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Abstract

A key challenge in AI is the development of algorithms that
are capable of cooperative behavior in interactions involving
multiple independent machines or individuals. Of particular
interest are social dilemmas, which are situations that raise
tension between an individual’s best choice and the desirable
outcome in terms of the group. Although such scenarios have
been studied increasingly within the AI community recently,
there are still many open questions on which aspects drive co-
operative behavior in a particular situation. Based on the in-
sights from behavioral experiments that have suggested pos-
itive effects of penalty mechanisms towards cooperation, in
this work we adopt the notion of penalties by enabling in-
dependent and adaptive agents to penalize others. To that
end, we extend agents’ action spaces with penalty actions and
define a negative real-valued punishment value. We utilize
reinforcement learning to simulate a process of repeated in-
teraction between independent agents, learning by means of
trial-and-error. Our evaluation considers different two player
social dilemmas, and the N-player Prisoner’s Dilemma with
up to 128 independent agents, where we demonstrate that the
proposed mechanism combined with decentralized learning
significantly increases cooperation within all experiments.

Introduction
The field of Cooperative AI aims at identifying vital aspects
that drive the emergence of cooperation in the interaction of
multiple (independent) decision makers (Dafoe et al., 2020).
The benefits of using AI to pursue this question are twofold:
on the one hand finding methods that help to make AI sys-
tems capable of cooperative behavior is a mandatory step
to broadly integrate and apply AI agents in our daily lives.
On the other hand, by using AI to study the emergence of
cooperation, one can approach outstanding questions from
related fields for instance from game theory, psychology or
economics. AI provides a rich set of tools to analyze com-
plex models featuring many agents or spatial and temporal
extended domains where it is hard to apply theoretical so-
lution methods. Moreover, with AI agents one can design
experiments that are not susceptible to human biases in deci-
sion making, but are driven by objectives such as individual
reward maximization, which is hard to study in experiments
featuring humans.

...

Figure 1: Idea of the penalty mechanism: at each step of
the iterated game, agents are matched randomly. Pairs of
agents then have the possibility to penalize their respective
actions. If agent i penalizes action etj from agent j, and j
actually executed etj at t, then the punishment value p will
be subtracted from j’s reward and added to i’s.

The question what causes cooperation between multiple
players has been studied extensively in the field of game the-
ory on the basis of so called social dilemmas, which allow
to study the emergence of cooperation in abstract models
represented as matrix games. Each social dilemma poses a
challenge for the emergence of cooperation, as there is ten-
sion between the best choice in terms of the collective, i.e.
what is best for all players, and the choice that is individu-
ally rational (Ostrom, 1990, 2008). Social dilemmas can be
categorized into models featuring two agents and N-player
models that are not limited in terms of players. With two
players and two actions, the payoffs can be represented in
a 2 × 2 matrix, where cell i, j contains the payoffs X and
Y for both players as a consequence of action i, j (see Fig-
ure 2. Most famously, in the Prisoner’s Dilemma each agent
has an incentive to defect, either to exploit the (cooperative)
other player or because of fearing of being exploited (for
being cooperative) by the other player. Therefore, the only
(non Pareto-optimal) equilibrium is given by mutual defec-
tion, which renders the dilemma. With more than two play-
ers, the scenarios can be further categorized in public good
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Figure 2: Three canonical two player social dilemmas: Chicken, Stag Hunt, and the Prisoner’s Dilemma.

games and common pool games. The former describes situ-
ations where agents need to jointly invest into a public good
in order to enjoy the benefits of the public good. Exam-
ples for public good games can be found in biology, such as
predator inspection behavior or group defense, as well as in
human societies, e.g. health insurance or public transporta-
tion. In public good scenarios, individuals are incentivized
to freeride, i.e. not contribute to the provision of the public
good but still enjoy the benefits of the public good. Eventu-
ally, freeriding can lead to the non-provisioning of the public
good if to few individuals contribute. However, there is no
rivalry for the public good between players. In contrast in
common pool games, there is a resource that can be used
by all individuals but there is rivalry between agents for the
resource, as the overall utility decreases through individual
usage. Here the tragedy arises due to overusage, as the costs
of using the resource are beard by all individuals, whereas
the benefits are earned on an individual basis.

