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Abstract

EU regulations on CO; limits and the trend of individualization are pushing the automotive industry towards greater flexibility
and robustness in production. One approach to address these challenges is modular production, where workstations are
decoupled by automated guided vehicles, requiring new control concepts. Modular production control aims at throughput-
optimal coordination of products, workstations, and vehicles. For this np-hard problem, conventional control approaches lack
in computing efficiency, do not find optimal solutions, or are not generalizable. In contrast, Deep Reinforcement Learning
offers powerful and generalizable algorithms, able to deal with varying environments and high complexity. One of these
algorithms is Proximal Policy Optimization, which is used in this article to address modular production control. Experiments
in several modular production control settings demonstrate stable, reliable, optimal, and generalizable learning behavior. The
agent successfully adapts its strategies with respect to the given problem configuration. We explain how to get to this learning
behavior, especially focusing on the agent’s action, state, and reward design.

Keywords Modular production - Production control - Production scheduling - Deep reinforcement learning - Proximal policy

optimization - Automotive industry

Introduction to modular production systems

Manufacturing systems in the automotive industry are under-
going a systematic change. The trade-off between following
the customer’s needs and handling the economic pressure
requires novel approaches to manufacturing (Kern et al.
2015). On one side, EU regulations defining a CO» threshold
of 95 g]frgz averaged over the fleet require car manufacturers
to expand their engine portfolio to electric drives and other
alternative more sustainable engine concepts. The threshold
regulation is phased for 95% of cars at the beginning of 2020,
with full compliance by 2021 (Mock 2014). On the other
side, customers expect more individual products that closely
match their needs and taste. Individualization and customiza-
tion need to be balanced with resource management to keep
the costs as low as possible. In a highly competitive market,
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as the automotive market is, this is essential for a company
to persist over time (McKinsey 2013, 2016).

Modular production systems are an up-and-coming solu-
tion to this challenge. In contrast to classical production
lines, such as mixed-model assembly lines (Boysen 2007),
modular production drops the concept of sequential pro-
cessing and allows for more flexibility of routing diversified
products through workstations'. This flexibility is inherently
characterized by the application of automated guided vehi-
cles (AGV). They enable flexible transportation of products
and essentially decouple workstations, making AGVs a core
feature of modular production systems (Kern et al. 2015;
Bochmann 2018; Greschke 2016; Foith-Forster and Bauern-
hansl 2015).

Figure 1 depicts a modular production system, as con-
sidered in this work. Different products are released into the
production system on workpiece carriers (WPC) at a produc-
tion source. AGVs handle the material transport between the
decoupled workstations utilizing a transport network. Each
decoupled workstation comprises a buffer at its input and its

LIS

! The terms “workstation™, “station”, and “machine” are used synony-
mously in this article.
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Fig. 1 Modular production system consisting of a source, where products are released into the system, stations, where products are processed,
automated guided vehicles (AGV) for material transport moving on a transport network, and a sink, where products are finished

output (IB and OB), allowing to buffer products on WPCs in
front of and behind a station’s processing location (PROC).
Finally, finished products are brought to the system’s sink.
The next section describes how complex the control of these
systems is.

Modular production control problem formulation

In order to utilize the flexibility advantage of such modu-
lar production systems, an optimal coordination of products,
stations, and AGVs is required. At the same time, real
dynamic production environments require robustness against
unexpected events like machine down-times (Ouelhadj and
Petrovic 2009). Being a scheduling-like problem, modular
production control (MPC) belongs to the complexity class
of np-hard problems. Because modular production is a new
field in the automotive industry, descriptions of the complex
control problems are rarely found in literature. Instead, our
earlier work has introduced five sub-problems (Mayer and
Endisch 2019; Mayer et al. 2019a,b,c). Each sub-problem
represents specific scheduling decisions to be made:

— Job release management (JReM): Release jobs of dif-
ferent product types into the production system at certain
points in time out of a given job pool.

— Job routing management (JRoM): Define the opera-
tions’ order and choose a workstation for each operation.

— Workstation management (WM): Time jobs’ opera-
tions at a workstation and sequence competing jobs.

— Vehicle management (VM): Assign transports to AGVs
and coordinate them deadlock-free.

— Deviation management (DM): React on dynamics like
machine down-times and operation time fluctuations.

@ Springer

A more formal description of the control context orients
itself on a scheduling formulation by Watermeyer (2016) and
is as follows: A set of n; jobs J is processed by a set of n
modular workstations M and transported by ny AGVs V
with speed vy . Each workstation M} comprises an Inbound-
and an Outbound-Buffer (IB and OB) with equal capacity
npyy utilizing First In - First Out (FIFO). A vehicle’s V;
transport time is denoted by fr. Jobs J; represent certain
product types P T and can be flexible according to their oper-
ations’ order and the choice of an operation’s station. Firstly,
order flexibility is represented by np process plans P;. A
process plan P;, consists of n ¢ operations O;,, defining their
order. Operations’ O;p; processing times are denoted by #;/,
their start times at stations by S;,;. Secondly, operation flex-
ibility is defined as the ability of at least one job operation
Oip1 to be processed by at least two stations (Kacem et al.
2002). S, denotes the point in time, a job J; is released at the
source. Jobs are released on WPCs, whose number is limited
tonwpc. A job and a respective WPC remain linked until a
job has finished all of its operations. After finishing all oper-
ations, an AGV transports a job to the production system’s
sink and the WPC becomes available again. All descriptive
sets are listed below:

J={h,D, ... Ji.o s Iyl (1)
M :={M,Mp,...,My,...,My,} 2)
V= (Vi Var o Vi Vi) 3)
PT :={PT\, PT»,..., PTy,..., PTyp;} “4)
P = {P,'l,Piz,...,P,'p,...,P,',,p} @)
Oip :=={0ip1, Oip2, ..., Oipis ..., Oipny} (6)

In order to complement the above model, further boundary
conditions are: The release order and the job release time
points S, are arbitrary, but limited by the number of WPCs
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nw pc.Jobs J are initially available and independent. A job’s
operations cannot be processed in parallel. A workstation
cannot process more than one job at a time. Operation times
t;p1 are known and independent from the station. Preemption
of operations is not allowed. An AGV can only transport one
job at a time.

The production control’s goal is to be generalizable in
dealing with diverse modular production environments. Fur-
thermore, MPC aims at robustness against dynamics and a
minimized makespan for all jobs J? by maximizing the pro-
duction throughput.

Earlier work leads to reinforcement learning closing
theresearch gap

From ahigh-level perspective, control approaches are divided
into centralized and decentralized approaches, where central-
ized describes one entity solving the problem and decentral-
ized describes several collaborative entities finding solutions
(Leitao 2009).

As no plug-and-play algorithms for the new problem of
MPC exist in literature, our earlier work addressed MPC
with rather conventional scheduling approaches. Firstly,
we implemented a centralized approach using a Genetic
Algorithm for scheduling (Mayer and Endisch 2019) and sec-
ondly, a decentralized multi-agent-system, where resource
and product agents negotiated for their allocation (Mayer
etal. 2019b, c). Both control approaches lacked in topics like
computing efficiency for large scale problems, finding the
optimal solution reliably, and their generalizability.

