already completed. Last, the deviation of a set
due date for an operation is given.

The action space consists of pos + 1 actions: the lots at pos
possible positions in the and one option to not start a lot. Lot
positions are shuffled before each call of a DQN agent to ran-
domize the samples in the training set.

2.2. Supervised and Reinforcement Learning in a factory sim-
ulation

The default scheduling and dispatching logic is described in
the next section and implemented in an event handler called Job
Shop Management (JSM). The JSM, which is based on expert
knowledge, is the reference and benchmark for factory perfor-
mance and provides the state-action pairs (st, at) for supervised
learning (see Fig. 1). The neural network is trained to predict
the action at based on the state st. With this setup, it is possible
to capture existing dispatching strategies in a factory in neural
networks by observation of existing solutions.

Still, with supervised learning it is not possible to improve
on the existing systems. During RL, the DQN agents interact
directly with the factory simulation, where they develop new
strategies. The agent receives a reward, in this case a factory
KPI, and correlates actions at with rewards. The agent deter-
mines its actions by using a neural network and mixing the out-
put of the neural network with random actions to sample its
training set. In essence, the agent trains the neural network in
such a way that it predicts the cumulative, weighted rewards for

all actions. The relationship between simulation, JSM, agent
and neural network is shown in Fig. 1.

The DQN agents are based on Q-learning, which is used to
optimize the action-selection policy πt(a|s) in such a way that
it maximizes the reward. The policy πt(a|s) is the probability
distribution that at = a if st = s [22]. The Q-function Q :
S × A→ R gives the reward over successive steps weighted by
discount factor γ. The optimal action-value function Q∗(s, a) is
approximated in the course of the Q-learning algorithm: [3]

Q∗(s, a) = max
π

E

∑

t

rt · γt |st = s, at = a, π

 . (2)

The function Q∗(s, a) is the maximization of the sum of rewards
discounted by γ per time-step t that can be achieved with the
policy π. In the DQN algorithm the neural network is not only
used as a representation of π but also to predict the Q values for
actions.

Our experiments have shown difficulties in capturing differ-
ent dispatching strategies at different workcenters with different
resources and constraints in one neural network. In addition,
one agent with a separate neural network is for each workcen-
ter improves scalability and stability. The agents are trained
separately, but can use the neural networks of the other agents
for controlling the remaining workcenters. This stabilizes the
first learning phase tremendously. All neural networks are con-
trolling the simulation, but only one agent is actively training
one neural network. The learning agent takes the actions of
the other agents into account by observing their activity. As
all agents optimize a global reward they act cooperatively. The
cooperative learning of three different agents is shown in the
upper part of Fig. 2.

The training of the DQN agents is separated into two
phases:

• Phase A: While the one DQN agent is trained, the other
workcenters are controlled by heuristics. As DQN agents
are model-free, they start without any knowledge about the
system (if no prior supervised learning was done). A linear
annealed ε-greedy policy is used to diversify the samples
of the agent. Each DQN agent is trained once.
• Phase B: All workcenters are controlled by DQN agents

which are learning separately. The ε-greedy policy is set
to a fixed value and the learning rate can be reduced. The
DQN agents are trained in cycles, each time for a relatively
short number of steps.

The separation speeds up training due to two reasons: First,
the factory performance is stabilized if only one workcenter is
agent-controlled. Second, the heuristics at the remaining work-
centers can be executed faster than neural networks. Still, train-
ing can be started directly in Phase B and reach the same per-
formance, but taking about four times as long as with Phase A.

In a separate deployment phase, the performance is deter-
mined without dynamic changes due to the learning process and
random actions due to the ε-greedy policy.

2.3. Implementation and Application

The factory simulation is implemented in MathWorks MAT-
LAB. In order to work with recent machine learning algorithms,
the MATLAB API for Python is used to implement an OpenAI
Gym Interface in Python towards the simulation [24]. The sim-

 Bernd Waschneck et al. / Procedia CIRP 72 (2018) 1264–1269 12674 B. Waschneck et al. / Procedia CIRP 00 (2018) 000–000
Tr

ai
ni

ng

M
u

lt
i-

A
g

e
n

t
O

p
e
n
A
I

G
Y
M

E
n
v
ir
o
n
m

e
n
t

(E
n
v
)

E
n
v

1
E
n
v

2
E
n
v

X

… …

idle

active - training

idle

While agent 2 is trained, agent 1 is in idle
mode. The multi-agent environment
routes the events directly to the neural
network, whose weights are static during
the training phase of another agent.

