@inproceedings{MarzahlBertramWilmetal.2021, author = {Marzahl, Christian and Bertram, Christof and Wilm, Frauke and Voigt, J{\"o}rn and Barton, Ann K. and Klopfleisch, Robert and Breininger, Katharina and Maier, Andreas and Aubreville, Marc}, title = {Cell detection for asthma on partially annotated whole slide images}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2021: Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021}, subtitle = {learning to be EXACT}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-33197-9}, issn = {1431-472X}, doi = {https://doi.org/10.1007/978-3-658-33198-6_36}, pages = {147 -- 152}, year = {2021}, language = {en} } @article{PugetGanzBertrametal.2025, author = {Puget, Chlo{\´e} and Ganz, Jonathan and Bertram, Christof and Conrad, Thomas and Baeblich, Malte and Voss, Anne and Landmann, Katharina and Haake, Alexander F. H. and Spree, Andreas and Hartung, Svenja and Aeschlimann, Leonore and Soto, Sara and de Brot, Simone and Dettwiler, Martina and Aupperle-Lellbach, Heike and Bolfa, Pompei and Bartel, Alexander and Kiupel, Matti and Breininger, Katharina and Aubreville, Marc and Klopfleisch, Robert}, title = {Artificial intelligence predicts c-KIT exon 11 genotype by phenotype in canine cutaneous mast cell tumors: Can human observers learn it?}, journal = {Veterinary Pathology}, publisher = {Sage}, address = {London}, issn = {1544-2217}, doi = {https://doi.org/10.1177/03009858251380284}, year = {2025}, abstract = {Canine cutaneous mast cell tumors (ccMCTs) are frequent neoplasms with variable biological behaviors. Internal tandem duplication mutations in c-KIT exon 11 (c-KIT-11-ITD) are associated with poor prognosis but predict therapeutic response to tyrosine kinase inhibitors. In a previous work, deep learning algorithms managed to predict the presence of c-KIT-11-ITD on digitalized hematoxylin and eosin-stained histological slides (whole-slide images, WSIs) in up to 87\% of cases, suggesting the existence of morphological features characterizing ccMCTs carrying c-KIT-11-ITD. This 3-stage blinded study aimed to identify morphological features indicative of c-KIT-11-ITD and to evaluate the ability of human observers to learn this task. 17 untrained pathologists first classified 8 WSIs and 200 image patches (highly relevant for algorithmic classification) of ccMCTs as either positive or negative for c-KIT-11-ITD. Second, they self-trained to recognize c-KIT-11-ITD by looking at the same WSIs and patches correctly sorted. Third, pathologists classified 15 new WSIs and 200 new patches according to c-KIT-11-ITD status. In addition, participants reported microscopic features they considered relevant for their decision. Without training, participants correctly classified the c-KIT-11-ITD status of 63\%-88\% of WSIs and 43\%-55\% of patches. With self-training, 25\%-38\% of WSIs and 55\%-56\% of patches were correctly classified. High cellular pleomorphism, anisokaryosis, and sparse cytoplasmic granulation were commonly suggested as features associated with c-KIT-11-ITD-positive ccMCTs, none of which showed reliable predictivity in a follow-up study. The results indicate that transfer of algorithmic skills to the human observer is difficult. A c-KIT-11-ITD-specific morphological feature remains to be extracted from the artificial intelligence model.}, language = {en} } @inproceedings{BertramWeissDonovanetal.2025, author = {Bertram, Christof and Weiss, Viktoria and Donovan, Taryn and Banerjee, Sweta and Conrad, Thomas and Ammeling, Jonas and Klopfleisch, Robert and Kaltenecker, Christopher C. and Aubreville, Marc}, title = {Histologic Dataset of Normal and Atypical Mitotic Figures on Human Breast Cancer (AMi-Br)}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2025: Proceedings, German Conference on Medical Image Computing, Regensburg March 09-11, 2025}, editor = {Palm, Christoph and Breininger, Katharina and Deserno, Thomas Martin and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Tolxdorff, Thomas}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-47422-5}, doi = {https://doi.org/10.1007/978-3-658-47422-5_25}, pages = {113 -- 118}, year = {2025}, language = {en} } @inproceedings{BanerjeeBertramAmmelingetal.2025, author = {Banerjee, Sweta and Bertram, Christof and Ammeling, Jonas and Weiss, Viktoria and Conrad, Thomas and Klopfleisch, Robert and Kaltenecker, Christopher C. and Breininger, Katharina and Aubreville, Marc}, title = {Comprehensive Dataset of Coarse Tumor Annotations for The Cancer Genome Atlas Breast Invasive Carcinoma}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2025: Proceedings, German Conference on Medical Image Computing, Regensburg March 09-11, 2025}, editor = {Palm, Christoph and Breininger, Katharina and Deserno, Thomas Martin and Handels, Heinz and Maier, Andreas and Maier-Hein, Klaus H. and Tolxdorff, Thomas}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-47422-5}, doi = {https://doi.org/10.1007/978-3-658-47422-5_56}, pages = {260 -- 265}, year = {2025}, language = {en} }