In order to close this research gap in MPC, this work
addresses the previously mentioned problem by applying an
intelligent computing method called Reinforcement Learn-
ing (RL) (Teti and Kumara 1997). Firstly, RL is applicable
to sequential decision problems, for instance, using Markov
Decision Processes (MDP). Secondly, RL’s applicability to
related adaptive control problems in manufacturing systems
has already been shown (Chen et al. 2015; Stricker et al. 2018;
Usuga Cadavid et al. 2020). Especially Deep Reinforcement
Learning’s (DRL) success in the gaming industry (Mnih et al.
2013; Silver et al. 2016) proved the method’s generalizability
and its solution quality, being applied to complex, dynamic
optimization problems.

Overview on reinforcement learning

In RL, an agent tries to solve the underlying problem opti-
mally by interacting with its environment and adapting its
strategy through trial-and-error. At timesteps ¢, the agent
takes actions A; that lead to rewards R;4; and new states
S¢+1 in the environment. It collects this experience to adapt

2 The terms “job” and “product” are used synonymously in this article.

its policy = iteratively, in order to maximize the collected
rewards and find an optimal policy m, (Sutton and Barto
2018).

RL methods can be divided into tabular methods like
Q-Learning, and DRL methods, where value-based, policy
gradient, and actor-critic methods are distinguished. DRL
methods utilize a Neural Network (NN) to acquire and store
experience over time. In comparison, tabular methodolo-
gies utilize a lookup table to store the respective knowledge.
The main difference between value-based and policy gradi-
ent methods is that value-based methods approximate the
mentioned lookup table with the NN and thereof deduce
the optimal policy, whereas policy gradient methods directly
approximate a policy (Sutton and Barto 2018; Morales 2020).
Morales (2020) also describes that generally, tasks of an RL
agent are divided into two aspects: episodic tasks, having a
natural ending, and continuous tasks that do not end naturally.

Applied to MPC, an episodic task is defined to finish a
fixed number of jobs and to minimize their makespan, where
the episode’s terminal state is reached when the last job enters
the production system’s sink. Whereas, a continuous task
describes a production system running 24 hours, seven days a
week, and the throughput, describing the production’s output
of products per hour, is aimed to be maximized. Here, we
focus on a continuous setting.

Contribution and structure

This article closes the research gap in the field of MPC for
the automotive industry in mainly three ways: Firstly, we
derive the first application of RL in the field of automo-
tive MPC. Secondly, to reliably find throughput-maximized
control solutions, we give implementation guidance by doc-
umenting our learnings. Thirdly, the article demonstrates the
generalization capabilities of RL in the context of MPC to
meet one of the main goals of RL appliance in MPC.

Accordingly, the article is structured as follows: In order
to choose an RL method for MPC, “Related work on rein-
forcement learning in production” section reviews literature
on the appliance of RL algorithms for MPC-related produc-
tion control problems. “Deep reinforcement learning with
policy gradient methods: proximal policy optimization” sec-
tion introduces the chosen DRL method Proximal Policy
Optimization (PPO) and concludes with the respective pseu-
docode. These basics are then used in “Implementation:
PPO agent and environment” section for the agent’s imple-
mentation, the interaction with its environment, and the
environment itself, especially focusing on the action, state,
and reward design. Finally, “Experimental results” section
documents the experiments and discusses its results on PPO’s
learning and generalization capabilities in MPC. The article
closes with a conclusion in “Conclusion and future work”
section.

@ Springer
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Related work on reinforcement learning in
production control

RL is getting more attention in MPC-related production con-
trol research in the last years, especially in the semiconductor
industry, where production systems are highly complex. This
section analyses a cross-section of RL in production control
or related areas focusing on tabular RL methods as well as
value-based DRL, and policy gradient DRL methods. Actor-
critic methods are not involved, being a newer field in DRL
research and no applications to production control have been
found. The section categorizes the different approaches along
the introduced dimensions of MPC and concludes their appli-
cability to MPC. Finally, a suitable RL method for MPC is
chosen.

Tabular methods

Aydin and Oztemel (2000) developed an improved version of
the Q-Learning algorithm termed Q-III featuring faster learn-
ing and a higher probability to converge to a global optimum.
Applied to a dynamic job-shop scheduling problem consist-
ing of nine workstations and five jobs, the centralized agent
intelligently chose priority rules for the current production
situation in real-time and showed better performance than
benchmark priority rules. The publication focused on work-
station management and deviation management.

In contrast to optimizing performance and convergence
issues of Q-Learning, Creighton and Nahavandi (2002)
focused on minimizing the required memory space of the cen-
tralized RL agent. They managed to reduce the state space
significantly with a mapping technique, which enabled the
evaluation of larger size problems with tabular methods and
available computing power. Although little is stated about the
problem setting and exact tabular methodology applied, the
approach is considered valuable for the expansion to large
state spaces. The authors addressed workstation and vehicle
management.

Wang (2020) showed the applicability of a Q-Learning
algorithm in combination with a multi-agent bidding sys-
tem for job-shop scheduling. The centralized Q-Learning
instance selected the best fit between tasks and resources
based on the bids at hand. A clustering method was used to
reduce the state space. The overall approach demonstrated
superior performance compared to respective benchmarks.
Wang (2020) addressed the sub-problems of deviation and
workstation management.

Shiue et al. (2018) developed a Q-Learning agent to
control the workstation within the factory and perform
scheduling tasks. As a discrete-event environment, the Tec-
nomatix Plant Simulation software was utilized, just as
within this article. Shiue et al. (2018) described better per-
formance results of the Q-Learning RL approach compared
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to previous implementations of their work as well as to
benchmark heuristic dispatching rules. The RL agent took
a centralized perspective and addressed the sub-problem of
workstation management. Little was stated about the exact
problem setting.

Value-based DRL methods

Mahadevan and Theocharous (1998) investigated transfer
lines to integrate methods of lean manufacturing and thereby
minimize inventory levels using RL. Their SMART model
outperformed the Kanban benchmark on inventory levels as
well as workstation failure prevention. The SMART algo-
rithm was developed as a centralized approach addressing
the sub-problems of job release, workstation, and deviation
management, as maintenance policies were learned.

The center figure for the following three examples of
value-based methods in production control is Mr. Riedmiller
who contributed to a large extent to the development of the
Deep Q-Network (DQN) architecture (Riedmiller and Ried-
miller 1999; Gabel and Riedmiller 2007; Mnih et al. 2015,
2013). Riedmiller’s first RL application in production control
featured a multilayer-perceptron network that approximated
the value function Q. The problem set was rather small
with an experiment consisting of three workstations and
the smaller experiment including a single workstation. The
architecture is characterized as decentralized with individ-
ual agents representing a single workstation. Riedmiller and
Riedmiller (1999) addressed the sub-problem of worksta-
tion management. Upon successful completion of a process,
the workstation could select the next job to be produced
to minimize the overall tardiness of all jobs. The authors
described successful learning for both cases with one and
three workstations. Additionally, the approach demonstrated
basic generalization capabilities to previously unseen scenar-
ios.

In 2008, the next evolution of value function approxima-
tion, now featuring multiple agents learning simultaneously,
was presented. The new architecture was termed Fitted Q Iter-
ation with NNs and Optimistic Assumption featuring various
tweaks to increase data efficiency and inter-agent coordina-
tion to enhance learning. Additionally, the problem size had
increased significantly, now featuring up to 15 workstations
and 20 jobs. Gabel and Riedmiller (2007) showed successful
learning, promising results compared to benchmark prob-
lems and stated adequate generalization to unseen scenarios.
The approach is again characterized as decentralized due to
the multi-agent characteristic and addressed the sub-problem
of workstation management.