In this work, we study the problem of multiple indepen-
dent learning agents in different well known types of two
player and N-Player social dilemmas. Whereas earlier work
in the field of multi-agent reinforcement learning studied the
influence on cooperation of various parameters such abun-
dance in resources (Leibo et al., 2017) or spatial features
of the domain (Perolat et al., 2017), here we focus on an
aspect associated with agents’ capabilities to regulate each
other. More specifically, in this work we use a penalizing
mechanism that enables individual agents to punish others.
The idea of letting players penalize each other has been ad-
dressed earlier, both theoretically and in experimental re-
search, which found a positive impact of penalties towards
the general willingness to cooperate (Janssen et al., 2010;
Ostrom et al., 1992). However, prior work defined penal-
ties as an operation that produces costs for those who penal-
ize others. This circumstance can pose a second order so-
cial dilemma (Kollock, 1998): if the act of penalizing other
agents is associated with costs, be it through the time that
is spent to impose a punishment which can not be spend to
increase one’s own utility (Perolat et al., 2017), or the ac-
tual payoff that needs to be invested to penalize someone
(Ostrom et al., 1992), then players might decide to leave the
expense of punishing to others, i.e. decide to freeride at the
cost of others.

Here we propose a method to solve both dilemmas simul-
taneously:

• By enabling players to penalize other players, defective
behavior will become less tempting so players become
more cooperative.

• Agents who successfully impose a penalty can achieve
a personal benefit by earning a payoff that is subtracted
from from the penalized player, so agents are incentivized
to make use of the penalty mechanism.

We find in different experiments that such an integrated
mechanism stably promotes cooperative policies for multi-
agent systems involving more than 100 learning agents. We
also demonstrate that the usage of the penalty actions de-
fines a dominant strategy in the game, as an agent which
learns to penalize can achieve a higher reward than an agent
who never makes use of the penalty mechanism. The code
for the experiments in this paper can be found on github 1.

Fundamentals
A N-player normal form game, denoted Γ, is defined as a
three tuple (N, (Ai)i∈N , (ri)i∈N ), where N is the number
of agents,Ai is player i’s set of actions, and ri : Πi∈NAi →
R is player i’s payoff (also called reward) function. For the
scope of this work, we consider games with two actions for
all players, referred to as cooperation C and defection D.
Depending on the specific rewards for agents, a game can be
categorized into three classes (Dafoe et al., 2020): 1) pure
common interest games where an increase in an agent’s pay-
off also increases the payoff of all others, 2) mixed-motive
games are scenarios with general sum rewards, so agents
might either have conflicting or aligned goals, 3) pure con-
flicting goals in which an increase in one agents payoff is
always associated with a decrease in the reward of others.
Games of pure common interest and mixed-motive games
can principally have opportunities for agents to cooperate,
thereby increase both, the overall reward and their individ-
ual rewards.

2-Player Social Dilemmas Interactions between two
players are an important class of games to analyze vital as-
pects of cooperation by means of game theoretic solution
methods like the Nash equilibrium. Three of the most popu-
lar canonical examples for 2 player mixed-motive games, are

1https://github.com/kyrillschmid/
penalty-games
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the Prisoner’s Dilemma (PD), the Chicken game (CH), and
Stag Hunt (SH), with rewards for agents displayed in Figure
2. Each of the three games raises conflict between play-
ers, motivated either by fear or greed or both: In Chicken,
both players can profit from mutual cooperation, yet each
player can be better off by unilaterally defecting, so a player
might decide to defect out of greed. In Stag Hunt, the play-
ers can get a high reward by mutual cooperation. However,
in case of only unilateral cooperation, the cooperative player
receives nothing, whereas the defective player will get a pos-
itive reward, so a risk-averse player might decide to defect
by default. Finally, in the Prisoner’s Dilemma, players have
an incentive to defect out of fear or greed, as they can per-
sonally benefit from unilateral defection while at the same
time are in danger to become exploited by the other player
for being cooperative. Note that two player games can be
used in order to analyze interaction with more than two play-
ers by playing the game iteratively and at each iteration of
the game different agents are matched with one another to
play the 2-player matrix game. The matching of players can
be done on the basis of different schemes, e.g. randomly
or in a round robin fashion as proposed in the Prisoner’s
Dilemma tournament (Axelrod and Hamilton, 1981).

