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Abstract

This paper considers sustainable and cooperative behavior in
multi-agent systems. In the proposed predator-prey simula-
tion, multiple selfish predators can learn to act sustainably by
maintaining a herd of reproducing prey and further hunt coop-
eratively for long term benefit. Since the predators face star-
vation pressure, the scenario can also turn in a tragedy of the
commons if selfish individuals decide to greedily hunt down
the prey population before their conspecifics do, ultimately
leading to extinction of prey and predators. This paper uses
Multi-Agent Reinforcement Learning to overcome a collapse
of the simulated ecosystem, analyzes the impact factors over
multiple dimensions and proposes suitable metrics. We show
that up to three predators are able to learn sustainable behav-
ior in form of collective herding under starvation pressure.
Complex cooperation in form of group hunting emerges be-
tween the predators as their speed is handicapped and the prey
is given more degrees of freedom to escape. The implemen-
tation of environment and reinforcement learning pipeline is
available online.1

Introduction
Sustainable ecosystem management offers methods to pre-
vent natural resources from being over-exploited so that the
utility of a given ecosystem is maintained for a longer period
of time. E.g., Smith et al. (2016) survey indicators for sus-
tainable ecosystem management and different impact stages
that ecosystems can be at in terms of exploitation. In this pa-
per, a predator-prey simulation models an artificial ecosys-
tem. If the predators act sustainably by not catching the prey
faster than it reproduces, they can prevent the ecosystem
from collapse while not starving themselves.

Reinforcement Learning (RL) has been increasingly pro-
posed to solve optimization problems such as plant develop-
ment for sustainable agriculture (Binas et al., 2019) or crop
yield prediction (Elavarasan and Vincent, 2020). An exten-
sive survey on using RL for sustainable energy systems has
been done by Yang et al. (2020), showing a broad range of
applications such as integrating renewable energy with their
implied uncertainty into energy networks while optimizing

1Code available at: https://github.com/instance01/fish-rl-alife

economic objectives, energy utilization and environmental
impacts. Recently, Ritz et al. (2020) analyzed a predator-
prey environment in terms of sustainable behavior. They
showed that a single RL predator can learn to maintain a
herd of prey in absence of starvation for long-term benefit.

This paper extends the scenario of Ritz et al. (2020) to
multiple RL predators and further adds starvation, putting
pressure on the predators. According to game theory, this
might turn into a tragedy of the commons if selfish individ-
uals decide to greedily hunt down the prey population be-
fore their conspecifics do, ultimately leading to extinction
prey and predators. While such problems are studied as
iterated Prisoner’s Dilemmas in the field of (evolutionary)
game theory (Axelrod and Dion, 1988) and as Sequential
Social Dilemmas in the field of Multi-Agent Reinforcement
Learning (MARL) (Leibo et al., 2017; Pérolat et al., 2017),
most research is limited to repeated games or discrete en-
vironments and no approach considered sustainability under
starvation pressure so far. However, if the predators learn
collective herding, which may be seen as a form of coop-
eration, it will be interesting to analyze whether additional
cooperation emerges on top of herding such as group hunt-
ing. Back in 2005, the Science Magazine placed the question
of how cooperative behavior evolved within the top 25 open
problems of science (Pennisi, 2005) and up to today, com-
plex cooperation remains an open field of research within
the AI community (Dafoe et al., 2020).

This paper jointly analyzes impact factors inducing sus-
tainable and cooperative behavior among up to three self-
ish RL predators over multiple dimensions and further pro-
poses suitable metrics. Despite starvation pressure, MARL
is found to overcome a collapse of the simulated ecosystem.
Even though we refrain from handcrafted reward shaping to
avoid inducing a bias, we find the agents to succeed if the en-
vironment provides suitable learning conditions. While our
immediate goal is to train sustainable, cooperative agents
and to define best practices on how to achieve this, we hope
that further down the road, the powerful toolbox of RL can
be used to analyze current practices across other domains
and help build a sustainable future by optimizing those.
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Foundations and Related Work
Reinforcement Learning
In Reinforcement Learning (RL), an agent observes an envi-
ronment and acts upon it based on learned rules. Formally,
the environment can be described as a Markov Decision Pro-
cess (MDP), which consists of a tuple (S,A,R, P ), where S
is the set of states, A is the set of actions andR is the reward
function. Reward rt is given after executing an action at in
a given state st at time step t and P is the transition prob-
ability matrix which defines the probability of ending up in
state st+1 after executing at in st. The goal of the agent is
to learn a policy π(at|st) that maximizes the total expected
reward

