TY - INPR A1 - Song, Rui A1 - Liu, Dai A1 - Chen, Dave Zhenyu A1 - Festag, Andreas A1 - Trinitis, Carsten A1 - Schulz, Martin A1 - Knoll, Alois T1 - Federated Learning via Decentralized Dataset Distillation in Resource Constrained Edge Environments N2 - In federated learning, all networked clients contribute to the model training cooperatively. However, with model sizes increasing, even sharing the trained partial models often leads to severe communication bottlenecks in underlying networks, especially when communicated iteratively. In this paper, we introduce a federated learning framework FedD3 requiring only one-shot communication by integrating dataset distillation instances. Instead of sharing model updates in other federated learning approaches, FedD3 allows the connected clients to distill the local datasets independently, and then aggregates those decentralized distilled datasets (e.g. a few unrecognizable images) from networks for model training. Our experimental results show that FedD3 significantly outperforms other federated learning frameworks in terms of needed communication volumes, while it provides the additional benefit to be able to balance the trade-off between accuracy and communication cost, depending on usage scenario or target dataset. For instance, for training an AlexNet model on CIFAR-10 with 10 clients under non-independent and identically distributed (Non-IID) setting, FedD3 can either increase the accuracy by over 71% with a similar communication volume, or save 98% of communication volume, while reaching the same accuracy, compared to other one-shot federated learning approaches. UR - https://doi.org/10.48550/arXiv.2208.11311 Y1 - 2022 UR - https://doi.org/10.48550/arXiv.2208.11311 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-60054 PB - arXiv CY - Ithaca ER - TY - INPR A1 - Song, Rui A1 - Liang, Chenwei A1 - Xia, Yan A1 - Zimmer, Walter A1 - Cao, Hu A1 - Caesar, Holger A1 - Festag, Andreas A1 - Knoll, Alois T1 - CoDa-4DGS: Dynamic Gaussian Splatting with Context and Deformation Awareness for Autonomous Driving N2 - Dynamic scene rendering opens new avenues in autonomous driving by enabling closed-loop simulations with photorealistic data, which is crucial for validating end-to-end algorithms. However, the complex and highly dynamic nature of traffic environments presents significant challenges in accurately rendering these scenes. In this paper, we introduce a novel 4D Gaussian Splatting (4DGS) approach, which incorporates context and temporal deformation awareness to improve dynamic scene rendering. Specifically, we employ a 2D semantic segmentation foundation model to self-supervise the 4D semantic features of Gaussians, ensuring meaningful contextual embedding. Simultaneously, we track the temporal deformation of each Gaussian across adjacent frames. By aggregating and encoding both semantic and temporal deformation features, each Gaussian is equipped with cues for potential deformation compensation within 3D space, facilitating a more precise representation of dynamic scenes. Experimental results show that our method improves 4DGS's ability to capture fine details in dynamic scene rendering for autonomous driving and outperforms other self-supervised methods in 4D reconstruction and novel view synthesis. Furthermore, CoDa-4DGS deforms semantic features with each Gaussian, enabling broader applications. UR - https://doi.org/10.48550/arXiv.2503.06744 Y1 - 2025 UR - https://doi.org/10.48550/arXiv.2503.06744 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-58313 PB - arXiv CY - Ithaca ER - TY - INPR A1 - Han, Longfei A1 - Xu, Qiuyu A1 - Kefferpütz, Klaus A1 - Elger, Gordon A1 - Beyerer, Jürgen T1 - Applying Extended Object Tracking for Self-Localization of Roadside Radar Sensors N2 - Intelligent Transportation Systems (ITS) can benefit from roadside 4D mmWave radar sensors for large-scale traffic monitoring due to their weatherproof functionality, long sensing range and low manufacturing cost. However, the localization method using external measurement devices has limitations in urban environments. Furthermore, if the sensor mount exhibits changes due to environmental influences, they cannot be corrected when the measurement is performed only during the installation. In this paper, we propose self-localization of roadside radar data using Extended Object Tracking (EOT). The method analyses both the tracked trajectories of the vehicles observed by the sensor and the aerial laser scan of city streets, assigns labels of driving behaviors such as "straight ahead", "left turn", "right turn" to trajectory sections and road segments, and performs Semantic Iterative Closest Points (SICP) algorithm to register the point cloud. The method exploits the result from a down stream task -- object tracking -- for localization. We demonstrate high accuracy in the sub-meter range along with very low orientation error. The method also shows good data efficiency. The evaluation is done in both simulation and real-world