N-Player Social Dilemmas Games involving more than
two agents can be categorized by the way costs and bene-
fits are distributed between the players (Kollock, 1998). The
first category, called public good games, is defined by games
where the players need to incur costs in order to realize a
public good, that is non-rival and from which players cannot
be excluded. All players receive a benefit (positive reward)
if the public good is provided but individuals are inclined to
avoid their own costs by not participating. It is therefore that
these scenarios are apt to produce pathological freeriding
problems, which might even lead to the non-provisioning
of the public good when too few players decide to partic-
ipate. An instance of a public good game is described by
the N-player Prisoner’s Dilemma, which has the following
characteristics: 1) each player has a dual choice (cooperate
C or defect D), 2) the positive reward for defection goes to
the defective player, while the cost of defection is distributed
among all, 3) the overall reward increases with the number
of cooperators, 4) the defective strategy is dominant (Edney
and Harper, 1978).

In the second category, called common pool games,
agents can get an immediate benefit from using a non-
excludable but rival resource, so agents impose costs to oth-
ers by using the resource. In these scenarios agents have in-
centive to overuse the shared resource, as the marginal ben-
efit from using another unit are earned individually, while
the marginal costs of using another unit are shared between
all players. Common pool games give rise to the tragedy
of the commons (Ostrom, 2008), that describes the situation
where multiple individuals have access to a common and

depletable resource such as pastures or fishing grounds. The
tragic lies in the gap between individual and collective ra-
tionality: collectively, it is desirable to use the resource only
up to a certain degree that allows it to regenerate over time.
Individually however, it is rational to overuse the resource
as the benefits of another taken unit are earned individually,
but the costs for this unit are carried by the whole group.

There are a number of differences regarding the learning
dynamics in games between two players and games with
more than two players (Dawes, 1980; Kollock, 1998). First,
in two player games, agents might be able to infer the other
player’s action through their own rewards. This is not nec-
essarily the case with more than two agents, where players
might defect rather unnoticed. Second, in case of two play-
ers agents impose costs (or benefits) directly to each other
through their choice, whereas costs are distributed among
a potentially large collective with N players. The last point
concerns the influence agents have upon each other: in a two
player game, a player can shape the payoffs from its oppo-
nent by strategically choosing its own actions. It thereby can
significantly shape the opponents behavior through its own
behavior.

Method
In this section we describe our proposed penalization mech-
anism. Our approach is inspired by evidence which sug-
gests that humans display the ability to overcome the bad
outcomes predicted from non-cooperative game theory (Os-
trom, 1990), which can be also be explained in theory
through models that include sanctioning mechanisms (Os-
trom et al., 1992). Key factors for emergent cooperation be-
tween humans are commitments, mutual monitoring of be-
haviors, and the possibility to impose penalties on those who
display defective behavior (Ostrom, 1990). Here, we build
on these insights by enabling agents to make use of a penal-
ization mechanism so as to discourage defective behavior,
which in turn means to increase cooperation. For this ap-
proach we extend a given N-player normal form game with
a set of penalty actions, and a penalty value and call this
extended game a Penalty game (see Figure 1), which we for-
mally define as a tuple (Γ, (As

i )i∈N , p), where

• Γ is the underlying normal form game, consisting of N
agents,Ai is player i’s set of actions, and the reward func-
tions ri : Πi∈NAi → R for each agent i ∈ N .

• The set of penalty actions Ap
i for each agent i ∈ N .

