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Abstract. Confocal Laser Endomicroscopy (CLE), an optical imaging
technique allowing non-invasive examination of the mucosa on a (sub)-
cellular level, has proven to be a valuable diagnostic tool in gastroenterol-
ogy and shows promising results in various anatomical regions including
the oral cavity. Recently, the feasibility of automatic carcinoma detec-
tion for CLE images of sufficient quality was shown. However, in real
world data sets a high amount of CLE images is corrupted by artifacts.
Amongst the most prevalent artifact types are motion-induced image
deteriorations. In the scope of this work, algorithmic approaches for the
automatic detection of motion artifact-tainted image regions were devel-
oped. Hence, this work provides an important step towards clinical appli-
cability of automatic carcinoma detection. Both, conventional machine
learning and novel, deep learning-based approaches were assessed. The
deep learning-based approach outperforms the conventional approaches,
attaining an AUC of 0.90.

1 Introduction

With over 500,000 diagnosed cases each year, head and neck squamous cell car-
cinoma (HNSCC) is considered the sixth most common cancer type worldwide
[1]. For diagnosis of HNSCC, invasive biopsy and subsequent histopathological
examination is applied as gold standard method [2]. As alternative, non-invasive
optical imaging technologies as narrow-band imaging, autofluorescence imaging
and confocal laser endomicroscopy (CLE) are gaining interest in research [3].
Among those technologies, CLE has already proven to be a valuable diagnostic
tool in gastroenterology and has been successfully applied to examine lesions in
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the oral cavity [4]. Both, the interpretation of CLE images and the histopatholog-
ical examination of tissue samples require experience and proficiency and entail
a subjective component [5]. Thus, promising approaches using machine learn-
ing techniques for automatic carcinoma detection based on CLE images were
developed [6].

As the accuracy of these algorithms is highly affected by the occurrence of
artifacts, artifact-tainted images were excluded manually prior to training in a
time-consuming manual labeling step in all known approaches. In the scope of
this work, an automatic motion artifact detection pipeline was developed and
evaluated. Hence, this work provides the basis to integrate a fully automatic
motion artifact detection into existing carcinoma detection frameworks, an im-
portant step towards clinical applicability.

1.1 Motion artifacts

A frequent cause of image impairment are motion artifacts. They can either
be caused by movements of the investigated anatomical structures or motion
induced by the physician. The proportion of motion artifact images compared
to good quality images is highly dependent on the experience of the physician
[7]. As shown in Fig. 1, two different manifestations can be observed. The first
manifestation is characterized by streaky patterns originating from the repeated
acquisition of the same, shifted image line. This pattern can be observed, when
the sum of the velocities of probe, organ and scanning is approximately equal
to zero. This requires an organ movement in the same direction as the sam-
pling pattern or a probe motion in the correspondingly opposite direction. If
a significant relative motion results from organ or probe motion, the cells are
stretched or blurred. This second manifestation is hard to detect, as distinction
between elongated cells is difficult without the observation of adjacent frames.
Finally, motion artifacts can impair the whole image leading to a total loss of
information or only influence parts of the image still allowing a diagnosis based
on untainted regions [7]. Due to the meander-shaped optical sampling pattern,
only whole image rows are affected by motion artifacts.

(a) (b) (c)

Fig. 1. CLE images containing (a) no artifacts or motion artifacts manifesting
in (b) stretched cells or (c) stripe patterns (region marked in red).
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2 Materials and methods

For the present work, 116 CLE sequences comprising 11,234 images from 12
patients and 4 sites within the oral cavity, namely the upper alveolar ridge, the
lower inner labium, the palatal region and the lesion site itself were utilized.
The CLE sequences were recorded at the department of Oral and Maxillofacial
Surgery of the University Hospital Erlangen by a standalone probe-based CLE
system (Cellvizio, Mauna Kea Technologies, Paris, France). The obtained images
are approximately of size 576×578 pixels. The overall image quality was assessed
by an expert and artifact regions were annotated manually within each image.
Details on the data can be found in [6].

In the scope of this work, two different methodical approaches were estab-
lished for the detection of motion artifact-tainted CLE image regions. The first
approach uses conventional pattern recognition methods extracting characteris-
tic image features, whereas the second approach applies deep learning strategies.
For both approaches, images with low signal-to-noise ratio are excluded. The re-
maining CLE images are converted to 8-bit integer values after a quantile-based
dynamic range compression following Aubreville et al. [6] was performed.

2.1 Feature-based motion artifact detection

The feature-based approach consists of three steps: pre-processing, feature ex-
traction and classification. The pre-processing step is required due to the unusual
round shape of CLE images complicating the feature extraction process. Jare-
menko et al. circumvented this problem by dividing the image in overlapping,
square patches and concatenating the information of all patches for the classifi-
cation of the whole image [8]. As motion artifacts always cover the whole width
of an image, slices with a width of the maximum extent of the CLE image in
x-direction, a fixed height of 128 pixels and an overlap of 30% (HOG) or 50%
(corrAngle) are extracted. To allow the detection of motion artifact-tainted slices
of an image and differentiate them from untainted slices of the same image, ei-
ther Histogram of Oriented Gradient (HOG) or angle of maximum correlation
(corrAngle) features are extracted for each slice. For classification, a random
forest classifier (RF) and a support vector machine (SVM) classifier were used.
Undersampling of the majority class is applied to deal with the class imbalance.
Prior to training of the linear SVM classifier, the feature vector is standardized.
For evaluation purposes of both classifiers, 5-fold cross-validation is used. The
different slices of one image are all assigned to the same fold.

