TY - JOUR A1 - Wilm, Frauke A1 - Fragoso-Garcia, Marco A1 - Marzahl, Christian A1 - Qiu, Jingna A1 - Puget, Chloé A1 - Diehl, Laura A1 - Bertram, Christof A1 - Klopfleisch, Robert A1 - Maier, Andreas A1 - Breininger, Katharina A1 - Aubreville, Marc T1 - Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset JF - Scientific Data N2 - Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for supporting pathologists in this regard. However, many of these supervised algorithms require a large amount of annotated data for robust development. We present a publicly available dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater experiments, we show a high consistency of the provided labels, especially for tumor annotations. We further validate the dataset by training a deep neural network for the task of tissue segmentation and tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine cutaneous tumors possess various histologic homologies to human tumors the added value of this dataset is not limited to veterinary pathology but extends to more general fields of application. UR - https://doi.org/10.1038/s41597-022-01692-w Y1 - 2022 UR - https://doi.org/10.1038/s41597-022-01692-w UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-28741 SN - 2052-4463 VL - 9 PB - Springer Nature CY - New York ER - TY - INPR A1 - Puget, Chloé A1 - Ganz, Jonathan A1 - Ostermaier, Julian A1 - Konrad, Thomas A1 - Parlak, Eda A1 - Bertram, Christof A1 - Kiupel, Matti A1 - Breininger, Katharina A1 - Aubreville, Marc A1 - Klopfleisch, Robert T1 - Deep Learning model predicts the c-Kit-11 mutational status of canine cutaneous mast cell tumors by HE stained histological slides N2 - Numerous prognostic factors are currently assessed histopathologically in biopsies of canine mast cell tumors to evaluate clinical behavior. In addition, PCR analysis of the c-Kit exon 11 mutational status is often performed to evaluate the potential success of a tyrosine kinase inhibitor therapy. This project aimed at training deep learning models (DLMs) to identify the c-Kit-11 mutational status of MCTs solely based on morphology without additional molecular analysis. HE slides of 195 mutated and 173 non-mutated tumors were stained consecutively in two different laboratories and scanned with three different slide scanners. This resulted in six different datasets (stain-scanner variations) of whole slide images. DLMs were trained with single and mixed datasets and their performances was assessed under scanner and staining domain shifts. The DLMs correctly classified HE slides according to their c-Kit 11 mutation status in, on average, 87% of cases for the best-suited stain-scanner variant. A relevant performance drop could be observed when the stain-scanner combination of the training and test dataset differed. Multi-variant datasets improved the average accuracy but did not reach the maximum accuracy of algorithms trained and tested on the same stain-scanner variant. In summary, DLM-assisted morphological examination of MCTs can predict c-Kit-exon 11 mutational status of MCTs with high accuracy. However, the recognition performance is impeded by a change of scanner or staining protocol. Larger data sets with higher numbers of scans originating from different laboratories and scanners may lead to more robust DLMs to identify c-Kit mutations in HE slides. UR - https://doi.org/10.48550/arXiv.2401.06169 Y1 - 2024 UR - https://doi.org/10.48550/arXiv.2401.06169 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-46020 PB - arXiv CY - Ithaca ER - TY - INPR A1 - Ganz, Jonathan A1 - Marzahl, Christian A1 - Ammeling, Jonas A1 - Richter, Barbara A1 - Puget, Chloé A1 - Denk, Daniela A1 - Demeter, Elena A. A1 - Tabaran, Flaviu A. A1 - Wasinger, Gabriel A1 - Lipnik, Karoline A1 - Tecilla, Marco A1 - Valentine, Matthew J. A1 - Dark, Michael A1 - Abele, Niklas A1 - Bolfa, Pompei A1 - Erber, Ramona A1 - Klopfleisch, Robert A1 - Merz, Sophie A1 - Donovan, Taryn A. A1 - Jabari, Samir A1 - Bertram, Christof A1 - Breininger, Katharina A1 - Aubreville, Marc T1 - On the Value of PHH3 for Mitotic Figure Detection on H&E-stained Images N2 - The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. Deep learning algorithms can standardize this task, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithm's performance. Unlike H&E, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E stain alone, the use of this ground truth could potentially introduce noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. We found that the annotators' object-level agreement increased when using PHH3-assisted labeling. Subsequently, MF detectors were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models' performance. Additionally, a novel dual-stain MF detector was developed to investigate the interpretation-shift of PHH3-assisted labels used in H&E, which clearly outperformed single-stain detectors. However, the PHH3-assisted labels did not have a positive effect on solely H&E-based models. The high performance of our dual-input detector reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect. UR - https://doi.org/10.48550/arXiv.2406.19899 Y1 - 2024 UR - https://doi.org/10.48550/arXiv.2406.19899 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-50155 PB - arXiv CY - Ithaca ER - TY - JOUR A1 - Fragoso-Garcia, Marco A1 - Wilm, Frauke A1 - Bertram, Christof A1 - Merz, Sophie A1 - Schmidt, Anja A1 - Donovan, Taryn A. A1 - Fuchs-Baumgartinger, Andrea A1 - Bartel, Alexander A1 - Marzahl, Christian A1 - Diehl, Laura A1 - Puget, Chloe A1 - Maier, Andreas A1 - Aubreville, Marc A1 - Breininger, Katharina A1 - Klopfleisch, Robert T1 - Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images JF - Veterinary Pathology N2 - Microscopic evaluation of hematoxylin and eosin-stained slides is still the diagnostic gold standard for