• The penalty value p ∈ R<0

In the Penalty game, the action space is extended for each
agent with a fixed number of penalty actions Ap, that pro-
vide the tool to penalize other agents with the penalty value
p. Agents in the Penalty game, choose a so called envi-
ronmental action e from the original action space A, and
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Figure 3: Results for the two player social dilemmas for agents with the penalization mechanism (orange) and agents without
penalties (blue). (Mean and 95% confidence interval, best viewed in color)
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Figure 4: Normalized reward in the iterated Prisoner’s
Dilemma for different penalty values p averaged over 25 in-
dependent runs for each value.

a penalty action x from the penalty action set Ap. The com-
bined action space therefore has size |A × Ap|. The fine
granularity with which agents can specify whom they target
and which action they intend to penalize, can be controlled
via the semantic of the penalty actions. Without any restric-
tions, agent i can penalize any other agent j ∈ N for any
specific action u ∈ A. In this case, agent i’s action is a tuple
ui = (ei, xi,j), where ei ∈ A is i’s executed environmen-
tal action and xi,j ∈ Ap defines the action to be penalized
from agent j. The target agent j will be forced to pay the
penalty p, if its environmental action ej is equal to the de-
fined penalty action xi,j , in which case the rewards for i and
j are:

r′i(..., xi,j , ..., ej , ...) = ri + |p ∗ δxi,j ,ej |

r′j(..., xi,j , ..., ej , ...) = rj − |p ∗ δxi,j ,ej |
where δi,j is the Kronecker delta with δi,j = 1 if i = j and
0 else.

Note that when agents can penalize all other agents for
any specific action the increase in action space is grow-
ing exponentially with the number of agents, since the size
of the action space for agent i is then defined by |Ai| =

|Ai| ∗ Πj∈N−1|Ap
j |. In this work we therefore take an

approach to effectively reduce the complexity for growing
numbers of agents. To that end we propose to match two
agents randomly at a time, such that these two agents have
the chance to penalize each other. In this case the growth
of the action space is constant in the number of agents since
|Ai| = |Ai × As

i |. For the iterated version of the social
dilemmas used for evaluation, this means that at each step
agents are matched with a new partner at each step of the
iterated game.

Learning To learn strategies we utilize reinforcement
learning (RL), which refers to methods that learn in a trial-
and-error based way. An agent’s goal is to learn a policy
π that maximizes its expected return Rt :=

∑∞
t=1 γ

t−1Rt

where γ < 1 is a discount factor (Sutton and Barto, 2018).
One way to learn a policy is to learn an action-value function
Q : S×A → R, whereQ(s, a) represents the value of action
a in state s. The action-value function can be used as a pol-
icy by selecting actions according to their action values. A
popular way to learn the action-value function is Q-learning,
where an agent i updates its values according to:

Qi(s, a)← Qi(s, a)+α
[
ri +γ max

a′∈Ai
Qi(s

′, a′)−Qi(s, a)
]

where α is the learning rate and γ is a discount factor.
During training, exploration can be incorporated through so
called epsilon greedy action selection, where an agent se-
lects its optimal action according to its current Q-function
with probability 1− ε or a random action with probability ε.
In this work, we represent the state in the iterated versions
of social dilemmas either as a constant (0 in case of two
agents) or the fraction of cooperators in the last step (for the
N-player social dilemmas).

We model each player in the game as an independent in-
stance of a tabular Q-learner, which is known as indepen-
dent Q-learning. Although independent learning is known
to render the learning problem non-stationary from a sin-
gle agent’s perspective, it is a natural way to model learning
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(a) No penalties (b) With penalties

Figure 5: Change in the α-Rank discrete-time dynamics of
the Prisoner’s Dilemma in the standard version and with
penalties enabled: Without penalties the only stable strategy
is to defect D (i.e. single Nash-equilibrium). With penal-
ties enabled, pure defection becomes unattractive, while the
fitness of strategies including penalties increases.

in case of mixed-motive games (Leibo et al., 2017; Perolat
et al., 2017), since agents might have conflicting goals and
therefore are unlikely to jointly optimize a centralized objec-
tive function. Moreover, the independent learning paradigm
has been shown to outperform state-of-the-art centralized
approaches such as COMA or QMIX (Mahajan et al., 2019).

For the training of N agents, each agent updates its Q-
function based on its experienced transitions that comprise
actions, rewards and next states, i.e. (s, a, r, s′) to update
its Q-function. We model episodic learning by considering
iterated versions of the normal form games. In this work, an
iterated game comprises 4000 consecutive steps (also called
episodes), before the game restarts. We use a learning rate of
α = 0.2 for the two player social dilemmas, and a learning
rate α = 0.008 for the N-player game. We linearly anneal
the exploration constant ε over the course of all steps, start-
ing with ε0 = 1.0 and decreasing it until ε4000 = 0.0001. In
all experiments we use a discount of γ = 0.9.