∑T−1
i=0 γirt+i when executing at ∼ π(at|st), where

γ ∈ [0, 1] is the discount factor and T is the horizon. In
this paper, the state is partially observable, which is formal-
ized by a partially observable MDP (POMDP). A POMDP
additionally contains the set of local observations O, and
the set of observation probabilities Ω. Although value-based
RL approaches like Deep Q-learning are popular to learn a
policy π (Mnih et al., 2015), this paper uses Proximal Pol-
icy Optimization (PPO), a policy gradient method that re-
cently showed impressive results in many benchmark envi-
ronments (Schulman et al., 2017).

Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning (MARL) is RL with n
agents in a shared environment. Therefore,O = (Ok)1≤k≤n

is the joint observation space with Ok as the observation
space of agent k and A = (Ak)1≤k≤n is the joint action
space with Ak as the action space of agent k. P and the joint
reward rt ∈ R are based on the joint observation ot ∈ O and
the joint action at ∈ A, and each agent maximizes its own
expected reward of ot and at. State-of-the-art MARL al-
gorithms such as QMIX (Rashid et al., 2018) exploit global
information like joint observations and joint actions in a cen-
tralized training regime in order to learn individual policies
that can be executed decentralized. A more scalable alter-
native is Independent Learning (IL), i.e. to use single-agent
RL algorithms and let each of the n agents learn on its own.
However, this comes at the cost of non-stationary dynam-
ics as for a given agent, all others interfere with the envi-
ronment. This violates the Markov property as the transi-
tion from one state to another also depends on the actions
of all other agents. Thus, there is no guarantee of conver-
gence and achieving stable policies is generally more dif-
ficult. E.g., Laurent et al. (2011) show how in some cases
one agent exploring the environment may invalidate a good
policy of another agent. Still, Sunehag et al. (2019) find
the emergence of advanced strategies emerge by indepen-
dent MARL in simulated multiple-species ecosystems. In
accordance to that, de Witt et al. (2020) also find that PPO
is somewhat robust to non-stationarity and thus a suitable
candidate for IL.

Herding
One of nature’s most remarkable relationships is the
predator-prey dynamic, in which predators and prey go
through shifted cycles of high and low population density.
Much work has been done to model and empirically show
these dynamics, e.g. via the Lotka-Volterra model. E.g., Bla-
sius et al. (2020) set forth that predators and their prey can
sustainably co-exist in these cycles for a very long time.
While predators do exploit at times and end up depleting
the prey population, they never over-exploit it irresistibly
though. Using MARL, Yang et al. (2018) study population
dynamics with predators learning greedily by maximizing
their individual reward in a setting that includes predator
starvation. Also, predators may hunt in groups to increase
the chance of a successful catch but also share the reward
afterwards. They find that the cyclic dynamics described by
the Lotka-Volterra model emerge. Further, Wallach et al.
(2015) propose that apex predators self-regulate their own
population to make sure that there is no over-exploitation,
i.e. keep their own population at a certain level, which limits
the pressure on the prey population.

Regarding self-regulation, prior work of Ritz et al. (2020)
only considered a single predator. This paper assumes a
group of non reproducing predators under starvation pres-
sure and analyzes if collective self-regulation, i.e. choosing
not to hunt temporary but waiting for a prey population to
recover, emerges. We call this herding, i.e. maintaining a
herd of prey and never over-exploiting while hunting freely
if the herd size allows so.

Cooperation
Complex cooperation, e.g. in the form of group hunting, can
also be found in nature. For instance, lions cooperate, even
though it is in a selfish way. Amongst others, Scheel and
Packer (1991) show that they often ‘refrain’ when easy prey
such as warthogs are hunted while joining the hunt when
difficult prey such as zebras are hunted. Refraining from
the hunt still enables them to join the feast after the prey
is caught, but with less total energy used for the hunt. The
authors compare this to cheating. Computational analysis
by Burtsev (2005) found that resource supply influences the
rate of peaceful cooperation versus aggression. Further, Tan-
abe and Masuda (2012) argue that RL is able to learn coop-
eration through natural selection, showing the Baldwin ef-
fect. Using independent MARL in simulated grids, Leibo
et al. (2017) analyze how conflicts can emerge from compe-
tition over shared resources. They observe that two learn-
ing agents collecting resources act more aggressive when
resources are scarce and that for cooperation between two
predators in predator-prey interaction to arise, additional
rewards for cooperative catches have a significant impact.
Scaling the scenario of Leibo et al. (2017) to a common pool
resource appropriation problem, Pérolat et al. (2017) also in-
troduce social outcome metrics including sustainability.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/74/1930024/isal_a_00399.pdf by guest on 18 February 2022



