TY - JOUR A1 - Marzahl, Christian A1 - Aubreville, Marc A1 - Bertram, Christof A1 - Stayt, Jason A1 - Jasensky, Anne-Katherine A1 - Bartenschlager, Florian A1 - Fragoso-Garcia, Marco A1 - Barton, Ann K. A1 - Elsemann, Svenja A1 - Jabari, Samir A1 - Krauth, Jens A1 - Madhu, Prathmesh A1 - Voigt, Jörn A1 - Hill, Jenny A1 - Klopfleisch, Robert A1 - Maier, Andreas T1 - Deep Learning-based quantification of pulmonary hemosiderophages in cytology slides JF - Scientific reports N2 - Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is considered the most sensitive diagnostic method. Macrophages are classified depending on the degree of cytoplasmic hemosiderin content. The current gold standard is manual grading, which is however monotonous and time-consuming. We evaluated state-of-the-art deep learning-based methods for single cell macrophage classification and compared them against the performance of nine cytology experts and evaluated inter- and intra-observer variability. Additionally, we evaluated object detection methods on a novel data set of 17 completely annotated cytology whole slide images (WSI) containing 78,047 hemosiderophages. Our deep learning-based approach reached a concordance of 0.85, partially exceeding human expert concordance (0.68 to 0.86, mean of 0.73, SD of 0.04). Intra-observer variability was high (0.68 to 0.88) and inter-observer concordance was moderate (Fleiss’ kappa = 0.67). Our object detection approach has a mean average precision of 0.66 over the five classes from the whole slide gigapixel image and a computation time of below two minutes. To mitigate the high inter- and intra-rater variability, we propose our automated object detection pipeline, enabling accurate, reproducible and quick EIPH scoring in WSI. UR - https://doi.org/10.1038/s41598-020-65958-2 Y1 - 2020 UR - https://doi.org/10.1038/s41598-020-65958-2 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-11783 SN - 2045-2322 VL - 10 PB - Springer Nature CY - London ER - TY - JOUR A1 - Bertram, Christof A1 - Marzahl, Christian A1 - Bartel, Alexander A1 - Stayt, Jason A1 - Bonsembiante, Federico A1 - Beeler-Marfisi, Janet A1 - Barton, Ann K. A1 - Brocca, Ginevra A1 - Gelain, Maria Elena A1 - Gläsel, Agnes C. A1 - du Preez, Kelly A1 - Weiler, Kristina A1 - Weissenbacher-Lang, Christiane A1 - Breininger, Katharina A1 - Aubreville, Marc A1 - Maier, Andreas A1 - Klopfleisch, Robert A1 - Hill, Jenny T1 - Cytologic scoring of equine exercise-induced pulmonary hemorrhage BT - Performance of human experts and a deep learning-based algorithm JF - Veterinary Pathology N2 - Exercise-induced pulmonary hemorrhage (EIPH) is a relevant respiratory disease in sport horses, which can be diagnosed by examination of bronchoalveolar lavage fluid (BALF) cells using the total hemosiderin score (THS). The aim of this study was to evaluate the diagnostic accuracy and reproducibility of annotators and to validate a deep learning-based algorithm for the THS. Digitized cytological specimens stained for iron were prepared from 52 equine BALF samples. Ten annotators produced a THS for each slide according to published methods. The reference methods for comparing annotator’s and algorithmic performance included a ground truth dataset, the mean annotators’ THSs, and chemical iron measurements. Results of the study showed that annotators had marked interobserver variability of the THS, which was mostly due to a systematic error between annotators in grading the intracytoplasmatic hemosiderin content of individual macrophages. Regarding overall measurement error between the annotators, 87.7% of the variance could be reduced by using standardized grades based on the ground truth. The algorithm was highly consistent with the ground truth in assigning hemosiderin grades. Compared with the ground truth THS, annotators had an accuracy of diagnosing EIPH (THS of < or ≥ 75) of 75.7%, whereas, the algorithm had an accuracy of 92.3% with no relevant differences in correlation with chemical iron measurements. The results show that deep learning-based algorithms are useful for improving reproducibility and routine applicability of the THS. For THS by experts, a diagnostic uncertainty interval of 40 to 110 is proposed. THSs within this interval have insufficient reproducibility regarding the EIPH diagnosis. UR - https://doi.org/10.1177/03009858221137582 KW - artificial intelligence KW - automated image analysis KW - bronchoalveolar lavage fluid KW - computational pathology KW - digital pathology KW - equine KW - pulmonary hemorrhage KW - respiratory disease KW - total hemosiderin score Y1 - 2022 UR - https://doi.org/10.1177/03009858221137582 UR - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:573-35196 SN - 1544-2217 VL - 60 IS - 1 SP - 75 EP - 85 PB - Sage CY - London ER - TY - CHAP A1 - Marzahl, Christian A1 - Bertram, Christof A1 - Wilm, Frauke A1 - Voigt, Jörn A1 - Barton, Ann K. A1 - Klopfleisch, Robert A1 - Breininger, Katharina A1 - Maier, Andreas A1 - Aubreville, Marc T1 - Cell detection for asthma on partially annotated whole slide images BT - learning to be EXACT T2 - Bildverarbeitung für die Medizin 2021: Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7–9, 2021 UR - https://doi.org/10.1007/978-3-658-33198-6_36 Y1 - 2021 UR - https://doi.org/10.1007/978-3-658-33198-6_36 SN - 978-3-658-33197-9 SN - 978-3-658-33198-6 SN - 1431-472X SP - 147 EP - 152 PB - Springer Vieweg CY - Wiesbaden ER -