Results
In this section we describe experiments from two player so-
cial dilemmas, including Stag Hunt, Chicken and the Pris-
oner’s Dilemma before extending the evaluation to a N-
Player Social dilemma featuring up to 128 agents.

Two Players To study the effect of the proposed mecha-
nism in two player social dilemmas we use three canonical
matrix games known as the game of Chicken, the Prisoner’s
Dilemma, and Stag Hunt. It is known that by playing two
player social dilemmas in an iterated fashion, cooperative
strategies such as Tit-for-Tat which are based on reciprocity
can thrive (Axelrod and Hamilton, 1981). However, in trial
and error based learning such as reinforcement learning, co-
operation based on reciprocity is unlikely to emerge since
it requires recursive reasoning about the consequences of

one’s own behavior on others, which is not part of model-
free RL. This circumstance can be seen in Figure 3, where
all of the three games are played for 4000 consecutive steps,
with results averaged over 100 independent runs (returns are
normalized between 0 and 1). In Stag Hunt, independent
Q-learning achieves near maximum overall reward, despite
the existence of an non-optimal Nash-equilibrium. Chicken
poses a harder challenge for cooperation due to its incen-
tives for unilateral defection, which manifests in an overall
decreased return. In the Prisoner’s Dilemma independent
Q-learning is likely to converge to the unique non-optimal
Nash-Equilibrium (D,D) in some of the runs, which de-
creases overall return.

We now introduce the described penalty mechanism
in the following way: In each of the three games, we
extend agents’ action spaces with additional action to
let agent i penalize agent j based on j’s played ac-
tion, thus the action space is extended from {C,D} to
{(C,−), (C,C), (C,D), (D,−), (D,C), (D,D)}, where
the first component indicates the player’s own action and
the second component is the intended punishments for the
other player. Through this extension, as shown in Figure
3, the learned strategies by independent Q-learning can be
improved towards near optimal play in Chicken and optimal
play, that is full cooperation in the Prisoner’s Dilemma.
The difference in outcomes is strongest in the Prisoner’s
Dilemma, where strategies are consistently changed to
mutual cooperation (C,C) after approximately 500 steps,
thereby achieving the maximum reward. To define the
optimal penalty value p, we considered values in the interval
[−5, 10]. Overall we found, that a value of p = −2.0
achieved the best results in all three games. We also tested
the effect of using positive values p > 0 (so agents are
not punished but rewarded) and found that it rendered
the learning dynamics more unstable but led to increased
cooperation for some values while some positive values led
to little or no cooperation (see Figure 4).

To illustrate the change in the dynamics of the game,
we inspect the Prisoner’s Dilemma by means of α-Rank, a
population based evaluation technique (Omidshafiei et al.,
2019). The α-Rank discrete time dynamics of the Prisoner’s
Dilemma with and without penalizing actions are shown in
Figure 5. Without penalties, there are two actions (C, D)
and the two graph nodes correspond to the situation where
all individuals in the population play either cooperative or
defective. The time the populations spend in each strategy
is quantified as the mass of the stationary distribution in this
node. Edges between nodes correspond to the fixation prob-
abilities for state pairs, so edge directions indicate the flow
of individuals from a strategy towards a fitter strategy. In
the standard Prisoner’s Dilemma all probability mass is ac-
cumulated in D, which means that defection is the fittest
strategy, with no chance for cooperative individuals to sur-
vive. This is in compliance with the Nash-equilibrium for

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/59/1929953/isal_a_00369.pdf by guest on 18 February 2022



