@article{ElMakroumKhallaayounLghouletal.2023, author = {El Makroum, Reda and Khallaayoun, Ahmed and Lghoul, Rachid and Mehta, Kedar and Z{\"o}rner, Wilfried}, title = {Home Energy Management System Based on Genetic Algorithm for Load Scheduling: A Case Study Based on Real Life Consumption Data}, volume = {16}, pages = {2698}, journal = {Energies}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {https://doi.org/10.3390/en16062698}, year = {2023}, abstract = {This paper proposes a home energy management system able to achieve optimized load scheduling for the operation of appliances within a given household. The system, based on the genetic algorithm, provides recommendations for the user to improve the way the energy needs of the home are handled. These recommendations not only take into account the dynamic pricing of electricity, but also the optimization for solar energy usage as well as user comfort. Historical data regarding the times at which the appliances have been used is leveraged through a statistical method to integrate the user's preference into the algorithm. Based on real life appliance consumption data collected from a household in Morocco, three scenarios are established to assess the performance of the proposed system with each scenario having different parameters. Running the scenarios on the developed MATLAB script shows a cost saving of up to 63.48\% as compared to a base scenario for a specific day. These results demonstrate that significant cost saving can be achieved while maintaining user comfort. The addition of supplementary shiftable loads (i.e., an electric vehicle) to the household as well as the limitations of such home energy management systems are discussed. The main contribution of this paper is the real data and including the user comfort as a metric in in the home energy management scheme.}, language = {en} } @article{MehtaEhrenwirthMissalletal.2021, author = {Mehta, Kedar and Ehrenwirth, Mathias and Missall, Siegmund and Degembaeva, Nadira and Akmatov, Kuban and Z{\"o}rner, Wilfried}, title = {Energy Profiling of a High-Altitude Kyrgyz Community: Challenges and Motivations to Preserve Floodplain Ecosystems Based on Household Survey}, volume = {13}, pages = {13086}, journal = {Sustainability}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {https://doi.org/10.3390/su132313086}, year = {2021}, abstract = {The floodplain areas along the Naryn River in Kyrgyzstan are essential as they hold the riparian (local) ecosystems because they provide firewood, pastureland, and areas for recreation and protection against erosion. Due to limited access to adequate, reliable, and sustainable energy services, the rural population usually derived their energy needs from multiple natural energy resources (i.e., firewood, charcoal, agricultural residues, animal dung, and wood branches). This is considered a common and predominant practice in rural Kyrgyzstan. This situation leads to a negative impact on local ecosystem services. In addition to that, the reliance on solid fuels contributes to indoor and outdoor air pollution, which is partially threatening the local ecosystem services. By contrast, the employment of renewable-based energy supply systems would substantially reduce the burden on the environment, which is mainly untapped. To integrate renewable energies, it is important to understand the energy behavior of floodplain communities. In that response, the presented article is the first attempt to capture the energy identity of the floodplain community of Kyrgyzstan based on a quantitative energy-based (on-site) household survey. Furthermore, the present research article synthesizes the driving factors that have a (direct or indirect) impact on the energy and local ecosystem services. In addition, the present article proposes a brief pathway for the sustainable energy transition. The article records the recommendation to integrate renewable energies to preserve the local ecosystems of Kyrgyzstan.}, language = {en} } @article{SummOyinlolaKhattaketal.2023, author = {Summ, Thorsten and Oyinlola, Muyiwa and Khattak, Sanober and Trinkl, Christoph and Z{\"o}rner, Wilfried}, title = {Statistical analysis of solar thermal collectors in the Solar Keymark Database}, volume = {2024}, pages = {103581}, journal = {Sustainable Energy Technologies and Assessments}, number = {61}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-1396}, doi = {https://doi.org/10.1016/j.seta.2023.103581}, year = {2023}, abstract = {Experimental, analytical, or numerical investigations are ordinarily conducted to reveal optimisation potential for solar thermal collectors. At the same time, the 'Solar Keymark Database' contains more than 2,000 test reports from certified laboratories featuring properties including thermal efficiency, dimensions, or optical properties. This dataset offers untapped potential for statistical analyses as an alternative optimisation approach. Hence, this paper aims to provide a) the first statistical findings of solar thermal collector properties listed in the Solar Keymark Database and b) insights into statistical relations between these properties. The key correlations observed from the analysis of flat-plate collectors were between efficiency and both gross height (R = 0.30) and gross area (R = 0.27). We concluded that preferable collector designs may be featured with larger area to height ratios. The analyses of evacuated tube collectors revealed a strong correlation between efficiency and transversal incidence angle modifier (R = -0.65) as a result from different tube spacing. It was noticeable that the quasi-dynamic test method reported significantly higher efficiencies (7.14 percentage points) for evacuated tube collectors, which should be carefully considered for future test procedures. Overall, the statistical analysis was in accordance with conventional bottom-up analyses and revealed insightful dependencies for the present collector data.}, language = {en} } @article{ReiterTrinklZoerneretal.2015, author = {Reiter, Christoph and Trinkl, Christoph and Z{\"o}rner, Wilfried and Hanby, Victor Ian}, title = {A Dynamic Multinode Model for Component-Oriented Thermal Analysis of Flat-Plate Solar Collectors}, volume = {2015}, pages = {280694}, journal = {Journal of Solar Energy}, publisher = {Hindawi Publ.