tests. UR - https://doi.org/10.48550/arXiv.2407.03084 Y1 - 2024 UR - https://doi.org/10.48550/arXiv.2407.03084 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-58361 PB - arXiv CY - Ithaca ER - TY - INPR A1 - Han, Longfei A1 - Kefferpütz, Klaus A1 - Beyerer, Jürgen T1 - 3D Extended Object Tracking based on Extruded B-Spline Side View Profiles N2 - Object tracking is an essential task for autonomous systems. With the advancement of 3D sensors, these systems can better perceive their surroundings using effective 3D Extended Object Tracking (EOT) methods. Based on the observation that common road users are symmetrical on the right and left sides in the traveling direction, we focus on the side view profile of the object. In order to leverage of the development in 2D EOT and balance the number of parameters of a shape model in the tracking algorithms, we propose a method for 3D extended object tracking (EOT) by describing the side view profile of the object with B-spline curves and forming an extrusion to obtain a 3D extent. The use of B-spline curves exploits their flexible representation power by allowing the control points to move freely. The algorithm is developed into an Extended Kalman Filter (EKF). For a through evaluation of this method, we use simulated traffic scenario of different vehicle models and realworld open dataset containing both radar and lidar data. UR - https://doi.org/10.48550/arXiv.2503.10730 Y1 - 2025 UR - https://doi.org/10.48550/arXiv.2503.10730 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-58331 PB - arXiv CY - Ithaca ER - TY - CHAP A1 - Song, Rui A1 - Festag, Andreas A1 - Jagtap, Abhishek Dinkar A1 - Bialdyga, Maximilian A1 - Yan, Zhiran A1 - Otte, Maximilian A1 - Sadashivaiah, Sanath Tiptur A1 - Knoll, Alois T1 - First Mile: An Open Innovation Lab for Infrastructure-Assisted Cooperative Intelligent Transportation Systems T2 - 2024 IEEE Intelligent Vehicles Symposium (IV) UR - https://doi.org/10.1109/IV55156.2024.10588500 Y1 - 2024 UR - https://doi.org/10.1109/IV55156.2024.10588500 SN - 979-8-3503-4881-1 SP - 1635 EP - 1642 PB - IEEE CY - Piscataway ER - TY - CHAP A1 - Hegde, Anupama A1 - Lobo, Silas A1 - Festag, Andreas T1 - Cellular-V2X for Vulnerable Road User Protection in Cooperative ITS T2 - 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) UR - https://doi.org/10.1109/WiMob55322.2022.9941707 KW - Radio resource allocation in Cellular-V2X KW - VRU safety and protection KW - messaging services Y1 - 2022 UR - https://doi.org/10.1109/WiMob55322.2022.9941707 SN - 978-1-6654-6975-3 SP - 118 EP - 123 PB - IEEE CY - Piscataway ER - TY - CHAP A1 - Song, Rui A1 - Liu, Dai A1 - Chen, Dave Zhenyu A1 - Festag, Andreas A1 - Trinitis, Carsten A1 - Schulz, Martin A1 - Knoll, Alois T1 - Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments T2 - IJCNN 2023 Conference Proceedings UR - https://doi.org/10.1109/IJCNN54540.2023.10191879 Y1 - 2023 UR - https://doi.org/10.1109/IJCNN54540.2023.10191879 SN - 978-1-6654-8867-9 PB - IEEE CY - Piscataway ER - TY - CHAP A1 - Meess, Henri A1 - Gerner, Jeremias A1 - Hein, Daniel A1 - Schmidtner, Stefanie A1 - Elger, Gordon T1 - Reinforcement Learning for Traffic Signal Control Optimization: A Concept for Real-World Implementation T2 - AAMAS '22: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems UR - https://dl.acm.org/doi/10.5555/3535850.3536081 KW - Multi-Agent Reinforcement Learning in real-world KW - MARL KW - traffic optimization KW - multimodal traffic KW - DRL Y1 - 2022 UR - https://dl.acm.org/doi/10.5555/3535850.3536081 SN - 978-1-4503-9213-6 SP - 1699 EP - 1701 PB - International Foundation for Autonomous Agents and Multiagent Systems CY - Richland ER - TY - CHAP A1 - Fritzsche, Richard A1 - Festag, Andreas T1 - Reliability Maximization with Location-Based Scheduling for Cellular-V2X Communications in Highway Scenarios T2 - 2018 16th International Conference on Intelligent Transportation Systems Telecommunications (ITST) Proceedings UR - https://doi.org/10.1109/ITST.2018.8566935 KW - Optimal scheduling KW - Power system reliability KW - Probability KW - Throughput KW - Reliability KW - Signal to noise ratio KW - Road transportation Y1 - 2018 UR - https://doi.org/10.1109/ITST.2018.8566935 SN - 978-1-5386-5544-3 PB - IEEE CY - Piscataway ER - TY - CHAP A1 - Agrawal, Shiva A1 - Song, Rui A1 - Doycheva, Kristina A1 - Knoll, Alois A1 - Elger, Gordon ED - Klein, Cornel ED - Jarke, Matthias ED - Ploeg, Jeroen ED - Helfert, Markus ED - Berns, Karsten ED - Gusikhin, Oleg T1 - Intelligent Roadside Infrastructure for Connected Mobility T2 - Smart Cities, Green Technologies, and Intelligent Transport Systems: 11th International Conference, SMARTGREENS 2022 and 8th International Conference, VEHITS 2022: Revised Selected Papers UR - https://doi.org/10.1007/978-3-031-37470-8_6 Y1 - 2023 UR - https://doi.org/10.1007/978-3-031-37470-8_6 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-41761 SN - 978-3-031-37470-8 SN - 1865-0937 SP - 134 EP - 157 PB - Springer CY - Cham ER -