Assuming predators are generally selfish, this paper aims
for cooperative behavior beyond overcoming the tragedy of
the commons in form of group hunting and analyzes which
factors impact such cooperation. Prior work (Leibo et al.,
2017; Pérolat et al., 2017; Ritz et al., 2020) does not consider
predator starvation, which we additionally regard in this pa-
per. Apart from splitting the total reward for cooperatively
caught prey, there is no reward shaping. Finally, we con-
tribute experiments in a three-agent setting which are con-
sidered significantly more difficult from a game-theoretic-
and an RL-standpoint compared to a two-agent setting.

Further Emergent Behavior
Inspired by nature, emergent behavior has been studied us-
ing computer models under further aspects. E.g., Olson et al.
(2016) analyze predator-prey interaction in the context of
swarming using an evolutionary algorithm. They find that
the swarming among prey is influenced by how predators at-
tack. While Reynolds (1999) proposes static rules leading to
swarming, Morihiro et al. (2008) have their agents learn to
do so by encoding these rules in the reward of an RL algo-
rithm. Further, Sunehag et al. (2019) find the emergence
of flocking and symbiosis with rewards shaping by inde-
pendent MARL in simulated multiple-species ecosystems.
In parallel, Hahn et al. (2019) demonstrate the emergence
of swarming without reward shaping and later show that in
their scenario, prey swarming is a Nash Equilibrium (Hahn
et al., 2020) and the prey could perform better if collectively
fleeing independently. Ritz et al. (2020) also found indepen-
dently fleeing prey to be significantly harder to hunt for a
single RL predator. Based on preliminary experiments (see
Fig.2a), this paper also uses independently fleeing prey.

Yet, emergent behavior can also be observed in non
predator-prey scenarios. E.g., Leibo et al. (2019) study an
evolutionary, population based approach and find the emer-
gence of division of labor. While that is out of scope for this
paper, our results might generalize to such scenarios as well.

Domain

Figure 1: Rendering of the simulated ecosystem. Two RL
predators (red) cooperatively isolate and catch a prey (blue).
The corresponding tails indicate the moving trajectories.

We study sustainable and cooperative behavior in a con-
tinuous, two-dimensional simulation with two types of
agents, predator (e.g. sharks) and prey (e.g. small fish).
Both are represented by unicycles, a model of mobile
robotics. Depending on the respective scenario, the environ-
ment is either bounded by walls or open, forming a torus,
i.e. all borders wrap around. All agents move by adjusting
their linear velocity (acceleration) and their angular velocity
(orientation), modeling double integrator dynamics. Max-
imum speed is constrained via simulated friction, allowing
flexible agent setups. By default, the view distance of preda-
tors is greater than the world size, while the view distance of
the prey is restricted to a fraction of the world size. When
agents overlap with each other or the walls, an elastic colli-
sion is performed. If a predator collides with a conspecific
while facing it, the conspecific is stunned, i.e. it floats for
a number of steps. If both both predators face each other
while colliding, both are stunned. If a predator collides with
a prey, the prey is considered caught and removed from the
simulation. Prey may reproduce, i.e. spawn a conspecific at
the current position, if all following conditions are met: No
predator is within the view radius of the prey, a certain num-
ber of time steps since the last reproduction has passed and
the prey population limit is not exceeded. Lastly, predators
that do not catch enough prey can die from starvation. Their
initial survival time varies throughout the experiments while
the additional survival time per caught prey is fixed.

Actions
The action space Ak is a triple with two continuous values
representing acceleration, orientation and a boolean whether
to reproduce. Prey always reproduce as soon as possible
and predators do not reproduce. Acceleration is clamped to
[−1, 1] and orientation is clamped to [−180◦, 180◦].