Waschneck et al. (2018a,b) applied a multi-agent DQN
architecture to the problem setting of the semiconductor
industry. The theoretical foundation for their work was based
on the publications of the DQN architecture by the Google
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DeepMind team, where Riedmiller is listed as a co-author in
the initial publications (Mnih et al. 2015; Silver et al. 2016).
Waschneck et al. (2018a,b) adapted the DQN method to the
semiconductor manufacturing industry. They followed the
concept of the multi-agent approach and assigned individ-
ual agents to a respective workstation to handle dispatching
actions. They concluded successful learning of the agents
and satisfying results compared to benchmark dispatching
heuristics. However, direct comparison and adaption to our
work are not straightforward because of the specific problem
setting in the semiconductor industry. Though, the overall
results and complexity of the problem hint towards feasible
implementation in MPC as well. Altogether, the presented
approach is characterized as decentralized and addressed the
sub-problems of workstation and deviation management.

In contrast to Waschneck et al. (2018a,b), Altenmiiller
et al. (2020) implemented the DQN architecture as a cen-
tralized instance within the semiconductor industry. The
problem size consisted of 10 workstations being of five dis-
tinct workstation groups and two product types. The agent
addressed the sub-problems of workstation and deviation
management. A discrete-event simulation handled the job
release by feeding a new job into the system every 70 sec-
onds, whereas the particular job type was selected randomly.
The performance of the algorithm beat heuristic rules like
FIFO. Within the article, Altenmiiller et al. (2020) gave
detailed insights into the state and action space as well as
reward function modeling. They specified the reward to be
a critical part of successful learning behavior and included
further optimization of it as well as the state space in the out-
look. Additionally, Altenmiiller et al. (2020) pointed out that
policy-based methods depict a viable alternative to value-
based methods as they proved to be robust to changing
problem settings.

Quetal. (2016) utilized Q-Learning with function approx-
imation to solve the scheduling task in a multi-skill produc-
tion scenario. The problem size consisted of six workstations
being grouped into three distinct types. The factory simula-
tion displayed a sequential setup of the respective workstation
groups, where the output of one group served as input for the
next one. This sequential process order was fixed. Each job
required processing at one workstation of each group. The
RL agents acted in a decentralized manner and addressed the
sub-problems of workstation and job routing management.
Jobs were stochastically introduced into the factory simula-
tion. A conclusion about the performance is not feasible, as
Qu et al. (2016) only compared the performance of the algo-
rithm to parameter variations but not to general benchmarks.

Policy gradient DRL methods

Wang and Dietterich (2003) presented an improvement
of the REINFORCE algorithm termed model-based policy

gradient RL. By minimizing the variance of Monte Carlo
exploration of the environment, they reduced the number of
required training samples. This lead to faster learning and
higher data efficiency. Applied to the NASA space shuttle
payload processing problem, they demonstrated success-
ful learning paired with better performance in comparison
to their previous developments. The NASA space shuttle
payload processing problem is highly complex, featuring
various constraints of resources and a sequence of between
40 and more than 100 actions until termination (Zhang and
Dietterich 1995). Generally, the presented approach is cat-
egorized as centralized and addressed the sub-problems of
workstation and job routing management.

Kuhnle et al. (2019a,b) utilized a Trust Region Policy
Optimization (TRPO) architecture for their production sce-
nario in the semiconductor industry. The problem focus lay
on minimizing the lead time of a predefined number of
product batches in the production system. The problem size
featured eight workstations, three sources for order entries,
and one AGV. The RL agent was centralized and focused on
the sub-problems of job release, workstation, vehicle, and
deviation management. Kuhnle et al. detailed that the imple-
mentation outperformed existing benchmark heuristics. In a
succeeding work from Kuhnle et al. (2021), they focused on
state, action, and reward designs in RL production control and
concluded their importance for successful learning. Even if
the semiconductor example is not directly transferable to our
work, inspiration about the state and action representation,
as well as the reward function, and other setup parameters
can be generated, especially from their 2021 publication.

Another approach combined robust optimization models
with RL presented by Echsler Minguillon and Lanza (2019).
The robust optimization model was the centralized unit com-
puting a robust global production schedule that aimed to be
very close to the optimum. The RL implementation served
as a rescheduling unit to the production plan once distur-
bances such as workstation breakdowns occured. This setup
aimed at incorporating the advantages of both approaches to
increase optimality, robustness, and online reaction to dis-
turbances. As an RL architecture, a distributed policy search
RL approach based on the work of Gabel and Riedmiller
(2012) was utilized. The implementation is categorized as
decentralized with individual station rescheduling agents.
The approach addressed the sub-problems of workstation,
job routing, and deviation management.

Finally, May et al. (2021) proposed an adaptable and scal-
able decentralized DRL architecture for a matrix-structured
job-shop problem introducing three agent types: Part Ag-
ents, Station Agents, and Transport Agents. The Part Agents
bid in auctions of the Station and Transport Agents to be
routed through the system, where each agent wanted to gen-
erate maximum profit for itself. The decisions for bids could
either be made with priority rules or with decisions by RL

@ Springer
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Table 1 Overview of RL methods within literature review and their categorization

References Method Category Sub-problems Similarity to MPC
Aydin and Oztemel (2000) Tabular Centralized WM, DM ®
Creighton and Nahavandi (2002) Tabular Centralized WM, DM ®
Wang (2020) Tabular Centralized WM, DM ®
Shiue et al. (2018) Tabular Centralized WM C)
Mahadevan and Theocharous (1998) Value-based Centralized WM, JReM, DM e
Riedmiller and Riedmiller (1999) Value-based Decentralized WM @
Gabel and Riedmiller (2007) Value-based Decentralized WM C)
Waschneck et al. (2018a,b) Value-based Decentralized WM, DM ®
Altenmiiller et al. (2020) Value-based Centralized WM, DM ®
Quetal. (2016) Value-based Decentralized WM, JRoM ®
Wang and Dietterich (2003) Policy gradient Centralized WM, JRoM )
Kuhnle et al. (2019a,b, 2021) Policy gradient Centralized WM, JReM, VM, DM ¢
Echsler Minguillon and Lanza (2019) Policy gradient Decentralized WM, JRoM, DM e
May et al. (2021) Policy gradient Decentralized WM, JRoM, VM e

agents utilizing the PPO algorithm. Also, stations’ decisions
could be supported by RL agents. The authors mentioned
the approach’s generalizability and concluded that decen-
tralized DRL algorithms were able to outperform traditional
approaches in certain production settings. Therefore, May
et al. (2021) proposed a hybrid structure consisting of prior-
ity rules and some learning components. The paper addressed
job routing, workstation, and vehicle management and is cat-
egorized as decentralized comprising several agents.

Summary and deductions for this article

Table 1 summarizes the related work for both tabular and
DRL methods. DRL is split up into value-based and policy
gradient methods. Most publications have shown promising
results in comparison to benchmarks, mostly for small-sized
problems. None of the presented research focused on all the
five sub-problems of MPC, though. The publications pri-
marily used discrete-event simulators like Tecnomatix Plant
Simulation to model the agent’s environment.

As tabular RL methods are not as scalable as DRL meth-
ods, because they are limited by the size of the used tables
growing exponentially with problem size, this article focuses
on DRL. Many of the reviewed DRL methods focused on
semiconductor industry problems, for instance, the works of
Waschneck et al. (2018a,b), Kuhnle et al. (2019a,b, 2021),
or Altenmiiller et al. (2020) which are all closely related and
promising. As the semiconductor problem strongly focuses
on dispatching problems, the presented solutions cannot be
directly used for MPC. But especially Kuhnle et al. solved a
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wide variety of MPC’s sub-problems and offered a detailed
documentation of state, action, and reward designs in RL pro-
duction control being helpful for designing DRL-controlled
MPC.