}, address = {New York; Cairo}, issn = {2314-6230}, doi = {http://dx.doi.org/10.1155/2015/280694}, year = {2015}, abstract = {A mathematical model of a flat-plate solar collector was developed on the basis of the physical principles of optics and heat transfer in order to determine collector's component temperatures as well as collector efficiency. In contrast to many available models, the targeted use of this dynamic model is the detailed, theoretical investigation of the thermal behaviour of newly developed or adjusted collector designs on component level, for example, absorber, casing, or transparent cover. The defined model is based on a multinode network (absorber, fluid, glazing, and backside insulation) containing the relevant physical equations to transfer the energy. The heat transfer network covers heat conduction, convection, and radiation. Furthermore, the collector optics is defined for the plane glazing and the absorber surface and also considers interactions between them. The model enables the variation of physical properties considering the geometric parameters and materials. Finally, the model was validated using measurement data and existing efficiency curve models. Both comparisons proved high accuracy of the developed model with deviation of up to 3\% in collector efficiency and 1 K in component temperatures.}, language = {en} } @article{ReiterBrandmayrTrinkletal.2014, author = {Reiter, Christoph and Brandmayr, Sebastian and Trinkl, Christoph and Z{\"o}rner, Wilfried and Hanby, Victor Ian}, title = {Performance Optimisation of Polymeric Collectors by Means of Dynamic Simulation and Sensitivity Analysis}, volume = {2014}, journal = {Energy Procedia}, number = {48}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {https://doi.org/10.1016/j.egypro.2014.02.023}, pages = {181 -- 191}, year = {2014}, abstract = {A dynamic flat-plate collector model for parametric sensitivity studies on polymer-based collector designs was developed. Validation using experimental results of conventional flat-plate collectors showed satisfying results especially regarding the calculation of individual part temperatures of a collector. The model was used to predict system efficiency as well as individual part temperatures in order to analyse a polymeric collector approach in comparison to a conventional collector. The simulation results showed that the fractional energy savings of systems with conventional flat-plate collectors cannot be reached with the analysed polymeric collector approach. Also the stagnation temperatures of more efficient approaches are too high for low-cost polymeric materials. The exemplary analysis of annual temperature loads of the backside insulation for different approaches proved the necessity of careful collector design aiming at temperature reduction for all individual collector parts.}, language = {en} } @article{MuellerBrandmayrZoerner2014, author = {M{\"u}ller, Holger and Brandmayr, Sebastian and Z{\"o}rner, Wilfried}, title = {Development of an evaluation methodology for the potential of solar-thermal energy use in the food industry}, volume = {214}, journal = {Energy Procedia}, number = {48}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {https://doi.org/10.1016/j.egypro.2014.02.135}, pages = {1194 -- 1201}, year = {2014}, abstract = {The research project 'Solar Heat in the Liquid Food Industry' (part of the FORETA Research Network) focused on the development and optimisation of low-temperature heating systems for the liquid food industry. Its main objectives are in energy efficiency, waste heat recovery and the feasibility of a solar-thermal process heating system. Based on the particular simulation results the overall solar-thermal potentials for German breweries and dairies were determined. In this connection a literature review indicated that most of the potential studies on solar-thermal energy use in the industry or related to specific industrial sectors are based on the total use of low-temperature heat. In opposition to these results, the available and mainly limited roof area was found to be a more important aspect for the solar-thermal potential. Hence, the development of a methodology for a site- specific analysis was necessary. The interconnection of only a few defined evaluation criteria resulted in a more realistic estimation of the potential for a solar-thermal heat supply.}, language = {en} } @inproceedings{BeringerMehtaEhrenwirthetal.2021, author = {Beringer, Jakob and Mehta, Kedar and Ehrenwirth, Mathias and Z{\"o}rner, Wilfried}, title = {Sustainable materials for insulating high-altitude rural Kyrgyz residential houses: A parametric economic study}, booktitle = {Applied Research Conference 2021, Conference Proceedings}, editor = {S{\"o}llner, Matthias and Pirkl, Gerald}, publisher = {Ostbayerische Technische Hochschule Amberg-Weiden}, address = {Amberg}, url = {https://www.oth-aw.de/files/oth-aw/Aktuelles/Veroeffentlichungen/Applied_Research_Conference_ARC2021_Proceedings.pdf}, pages = {183 -- 188}, year = {2021}, language = {en} } @inproceedings{KnepperEhrenwirthZoerner2021, author = {Knepper, Karoline and Ehrenwirth, Mathias and Z{\"o}rner, Wilfried}, title = {Potential of e- mobility in rural areas - Evaluation of opportunities and barriers based on literature review}, booktitle = {Applied Research Conference 2021, Conference Proceedings}, editor = {S{\"o}llner, Matthias and Pirkl, Gerald}, publisher = {Ostbayerische Technische Hochschule Amberg-Weiden}, address = {Amberg}, url = {https://www.oth-aw.de/files/oth-aw/Aktuelles/Veroeffentlichungen/Applied_Research_Conference_ARC2021_Proceedings.pdf}, pages = {216 -- 220}, year = {2021}, language = {en} } @inproceedings{RiedmaierBaerZoerner2021, author = {Riedmaier, Thomas and B{\"a}r, Katharina and Z{\"o}rner, Wilfried}, title = {Comparison of different calculation methods for the outflow from pressurized vessels}, booktitle = {Applied Research Conference 2021, Conference Proceedings}, editor = {S{\"o}llner, Matthias and Pirkl, Gerald}, publisher = {Ostbayerische Technische Hochschule Amberg-Weiden}, address = {Amberg}, url = {https://www.oth-aw.de/files/oth-aw/Aktuelles/Veroeffentlichungen/Applied_Research_Conference_ARC2021_Proceedings.pdf}, pages = {258 -- 263}, year = {2021}, language = {en} }