@inproceedings{MarzahlAubrevilleBertrametal.2020, author = {Marzahl, Christian and Aubreville, Marc and Bertram, Christof and Gerlach, Stefan and Maier, Jennifer and Voigt, J{\"o}rn and Hill, Jenny and Klopfleisch, Robert and Maier, Andreas}, title = {Is crowd-algorithm collaboration an advanced alternative to crowd-sourcing on cytology slides?}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2020, Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2020 in Berlin}, editor = {Tolxdorff, Thomas and Deserno, Thomas Martin and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Palm, Christoph}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-29266-9}, doi = {https://doi.org/10.1007/978-3-658-29267-6_5}, pages = {26 -- 31}, year = {2020}, language = {en} } @article{MarzahlAubrevilleBertrametal.2020, author = {Marzahl, Christian and Aubreville, Marc and Bertram, Christof and Stayt, Jason and Jasensky, Anne-Katherine and Bartenschlager, Florian and Fragoso-Garcia, Marco and Barton, Ann K. and Elsemann, Svenja and Jabari, Samir and Krauth, Jens and Madhu, Prathmesh and Voigt, J{\"o}rn and Hill, Jenny and Klopfleisch, Robert and Maier, Andreas}, title = {Deep Learning-based quantification of pulmonary hemosiderophages in cytology slides}, volume = {10}, pages = {9795}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {https://doi.org/10.1038/s41598-020-65958-2}, year = {2020}, abstract = {Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is considered the most sensitive diagnostic method. Macrophages are classified depending on the degree of cytoplasmic hemosiderin content. The current gold standard is manual grading, which is however monotonous and time-consuming. We evaluated state-of-the-art deep learning-based methods for single cell macrophage classification and compared them against the performance of nine cytology experts and evaluated inter- and intra-observer variability. Additionally, we evaluated object detection methods on a novel data set of 17 completely annotated cytology whole slide images (WSI) containing 78,047 hemosiderophages. Our deep learning-based approach reached a concordance of 0.85, partially exceeding human expert concordance (0.68 to 0.86, mean of 0.73, SD of 0.04). Intra-observer variability was high (0.68 to 0.88) and inter-observer concordance was moderate (Fleiss' kappa = 0.67). Our object detection approach has a mean average precision of 0.66 over the five classes from the whole slide gigapixel image and a computation time of below two minutes. To mitigate the high inter- and intra-rater variability, we propose our automated object detection pipeline, enabling accurate, reproducible and quick EIPH scoring in WSI.}, language = {en} } @unpublished{MarzahlBertramAubrevilleetal.2020, author = {Marzahl, Christian and Bertram, Christof and Aubreville, Marc and Petrick, Anne and Weiler, Kristina and Gl{\"a}sel, Agnes C. and Fragoso-Garcia, Marco and Merz, Sophie and Bartenschlager, Florian and Hoppe, Judith and Langenhagen, Alina and Jasensky, Anne-Katherine and Voigt, J{\"o}rn and Klopfleisch, Robert and Maier, Andreas}, title = {Are Fast Labeling Methods Reliable? A Case Study of Computer-Aided Expert Annotations on Microscopy Slides}, publisher = {arXiv}, address = {Ithaca}, doi = {https://doi.org/10.48550/arXiv.2004.05838}, year = {2020}, language = {en} } @inproceedings{MarzahlWilmTharunetal.2021, author = {Marzahl, Christian and Wilm, Frauke and Tharun, Lars and Perner, Sven and Kr{\"o}ger, Christine and Voigt, J{\"o}rn and Klopfleisch, Robert and Maier, Andreas and Aubreville, Marc and Breininger, Katharina}, title = {Robust quad-tree based registration on whole slide images}, booktitle = {Proceedings of Machine Learning Research: Proceedings of COMPAY 2021}, number = {156}, publisher = {PMLR}, address = {[s. l.]}, url = {https://proceedings.mlr.press/v156/marzahl21a.html}, pages = {181 -- 190}, year = {2021}, language = {en} } @inproceedings{MarzahlBertramAubrevilleetal.2020, author = {Marzahl, Christian and Bertram, Christof and Aubreville, Marc and Petrick, Anne and Weiler, Kristina and Gl{\"a}sel, Agnes C. and Fragoso-Garcia, Marco and Merz, Sophie and Bartenschlager, Florian and Hoppe, Judith and Langenhagen, Alina and Jasensky, Anne-Katherine and Voigt, J{\"o}rn and Klopfleisch, Robert and Maier, Andreas}, title = {Are Fast Labeling Methods Reliable? A Case Study of Computer-Aided Expert Annotations on Microscopy Slides}, booktitle = {Medical Image Computing and Computer Assisted Intervention - MICCAI 2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-59710-8}, issn = {1611-3349}, doi = {https://doi.org/10.1007/978-3-030-59710-8_3}, pages = {24 -- 32}, year = {2020}, language = {en} } @inproceedings{MarzahlAubrevilleVoigtetal.2019, author = {Marzahl, Christian and Aubreville, Marc and Voigt, J{\"o}rn and Maier, Andreas}, title = {Classification of leukemic b-lymphoblast cells from blood smear microscopic images with an attention-based deep learning method and advanced augmentation techniques}, booktitle = {ISBI 2019 C-NMC challenge: classification in cancer cell imaging}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-15-0797-7}, issn = {2195-271X}, doi = {https://doi.org/10.1007/978-981-15-0798-4_2}, pages = {13 -- 22}, year = {2019}, language = {en} } @article{MarzahlHillStaytetal.2022, author = {Marzahl, Christian and Hill, Jenny and Stayt, Jason and Bienzle, Dorothee and Welker, Lutz and Wilm, Frauke and Voigt, J{\"o}rn and Aubreville, Marc and Maier, Andreas and Klopfleisch, Robert and Breininger, Katharina and Bertram, Christof}, title = {Inter-species cell detection - datasets on pulmonary hemosiderophages in equine, human and feline specimens}, volume = {9}, pages = {269}, journal = {Scientific Data}, publisher = {Springer Nature}, address = {London}, issn = {2052-4463}, doi = {https://doi.org/10.1038/s41597-022-01389-0}, year = {2022}, abstract = {Pulmonary hemorrhage (P-Hem) occurs among multiple species and can have various causes. Cytology of bronchoalveolar lavage fluid (BALF) using a 5-tier scoring system of alveolar macrophages based on their hemosiderin content is considered the most sensitive diagnostic method. We introduce a novel, fully annotated multi-species P-Hem dataset, which consists of 74 cytology whole slide images (WSIs) with equine, feline and human samples. To create this high-quality and high-quantity dataset, we developed an annotation pipeline combining human expertise with deep learning and data visualisation techniques. We applied a deep learning-based object detection approach trained on 17 expertly annotated equine WSIs, to the remaining 39 equine, 12 human and 7 feline WSIs. The resulting annotations were semi-automatically screened for errors on multiple types of specialised annotation maps and finally reviewed by a trained pathologist. Our dataset contains a total of 297,383 hemosiderophages classified into five grades. It is one of the largest publicly available WSIs datasets with respect to the number of annotations, the scanned area and the number of species covered.}, language = {en} } @article{MarzahlAubrevilleBertrametal.2021, author = {Marzahl, Christian and Aubreville, Marc and Bertram, Christof and Maier, Jennifer and Bergler, Christian and Kr{\"o}ger, Christine and Voigt, J{\"o}rn and Breininger, Katharina and Klopfleisch, Robert and Maier, Andreas}, title = {EXACT: a collaboration toolset for algorithm-aided annotation of images with annotation version control}, volume = {11}, pages = {4343}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {https://doi.org/10.1038/s41598-021-83827-4}, year = {2021}, abstract = {In many research areas, scientific progress is accelerated by multidisciplinary access to image data and their interdisciplinary annotation. However, keeping track of these annotations to ensure a high-quality multi-purpose data set is a challenging and labour intensive task. We developed the open-source online platform EXACT (EXpert Algorithm Collaboration Tool) that enables the collaborative interdisciplinary analysis of images from different domains online and offline. EXACT supports multi-gigapixel medical whole slide images as well as image series with thousands of images. The software utilises a flexible plugin system that can be adapted to diverse applications such as counting mitotic figures with a screening mode, finding false annotations on a novel validation view, or using the latest deep learning image analysis technologies. This is combined with a version control system which makes it possible to keep track of changes in the data sets and, for example, to link the results of deep learning experiments to specific data set versions. EXACT is freely available and has already been successfully applied to a broad range of annotation tasks, including highly diverse applications like deep learning supported cytology scoring, interdisciplinary multi-centre whole slide image tumour annotation, and highly specialised whale sound spectroscopy clustering.}, language = {en} } @inproceedings{MarzahlBertramWilmetal.2021, author = {Marzahl, Christian and Bertram, Christof and Wilm, Frauke and Voigt, J{\"o}rn and Barton, Ann K. and Klopfleisch, Robert and Breininger, Katharina and Maier, Andreas and Aubreville, Marc}, title = {Cell detection for asthma on partially annotated whole slide images}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2021: Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, subtitle = {learning to be EXACT}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-33197-9}, issn = {1431-472X}, doi = {https://doi.org/10.1007/978-3-658-33198-6_36}, pages = {147 -- 152}, year = {2021}, language = {en} }