In DRL-controlled production systems, value-based and
policy gradient methods both demonstrated their applicabil-
ity. Especially, DQN and PPO were highlighted as powerful
and generalizable methods, which aligns well with MPC’s
goals. Furthermore, PPO is known as an easy-to-implement
method that solves a variety of complex problem settings
in a reliably stable way (Schulman et al. 2017). Considering
the successes of May et al. (2021) with PPO and Altenmiiller
et al. (2020)’s outlook to PPO as a viable alternative to DQN,
we decided to start our work on MPC with a centralized
policy-gradient PPO implementation.

Applying PPO and utilizing the findings for state, action,
and reward designs, the article’s implementation of MPC is
focused on the sub-problems of workstation, job release, and
vehicle management, especially because they are the core
functions of MPC. This leads to the following additional
assumptions, complementing the problem description:

e No job routing management: Order and operation flex-
ibility of Jobs J is not considered.

e No deviation management: Resource availabilities are
set to 100% for this article’s implementation.

The next section explains the basics of PPO as a policy gra-
dient method and concludes with the respective pseudocode.
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Deep reinforcement learning with policy
gradient methods: proximal policy
optimization

Policy gradient methods directly learn a parameterized policy
7 without the necessity for an intermediate step learning an
action-value function to deduce the optimal policy. Instead of
lookup tables, they use function approximation with NNs to
learn and execute respective policies. The theoretical basis
regarding concepts and equations builds upon Sutton and
Barto (2018), Morales (2020), Schulman et al. (2017), and
Williams (1992).

Policy gradient methods aim at maximizing the perfor-
mance of the parameterized policy 7. The iterative update
step on the performance measure J (6) is performed through
gradient ascent, as shown in Eq. (7):

0 =6 +aVJO), 7

where 6 is the policy’s parameter vector, « the learning rate,
and V/J\(Q) an estimate that approximates the gradient of
the performance measure J(6). The notation of the policy
parameter vector 6 is equivalent to the notation of the weights
of a NN, but is more commonly used with policy gradient
methods.

The agent’s learning mechanism is to adjust the proba-
bilities of taking a specific action, in order to increase the
overall reward received in one episode. The event sequence
per episode is described as a trajectory t. The challenge
remains on how to adapt the weights 6, in order to increase
the likelihood of a trajectory 7 that leads to an optimal return
G:.

Before we get to the PPO policy update step, the REIN-
FORCE algorithm sets the baseline. It was first introduced
by Williams (1992). REINFORCE estimates the gradient of
J(0) by utilizing one trajectory t described in the REIN-
FORCE update in Eq. (8).

_ Vr(Ar | S, 0)
9+OIZGT (At|S[,9) (8)

The gradient of J(9) is estimated by a sum over all visited
state-action pairs in the trajectory t. For each state-action
pair, the gradient of its probability over the actual probability
is multiplied by the overall return G, of t. The gradient
describes the direction within the parameter space that in-
or decreases the probability of performing an action A; for
future visits of state S;. Actions that have a low probability
of being taken will be adapted faster than actions with a high
probability.

Building on top of that, PPO was developed by Schulman
et al. (2017). Mainly, the PPO version that we implement
addresses three weak spots of REINFORCE and solves them:

—_—

. REINFORCE utilizes one full trajectory together with the
collected return to update the NN weights 6. There is no
clear credit assignment. It is not able to distinguish which
specific actions within a trajectory have a high or low
impact on the return.

2. REINFORCE is subjected to noisy input as it performs
the update only on a single trajectory. One trajectory alone
might not be representative of the current policy though,
and thus be misguiding for the gradient ascent update step.

3. REINFORCE lacks in data efficiency as each trajectory is

utilized only once for updating the network’s parameters

and is then discarded.

Firstly, addressing the credit assignment problem, PPO
introduces the concept of future rewards. Instead of using the
trajectory’s complete return G for the update step, only the
rewards received after the respective action at timestep ¢ are
considered with a discount factor 0 < y < 1. Equation (9)
illustrates this concept for a trajectory of length 7.

Rtfmure =Rip1 + YR+ 7 Rz + ...

T—t
=Y Y Rigs ©))
k=0

Secondly, the noisy input problem is addressed equiva-
lently to momentum-based learning for NNs, where instead
of entirely relying on the current direction of the gradient, the
average of the past n gradient directions is included in the
update step. Similarly, instead of completely trusting a sin-
gle trajectory, PPO collects several trajectories and updates
the policy parameters in the direction of the gradient aver-
aged over all trajectories. Additionally, noise is reduced by
normalizing the collected rewards.

Thirdly, PPO aims at increasing data efficiency by per-
forming multiple gradient update steps based on a set of
trajectories. This is essentially the core feature of the PPO
algorithm and distinguishes it from other algorithms such as
TRPO (Schulman et al. 2015) and Advantage Actor-Critic
(A2C) (Morales 2020). Schulman et al. (2017) utilize the
mathematical concept of importance sampling to solve this
issue by introducing a re-weighting factor % to the gra-
dient of the performance measure VJ(6) in Eq. (8) leading
to Eq. (10):

VJ(0) = (T 6’ ) Z Rifuture Vr(Ar | S, 9/) ’ (10)
P(z:0) - (A | 8:,0")

where P(t;6) describes the probability of a trajectory t
occurring under the old policy parameters 6 and P(z;6’)
the probability of the same trajectory occurring under the
new policy parameters 6’. The re-weighting factor describes
how over- or under-represented the respective trajectory is
according to the new policy.

The following equation shows the resulting gradient esti-
mation after some reworking of Eq. (10) and under the
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assumption that the new policy with 8’ is close to the old
policy with 6:

V(A | S, 0")

VL 0/,9 — Rfuture 7
ur(',0) = ) R ST

t

(11)

where Lg,, denotes the surrogate objective. The surrogate
replaces the performance measure J in the case of perform-
ing multiple update steps, but essentially features the same
objective of being maximized. The gradients in Egs. (11) and
(8) look quite similar, with the critical difference that Eq. (11)
calculates the gradient with respect to the new policy.

Updating the policy multiple times based on an initial tra-
jectory might lead to a significant divergence of the estimated
and actual performance. This problem is characterized as the
reward cliff. At a reward cliff, the surrogate function sug-
gests the performance will increase in the proposed direction.
In contrast, the actual performance drops drastically, which
is pictured as a cliff. PPO introduces the clipped surrogate
function to inhibit the reward cliff scenario from occurring
and ensuring the old and new policy to be sufficiently similar.
The clipped surrogate function Lgl,jf (#’, 0) is mathematically
defined as follows:

Ll 0',6) = Y min{ri @) R/,
t (12)
clip(ri(0),1 — e, 1 + )R]},
where r;(0) = %' The clipping parameter € is uti-
lized as the clip boundary. Essentially, r;(6) describes the
probability ratio of the old and new policy, and € defines the
amount in which both are allowed to differ. This clipping
minimizes the risk of encountering a reward cliff by ensur-
ing similarity. Additionally, clipping the probability ratio
inhibits potentially large step sizes caused by different poli-
cies. Furthermore, by focusing on the minimum of unclipped
and clipped estimation, the surrogate function ignores highly
optimistic policy improvements but considers pessimistic
adjustments (Morales 2020; Schulman et al. 2017).