Observations
The observation space Ok is structured in a uniform way for
predator and prey. It includes the current orientation of the
agent, the readiness to reproduce, a list of walls and a list of
other agents. Depending on view radius and limits explained
in the following, only a subset of all walls and agents can
be observed, making the environment partially observable.
The list of walls consists of distance and angle from the cur-
rent agent to each of the closest n w walls. If no walls are
perceivable, e.g. due to a limited view radius or because
the environment is a torus, zero entries maintain a consis-
tent observation space. Next, n pred triple slots are used
for predators. Each triple slot consists of distance, angle and
orientation of the predator. Again, predators outside of the
view radius lead to zero entries. Finally, n prey slots of the
same structure are available for the prey. As the three afore-
mentioned parameters remaining static throughout training
and evaluation. The zero-padding ensures a fixed-size ob-
servation independent of the perceivable entities.
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(a) Sustainability of swarming
and independently fleeing prey.
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(b) Sustainability with one initial prey.
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(c) Sustainability with two initial prey.

Figure 2: Average sustainability σ (sum of caught and left-over prey at the end of the episode) of different predator algorithms.
PPO consistently achieves the most sustainable behavior due to herding a rather large prey population, resulting in a high rate
of prey reproduction and thus more prey to be caught.

Rewards
RL predators are granted a reward of 10 for each caught
prey. In settings with multiple predators, this reward can
be split up: If n predators are within the shared catch zone,
i.e. within a defined radius from the place of capture, each
predator gets a reward of 10

n . There are no other (shaped)
rewards, avoiding the induction of further bias.

Experimental Setup

Table 1: PPO Hyperparameters

total domain steps 21× 106

entropy coefficient 0.0
learning rate 9× 10−5

value function coefficient 0.5
max gradient norm 0.5
γ 0.99
λ 0.95
mini-batches 4
optimizer epochs 4
clipping range 0.1
hidden layer neurons 3× 64

To assess whether the RL predators learn sustainable and
cooperative behavior, the following metrics are used: First,
sustainability σ is defined the sum of caught and the left-
over prey at the end of an episode. Maximum sustainability
would entail catching a lot of prey while allowing a large
population to live. To ensure significance, σ is gathered
and averaged over multiple episodes. Further, (collective)
herding requires all RL predators to slow down and wait or

slowly stalk behind prey when the prey population is low
while hunting actively at high speed when the prey popu-
lation rises again2. Specifically, herding does not include
strolling around continuously and hunting prey nearby by
chance. While such behavior is difficult to capture math-
ematically, its results can be accessed through the herd-
ing ratio η which is gathered over multiple episodes: Per
episode, herding is considered successful if one to ten prey
agents are alive (if the prey population hits the limit of
eleven, we consider the predators unable to hunt, thus un-
able to herd) and unsuccessful otherwise. η is defined as the
number of the episodes that resulted in herding divided by
the total number of episodes. Next, the failure ratio φ, de-
fined as 1 − η, expresses how often the RL predators failed
to either maintain a herd of prey or to catch any prey at
all. Finally, the cooperation ratio κ assesses group hunt-
ing among RL predators. A catch is considered cooperative
if all RL predators are within the shared catch zone and lone
otherwise. κ is defined the number of cooperative catches
divided by the total number of catches. Similar to σ, κ is
gathered and averaged over multiple episodes.

Regarding the agents, the prey strategies proposed
by Hahn et al. (2019) were compared in preliminary ex-
periments (c.f. Figure 2a). In accordance with previous
work (Ritz et al., 2020), independently fleeing was used
for all following experiments as it was found significantly
harder to hunt than swarming prey. The RL predators were
trained with PPO. The most important hyperparameters are
shown in Table 1. The neural network used by PPO is set up
as three fully connected layers á 64 nodes with batch nor-
malization. We modified the implementation of Dhariwal

2Illustrative videos can be found here: shorturl.at/jnoKO
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Figure 3: Left-over prey population per learning episode
over 21M steps. In this demonstration setting, two preda-
tors hunt at most six prey. As the predators learn to herd
prey, they go through three stages. In the first stage a, they
cannot hunt effectively yet and thus leave the full population
intact until the end of the episode. In the following stage b,
they effectively hunt and over-exploit, leaving no prey at the
end of the episode. Lastly, in stage c, they learn to maintain
a herd of approx. two prey until the end of the episode.

et al. (2017) to support for multi-agent independent RL. To
ensure comparability with prior work of Ritz et al. (2020),
we benchmark a single PPO agent against their best per-
forming agent, DQN Stage II. We reproduced their train-
ing pipeline and applied the hyperparameters reported to re-
sult in highest average number of caught prey per episode.
Further, two non-RL agents are provided as baselines: The
static algorithm chases the nearest prey based on heuristics
and the static-wait algorithm does the same except when
there is only one prey left. At that point, the predator idles,
giving the prey a chance to escape and reproduce.