Agent 2 is the only agent which is actively
training the neural network. Agent 2 is
controlling the simulation. It can correlate
its actions directly to rewards and improve
the performance of the policy.

Agent X is in idle mode, identical to
agent 1.

active

idle

active

…

Digital Twin

D
ep

lo
ym

en
t

Production

In a production environment, the trained
neural networks are transferred from the
simulation environment. Weights are not
changed during operative usage.

Factory
Simulation

Agent 1

Agent 2

Agent X

Fig. 2. Complete setup of the DQN agent based production control. The training phase on top shows the sequential training algorithm for multi-agent systems. The
deployment layer at the bottom demonstrates the fast transferability and applicability in the factory and the synchronization with the digital twin [23].

ulation is imported as OpenAI Gym environment, which stan-
dardized agents can observe and control. For the RL framework
keras-rl [25] is used, which is built on keras [26] and Tensor-
Flow. In keras-rl, the implementation of Google DeepMind’s
DQN agent is used [3].

For an application in a factory, the performance of the frame-
work depends tremendously on the quality of the simulation
model. A digital twin of the production is optimal to let the
RL algorithm interact with the production. Thereby training is
separated from execution. The training of the algorithm, which
is computationally expensive, not running real-time and pos-
sibly not always producing optimal solutions, runs offline in
a simulation environment. When optimal solutions are found,
the essence is captured in the neural networks, which are then
transferred to the online environment. If simulation and reality
have significant deviations, the DQN-agents can keep learning
after deployment in production to account for and adapt to dif-
ferences.

The execution of neural networks is fast, and in terms of
most production processes it can be considered real-time. The
system is running stable and predictable, as no learning is done
in the running production. The neural networks can be updated
regularly when portfolios, objectives, production resources or
logistics in the digital twin change. The whole process of train-
ing and transferring neural networks to production is shown in
Fig. 2.

3. Characterization of the Factory Simulation

Semiconductor wafer processing is characterized as complex
job shop production. In the frontend-of-line the transistors are
formed on the wafer. In the backend-of-line the metalization
layers are processed which connect the transistors and create
the logic interconnections. The factory simulation used for op-
timization is modeled after a frontend-of-line production.

The frontend-of-line workflow is modeled with four work-
centers. The first workcenter is equipped with two lithography
clusters. Each reticle for the lithography exposure is only avail-
able once, meaning that the machines can not process the same
product at the same time. In workcenter 2 the implanter re-
quires different setups shown in Table 1. The next steps are
merged and modeled as a buffer with an infinite capacity but
necessary transport batching. In the last workcenter 3 furnaces
are located which take batches of two identical lots.

Table 1. Setup times for the setup change from one Technology Class (TC) to
another.

[arbitrary time units] TC 1 TC 2 TC 3

TC 1 0.0 1.1 1.9
TC 2 4.1 0.0 3.2
TC 3 1.3 3.0 0.0

FF =
Cycle Time

∑RPT
TC1
TC2
TC3

Fig. 3. Characterization of the scenarios in the factory simulation controlled by
standard dispatching: loading/WIP, Uptime Utilization and Flow Factor.

Three different semiconductor Technology Classes (TCs) are
running in the simulation, on which different products can be
realized depending on masks. The Raw Process Times (RPTs)
are given in Fig. 4. All RPTs have normal distribution with
a coefficient of variance of 50% modeling delays at machines.
Each TC requires a different ST at the implanter. Each lot re-
enters the line for a fixed number of cycles, creating a re-entrant
flow. Transport-times and machine breakdowns are not explic-
itly considered.

Each workcenter is controlled by different, semiconductor
typical dispatching heuristics. At workcenter 1 Operations Due
Date (ODD) with a plan Flow Factor (FF) is applied (some-
times called X-factor; definition see Fig. 3). ODD ensures a
continuous flow of production due to the underlying princi-
ple of a continuous speed in production (corresponding to a
queueing time proportional to the RPT). If ODD is not deci-
sive, First-In-First-Out (FIFO) is applied for lots with identical
due dates. At workcenter 2, a hierarchy of three rules is applied:
First setup optimization, then ODD among the lots eligible to
run under setup constraints and last FIFO. Workcenter 3 acts as
buffer with infinity capacity. At workcenter 4 the batch with the
largest due date deviation is started. Single lots are not started.