0 500 1000 1500 2000 2500 3000 3500 4000

Episode

0

200

400

600

800

1000

R
et

ur
n

Penalty

-20

-40

-70

Game Type

with penalties

no penalties

(a) 32 agents

0 500 1000 1500 2000 2500 3000 3500 4000

Episode

0

500

1000

1500

2000

2500

3000

3500

R
et

ur
n

Penalty

-50

-100

-160

Game Type

with penalties

no penalties

(b) 64 agents

0 500 1000 1500 2000 2500 3000 3500 4000

Episode

0

2000

4000

6000

8000

10000

12000

14000

16000

R
et

ur
n

Penalty

-60

-150

-300

Game Type

with penalties

no penalties

(c) 128 agents

0 500 1000 1500 2000 2500 3000 3500 4000

Episode

0.0

0.2

0.4

0.6

0.8

1.0

C
o

op
er

at
io

n

Penalty

-20

-40

-70

Game Type

with penalties

no penalties

(d) 32 agents

0 500 1000 1500 2000 2500 3000 3500 4000

Episode

0.0

0.2

0.4

0.6

0.8

1.0

C
o

op
er

at
io

n

Penalty

-50

-100

-160

Game Type

with penalties

no penalties

(e) 64 agents

0 500 1000 1500 2000 2500 3000 3500 4000

Episode

0.0

0.2

0.4

0.6

0.8

1.0

C
o

op
er

at
io

n

Penalty

-60

-150

-300

Game Type

with penalties

no penalties

(f) 128 agents

Figure 6: Overall reward (sum of agent rewards) and cooperation ratio (share of cooperators at each step) for 32, 64 and 128
agents in the N-player public good game. Shown are mean and 95% confidence interval.

the Prisoner’s Dilemma. The game dynamics change for the
Prisoner’s Dilemma with penalty actions, where more prob-
ability mass is assigned to the strategiesDC,CD,CC,DD,
i.e. strategies that include a penalty component. More-
over, there are circles which include cooperative strategies,
so agents have more possibility to mutually adapt to a coop-
erative strategy. Although the circle indicates that there is
no stable Nash-equilibrium, learning stably converges to the
mutually efficient cooperative outcome, which might be due
to the decreasing exploration rate of the Q-learning agents.
With respect to the results of independent Q-learning in Fig-
ure 3, these changes of the game dynamics are sufficient to
direct the learning process towards the globally optimal out-
come.

N Player Results We now extend the evaluation towards
games involving more than two agents for which we con-
sider N ∈ {32, 64, 128}. We utilize the N-player public
good game proposed in (Barbosa et al., 2020) that has the
following properties: Each cooperator contributes a positive
amount P to the public good, whereas defectors do not con-
tribute. The aggregated contribution from all cooperators is
evenly distributed among all group members, but only co-
operators bear the costs of providing the public good so de-
fectors can benefit from the good at no cost. The reward
functions for cooperators and defectors are:

R(C) =
f ∗ c ∗ P

N
− P,R(D) =

f ∗ c ∗ P
N

where f is a constant, P is the amount of the provided pub-
lic good, and c is the number of cooperators (note that we
renamed the the parameter P to avoid confusion with the pa-
rameters defined in the Penalty game). For all runs we used
the following parameters to compute the returns: The contri-
bution p that each cooperative agent achieves is P = 1. For
the scaling factor f we use f = 2 as described in (Barbosa
et al., 2020).

First, we consider the overall reward (sum of all
agent rewards) and the degree of cooperation that is
achieved by agents with and without the penalty mecha-
nism. Figure 6 shows results for the reward and the rate
of cooperation rate within the population for each step
(number cooperators/N ). For the evaluation we use differ-
ent values for the penalty value p with p ∈ [−20, 300]. For
all numbers of agents N , we find that the overall reward
and the overall cooperation rate significantly increase with
penalties being enabled. Moreover, the outcome depends on
the amount of the penalty, where higher penalties (lower val-
ues for p) correspond to higher overall rewards and higher
degrees of cooperation. When penalties are available, the
overall cooperation ratio reaches levels above 90 percent for
all settings, whereas without penalization stable cooperation
fails as indicated by the low rewards and the ratio of cooper-
ators.