Regarding training and evaluation, each episode lasts
3000 domain steps. PPO is trained for 7000 episodes, i.e.
in 21× 106 domain steps, with constant hyperparameters.
If not stated differently, the initial survival time of predators
is 3000 steps, i.e. starvation is impossible, and stunning is
disabled. Further environment settings remain at the default
(details in the source code) if not specified otherwise. Every
result is the average of 400 values gathered from 20 inde-
pendently trained models, each evaluated 20 times.

Results
To bridge the gap to previous work of Ritz et al. (2020), Fig-
ure 2b and Figure 2c compare the performance of a single
predator in two scenarios with a low amount of initial prey.
The predators need to be able to restrain their greediness and
keep prey alive to allow for a larger population to grow and
thus the overall reward to increase. Here, the RL algorithm

Figure 4: From back to front: Distribution of predator accel-
eration over time. As the predators learn to herd prey during
the training, the distribution becomes bimodal. This sug-
gests that in some cases, they deliberately wait (for the prey
to reproduce), while in other cases they move fast (hunting).

PPO achieves the highest sustainability. Except one case,
PPO manages to hunt the most prey while keeping a suf-
ficient prey population. The RL algorithm DQN Stage II is
not able to compete. The two deterministic algorithms, static
and static-wait, perform as intended and are unable to beat
PPO, keeping none or one prey alive per design. A tangen-
tial improvement of PPO against DQN Stage II is the easier
training pipeline: While DQN needed a handcrafted curricu-
lum with two stages, PPO is trained end-to-end without ad-
ditional handcrafted adaptations to the training process.

Moving on to emergent herding, Figure 3 illustrates the
learning process of two RL predators going through three
stages: (a) Being unable to hunt, (b) hunting greedily while
over-exploiting, and (c) hunting in a sustainable manner. An
indicator for herding behavior is given by Figure 4, showing
that during training, the distribution of the predators’ accel-
eration gradually turns from a unimodal one (always moving
at full speed) to a bimodal one (partially waiting, partially
moving). Figure 5 shows two major impact factors for herd-
ing to emerge. Firstly, the number of initial prey is crucial
for the herding ratio η. This may be due to the different
amount of time until the RL predators get into a situation
with few or none prey left. It takes long to hunt down a
large initial prey population and a lot of reward can be col-
lected until the prey is extincted. Contrary, a small initial
prey population is depleted faster and the trade-off between
immediate and future rewards comes into play sooner. Sec-
ondly, starvation pressure plays an integral part in herding.
Depending on the amount of initial prey and initial predator
survival time, the sweet spot with the highest η varies. Yet,
the most concise results can be observed with few initial
prey. In such scenarios, predators with few initial survival
time do not act sustainably due to the immediate fight for
survival, prohibiting herding. Contrary, granting the preda-
tors much initial survival time lowers the need for hunting.
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Figure 5: Impact factors on sustainability of two RL predators measured via the herding ratio η. From left to right, the initial
prey population is decreased. A lower initial prey population increases the survival pressure. Further, each scenario varies the
initial predator survival time. Given few initial prey, high initial survival time results in the highest η. Yet, combining few initial
prey with few initial survival time induces so much survival pressure that no herding can be observed. The curve was fitted
with a fourth-degree polynomial.
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(a) κ with 5 initial prey.
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(b) κ with 10 initial prey.
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(c) κ with 10 initial prey and stuns.

Figure 6: Impact factors on group hunting of two RL predators measured via the average cooperation ratio κ. From left to
right, the initial prey population is increased and predator stun mechanics are added. Each scenario varies the shared catch zone
radius and the predators’ speed. Overall, κ increases if there is fewer prey, if the predators are slower and if the the shared catch
zone radius is larger. For reference, the maximum speed of prey is 0.08.
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(b) 1500 initial survival time.

Figure 7: Average Cooperation ratio κ of two RL predators
with ten initial prey and varying predator starvation pressure.
Each scenario varies the shared catch zone radius and the
predators’ speed. Due to the high number of initial prey, the
differences in the cooperation rate are negligible.