Finally, the clipped surrogate function is utilized to per-
form gradient ascent in combination with Eq. (7) to adjust
the policy parameters in order to increase the performance,
summarized in Eq. (13):

0' =0 +aVyLil (6, 0) (13)

This section concludes by summarizing PPO with its
pseudocode in Algorithm 1. The PPO algorithm starts by
initializing the essential hyperparameters. The number of
epochs nepochs defines, how many update loops the algo-
rithm performs, based on a collected set of n,, trajectories.
R is the roll-out length, which defines the length of each
collected trajectory. The parameter € defines the clipping
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parameter necessary for the calculation of the clipped sur-
rogate function, and « is the step size. Additionally, the
policy within the NN as well as the parallel environments
have to be initialized. The learning process starts by collect-
ing n.y,, trajectories either utilizing parallel environments or
by re-running a single environment 7n,,, times where each
trajectory is of length R. In contrast to the REINFORCE algo-
rithm, the policy update step based on a set of trajectories is
now performed 7,pchs times as described above. According
to Schulman et al. (2017), PPO was applied successfully to
episodic, but especially to continuous control tasks fitting our
problem setting.

Algorithm 1 Policy-gradient Proximal Policy Optimization
based on Schulman et al. (2017)

1: Initialize hyperparameters: nepisodes s Nepochss Nenvs R, €, a
2: TInitialize policy parameter § € R? (e.g. to 0)

3: Initialize n,,, parallel environments

4: for i < 110 nepisodes do

5:  Generate ny,, trajectories of length R following 7 (- | -, 6),

6:  action probabilities as 7o (q | s)

7. for j < 1tonepocns do

8: Compute importance sampling weights r; () = 72((’:'[”‘?[‘%))
9: Compute clipped surrogate function Lgf,lf ©,0)

10: Update 6 using gradient ascent 0 <— 6’ + anrL?if,p(Q’, 0)
11:  end for

12 6«0

13: end for

Implementation: PPO agent and
environment

This section sets the context for the agent to learn, describing
its environment interaction, the environment itself, the action,
state, and reward design, and its learning setup.

Interaction cycle

Figure 2 displays the interaction cycle between the agent and
the environment. The environment represents the modular
production system that the agent learns to control. The DRL
agent is implemented in Python, whereas the environment
is programmed in Tecnomatix Plant Simulation, a state-of-
the-art discrete-event process simulation software, e.g. used
by Shiue et al. (2018) and especially used in the automotive
industry. In order to handle the large number of messages
between agent and environment during learning, a TCP/IP
interface was selected.

The cyclic learning process always begins by starting the
simulation on the environment side. Once the simulation
is started or restarted, it performs the respective simulation
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Fig. 2 Agent-environment interaction cycle, where the environment
and the agent communicate via TCP/IP exchanging action, state, and
reward information

events until an action request point is encountered. The simu-
lation raises an action request, if an AGV becomes available
again and has no subsequent action to perform. The sim-
ulation is lacking information on how to proceed and thus
consults the RL agent. Firstly, the simulation and the respec-
tive internal timer is paused. Secondly, the required data for
the representation of the current state Sy is collected and
packaged into a message. Lastly, the environment sends the
state information together with the reward R; for the last
action to the RL agent through the TCP/IP socket. Once the
agent receives the message containing the state information
and reward, it unbundles the message into the state informa-
tion and reward R; in order to update its internal knowledge
represented by the NN. Finally, the RL agent selects a next
action A; based on the current state S; and sends the infor-
mation to the environment through the same TCP/IP Socket
and waits until another action request is received. With the
received action, the environment continues its simulation
until another action request is raised.

Environment description

In order to prove DRL’s applicability to MPC solving the
derived sub-problems of job release, workstation, and vehi-
cle management, we implemented the environment given in
Fig. 3. Each workstation M} comprises an IB and an OB
with equal capacity np, s utilizing FIFO as detailed in the
figure. Products are released into the production system by
an AGV’s action to go to the production system’s source,
choosing a specific product type, and loading the product
together with a WPC. For this article, the number of AGVs
ny is set to one: V := {V;} and the number of machines 7,
is set to two: M := {M, M,}.

The red dots in Fig. 3 mark the discrete events, where
the environment sends an action request to the DRL agent
following the interaction scheme in Fig. 2. There are two
different types of action request events: Firstly, each time an
AGYV becomes available because of a product delivery to a
machine’s IB or the sink, the environment initiates an action
request. And secondly, each time an AGV picks up a product
with its WPC at the source or one of the machines’ OBs, an

action is requested to decide on the next machine to go to for
the specific product. If the chosen action is going from one
machine’s IB position to the same machine’s OB position,
the AGV can utilize a space for parking to be able to wait for
a product to be finished at the station.

For any action, the AGV is traveling between two action
request points. Table 2 depicts the respective static transport
times in the given environment for all possible actions. The
table is symmetric except for two actions: the action within
a machine going from the IB to the OB utilizing the parking
(1s), compared to the reverse action going from OB to IB,
where the transport network has to be used (15s).

Action design

In case of an action request from the environment, the agent
can select an action out of the set of all actions (14). These
actions also represent the six red-dotted action request posi-
tions in Fig. 3. The subscripts of the actions denote the
AGV’s destinations, e.g. to the OB-Buffer of machine M
for action Ay, , . For the general understanding, A,y can be
splitinto two different types of actions: pickup-actions A p;cx
(see Eq. (15)) from the source or the OB of a machine, where
a product is loaded to the AGV, or dropdown-actions Ag;qp
(see Eq. (16)), where a loaded product is dropped off at the
IB of a machine or at the production system’s sink.

Aall = {Asourcch AM]]Bv AM]()Bv AMz]B’ AM2037 Asink} (14)
Apick = {Asource: AMyp5> AMrop }> Apick CA (15)
Adrop = {AM”B’ AM21B’ Asink}s Adrup CA (16)

At each point in time ¢ of the interaction cycle in Fig. 2,
there exists a set of valid actions A; a1 € A with A; a1 # 9,
known only by the environment. For instance, if a product is
loaded on an AGYV, another pickup-action is not valid, just a
dropdown-action is meaningful. This definition orients itself
on May et al. (2021) and Kuhnle et al. (2021). A dropdown
action is also not valid if a machine and its respective buffers
are already full or have reached a fixed capacity limit of ng;
being set as a parameter. Therefore, pickup actions leading to
one of those invalid dropdown actions are invalid, too. This
should avoid deadlocks in the production system.

How these actions solve the problem formulation: In order
to solve the control task for the introduced factory setting,
the RL agent’s actions are designed to directly manage the
AGYV fleet. Thereby, it directly addresses the sub-problem of
vehicle management. Additionally, this setup indirectly deals
with the problems of job release and workstation manage-
ment. Job release management is enabled through the source
design in the environment described in Fig. 3. If a product is
available at the source, the agent can decide if it wants to go
there and pick the product up, by choosing action A gy ce-
Therefore, job release management is entirely handled by the
agent. Workstation management is handled quite similarly
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Fig.3 Environment for the agent, implemented as discrete-event simu-

lation with 6 red-dotted action-request triggers, machines comprising an
Inbound-Buffer (IB), a processing position, an Outbound-Buffer (OB),

Table 2 Transport times in given modular production system

Timesin (s) Source M;-IB M;-OB M;,-IB M,-OB Sink
Source 0 10 15 15 21 21
M;-1B 10 0 1 15 21 21
M;-OB 15 15 0 4 15 15
M,-1B 15 15 4 0 1 15
M,-OB 21 21 15 15 0 9
Sink 21 21 15 15 9

by the agent. As the agent has access to the information of
workstation occupancy, it can reasonably assign transporta-
tion tasks to indirectly control the workstations’ efficiency,
occupancy, and product sequence by bringing the products
to the workstations.