1268 Bernd Waschneck et al. / Procedia CIRP 72 (2018) 1264–1269
B. Waschneck et al. / Procedia CIRP 00 (2018) 000–000 5

TC 1 18.8 8.0 25.0 48.0

TC 2 19.1 12.0 25.0 64.0

TC 3 16.9 7.7 25.0 52.1

Lithography Furnace Buffer/ Other Implant

5x
3x

4x Raw Process Times (RPTs) in arbitrary time units
RPTs have Coefficients of Variance (CoVs) of 50%.
Process flows are re-entrant:

Constraints

setup
optimization,
ODD, FIFO

reticle
management

time
coupling

Dispatching ODD, FIFO
batching, ODD,

FIFO

Factory
Environment

batch transfer
to the next step

Fig. 4. Summary of the simulation model with three TCs and four workcenters
with different constraints and dispatching heuristics.

The dispatching heuristics are the benchmark for the RL dis-
patching. A detailed description of dispatching techniques can
be found in [6].

For benchmarking a second dispatching system with a small
random element is constructed. In this second reference system,
a random action out of the action space will be executed with a
probability of 30% at the workcenter 2.

Three loading scenarios corresponding to different FFs are
evaluated. The WIP level is kept constant by controlling the
loading of the simulation. Small variations in WIP are created
by a random period of time of 0–18 hrs between closing of a lot
and loading the next. WIP levels, Uptime Utilization (UU) and
FF of the scenarios are presented in Fig. 3. UUs and FFs serve
as reference to the RL dispatching model.

4. Experiment, Results and Discussion

In this experiment the UU (and therefore indirectly the
throughput) is optimized. The rewards in phases A and B are
given accordingly:

• Reward phase A: The number of lots in process at a work-
center divided by the total capacity (UU at workcenter)
plus negative penalties. For actions which are not possible
to execute, e.g., when a reticle is already in use, a penalty
of −1 is given. If 80% of the total WIP are in queue at
one workcenter, the dispatching heuristics are activated to
avoid a crash. A penalty of −2 is given in this case.
• Reward phase B: The UU of the whole line (all machines

in the factory) plus the negative penalties.

In deployment mode the penalties are set to zero.
The neural networks of each DQN agent have the same

topology. The networks consist of three densely connected lay-
ers with 512, 128 and 18 neurons, where the last layer corre-
sponds to the actions. The activation functions are Rectified
Linear Units (ReLU). The optimizer used for training is Adam
[27] with a learning rate of lr = 10−4 in phase A and lr = 10−5

in phase B. A decaying ε-greedy policy is used in phase A
(shown in Fig. 5); a constant ε-greedy policy of 0.3 is used
in phase B. During deployment the optimal action is always se-
lected. The target model update of the DQN agent is set to 10−2.
The batch size is set to 32. The discount factor in Q-learning is
γ = 0.9. Reference for all parameters is the publication of the
DQN agent algorithm [3] and the open source implementation

Table 2. Comparison of dispatching heuristics and DQN agent optimization in
deployment mode. The presented reward values are the average reward over
25000 steps.

[Reward in test mode] Scenario 1 Scenario 2 Scenario 3

Benchmark dispatching 0.61 0.83 0.96
Dispatching with 10%
random at workcenter 2 0.58 0.79 0.91
Dispatching with 30%
random at workcenter 2 0.55 0.73 0.85
DQN agent optimization 0.62 0.83 0.94

of the DQN agent in keras-rl [25].
Results for the three scenarios are shown in Fig. 5. In phase

A a good pre-training is achieved: loss (Fig. 5(a)) and mean
Q (Fig. 5(b)) functions are quickly converging. The mean Q
(= meant(E(maxa(Q(a, t)))) value is converging towards Q∗
(see Eq. 2). In phase A / Fig. 5(b) the reward is quickly ris-
ing. The local optimization (local reward) is easier to achieve
than the line optimization (global reward, phase B). In phase B
Fig. 5(c) the local potential is already exploited and the global
reward/whole production line is further optimized. Due to this
fine-tuning, The reward in Fig. 5(c) increases slowly and the
Q-values of the DQN agents are converging (Fig. 5(c)). Al-
though all agents get the same reward, the influence of random
actions introduced by the ε-greedy policy at the workcenters
is different. This explains the offset in the rewards in phase B
(Fig. 5(c)). More information is given in the figure caption of
Fig. 5.