After achieving sustainable behavior through emergent
herding, complex cooperation in form of group hunting re-
mains to be shown. Handcrafted reward shaping could in-
duce a bias and shall be avoided in this paper, so only the
environmental setting is left to incentivize the predators to
cooperate. Accordingly, the maximum speed of the preda-
tors is lowered so that catching up with the prey takes longer.
Further, the walls bounding the environment are replaced
with a wrap-around, allowing more degrees of freedom for
the prey to escape and avoiding that a single predator catches
prey alone easily by driving it into a corner. Lastly, the
shared catch zone is added. Assuming that all predators
within a certain radius effectively contributed to the hunt and
may benefit from the catch, this zone is used both to measure
cooperation and to split up the reward between the involved
predators. Overall, the expected behavior for the predators
in the following scenarios is to cooperate to catch prey.
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As a first glance of success, Figure 1 shows two predators
surrounding a prey from two sides and catching it. Ana-
lyzing the details, Figure 6 demonstrates how larger shared
catch zone radii and slower predator speeds lead to a higher
cooperation rate κ. Similar to herding, less initial prey leads
to higher κ due to increased environment difficulty. With
less prey, there are less (accidental) lone catches due to over-
crowding and the prey evade easier since there are less ob-
stacles (other prey) to take into account.

However, not all environmental factors actually influence
cooperation. Stuns (c.f. Figure 6c) have no major impact.
Predators learn to not crash into each other, since a stunned
partner leads to less catches, but this does not impact the
overall learning performance. Further experiments were car-
ried out to analyze stunning behavior. The hypothesis was
that, similar to Leibo et al. (2017), RL predators use stuns
more if less prey is available, such that the stunned preda-
tor cannot steal prey from the prey population. However, no
significant correlation between the stun rate and the number
of prey could be observed.

As to be seen in Figure 7, adding starvation pressure sur-
prisingly does not induce greedy competition. However,
Figure 8 points out that slow moving RL predators, which so
far were most cooperative, face high failure ratios φ. Learn-
ing seems to be too inhibited: An initial predator survival
time of 500 time steps gives the predators very few time to
learn how to catch prey. Yet, the few remaining catches do
happen in cooperation (c.f. Figure 7). It should be men-
tioned that φ is very small in absence of starvation pressure.

Another major impact factor to cooperation is the view
distance of prey. The further it can see, the faster it can react
to and evade predators. Doubling the view distance from
10 to 20 results in (almost) full cooperation in 9 out of 12
scenarios (c.f. Figure 9).

Finally, the experiments are scaled to three RL predators.
Within all tested prey view distances, 25 yields the highest
cooperation ratio κ. Figure 10 shows the average κ over
20 models, each evaluated 100 times. While all of the prey
view distances nearly reach full cooperation between two
predators, even the most favorable setting does never cause
more than κ = 0.59 in the three predator setting. Further
increasing the view distance or slowing the predators down
lead to impracticably high failure ratios φ.

So far, all experiments were performed using Indepen-
dent Learning (IL). To outline scalability for future work,
a comparison between Parameter Sharing (PS) and IL was
done. In PS, all agents share the neural network parameters.
Figure 10 shows that PS causes less cooperation while Fig-
ure 11 shows that the average number of caught prey stays
the same. This suggests that PS has better performance as
such agents are able to catch prey with less predators in-
volved. Additionally, PS finishes training on average 2.63
times faster (18:56 hours ± 00:05 for PS versus 50:08 hours
± 00:40 for IL) than IL in the experiments discussed here.
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(b) 1500 initial survival time.

Figure 8: Average Failure ratio φ of two RL predators with
varying predator starvation pressure. Each scenario varies
the shared catch zone radius and the predators’ speed. Fig-
ure 8a shows that few initial survival time results in high φ.
While the remaining few catches (c.f. Figure 7a) are coop-
eratively, low predator speed combined with few initial sur-
vival time results in few predators being able to catch even a
single prey. Thus, starvation pressure may inhibit learning.
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(a) Prey view distance 20.
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(b) Prey view distance 30.

Figure 9: Average cooperation rate κ of two RL predators
with varying values for prey view distance, shared catch
zone radius and predator speed. The further prey see, the
tougher it is to catch them. Doubling the default of 10 (see
previous figures) has more impact than increasing it further.

