TY - INPR A1 - Ganz, Jonathan A1 - Marzahl, Christian A1 - Ammeling, Jonas A1 - Richter, Barbara A1 - Puget, Chloé A1 - Denk, Daniela A1 - Demeter, Elena A. A1 - Tabaran, Flaviu A. A1 - Wasinger, Gabriel A1 - Lipnik, Karoline A1 - Tecilla, Marco A1 - Valentine, Matthew J. A1 - Dark, Michael A1 - Abele, Niklas A1 - Bolfa, Pompei A1 - Erber, Ramona A1 - Klopfleisch, Robert A1 - Merz, Sophie A1 - Donovan, Taryn A1 - Jabari, Samir A1 - Bertram, Christof A1 - Breininger, Katharina A1 - Aubreville, Marc T1 - On the Value of PHH3 for Mitotic Figure Detection on H&E-stained Images N2 - The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. Deep learning algorithms can standardize this task, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithm's performance. Unlike H&E, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E stain alone, the use of this ground truth could potentially introduce noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. We found that the annotators' object-level agreement increased when using PHH3-assisted labeling. Subsequently, MF detectors were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models' performance. Additionally, a novel dual-stain MF detector was developed to investigate the interpretation-shift of PHH3-assisted labels used in H&E, which clearly outperformed single-stain detectors. However, the PHH3-assisted labels did not have a positive effect on solely H&E-based models. The high performance of our dual-input detector reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect. UR - https://doi.org/10.48550/arXiv.2406.19899 Y1 - 2024 UR - https://doi.org/10.48550/arXiv.2406.19899 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-50155 PB - arXiv CY - Ithaca ER - TY - INPR A1 - Ganz, Jonathan A1 - Marzahl, Christian A1 - Ammeling, Jonas A1 - Rosbach, Emely A1 - Richter, Barbara A1 - Puget, Chloé A1 - Denk, Daniela A1 - Demeter, Elena A. A1 - Tabaran, Flaviu A. A1 - Wasinger, Gabriel A1 - Lipnik, Karoline A1 - Tecilla, Marco A1 - Valentine, Matthew J. A1 - Dark, Michael A1 - Abele, Niklas A1 - Bolfa, Pompei A1 - Erber, Ramona A1 - Klopfleisch, Robert A1 - Merz, Sophie A1 - Donovan, Taryn A1 - Jabari, Samir A1 - Bertram, Christof A1 - Breininger, Katharina A1 - Aubreville, Marc T1 - Information Mismatch in PHH3-Assisted Mitosis Annotation Leads to Interpretation Shifts in H&E Slide Analysis T2 - Research Square N2 - The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker, as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. In a computer-aided setting, deep learning algorithms can help to mitigate this, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithms' performance. Unlike H&E, where identification of MFs is based mainly on morphological features, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E staining alone, the use of this ground truth could potentially introduce an interpretation shift and even label noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. Subsequently, MF detectors, including a novel dual-stain detector, were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models' performance. We found that the annotators' object-level agreement significantly increased when using PHH3-assisted labeling (F1: 0.53 to 0.74). However, this enhancement in label consistency did not translate to improved performance for H&E-based detectors, neither during the training phase nor the evaluation phase. Conversely, the dual-stain detector was able to benefit from the higher consistency. This reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect, which renders PHH3-assisted annotations not well-aligned for use with H&E-based detectors. Based on our findings, we propose an improved PHH3-assisted labeling procedure. UR - https://doi.org/10.21203/rs.3.rs-4900505/v1 Y1 - 2024 UR - https://doi.org/10.21203/rs.3.rs-4900505/v1 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-57630 SN - 2693-5015 PB - Research Square CY - Durham ER - TY - JOUR A1 - Ganz, Jonathan A1 - Marzahl, Christian A1 - Ammeling, Jonas A1 - Rosbach, Emely A1 - Richter, Barbara A1 - Puget, Chloé A1 - Denk, Daniela A1 - Demeter, Elena A. A1 - Tabaran, Flaviu A. A1 - Wasinger, Gabriel A1 - Lipnik, Karoline A1 - Tecilla, Marco A1 - Valentine, Matthew J. A1 - Dark, Michael A1 - Abele, Niklas A1 - Bolfa, Pompei A1 - Erber, Ramona A1 - Klopfleisch, Robert A1 - Merz, Sophie A1 - Donovan, Taryn A1 - Jabari, Samir A1 - Bertram, Christof A1 - Breininger, Katharina A1 - Aubreville, Marc T1 - Information mismatch in PHH3-assisted mitosis annotation leads to interpretation shifts in H&E slide analysis JF - Scientific Reports N2 - The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker, as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. In a computer-aided setting, deep learning algorithms can help to mitigate this, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithms’ performance. Unlike H&E, where identification of MFs is based mainly on morphological features, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E staining alone, the use of this ground truth could potentially introduce an interpretation shift and even label noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. Subsequently, MF detectors, including a novel dual-stain detector, were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models’ performance. We found that the annotators’ object-level agreement significantly increased when using PHH3-assisted labeling (F1: 0.53 to 0.74). However, this enhancement in label consistency did not translate to improved performance for H&E-based detectors, neither during the training phase nor the evaluation phase. Conversely, the dual-stain detector was able to benefit from the higher consistency. This reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect, which renders PHH3-assisted annotations not well-aligned for use with H&E-based detectors. Based on our findings, we propose an improved PHH3-assisted labeling procedure. UR - https://doi.org/10.1038/s41598-024-77244-6 Y1 - 2024 UR - https://doi.org/10.1038/s41598-024-77244-6 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-53559 SN - 2045-2322 VL - 14 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Meuten, Donald J. A1 - Moore, Frances M. A1 - Donovan, Taryn A1 - Bertram, Christof A1 - Klopfleisch, Robert A1 - Foster, Robert A. A1 - Smedley, Rebecca C. A1 - Dark, Michael A1 - Milovancev, Milan A1 - Stromberg, Paul A1 - Williams, Bruce H. A1 - Aubreville, Marc A1 - Avallone, Giancarlo A1 - Bolfa, Pompei A1 - Cullen, John A1 - Dennis, Michelle M. A1 - Goldschmidt, Michael A1 - Luong, Richard A1 - Miller, Andrew D. A1 - Miller, Margaret A. A1 - Munday, John S. A1 - Roccabianca, Paola A1 - Salas, Elisa N. A1 - Schulman, F. Yvonne A1 - Laufer-Amorim, Renee A1 - Asakawa, Midori G. A1 - Craig, Linden A1 - Dervisis, Nick A1 - Esplin, D. Glen A1 - George, Jeanne W. A1 - Hauck, Marlene A1 - Kagawa, Yumiko A1 - Kiupel, Matti A1 - Linder, Keith A1 - Meichner, Kristina A1 - Marconato, Laura A1 - Oblak, Michelle L. A1 - Santos, Renato L. A1 - Simpson, R. Mark A1 - Tvedten, Harold A1 - Whitley, Derick T1 - International Guidelines for Veterinary Tumor Pathology: A Call to Action JF - Veterinary Pathology UR - https://doi.org/10.1177/03009858211013712 KW - standardization KW - oncology KW - guidelines KW - protocols KW - validation Y1 - 2021 UR - https://doi.org/10.1177/03009858211013712 SN - 1544-2217 VL - 58 IS - 5 SP - 766 EP - 794 PB - Sage CY - London ER -