In future iterations, we aim to implement job routing and
deviation management in a similar way.

State design

Taking into account the learnings from May et al. (2021)
and especially Kuhnle et al. (2021), we developed a state
representation for the given environment in Fig. 3. The state
comprises all information needed for learning in this sce-
nario. It is defined by the state of the source, the occupation
of the machines, the occupation and position of the AGV,
and the valid actions at the time of an action request. Where
applicable, one-hot-encoding is applied to the state variables.
This has shown reliable success to improve learning, e.g. in
Waschneck et al. (2018a)’s work.

The source state ss determines whether a product and
how many products could be picked up according to the
currently available number of WPCs Nyoyrce occ at the pro-
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as well as a parking area, a transport network for the movement of auto-
mated guided vehicles (AGV), a source for products’ releases, and a
sink for finishing products

duction source. This defines the validity and importance of
action Agource:

NS‘()MFCE,()CC lf ]VS()MVCE,()CC Z 1

17)

A —
0 else

For each machine M}, in the environment, there exist three
bits in the state representation giving the agent the needed
information: one for the occupation of its IB ib; (Eq. (18)),
one for the machine workload itself, where the product is
processed pix (Eq. (19)), and one for the machine’s OB’s
occupation oby (Eq. (20)). The value of the IB’s and OB’s
state represents the current number of products in the respec-
tive buffers Ni 18 .occ < npuy and N 0B occ < Npus. And,
Nk, proc,oce € [0, 1] represents the occupation of the machine
itself, being either occupied (1) or not (0).

iby = Ni,1Boce i NiiB.oce > 0, Ni1B.oce < Nbuf (18)
0 else

Pk ‘= 1 if Nk,pr()c,()cc ==1 (19)
0 else

oby 1= Nk,0B,occ If Nk,0B,occ >0, Nk, 0B,0cc < Nbuf (20)
0 else

Equation (21) defines the vehicle occupation vo, meaning
if the AGV is occupied (NaGv.occ = 1) or not (NAGV .occ =
0).

1 if NAGV,occ ==1 Q1)

Vo =
0 else

Additionally, the agent has to know, where the AGV is
located for an action request. These locations are defined by
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Fig. 4 Exemplary state in an environment with two machines M| and
M> and one AGV V;

the six red-dotted action request positions in Fig. 3, denoted
by vehicle positions vpy, y € [1, 2, 3,4, 5, 6]. If the AGV is
requesting an action from position y, the respective bit in the
state representation is set to 1, all others are set to 0.

1 if AGV at location y

22
0 else 22)

vpy =

Lastly, the agent learns faster having information about
the valid and meaningful actions at time ¢. As there are six
available actions in Ay, the state comprises six bits for their
validity va;, z € [1, 2, 3, 4, 5, 6], being set to 1, if valid and
0, if invalid. This enables distinguishing between valid and
invalid actions. An action is not valid in the following cases:
if a product is transported to the wrong destination, if the
destination is a machine that is fully occupied, if a dropdown
is planned but no product is loaded, if a pickup is planned
but no product is to be picked up, and if a pickup action is
selected even though the AGV is already occupied.

1 if A,eA
va; ;= 1A val (23)
0 else

Summarizing the state design, Fig. 4 describes one sam-
ple state S;, where the production setting consists of two
machines Mj and M> and one AGV V] leading to a state
size of 20 digits, where each one is fed into the respective
neuron in the input layer of the NN. The source state ss is
set to 4 meaning that there are four WPCs with products at
the source that are ready to be picked up by the AGV. Then,
three bits each describe the occupancy of the machines M
and M», separated in i by, pi, and oby. For instance, at M| no
product is in the IB-Buffer, one product is being processed,
and the OB-Buffer is occupied by two products. The AGV V;
currently carries a product (vo = 1) that has been seemingly
picked up at the source, as the first AGV location bit vp;
is set to 1 representing the source location. The valid action
bits highlight that currently, just one action vay; = 1 would
be valid, the dropdown action to machine M being the first
operation of the product to be carried out.

Reward design
The section on PPO presents the learning objective of the RL

agent to maximize the overall reward. Itis defined by optimiz-
ing the policy to maximize the equivalent state value function

of the starting state. This optimization objective is framed as
a maximization task, by performing gradient ascent.

For the agent’s goal to maximize the throughput of mod-
ular production systems, the environment calculates dense
rewards according to Eq. (24), where, as stated by Kuhnle
et al. (2021), the term “dense reward” applies to a reward
given for each concluded action. Maximizing throughput,
the collected reward in one trajectory has to encourage fin-
ishing as many products as possible in the shortest possible
amount of time. Therefore, for each action, the environment
returns the passed time —t7 5,5, as a negative reward,
additionally gives a positive bonus reward Rpon,s in case a
product is finished with the respective action, or punishes the
agent with a negative reward R ;s for invalid actions.

_[T,S,,1~>S, + Rbonus if A,,] == Asink € Atfl,val
R; = Rpunish ifAt—l ¢ Ar—l,val (24)
—IT,8,_1—>5, else

Concerning the throughput maximization, this setting has
shown success, as it is demonstrated in the “Experimental
results” section.

PPO learning setup for continuous control task

Utilizing the previous defined action, state, and reward
design, the PPO agent follows the depictions in the PPO
section, essentially described by algorithm 1. The implemen-
tation is built upon a codebase from a DRL Udacity course’
and utilizes the PyTorch library*. The agent’s task is modeled
as a continuous task, where an episode or a trajectory con-
sists of a certain number of R actions. After R actions, the
neny collected trajectories are used to update the NN weights.
After that, each environment continues from the last state of
the previous trajectory. The applied reward function is a mea-
sure for throughput that the agent aims to optimize.

The learning objective is set to be relative. The increased
system complexity makes it infeasible to sufficiently esti-
mate or empirically deduce areasonable absolute target value
before the start of the learning process. Thus, a relative learn-
ing objective is more flexible and preferable for this case. The
relative performance criterion is met if 10 consecutive trajec-
tories yield a reward that is within 0.1% deviation concerning
the previous 100 trajectories. Essentially, this performance
criterion measures the stability of the NN weights. In that
case, the applied relative learning objective has performed
satisfactorily and has reliably signalled convergence. Alter-
natively, the learning process stops reaching a maximum
number of episodes n,pisodes-

3 Available at: https://github.com/tnakae/Udacity-DeepRL-PPO
4 Available at: https:/pytorch.org/
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The underlying NN architecture for approximating the
optimal policy has a fully connected architecture consisting
of 20 input neurons representing the state bits, 2 1,;,, = 80
and h2;,, = 40 neurons in the first and second hidden lay-
ers, and six output neurons in the final layer representing the
six possible actions in A,y;. The fully connected hidden lay-
ers utilize a ReLU activation function, whereas a Softmax
activation layer feeds the output of the NN into the six out-
put neurons so that a probability distribution describes the
likelihood of each action being the optimal choice regard-
ing the overall return. In turn, the agent samples an action
out of the probability distribution of actions upon an action
request. Regarding the update mechanism, the Adam opti-
mizer is selected. It is characterized by its momentum-based
learning approach as well as other performance-enhancing
characteristics and is thus, commonly selected within Deep
Learning tasks. This setup has performed satisfactorily on
the targeted problem size.