Histogram of oriented gradients (HOG) The Histogram of Oriented Gra-
dient (HOG) feature descriptor of Dalal and Triggs is frequently used in the
field of object recognition [9]. Basically, the occurrence of gradient directions is
computed in a local image region characterizing the local shape of an object.
In contrast to the original pipeline, no gamma and color normalization is used.
A cell size of 32×32 and block size of 64×64 resulted in the best classification
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performance. Due to the varying length of CLE image slices, the obtained HOG
feature vectors are of varying length. Hence, mean, standard deviation, skewness
and kurtosis are computed over all 9 bins of the feature vector individually. The
statistical properties for all bins are subsequently concatenated to form a feature
vector of a fixed length of 36.

Angle of Maximum Correlation (corrAngle) The angle of maximum cor-
relation feature (corrAngle) is designed under consideration of the origin of the
streaky patterns visible in most motion artifact-tainted images. The direction of
the relative motion accounts for the angle θ characterizing the direction of the
stripe pattern. To create a feature vector describing the presence or absence of
motion artifact patterns in an image slice with length L, a centered reference
segment of row i of the CLE image slice is extracted. For a set of angles equally
distributed between π

8
and 7

8
π and a fixed radius R, comparative segments are ex-

tracted with center at (L
2
+R sin(θ), j+R+R cos(θ)) using bilinear interpolation.

Then, the correlation coefficient of the reference segment and each comparative
segment is computed as measurement of similarity. The angle responsible for the
highest correlation coefficient is saved. This procedure is repeated for each row
despite the first and last R rows. Finally, all approximated motion angles are
concatenated to form the final feature vector. For a motion artifact-tainted im-
age slice, the approximated angle is constant (stripe pattern). In contrast, CLE
image slices without motion artifacts show high variations of the approximated
motion angle over image rows.

2.2 Deep learning-based motion artifact detection (artiNet)

Building on the Inception v3 architecture of Szegedy [10] pretrained on ImageNet,
the deep learning-based detector of motion artifact-tainted CLE image areas
(artiNet) is build by inserting a 2d 1×1 convolutional layer after the eighth in-
ception block followed by a column fusion and a softmax layer as depicted in
Fig. 2. Thus, the input representation for the new layers still entails spatial in-
formation. The convolutional layer is used to map the 17×17×768 dimensional
input to the two output classes motion artifact and good quality. The result is a
17×17 grid of predictions. To obtain predictions of motion artifact regions cover-
ing the whole image width comparable to the slices of the conventional approach,
a column fusion layer extracts the maximum over the image width resulting in
a 17×2 representation fed to the final softmax layer.

Prior to training the grayscale images are transformed to RGB color represen-
tation. Then, a centered image patch of 400×400 pixels is extracted and resized
to 299×299 pixels. Due to the slice-wise detection of motion artifacts and avail-
able corresponding labels effectively representing a fully convolutional approach
with a network capacity according to one with smaller patches, data augmen-
tation seems less important. Within the TensorFlow framework, the Inception
network was fine-tuned in 2000 training steps using the Adam optimizer with
an initial learning rate of 5 · 10−6. For the training of the new layers, a learn-
ing rate of 5 · 10−5 was used. In each training step, a minibatch consisting of 25
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Fig. 2. Visualization of the artiNet for motion artifact detection in CLE images
based on an Inception v3 network [10] pre-trained on ImageNet.

randomly selected instances of both classes is processed to deal with the class im-
balance of the data set. For evaluation, a leave-one-patient-out cross-validation
was performed.

3 Results

The top result is obtained by the artiNet, where an AUC of 0.90 is achieved.
The best performance following the conventional pattern recognition pipeline is
achieved by the corrAngle feature and RF classification. For this combination,
an AUC of 0.85 is reached. The corrAngle-based motion detection with RF
performs significantly better than the RF and SVM predictors trained on HOG,
where approximately equal ROC curves with AUC values of 0.73 and 0.74 are
achieved. In contrast to the RF classification performance, the results of the
SVM classifier trained on the corrAngle features are poor. For additional insight
into the performance of the artiNet, the comparison of predictions for single
image slices and respective labels is visualized in Fig. 3.

4 Discussion

Due to the included patch extraction step of the artiNet, the image borders are
discarded. For motion artifact detection, the center of the slice is representative
as a motion induced deterioration covers the whole extent in x-direction. Still,
the information at the top and bottom of the image is removed. Thus, motion
artifacts only deteriorating the rejected areas can not be detected. An improved
performance is to be expected if the whole image is used. As the manifestation
of stretched cells is underrepresented in the data set, a performance gap between
the two possible manifestations of motion artifacts, stripe patterns and stretched
cells might occur. Moreover, the performance of the proposed methods was only
assessed on data of one clinical team. Hence, additional training instances are
required to obtain a robust artifact detector.
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Fig. 3. Results of motion artifact detection in CLE images.
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(a) ROC curves visualizing the average
cross-validation performance of the motion
artifact detection.

True Positives

True Negatives

False Negatives

False Positives

(b) Example images show-
ing slicewise predictions of
the artiNet compared to
class labels.
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