We now want to consider which action in the game is actu-
ally played by agents and how many penalties were imposed
successfully. The results are visualized in Figure 7, where
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Figure 7: Played actions and number of successful penalties
for 64 agents in the N-player public good game (p = −160).
Shown are mean and 95% confidence interval.

we consider 64 agents over the course of 4000 iterated steps
in the game averaged over 25 independent runs. The num-
ber of actually played actions are visualized in Figure 7a.
Plotted are all 6 actions of the Penalty game, where the label
XY corresponds to action X that is executed in the game,
and Y corresponds to the action to be penalized. So for in-
stance CD means that the agent cooperates while it imposes
a penalty for defecting. The results show that in the early
stage of learning (i.e. for episode < 500), there is a strong
increase in DD, which means that agents decide to defect
while at the same time punish others for defecting. After
this phase, action CD (being cooperative and punishing de-
fection) becomes increasingly attractive and is consistently
chosen for the rest of the training from around 50 out of
64 agents. There remains a number of agents which decide
to cooperate and punish others for cooperating (around 10
agents) and a small group that chooses to defect while pun-
ishing others for cooperation (4 agents on average). This
behavior is mirrored in the number of successful penalties,
displayed in Figure 7b. In the beginning there is a sharp in-
crease in successful penalties for defection D, which then
decreases as there are only very little defectors left, so pe-
nalizing defectors becomes unattractive. Again, the small
group of agents which is specialized in penalizing cooper-
ators results in a constant share of successful penalties for
cooperation after around episode 500.

Finally, we visualize the dynamics of the N-player public
good game by means of empirical game theoretic analysis
with a Shelling diagram. We therefore simulate runs with
different numbers of agents who can penalize, denoted |S|,
in a game comprising 16 agents in total. We then compare
the aggregated rewards from all penalizing agents with the
rewards from non-penalizing agents. Figure 8 shows the re-
sults. At the leftmost point in the plot there is no penalizing
agent, so it resembles the original game. At the rightmost
point, the game contains only penalizing agents, which cor-
responds to the game with penalties. We compare Shelling
diagrams from an early training phase (episode < 500) with
a Shelling diagram collected during late training (episode >
3000) to see whether the dynamics of the game change for

different training phases. During late training, the rewards
of agents who can penalize others are higher for all numbers
of penalizing agents in the game. This indicates that it is
at any point individually rational to use the penalty mech-
anism if available. With more than half of all agents using
penalties (|S| > 16), the rewards for all penalizing agents
decreases slightly, until it recovers for |S| > 11. Conse-
quently, the Penalty game displays a social dilemma (i.e. a
common good game) for intermediate numbers of agents,
since between 8 and 12 penalizing agents the return from
all penalizing agents decreases when more penalizing agents
enter the game. However, this effect seems locally limited,
as with all agents being capable to penalize others the re-
wards of all agents increase and show the highest overall
return.

Related Work
Positive effects of incentivation towards cooperative behav-
ior in social dilemmas have been identified in the literature
and can be distinguished in selective incentives and sanc-
tioning mechanisms (Kollock, 1998). Selective incentives
describe approaches that try to positively promote cooper-
ation, e.g by giving monetary rewards to reduce the con-
sumption of common pool goods, such as water or electricity
(Maki et al., 1978; Winett et al., 1978). In contrast, incen-
tivations that actively try to reduce defection work on the
basis of penalties, for which experiments with humans sug-
gest that penalties are effective in reducing defective behav-
ior (Caldwell, 1976; Komorita, 1987). Whereas in experi-
ments involving humans penalty systems have been realized
by allowing participants to pay a fee in order to penalize
other defective players (Janssen et al., 2010), work in the
field of multi-agent reinforcement learning has adapted an-
other approach to penalize other agents: in (Perolat et al.,
2017), agents live in a grid-world and can increase their re-
ward by gathering a shared resource (apples). The penalty
mechanism in the gathering game works on the basis of a
beam action, which bans the agent that is caught in the beam
for 25 consecutive steps from the game, during which they
cannot collect apples to increase their reward. In our work,
agents influence other agents’ rewards rather than penaliz-
ing others indirectly through a imposed time penalty, so the
penalties trigger a transaction of reward between the inn-
volved agents.