a variety of diseases, including neoplasms. Nevertheless, intra- and interrater variability are well documented among pathologists. So far, computer assistance via automated image analysis has shown potential to support pathologists in improving accuracy and reproducibility of quantitative tasks. In this proof of principle study, we describe a machine-learning-based algorithm for the automated diagnosis of 7 of the most common canine skin tumors: trichoblastoma, squamous cell carcinoma, peripheral nerve sheath tumor, melanoma, histiocytoma, mast cell tumor, and plasmacytoma. We selected, digitized, and annotated 350 hematoxylin and eosin-stained slides (50 per tumor type) to create a database divided into training, n = 245 whole-slide images (WSIs), validation ( n = 35 WSIs), and test sets ( n = 70 WSIs). Full annotations included the 7 tumor classes and 6 normal skin structures. The data set was used to train a convolutional neural network (CNN) for the automatic segmentation of tumor and nontumor classes. Subsequently, the detected tumor regions were classified patch-wise into 1 of the 7 tumor classes. A majority of patches-approach led to a tumor classification accuracy of the network on the slide-level of 95% (133/140 WSIs), with a patch-level precision of 85%. The same 140 WSIs were provided to 6 experienced pathologists for diagnosis, who achieved a similar slide-level accuracy of 98% (137/140 correct majority votes). Our results highlight the feasibility of artificial intelligence-based methods as a support tool in diagnostic oncologic pathology with future applications in other species and tumor types. UR - https://doi.org/10.1177/03009858231189205 KW - computer-aided diagnosis KW - computational pathology KW - digital pathology KW - dog KW - machine learning KW - skin KW - veterinary oncology Y1 - 2023 UR - https://doi.org/10.1177/03009858231189205 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-38321 SN - 0300-9858 VL - 60 IS - 6 SP - 865 EP - 875 PB - SAGE CY - London ER - TY - JOUR A1 - Wilm, Frauke A1 - Ihling, Christian A1 - Méhes, Gábor A1 - Terracciano, Luigi A1 - Puget, Chloé A1 - Klopfleisch, Robert A1 - Schüffler, Peter A1 - Aubreville, Marc A1 - Maier, Andreas A1 - Mrowiec, Thomas A1 - Breininger, Katharina T1 - Pan-tumor T-lymphocyte detection using deep neural networks: Recommendations for transfer learning in immunohistochemistry JF - Journal of Pathology Informatics N2 - The success of immuno-oncology treatments promises long-term cancer remission for an increasing number of patients. The response to checkpoint inhibitor drugs has shown a correlation with the presence of immune cells in the tumor and tumor microenvironment. An in-depth understanding of the spatial localization of immune cells is therefore critical for understanding the tumor’s immune landscape and predicting drug response. Computer-aided systems are well suited for efficiently quantifying immune cells in their spatial context. Conventional image analysis approaches are often based on color features and therefore require a high level of manual interaction. More robust image analysis methods based on deep learning are expected to decrease this reliance on human interaction and improve the reproducibility of immune cell scoring. However, these methods require sufficient training data and previous work has reported low robustness of these algorithms when they are tested on out-of-distribution data from different pathology labs or samples from different organs. In this work, we used a new image analysis pipeline to explicitly evaluate the robustness of marker-labeled lymphocyte quantification algorithms depending on the number of training samples before and after being transferred to a new tumor indication. For these experiments, we adapted the RetinaNet architecture for the task of T-lymphocyte detection and employed transfer learning to bridge the domain gap between tumor indications and reduce the annotation costs for unseen domains. On our test set, we achieved human-level performance for almost all tumor indications with an average precision of 0.74 in-domain and 0.72–0.74 cross-domain. From our results, we derive recommendations for model development regarding annotation extent, training sample selection, and label extraction for the development of robust algorithms for immune cell scoring. By extending the task of marker-labeled lymphocyte quantification to a multi-class detection task, the pre-requisite for subsequent analyses, e.g., distinguishing lymphocytes in the tumor stroma from tumor-infiltrating lymphocytes, is met. UR - https://doi.org/10.1016/j.jpi.2023.100301 KW - Tumor-infiltrating lymphocytes KW - Immuno-oncology KW - Immunohistochemistry KW - Deep learning KW - Transfer learning KW - Domain adaptation Y1 - 2023 UR - https://doi.org/10.1016/j.jpi.2023.100301 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-40458 SN - 2153-3539 VL - 2023 IS - 14 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ganz, Jonathan A1 - Lipnik, Karoline A1 - Ammeling, Jonas A1 - Richter, Barbara A1 - Puget, Chloé A1 - Parlak, Eda A1 - Diehl, Laura A1 - Klopfleisch, Robert A1 - Donovan, Taryn A. A1 - Kiupel, Matti A1 - Bertram, Christof A1 - Breininger, Katharina A1 - Aubreville, Marc ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier, Andreas ED - Maier-Hein, Klaus H. ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Deep Learning-based Automatic Assessment of AgNOR-scores in Histopathology Images T2 - Bildverarbeitung für die Medizin 2023: Proceedings, German Workshop on Medical Image Computing, Braunschweig, July 2-4, 2023 UR - https://doi.org/10.1007/978-3-658-41657-7_49 Y1 - 2023 UR - https://doi.org/10.1007/978-3-658-41657-7_49 SN - 978-3-658-41657-7 SN - 978-3-658-41656-0 SP - 226 EP - 231 PB - Springer Vieweg CY - Wiesbaden ER -