The performance of each dispatching system is evaluated in
deployment mode. The comparison of results is shown in Ta-
ble 2. In all scenarios the DQN agent algorithm shows the same
performance as the state of the art benchmark. The DQN dis-
patching system performs considerably better than the dispatch-
ing system with a small random element introduced at one ma-
chine. Introducing 30% random actions at only one workcenter
decreases the UU over 10%.

The DQN agents are optimizing the factory simulation. For
the deployment it is therefore crucial that the simulation models
the properties of production correctly.

With regards to the rapid developments of machine learning
in recent years we expect the model to be able to scale to larger
simulations. The factory sizes for which optimization still is
possible only depend on the available processing power.

5. Summary and Conclusion

In this paper a successful application of RL with the DQN
agent to production scheduling was presented. The system au-
tomatically develops a scheduling solutions, which is on a par
with the expert benchmark, without human intervention or any
prior expert knowledge. While we do not beat the heuristics, we
are able to reach the level of expert knowledge within 2 days of
training. Non-optimal rules or errors in the implementation,
such as the introduction of 30% random actions at workcenter
2, are detected. The system offers a high transparency due to
the direct connection between solution and global optimization
targets. It can be trained and exchanged within hours.

In future work, optimization under several balanced objec-
tives will be shown. The methodology will be applied to differ-
ent factory environments, where the performance in different
settings and the scaling can be investigated. For strategic board
games RL agents have been able to find new, formerly unknown
strategies and outperform human grandmasters [4]. We hope

 Bernd Waschneck et al. / Procedia CIRP 72 (2018) 1264–1269 12696 B. Waschneck et al. / Procedia CIRP 00 (2018) 000–000
Ph

as
e

A

1a

1b

Scenario 1Ph
as

e
B

1c

Agent 1
Agent 2
Agent 4

Agent 1
Agent 2
Agent 4

Agent 1
Agent 2
Agent 4

Scenario 2 Scenario 3

2a

2b

2c

3a

3b

3c

Fig. 5. Key parameters of the learning process for three factory scenarios in learning phases A and B. Agent 1, 2 and 4 correspond to the respective workcenters;
workcenter 3 is not controlled by an agent as it acts mostly as a buffer. Steps are the time steps in the MDP. In (a), the loss functions of each agent as well as
the ε parameter of the ε-greedy policy is shown for each of the scenarios 1,2 and 3 (share of random actions to blend the training set). The loss functions are
converging quickly and set a good starting point for optimization of the whole line in phase B. The ε-greedy policy in phase A is identical for all agents. In phase
B ε is set constant to 0.2. In (b) and (c) reward and mean Q value are presented for phase A and B respectively. In both the mean Q has converged to a fixed
value. For a thorough definition of the machine learning parameters we refer to the first DQN agent algorithm publication [3] and the open source implementation
in keras-rl [25].

to demonstrate the capability to develop superior dispatching
strategies in more complex simulation models.

Acknowledgements

This work was supported by Infineon Technologies AG.
A part of the work has been performed in the project Power Semiconduc-

tor and Electronics Manufacturing 4.0 (SemI40), under grant agreement No
692466. The project is co-funded by grants from Austria, Germany, Italy,
France, Portugal and the Electronic Component Systems for European Lead-
ership Joint Undertaking (ECSEL JU). This work was supported as part of the
joint undertaking SemI40 by the German Federal Ministry of Education and
Research under the grant 16ESE0074.

References

[1] Le, Q.V.. Building high-level features using large scale unsupervised
learning. In: IEEE Int. Conf. on Acoustics, Speech and Signal Process-
ing (ICASSP), 2013. 2013, p. 8595–8598.

[2] Mordvintsev, A., Olah, C., Tyka, M.. Inceptionism: Going deeper into
neural networks. Google Research Blog Retrieved June 2015;20:14.

[3] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., et al. Human-level control through deep reinforcement learn-
ing. Nature 2015;518(7540):529–533.

[4] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., et al. Mastering the game of Go without human knowledge.
Nature 2017;550(7676):354–359.