Other work in the field of reinforcement learning, an-
alyzed which environmental or agent internal parameters
drive the emergence of cooperation between two players.
For that, (Leibo et al., 2017) extend the notion of social
dilemmas with so called sequential social dilemmas (SSDs)
to better capture aspects of real world social dilemmas, as
real world dilemmas are in general temporally extended and
may feature non-binary grades of cooperation. The authors
demonstrate that cooperation depends on different aspects
of the environment such as the abundance of the shared re-
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Figure 8: Shelling diagrams for the public good game with 16 RL agents. Displayed are the rewards for different numbers of
agents who can penalize others. Left side: early training (episode < 500), right side: late training (episode > 3000).

source between agents. While the analysis demonstrated
that specific variables influence cooperation, there is no spe-
cific proposal on how to increase cooperation for a given
scenario. More recently, in (Yang et al., 2020) an approach
has been proposed where agents learn an additional incen-
tivation function with which they can increase the return
of the other agent. This mechanism is different to our ap-
proach since the incentivation function does not define an
economic transaction as the incentive an agent receives is
not subtracted from the other agent’s reward. Here, we leave
the overall reward constant, as each transaction marks a bi-
lateral exchange that equals in total. Other work, in the line
of SSDs aims at establishing cooperation by incorporating
social preferences such as inequity aversion into the model
(Hughes et al., 2018), where it is shown that inequity-averse
agents improve the temporal credit assignment problem and
promote cooperation. An example that works with positive
incentivations is given in (Lupu and Precup, 2020), an ap-
proach that allows agents to directly assign reward to other
agents to overcome the tragedy of the commons. In (Schmid
et al., 2018), so called action markets are proposed, where
agents can learn to incentivize others through positively re-
warding each other. This approach relates to the mechanism
in this work, as rewards can be given conditionally on spe-
cific actions of agents. It differs through the positive incenti-
vation value, which prohibits its application in social dilem-
mas, where the overall goal is mutual cooperation.

Opponent modelling (He et al., 2016; Raileanu et al.,
2018; Everett and Roberts, 2018) has also been utilized in
order to establish cooperation in SSDs, such as in (Wang
et al., 2018), where a cooperation degree detection network
was trained to identify the opponent’s current level of coop-
eration. Based on the opponent’s behavior, an agent can then
select its response. Other work with the aim of building an
opponent model allows agents to reason over the learning of
other agents by an additional term within the learning rule
(Foerster et al., 2018). The authors demonstrate that the en-
counter of two such agents can lead to tit-for-tat, a strategy

famous for its cooperativeness and robustness regarding ex-
ploitation from defectors. In this work, agents do not build
an opponent model, nor does learning involve any kind of
recursive or theory of mind (Rabinowitz et al., 2018) like
reasoning. Rather, other agents are considered as part of the
environment by individual agents, such that results can be
understood as the emergent outcome of independently learn-
ing agents trying to adapt to an ever changing environment.
Finally, agents in this work do not communicate explicitly
such as in (Foerster et al., 2016). Here, information is trans-
ferred only indirectly via agents’ penalizing activity.

Conclusion
In this work we consider the problem of multi-agent learn-
ing in environments where agents can either be cooperative
to increase the overall return or be defective to increase their
individual payoff. These scenarios include well known two
player social dilemmas like the Prisoner’s Dilemma, Stag
Hunt or Chicken but applies also to games involving poten-
tially large numbers of agents, such as the N-player public
good game. Inspired by theoretical findings and behavioral
experiments, which assign positive effects from sanction-
ing mechanisms towards cooperation, we propose a penalty
mechanism to tackle two challenges: solving the first order
social dilemma through the direct effect of penalties, and in-
centivizing agents to become effective punishers to prevent
the potential second order social dilemma. For the evalu-
ation we model agents as independent Q-learners, interact-
ing pairwise in an iterated version of the respective social
dilemma. From experiments in two agent social dilemmas
we find that the proposed penalties can achieve full cooper-
ation in dilemmas where Q-learning without penalties fails
to achieve cooperation and where game theory predicts mu-
tual defection (Prisoner’s Dilemma). Moreover, in N-player
scenarios we find that penalizing agents achieve more than
90% cooperation in games with up to 128 agents compared
to small and unstable rates of cooperation achieved by Q-
learning without penalties.
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