Discussion
Theoretically, RL algorithms result in solely rational behav-
ior maximizing the given optimization problem. In practice,
RL agents often converge to less efficient equilibria, espe-
cially in Multi-Agent settings. In our scenario, a tragedy
of the commons would have occurred if any of the agents
caused over-exploitation. However, this was not the case.
We hypothesize that when an RL predator observes the
other(s) catching the last prey and thus preventing any fu-
ture rewards, it is equally as important as if it did so itself. A
common rule learned by multiple predators at the same time
might have been: If the number of remaining prey is smaller
than x, death is imminent, which should be avoided. There-
fore, we expect that current state-of-the-art RL is able to
learn equivalents of the rules that evolved in the social struc-
tures of animals and humans which can avert a tragedy of
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(b) Independent Learning (IL)

Figure 10: Average cooperation ratio κ of three RL preda-
tors with different MARL architectures. Catches are only
considered cooperative if all predators are involved. Each
scenario varies the shared catch zone radius and the preda-
tors’ speed. Parameter Sharing results in slightly lower co-
operation ratio κ than IL.
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(b) Independent Learning (IL).

Figure 11: Average number of catches of three RL predators
with different MARL architectures. Each scenario varies the
shared catch zone radius and the predators’ speed.

the commons. However, the results also suggest that for RL
to be sustainable, the scenario must provide suitable learn-
ing conditions such as the ratio of predator and prey speed or
the prey view distance: The herding ratio κ was significant
only under certain environmental settings.

Further, we argue that overcoming the tragedy of the com-
mons via (collective) herding may be cooperation from a
game-theoretic standpoint already, but can be achieved with-
out reasoning about other agents. Therefore, herding is only
as one step towards more complex cooperation in form of
group hunting. Initially, predators restrained themselves to
not catch prey too quickly and thus followed a common goal,
but also hunted in vigorous competition when the popula-
tion was large enough. This was observed especially when
the prey population raised just above the threshold at which
predators start hunting. Nevertheless, group hunting among
the RL predators emerged on top of herding once the en-
vironment settings were adjusted so that solely cooperative
catches yielded high rewards and guaranteed survival. It is
interesting that these findings share similarities with Axelrod
and Dion (1988), summarizing impact factors for coopera-
tion based on reciprocity to arise, although we use MARL

instead of evolutionary algorithms. While the emergence of
cooperation in a setting with no risk of being exploited might
be trivial from a game-theoretic standpoint, we argue that
considering Dafoe et al. (2020), successful complex cooper-
ation is noteworthy as our RL predators can neither coordi-
nate their actions directly, e.g. through communication, nor
have central institutions, e.g. social norms or rules, but learn
and act based on past observations only. Yet, scaling the
experiments to three agents showed that even with current
state-of-the-art RL, this is a boundary walk between making
the task too easy, thus allowing agents to individually suc-
ceed, and making the task too difficult, thus overstraining
the (computational) capabilities of the RL agents.

Future work might consider to scale the scenario further
with Parameter Sharing (PS) as from a biological perspec-
tive, it may be compared to observational learning where
an animal copies behavior it has seen from another ani-
mal: Rodrı́guez et al. (2014) posit that a special type of neu-
rons in the brain, the mirror neuron, is responsible for ob-
servational learning. In MARL, PS would be an extreme
form of observational learning, where each agent copies the
action another agent took.

Conclusion
So far, it was known that a single RL predator may learn
herding of prey (Ritz et al., 2020). This paper applied
MARL to a predator-prey scenario and showed that two self-
ish predators are able to learn sustainable behavior in form
of collective herding even under starvation pressure. Nat-
urally, starvation pressure heavily impacts the herding ra-
tio. Further, complex cooperation in form of group hunting
emerged between the selfish predators as their speed was
handicapped and the prey was given more degrees of free-
dom to escape. Lastly, experiments were successfully scaled
to three RL predators. This suggests that MARL can be used
for problems requiring sustainable and cooperative behavior
if suitable learning conditions are provided.

Future work might consider self-replicating predators,
scaling the scenario to more than three predators and mixing
of agents trained under different environmental conditions to
answer the following questions: How many predators can a
given environment feed? Can the predators learn to regulate
their population accordingly? Do some of them learn to col-
lude and let others die off? What impact do mixed teams of
differently trained agents have? Lastly, it would be interest-
ing to apply Learning with Opponent Learning Awareness
by Foerster et al. (2018). Such predators could learn to pre-
dict what the others are currently learning and adapt their
behavior accordingly.
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