[5] Ouelhadj, D., Petrovic, S.. A survey of dynamic scheduling in manufac-
turing systems. Journal of scheduling 2009;12(4):417–431.

[6] Waschneck, B., Altenmüller, T., Bauernhansl, T., Kyek, A.. Production
scheduling in complex job shops from an industry 4.0 perspective. In:
SAMI@ iKNOW. 2016,.

[7] Panait, L., Luke, S.. Cooperative multi-agent learning: The state of the
art. Autonomous agents and multi-agent systems 2005;11(3):387–434.

[8] Zhang, W., Dietterich, T.G.. A reinforcement learning approach to job-
shop scheduling. In: IJCAI; vol. 95. 1995, p. 1114–1120.

[9] Zhang, W., Dietterich, T.G.. High-performance job-shop scheduling with
a time-delay td (λ) network. In: Advances in neural information processing
systems. 1996, p. 1024–1030.

[10] Mahadevan, S., Marchalleck, N., Das, T.K., Gosavi, A.. Self-improving
factory simulation using continuous-time average-reward reinforcement
learning. In: Machine learning international workshop. Morgan Kaufmann
Publishers; 1997, p. 202–210.

[11] Mahadevan, S., Theocharous, G.. Optimizing production manufacturing
using reinforcement learning. In: FLAIRS Conference. 1998, p. 372–377.

[12] Bradtke, S.J., Duff, M.O.. Reinforcement learning methods for
continuous-time Markov decision problems. In: Advances in neural in-
formation processing systems. 1995, p. 393–400.

[13] Riedmiller, S., Riedmiller, M.. A neural reinforcement learning approach
to learn local dispatching policies in production scheduling. In: IJCAI;
vol. 2. 1999, p. 764–771.

[14] Paternina-Arboleda, C.D., Das, T.K.. A multi-agent reinforcement
learning approach to obtaining dynamic control policies for stochas-
tic lot scheduling problem. Simulation Modelling Practice and Theory
2005;13(5):389–406.

[15] Brauer, W., Weiß, G.. Multi-machine scheduling – a multi-agent learn-
ing approach. In: Multi Agent Systems, 1998. Proceedings. International
Conference on. IEEE; 1998, p. 42–48.

[16] Gabel, T., Riedmiller, M.. Scaling adaptive agent-based reactive job-
shop scheduling to large-scale problems. In: Computational Intelligence in
Scheduling, 2007. SCIS’07. IEEE; 2007, p. 259–266.

[17] Qu, S., Wang, J., Govil, S., Leckie, J.O.. Optimized adaptive scheduling
of a manufacturing process system with multi-skill workforce and multiple
machine types: An ontology-based, multi-agent reinforcement learning ap-
proach. Procedia CIRP 2016;57:55–60.

[18] LeCun, Y., Bengio, Y., Hinton, G.. Deep learning. Nature
2015;521(7553):436–444.

[19] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van
Den Driessche, G., et al. Mastering the game of Go with deep neural
networks and tree search. Nature 2016;529(7587):484–489.

[20] Mao, H., Alizadeh, M., Menache, I., Kandula, S.. Resource management
with deep reinforcement learning. In: HotNets. 2016, p. 50–56.

[21] Orhean, A.I., Pop, F., Raicu, I.. New scheduling approach using rein-
forcement learning for heterogeneous distributed systems. Journal of Par-
allel and Distributed Computing 2017;.

[22] Sutton, R.S., Barto, A.G.. Reinforcement learning: An introduction;
vol. 1. MIT Press Cambridge; 1998.

[23] Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.. The digital twin: Realiz-
ing the cyber-physical production system for industry 4.0. Procedia CIRP
2017;61:335 – 340. doi:https://doi.org/10.1016/j.procir.2016.11.152; the
24th CIRP Conference on Life Cycle Engineering.

[24] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,
Tang, J., et al. Openai gym. arXiv:1606.01540; 2016.

[25] Plappert, M.. keras-rl. 2016. URL:
https://github.com/matthiasplappert/keras-rl.

[26] Chollet, F., et al. Keras. 2015. URL:
https://github.com/fchollet/keras.

[27] Kingma, D., Ba, J.. Adam: A method for stochastic optimization. arXiv
preprint arXiv:14126980 2014;.