Lastly, the set of valid actions A,/ ; is known by the envi-
ronment for each time step ¢. If the agent selects a non-valid
action, though, the environment does not conduct this action
and gives the punish reward R ynisn,:. Therefore, the envi-
ronment stays in the same state and sends the same action
request to the agent again until an action out of the set of valid
actions is selected. Essentially, the punish reward ensures
that the respective action probability of invalid actions is
decreased. Repeating this process many times artificially
favors the subset of valid actions. The agent is thus incen-
tivized to explore only the valid actions and eventually to be
able to select an action out of this valid subset according to
the expected return.

Experimental results

The PPO algorithm is applied to a rather small problem,
based on a case study from the automotive industry, in order
to identify first learnings and to guarantee functionality of the
developed agent-environment framework. The computations
are carried out on an Intel(R) Core i7-7700HQ CPU with
2.8GHz and 16GB RAM.

The default environment is according to the setup in Fig. 3
and consists of ny; = 2 machines M; and M, as well as
one AGV Vj doing the transports and conducting the agent’s
actions with a vehicle speed of vy = 2% that leads to the
transport times documented in Table 2. Machines are con-
figured with a buffer size of np,s = 3 for both IB and OB.
Lastly, the available number of WPCs ny pc is set to 10.

The default product consists of np = 2 operations being
processed sequentially, first at M1, then at M>, with a process-
ing time of 50s each. There are no alternative process plans
(np = 1) and there is only this one product type (npr = 1).
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Table 3 PPO default settings

Parameter Default value
Learning rate o 2¢73
Clipping parameter € 0.1
Regulation term 8 0.01
Discount factor y 1

Number of episodes n¢pisodes 1000
Number of epochs 72¢pochs 2

Number of environments 7, 4

Trajectory length R 100

Punish reward R pyunisn —100

Bonus reward Rpous +30

Used optimizer Adam

NN configuration 20 x 80 x 40 x 6
Seed settings Random

Deadlock parameter ng; 4

The PPO agent used for the experiments is configured
as documented in Table 3. This configuration is the result
of empirical tests and shows stable and reliable results on a
large number of learning runs.

PPO’s learning capabilities for MPC

Figure 5 displays the learning curves for the given envi-
ronment and PPO default settings, varying the number of
used parallel environments from two on the left to six on the
right. Because of the random seed settings, all three learning
setups are simulated 10 times and lead reliably to an opti-
mal throughput of 72 holm 3. This learning behavior indicates
successful control of the AGV’s behavior to coordinate the
modular production system. The more parallel environments
are used, the steeper the learning curves get. Further, if some
of the environments start more explorative trajectories during
the learning process, the other environments keep aiming for
convergence and stabilize the learning process. The learning
curves hint towards stability by parallelization, whereas the
difference in learning stability between two (a) and four (b)
environments is more apparent than between four (b) and six
(c) environments. These findings confirm PPO’s improve-
ments on noisy input and data efficiency compared to the
REINFORCE algorithm mentioned in the section about PPO.
Learned strategy: The learned optimal strategy® achieving
the respective throughput optimum is shown in Fig. 6. This
strategy shows how the agent learns to reach a production

—_— . . 36003
5 Theoretical optimum for the given environment: 50&’“

with a given processing time of 50s.

=721

hour

© There exist alternative optimal strategies, where the equilibrium uti-
lizes more of the available buffer capacity in the IB of M; and the OB
of M;. The six-action-sequence is similar in every strategy, though.
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Fig. 6 Learned optimal strategy for the default settings consisting of
six actions to keep the production system in an equilibrium for optimal
throughput: Asource = AMyz = AMios = AMay = AMaos —
Agink

equilibrium consisting of two products at machine M; and
two products at machine M» and the AGV being positioned at
the sink currently finishing a product. From this equilibrium
state on, the agent always chooses a sequence of six actions
marked red and enumerated in the figure. With this sequence,
the agent iteratively gets back to the showed equilibrium state
and manages to utilize the two machines continuously with-
out breaks and therefore achieves the maximum throughput.
The sequence of optimal actions is defined by the follow-
ing equation and comprises all available actions A, getting
them into the optimal order:

Asource i AM”B - AM]()B - AMZIB i AMZOB - Asink (25)

Thus, the agent picks up a new product from the source,
brings it to M1, picks up a finished product at M, and brings
it to M, does another pickup there, and finally brings the
finished product to the sink, being back in the root state of
the sequence.

indicates the mean rewards over all environments and the environment-
specific rewards are color-coded, each parameter set was simulated 10
times, reliably converging to the optimum

On rare occasions, if the learning process is too long, the
agent learns this optimal sequence, but seems to focus too
much on repeating the sequence of these six actions in order
to stay in the equilibrium. This focus in the agent’s policy
leads to forgetting the production’s ramp-up process from
an initial configuration, where no products are in the sys-
tem yet. Essentially, the agent forgets knowledge about how
to get into the equilibrium. Thus, when resetting the envi-
ronment and applying the learned policy for evaluation, the
agent converges to a suboptimal throughput. In the future,
a combination of two agents could improve the system, one
managing the ramp-up actions and the other one managing
the equilibrium actions. Alternatively, one could think about
resetting the environment every once in a while during the
learning process to deepen the agent’s knowledge about the
optimal ramp-up process. That leads to a hybrid learning set-
ting comprising both episodic and continuous aspects.

In order to get the agent to learn the optimal control, the
state as well as the reward design play a key role, which
confirms the findings of Kuhnle et al. (2021).

State learnings: As it turned out, the state design had more
impact on the learning behaviour than did the hyperparame-
ter values throughout the experiments. On the one side, this
confirms PPO’s robustness. On the other side, it emphasizes
the importance of a well-designed state. Two main learnings
can be emphasized here: Firstly, the information depicted
within the state should be reduced to the minimum required
for successful learning behavior. This is favorable in terms of
general data efficiency, because the state is negligibly small.
Furthermore, it is rather difficult to debug a DRL method
as the NN mostly presents a blackbox, and clear deduction
of learning inhibiting factors is not always possible. Thus,
minimizing the information within the state helps to indi-
cate these inhibiting factors as well as identifying the central
and essential state variables that are relevant for learning
and describing the system. Secondly, in order to achieve a
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Table 4 Five parameter settings for generalization experiments

Optimal PPH Learned PPH

Agent

Product

Set Environment

~ 72
~ 70

72
72

Default settings (Table 3)
Default settings (Table 3)

I,no =2,ti11 =ti1o = 50s

Default: ny = z,nv = 1, vy = 2%,}’!1”,_;' = 3,nwpc =10 Default:in = l,np

1

2

I,no =2,t11 = tj1o = 50s

zl,np:

npr

Npuf =3, nwpc =5

ny =2,ny = Loy =27,

~ 36
~ 36
~ 72

36
36

Default settings (Table 3), ng; =3 72

1I,no =4, ti11 = ti1a = t;13 = ti;a = 50s  Default settings (Table 3)

:an:

npr

npuy =3, nwpc = 10

ny =2,ny = Loy =27,

3
4
5

Default settings (Table 3)

50s, tj12 = 100s

I,np =2,t11 =ti;2 =50s

=lLn,=1no=21t11=

npr

gy =3, nwpc = 10

m
25

2,ny =1,vy =

ny =

npr =1,np

S npuy =1, nwpc = 10

ny =2,ny =1,vy =2%

state with the minimum required information for successful
learning behaviour, an iterative state development is recom-
mendable. It enables adding the necessary information step
by step and prevents the designer from overinforming the
agent. Additionally, after some iterations, the developer gets
the necessary intuition about which information the agent
requires, how it perceives the environment, and how it learns.
Next to having knowledge about the source’s, the stations’,
and the AGV’s occupation as well as the AGV’s location, the
binary encoded information about valid actions (Eq. (23)) is
to be highlighted here. It extensively accelerates the learning
process by offering the agent available domain knowledge
about currently valid actions for the requesting AGV.
Reward learnings: In order to enable this accelerated learn-
ing process with the state bits about valid actions, the punish
reward R p,,isn plays a crucial role. The punish reward’s task
is to negatively accentuate invalid actions with the aim to
guide the agent towards the valid actions flagged by a one in
the state. Therefore, it must be high enough to clearly make
the agent distinguish between valid and invalid actions. But
being too high, —1000 for instance instead of —100, it also
tends to distort the learning process, making it a performance-
relevant parameter to be tuned by the designer. Besides, the
main reward design question was how to optimize through-
put. This was successfully achieved by combining the idea of
passed time for an action and additionally rewarding actions
that complete products. Accordingly, the agent maximizes
throughput by being encouraged to finish as many products
as possible in the shortest possible amount of time. Thus, the
agent optimizes throughput indirectly. A direct throughput
optimization will be investigated in the future. Conclusively,
the dense reward design from Eq. (24) trains the agent how to
act validly first, and in a second phase how to act optimally.
Overall learnings: Concluding this section, the PPO agent
manages to coordinate the production system optimally and
solves the problem of MPC reliably. Using parallel envi-
ronments and utilizing collected trajectories several times
for updating the policy offers a stable and powerful learning
environment for the given example. The goal is to show this
for higher complexity problems in the future, too. But first,
this article’s next subsection investigates PPO’s generaliza-
tion capabilities for the given MPC problem.

PPO’s generalization capabilities for MPC

In order to show generalization for the given default environ-
ment, product, and agent, we vary parameters following the
five parameter sets in Table 4, where parameter set 1 repre-
sents all the default settings. The table also documents the
achieved production throughputs.

Parameter set 1: This experiment comprises the default set-
tings for product, agent, and environment from above and
leads to the displayed optimal strategy in Fig. 6, and the
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respective optimal throughput of 72 products per hour (PPH).
It sets the baseline for the following experiments.
Parameter set 2: For the optimal strategy in Fig. 6, only five
of ten available WPCs are utilized. Therefore, parameter set 2
should also be able to learn this strategy having just these five
WPCs available (nwpc = 5). Apparently, the agent finds a
strategy leading to 70 PPH, slightly below the optimum. This
performance decline of 2.8% is probably due to the fact that
the agent’s playground of only five instead of ten available
WPCs decreases. Possibly, the agent’s motivation to go to
the source and pick the last available WPC before finishing
a product is not high enough. Playing with the bonus reward
as well as with the number of episodes does not compensate
the throughput decrease.

Parameter set 3: Increasing the number of np operations
to be done for the product to four with a machine sequence
of M - My — M — M, and a processing time of 50s
each, leads to a throughput decrease of 50%, because each
product doubles the processing time at each of the machines.
This leads to an optimal PPH of 36 in this setting, which is
also reached by the agent. Thus, the agent successfully learns
to optimally conduct the four operations and to finally bring
the finished products to the production system’s sink.
Parameter set 4: Varying the processing time of the prod-
uct’s second operation to 100s instead of 50s leads to a
learned throughput of 36 PPH, being also the theoretical opti-
mum, because of the production’s new bottleneck with the
operation at machine M, leading to 3168351 = 36 holw. In its
strategy, the agent utilizes the IB of machine M» and the OB
of machine M extensively, continuously providing products
for being processed at the M»-bottleneck. Figure 7 docu-
ments this behavior with the learned optimal sequence of
again all six available actions Ay, but differently organized
than in Fig. 6 and comprising a different equilibrium state
being maintained by the action sequence:

AMiop = AMay = Asource = AMyg = AMaop — Asink (26)

Parameter set 5: Lastly, a decrease in the buffer capacity
from three to np, s = 11is tested in comparison to the default
parameter set. Based on the findings in the optimal strategy
of Fig. 6, we expect that np,s = 1 should be high enough
to reach the optimal throughput. A successful learning per-
formance of the agent confirms this expectation. But, it is
to keep in mind that there will be machine breakdowns in
future implementations, where buffer capacity can help deal-
ing with these uncertainties.

Generalization yes or no? The five experiment settings
indicate good generalization capabilities of the implemented
PPO algorithm, learning optimal strategies with a slight per-
formance loss in parameter set 2. The agent is capable of
dealing with different numbers of WPCs, higher numbers
of operations, varying processing times, and also a smaller

AGV

Fig. 7 Learned optimal strategy for parameter set 4 consisting of six
actions to keep the production system in an equilibrium for optimal
throughput: Ay, = Arypy = Asource = AMyg = AMrop =
Asink

buffer capacity. Essentially, the agent learns reliably for all
settings how to reach an equilibrium configuration of the
production system and how to stay there, utilizing the six
available actions in an optimal order. The learned strategies
in Figs. 6 and 7 highlight this behaviour and emphasize the
agent’s strategy adaptation to varying production settings.

Conclusion and future work

Modular production systems are a new field in the automo-
tive industry. These systems are complex to control and often
diverse in their configuration. The powerful and generaliz-
able nature of RL algorithms addresses these challenges.
Based on a literature review on RL in the production
control field, this article applies the DRL method PPO to
the problem of MPC. The conducted experiments demon-
strate the agent’s stable, reliable, and generalizable learning
towards the optimal solution utilizing parallel environments.
The article’s contributions to the field of MPC closing the
introduced research gap unfold in mainly three ways:

— MPC application: To the best of our knowledge, this
article constitutes the first DRL application to the con-
crete problem of MPC in the automotive industry.

— Agent design: Documenting implementation learnings.

— Two-phase learning: In order to reach throughput-
optimal control, the agent needs to successfully
coordinate the production’s ramp-up process as well
as the settled production equilibrium. The agent’s
designer has to ensure that the agent sees both ramp-
up and equilibrium states often enough.

— State design: The state design has shown more impact
on successful learning behaviour than tuning the
hyperparameters. An iterative state development is
recommendable to produce a state design with the

@ Springer
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minimum required information for successful learn-
ing. A minimalistic state improves data efficiency
and supports identifying inhibiting factors as well
as essential state variables. Adding available domain
knowledge like valid action information accelerates
the learning process.

— Reward design: The reward design’s aim is to train
the agent first how to act validly and second how to act
optimally. Acting validly is achieved by using punish
rewards combined with state information about cur-
rently valid actions. Acting throughput-optimally is
indirectly achieved by negatively rewarding passed
time for actions and especially positively rewarding
actions leading to product completion.

— RD’s generalizability: Generalization experiments de-
monstrate that the agent is capable of reliably learning
how to reach an equilibrium configuration and keep the
production setting in this settled state. As Figs. 6 and 7
highlight, the agent generalizes by adapting its strategy
to varying production settings. That meets one of MPC’s
main needs.

Conclusively, the article demonstrates DRL’s applicability
and its generalization capabilities for MPC, while thoroughly
documenting implementation issues. Next steps are to inte-
grate job routing and deviation management. After that,
scaling the problem to real-world production cases of about
20 stations and AGVs becomes relevant. We assume that the
steep learning curves in Fig. 5 let room for these more com-
plex settings. Finally, lifting policy-gradient to actor-critic
PPO is desirable to unleash PPO’s full potential.
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